TWI377614B - Method for forming adhesive dies singulated from a wafer - Google Patents

Method for forming adhesive dies singulated from a wafer Download PDF

Info

Publication number
TWI377614B
TWI377614B TW97112546A TW97112546A TWI377614B TW I377614 B TWI377614 B TW I377614B TW 97112546 A TW97112546 A TW 97112546A TW 97112546 A TW97112546 A TW 97112546A TW I377614 B TWI377614 B TW I377614B
Authority
TW
Taiwan
Prior art keywords
wafer
adhesive layer
forming
viscous
cutting
Prior art date
Application number
TW97112546A
Other languages
Chinese (zh)
Other versions
TW200943402A (en
Inventor
Alex Liu
Chia Chang Chang
Original Assignee
Powertech Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powertech Technology Inc filed Critical Powertech Technology Inc
Priority to TW97112546A priority Critical patent/TWI377614B/en
Publication of TW200943402A publication Critical patent/TW200943402A/en
Application granted granted Critical
Publication of TWI377614B publication Critical patent/TWI377614B/en

Links

Landscapes

  • Dicing (AREA)
  • Adhesive Tapes (AREA)

Description

1377614 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種半導體裝置之製造技術,特別 係有關於一種黏性晶粒由晶圓分離之形成方法。 【先前技術】 當晶圓(wafer)經歷了數十道甚至是更多的半導體製 程,方可製作出複數個呈陣列排列之積體電路或微機電 (MEMS)結構後,即會利用切割製程將晶圓切割出複數 個晶粒(die),以便進行後續之半導體封裝製程與組裝製 程。然傳統的晶粒的表面不具有黏性,須在基板上另塗 施黏晶材料。需要發展一種黏性晶粒的形成技術’以控 制黏晶特性、用量並使後續半導體封裝/組裝製程更加 有效率。 請參考第1圖所不’為習知黏性晶粒由晶圓分離之 形成過程中之元件截面圖。如第1圖A所示,提供一欲 進行切割製程之晶圓11 〇,該晶圓11 〇係包含複數個一 體未分離之晶粒111。此外,該晶圓11 0係可具有一積 體電路形成表面11 2以及一背面11 3,該晶圓11 0係更 具有複數個位於該積體電路形成表面 112之銲墊 114(如第2圖所示)。接著,如第1圖B所示,在該晶 圓110之該積體電路形成表面112貼附一晶背研磨膠帶 120,藉此覆蓋及保護該晶圓110之積體電路形成表面 112。之後,如第1圖C所示,研磨該晶圓110之該背 面113,讓該晶圓110之厚度減少至一預定之厚度。之 5 13776141377614 IX. Description of the Invention: [Technical Field] The present invention relates to a manufacturing technique of a semiconductor device, and more particularly to a method for forming a viscous grain by wafer separation. [Prior Art] When a wafer has undergone dozens or even more semiconductor processes to produce a plurality of integrated circuits or microelectromechanical (MEMS) structures arranged in an array, the cutting process is utilized. The wafer is diced into a plurality of dies for subsequent semiconductor packaging processes and assembly processes. However, the surface of the conventional crystal grain is not sticky, and a die-bonding material is additionally applied to the substrate. There is a need to develop a technique for forming viscous grains to control the properties and amount of viscosities and to make subsequent semiconductor packaging/assembly processes more efficient. Please refer to Figure 1 for a cross-sectional view of the components during the formation of the conventional viscous grains separated from the wafer. As shown in Fig. 1A, a wafer 11 is provided which is to be subjected to a dicing process, and the wafer 11 includes a plurality of undivided grains 111. In addition, the wafer 110 may have an integrated circuit forming surface 11 2 and a back surface 11 3 , and the wafer 10 0 further has a plurality of pads 114 on the integrated circuit forming surface 112 (eg, the second Figure shows). Next, as shown in Fig. 1B, a back-grinding tape 120 is attached to the integrated circuit forming surface 112 of the wafer 110, thereby covering and protecting the integrated circuit forming surface 112 of the wafer 110. Thereafter, as shown in Fig. 1C, the back surface 113 of the wafer 110 is polished to reduce the thickness of the wafer 110 to a predetermined thickness. Of 5 1377614

後,如第1圖D所示,在該晶圓110之該背面113貼附 一具有黏著層130之載膜140。之後,如第1圖D所示’ 再以一剝離治具(圖未繪出)依箭號方向使原先黏貼在 該積體電路形成表面112之該晶背研磨膠帶120被分 離,而顯露出該積體電路形成表面112(如第1圖E所 示)。之後,如第1圖F所示,利用一晶圓切割機台(圖 未繪出)進行該晶圓11 〇之對位,並利用一切割刀具(例 如鑽石刀片)依照預先設定好之切割道(scribe line),將 該晶圓11 0切割成複數個分離之晶粒111,除了切穿該 黏著層130更會些許切入該載膜140。最後,如第1圖 G所示,再以一真空吸嘴(圖未繪出)進行後續之晶粒撿 拾製程。 請參考第1圖F及第2圖所示,在上述之切割步驟 中,當利用一切割刀具1 60由上往下切割該晶圓1 1 0及 該黏著層1^0至該載膜140時,該黏著層130會產生向 下彎曲之4邊131(如第2圖所示),而使該黏著層130 形成一不平整之黏晶表面,會導致後續該黏著層1 3 0黏 貼至另一晶片或一基板產生貼附傾斜與黏晶餘隙之問 題。該黏著層130無法與被貼附之晶片(或基板)產生良 好的黏合面積,導致易於分層,故影響半導體封裝/組 裝品質。 【發明内容】 有鑒於此,本發明之主要目的係在於提供一種黏性 晶粒由晶圓分離之形成方法’在由· 已貼附黏者層之晶 6 1377614 圓中分離形成個別黏性晶粒時,不會在黏著層之邊緣時 產生突出黏晶面之切割毛邊,進而解決習知切割毛邊引 起黏晶貼附傾斜與餘隙的問題。 本發明的目的及解決其技術問題是採用以下技術方 案來實現的。依據本發明所揭示之一種黏性晶粒由晶圓 分離之形成方法,主要包含以下步驟。首先,提供一晶 圓,該晶圓包含複數個一體未分離的晶粒。接著,形成 一切割空隙在該些晶粒之間。之後,轉印一黏著層於該 晶圓,其中該黏著層係形成於一可擴張膜。之後,形成 一預裂導槽於該黏著層,該預裂導槽係對準於該切割空 隙並且不貫穿該黏著層。之後,拉伸該可擴張膜,以使 該黏著層沿著該預裂導槽之紋路予以***。最後,由該 可擴張膜取出該些貼附有已***黏著層之晶粒。 本發明的目的及解決其技術問題還可採用以下技術 措施進一步實現。 在前述之黏性晶粒由晶圓分離之形成方法中,該晶 圓係可具有一積體電路形成表面以及一背面,該晶圓係 更具有複數個位於該積體電路形成表面之銲墊。 在前述之黏性晶粒由晶圓分離之形成方法中,該黏 著層係可轉印於該晶圓之該積體電路形成表面。 在前述之黏性晶粒由晶圓分離之形成方法中,該黏 著層係可轉印於該晶圓之該背面。 在前述之黏性晶粒由晶圓分離之形成方法中,該切 割空隙在該些晶粒之間的步驟係可實施在該黏著層之 7 1377614 轉印步驟之前並包含一晶圓半切割之步驟。 在前述之黏性晶粒由晶圓分離之形成方法中,該晶 圓半切割步驟中形成的切割空隙係可具有一小於該晶 圓厚度之深度,並另包含一晶背研磨步驟,以使該些晶 粒為分離。 在前述之黏性晶粒由晶圓分離之形成方法中,該晶 背研磨步驟之前,係可貼附一晶背研磨膠帶於該晶圓並 遮覆該切割空隙。 在前述之黏性晶粒由晶圓分離之形成方法中,該晶 .背研磨膠帶係可在該黏著層之轉印步驟之後予以移除。 在前述之黏性晶粒由晶圓分離之形成方法中,該切 割空隙與該預裂導槽係可由同一步驟中之切割刀具所 形成。 在前述之黏性晶粒由晶圓分離之形成方法中’在拉 伸該可擴張膜之後,可另包含之步驟為:喪失或減少該 可擴張膜對該黏著層之黏性,以便於取出該些晶粒。 在前述之黏性晶粒由晶圓分離之形成方法中,該喪 失或減少該可擴張膜之黏性之方法係可包含紫外光照 射。 表刖述之黏性晶粒由晶圓分離之形成方法中’該預 裂導槽係可具有u形截面。 在前述之黏性晶粒由晶圓分離之形成方法中,該預 裂導槽係可具有v形截面。 由以上技術方案可以看出*本發明之黏性晶粒由晶 8 1377614 圓分離之形成方法,具有以下優點與功效: 一、 在由一已貼附黏著層之晶圓分離形成個別黏性 時,不會在黏著層之邊緣時產生突出黏晶面之 毛邊,進而解決習知切割毛邊引起黏晶貼附傾 餘隙的問題。 二、 不會損傷可擴張膜的結構,以確保良好的拉 性,並在低溫(或常溫)分離黏著層以避免黏著 邊緣產生不當固化。 三、 利用在轉印黏著層步驟之前的晶圓半切割步驟 背研磨步驟,以使晶粒分離,進而避免在切割 之形成時造成黏著層的固化。 【實施方式】 依據本發明之第一具體實施例,具體揭示一種 晶粒由晶圓分離之形成方法。第3圖係為·—種黏性 由晶圓分離之形成流程圖,第4圖繪示在過程中之 截面圖。 如第3圖所示,本發明之方法包含以下步驟:「 一晶圓」之步驟1、「形成一切割空隙在晶粒之間」 驟2、「轉印一黏著層於晶圓」之步驟3、「形成一 導槽於黏著層」之步驟4、「拉伸可擴張膜」之步 以及「由可擴張膜取出晶粒」之步驟6。 首先,第3圖之步驟1可參閱第4圖A所示, 一欲進行切割製程之晶圓210,該晶圓210係包含 數個一體未分離的晶粒2 11。此外,該晶圓2 1 0係 晶粒 切割 斜與 伸特 層之 與晶 空隙 黏性 晶粒 元件 提供 之步 預裂 驟5 提供 有複 可具 9 1377614 有一積體電路形成表面212以及一背面213,該晶圓2ι〇 係更具有複數個銲墊214(如第5圖所示),其係位於該 積體電路形成表面212»該晶圓210之基礎材質通常是 矽、矽鍺化物及砷化鎵等半導體材料。該些銲墊214之 材質通常為鋁。 第3圖之步驟2在本實施例中係為一晶圓半切割之 步驟首先可參閱第4圖B所示,步驟2包含依照預先 設定好之切割道(scribe line),形成—切割空隙215在 該些晶粒211之間。該切割空隙215係可具有一小於該 晶圓厚度D1之切割深度D2 ’即該切割空隙2 i 5係小於 該晶圓210之厚度D1’以不切穿該晶圓210。該切割空 隙215係由該晶圓210之該積體電路形成表面212往下 延伸。具體而言’該晶圓半切割步.驟係可使用既有的晶 圓切晶粒機器進行,例如鑽石刀片(diam〇nd scribe〇高 速研磨切割。詳細而言’該晶圓210之厚度D1雖然無 特殊限制’但通常係在350微米至800微米之範圍。宜 中該切割深度D2係經過適當調整以符合預定晶片厚 度’通常係約在20微米至500微米之間。此外,該切 割空隙2 1 5之寬度係等於使用的切晶粒刀片之寬度,通 常約在1 0微米至1 〇〇微米之間。 在本實施例中’步驟2之後可另包含一晶背研磨步 驟’執行在該切割空隙2 1 5形成之後.,以使該些晶粒 211為分離。如第4圖C所示,在進行在該晶背研磨步 驟之前,係可貼附一晶背研磨膠帶220於該晶圓2 1 0之 10 j / /014 該積體電路形成表 212並遮覆該切割空隙215。如第Thereafter, as shown in Fig. 1D, a carrier film 140 having an adhesive layer 130 is attached to the back surface 113 of the wafer 110. Thereafter, as shown in FIG. 1D, the back grinding tape 120 originally adhered to the integrated circuit forming surface 112 is separated by a peeling jig (not shown) in the direction of the arrow, and is revealed. The integrated circuit forms a surface 112 (as shown in Figure 1E). Then, as shown in FIG. 1F, the wafer 11 is aligned by a wafer cutting machine (not shown), and a cutting tool (for example, a diamond blade) is used to follow the preset cutting path. (scribe line), the wafer 110 is cut into a plurality of separate crystal grains 111, and the carrier film 140 is cut into a little more than the adhesive layer 130. Finally, as shown in Fig. 1G, a subsequent vacuum pick-up process is performed with a vacuum nozzle (not shown). Referring to FIG. 1 and FIG. 2, in the cutting step, when the cutting tool 160 is used to cut the wafer 1 10 and the adhesive layer 1 0 to the carrier film 140 from top to bottom. The adhesive layer 130 will have a downwardly curved side 4 (as shown in FIG. 2), and the adhesive layer 130 will form an uneven crystal surface, which will cause the adhesive layer to be adhered to the adhesive layer 130. Another wafer or a substrate creates the problem of attaching the tilt and the die gap. The adhesive layer 130 does not produce a good bonding area with the attached wafer (or substrate), resulting in easy delamination, thus affecting the semiconductor package/assembly quality. SUMMARY OF THE INVENTION In view of the above, the main object of the present invention is to provide a method for forming a viscous crystal grain by a wafer, which is separated into a single viscous crystal in a circle of a crystal 6 1377614 adhered to an adhesive layer. When the particles are granulated, the cutting burrs of the protruding viscous surface are not generated at the edge of the adhesive layer, thereby solving the problem that the conventional cutting burrs cause the adhesion and the adhesion of the adhesive crystal. The object of the present invention and solving the technical problems thereof are achieved by the following technical solutions. A method for forming a viscous grain by wafer separation according to the present invention mainly comprises the following steps. First, a crystal is provided that includes a plurality of integral unseparated grains. Next, a cut void is formed between the grains. Thereafter, an adhesive layer is transferred to the wafer, wherein the adhesive layer is formed on an expandable film. Thereafter, a pre-cracking channel is formed in the adhesive layer, the pre-cracking channel being aligned with the cutting void and not penetrating the adhesive layer. Thereafter, the expandable film is stretched to cause the adhesive layer to split along the lines of the pre-cracking channel. Finally, the crystal grains to which the split adhesive layer is attached are taken out from the expandable film. The object of the present invention and solving the technical problems thereof can be further realized by the following technical measures. In the method for forming a viscous die by wafer separation, the wafer system may have an integrated circuit forming surface and a back surface, and the wafer system further has a plurality of pads on the forming surface of the integrated circuit. . In the above method of forming a viscous grain by wafer separation, the adhesive layer can be transferred onto the integrated circuit forming surface of the wafer. In the above method of forming a viscous grain by wafer separation, the adhesive layer can be transferred to the back side of the wafer. In the above method for forming a viscous grain by wafer separation, the step of cutting the gap between the dies may be performed before the transfer step of the adhesive layer 7 1377614 and including a wafer half-cut step. In the method for forming the viscous grains by wafer separation, the dicing gap formed in the wafer half-cutting step may have a depth smaller than the thickness of the wafer, and further includes a crystal back grinding step, so that The grains are separated. In the above-described method of forming a viscous grain by wafer separation, a crystal back-grinding tape may be attached to the wafer and the cutting gap may be covered before the back grinding step. In the above-described method of forming a viscous grain by wafer separation, the crystal back-grinding tape can be removed after the transfer step of the adhesive layer. In the above-described method of forming a viscous grain by wafer separation, the dicing gap and the pre-cracking channel can be formed by a cutting tool in the same step. In the foregoing method for forming a viscous grain by wafer separation, after the stretchable film is stretched, the method further comprises the steps of: losing or reducing the adhesion of the expandable film to the adhesive layer for easy removal The grains. In the above-described method of forming a viscous grain by wafer separation, the method of losing or reducing the viscosity of the expandable film may include ultraviolet light irradiation. In the method of forming the viscous grains by the wafer separation, the pre-cracking channel system may have a u-shaped cross section. In the above-described method of forming a viscous grain by wafer separation, the pre-cracking channel may have a v-shaped cross section. It can be seen from the above technical solution that the method for forming the viscous grains of the present invention by the separation of the crystal 8 1377614 has the following advantages and effects: 1. When the individual viscous is separated by a wafer to which the adhesive layer has been attached The burr of the protruding sticky surface is not generated at the edge of the adhesive layer, thereby solving the problem that the conventional cutting burr causes the adhesion of the adhesive crystal. Second, the structure of the expandable membrane will not be damaged to ensure good pullability, and the adhesive layer is separated at low temperature (or normal temperature) to avoid improper curing of the adhesive edge. 3. Using a wafer half-cut step back-grinding step prior to the step of transferring the adhesive layer to separate the crystal grains, thereby avoiding curing of the adhesive layer during the formation of the cut. [Embodiment] According to a first embodiment of the present invention, a method of forming a die by wafer separation is specifically disclosed. Fig. 3 is a flow chart for forming a viscous separation from a wafer, and Fig. 4 is a cross-sectional view showing the process. As shown in FIG. 3, the method of the present invention comprises the following steps: "Step 1 of "One Wafer", "Forming a Cutting Space Between Grains", and "Step of Transferring an Adhesive Layer to the Wafer" 3. Step 4 of "Forming a guide groove in the adhesive layer", "Step of stretching the expandable film", and Step 6 of "Removing the die from the expandable film". First, step 1 of Fig. 3 can be referred to Fig. 4A. A wafer 210 for performing a dicing process, the wafer 210 comprising a plurality of integrally undivided dies 211. In addition, the wafer 2 10 is a stepped pre-cracking step provided by the grain-cut viscous die element of the die-cutting oblique and extension layer. The composite 9 977614 has an integrated circuit forming surface 212 and a back surface. 213, the wafer 2 〇 further has a plurality of pads 214 (as shown in FIG. 5), which are located on the integrated circuit forming surface 212. The base material of the wafer 210 is usually germanium, germanium and Semiconductor materials such as gallium arsenide. The pads 214 are typically made of aluminum. Step 2 of FIG. 3 is a wafer half-cut step in this embodiment. First, referring to FIG. 4B, step 2 includes forming a cut gap 215 according to a preset scribe line. Between the plurality of dies 211. The cutting void 215 can have a cutting depth D2' that is less than the thickness D1 of the wafer, i.e., the cutting void 2i 5 is smaller than the thickness D1' of the wafer 210 so as not to cut through the wafer 210. The dicing gap 215 extends downward from the integrated circuit forming surface 212 of the wafer 210. Specifically, the wafer half-cut step can be performed using an existing wafer dicing die machine, such as a diamond blade (diam〇 nd scribe). In detail, the thickness of the wafer 210 is D1. Although not particularly limited', it is usually in the range of 350 micrometers to 800 micrometers. Preferably, the depth of cut D2 is suitably adjusted to conform to a predetermined wafer thickness 'usually between about 20 micrometers and 500 micrometers. In addition, the cutting gap The width of 2 1 5 is equal to the width of the dicing blade used, usually between 10 μm and 1 〇〇 micron. In this embodiment, 'Step 2 may further include a crystal back grinding step' performed at The cutting gap 2 15 is formed after the film 211 is separated. As shown in FIG. 4C, before the crystal back grinding step, a crystal back grinding tape 220 may be attached thereto. Wafer 2 10 10 j / / 014 The integrated circuit forms a table 212 and covers the cutting gap 215.

該晶背研磨膠帶220形狀大致與該The back grinding tape 220 has a shape substantially similar to the

晶圓210,可於研磨時提 供該晶圓210之支撐而不使該些晶粒211掉落,並可保 護該晶圓210之該積體電路形成表面212不受損傷及吸 收研磨時的衝擊力確保該晶圓21〇不會破裂。 之後’進行之步驟3可參閱如第4圖E所示。提供 一黏著層230貼附或轉印於該晶圓2丨〇之該背面2 i 3 上。該黏著層230係可為雙面黏性膠帶或b階黏膠層。 其中該黏著層23 0係形成於一可擴張膜240。該可擴張 膜2 40係具有可拉張伸展之特性,可選自紫外線膠帶 (UV tape) ' 熱分離膠帶(thermal tape)或藍膜(blue tape) 之其中一種。 較佳地,轉印該黏著層230之步驟3(可參見於第4 圖E)係可實施在上述晶圓半切割之步驟(可參見於第4 圖D)之後,以避免在該切割空隙215之形成過程中造 成該黏著層230的固化。 此外,如第4圖E所示,該晶背研磨膠帶220係可 在該黏著層230之轉印步驟之後予以移除,可以一剝離 '合具(圖未繪出)依箭號方向使黏貼在該晶圓210之該積 雷 ,s 吟屯成表面212之該黏著層230分離,以使原本被 遮蓋之該些銲墊214外露(如第4圖F及第5圖所示)。 其中’令該晶背研磨膠帶220失去黏性而容易撕離的方 法可係為紫外光(UV)照射。 之後’第3圖之步驟4可參閱第4圖G與第5圖所 示’以一切割刀具26〇對準該切割空隙215在該黏著層 23〇形成一預裂導槽231»具體而言,該預裂導槽231 係對準於該切割空隙2 1 5並且不貫穿該黏著層23 0。即 該切割刀具260切割該黏著層230之深度係不大於整個 點著層230之深度。具體而言,如第5圖所示,該預裂 導槽23 1係可具有U形截面。 之後’進行第3圖之步驟5。如第4圖Η所示,可 利用一固定夹具251及一拉伸平台252拉伸該可擴張膜 2 4 0 ’使其產生一水平擴張拉力而使該黏著層2 3 〇沿著 該預裂導槽231之紋路予以***。如第4圖I所示,在 拉伸該可擴張膜240之後,該黏著層230被分離為貼附 於該些晶粒211之複數片。具體而言,如第6圖所示, 該黏著層230沿著該預裂導槽23 1之紋路予以***後, 會形成一裂痕232,該裂痕232雖可能為不平整,卻不 會形成往下突出之切割毛邊。因此,以撕裂該黏著層 2 3 0方式可以消除突出於黏晶面之切割毛邊,進而解決 習知以切割刀一次切割該黏者層230所造成切割毛邊 導致黏晶的貼附傾斜問題。此外,不會損傷該可擴張膜 12 1377614 24 0的結構,以確保良好的拉伸特性,並可達 常溫***該黏著層23 0以避免在步驟5之後黏 在邊緣產生不當固化之功效。 此外,在拉伸該可擴張膜24 0之後,可另 驟為:喪失或減少該可擴張膜240對該黏著層 性,以便於取出該些晶粒2 1 1。具體而言,該 少該可擴張膜 240之黏性之方法係可包含紫 或加熱製程,使該可擴張膜240之黏性降低, 可擴張膜240能被剝除而與該黏著層230分離 最後,進行第3圖之步驟6。如第4圖J所 真空吸嘴(圖未繪出)由該可擴張膜240取出該 已***黏著層2 3 0之晶粒2 1 1。該些個別晶粒 由該黏著層230固定及黏合至一指定基板(圖, 以進行半導體封裝;或固定及黏合至一指定晶 而形成多晶片堆疊封裝。 在本發明之第二具體實施例,揭示另一種 由晶圓分離之形成方法。如第3圖所示,本發 步驟亦包含:「提供一晶圓」之步驟1、「形成 隙在晶粒之間」之步驟2、「轉印一黏著層於 步驟3、「形成一預裂導槽於黏著層」之步驟 可擴張膜」之步驟5以及「由可擴張膜取出晶 驟6。其中,步驟2可實施在步驟3之後,並 係為同時進行。 首先,第3圖之步驟1可參閱第7圖A所 到低溫或 著層230 包含之步 2 3 0之黏 喪失或減 外光照射 而能使該 :〇 示,以一 些貼附有 2 1 1可經 良繪出), 粒 2 1 1, 黏性晶粒 明之流程 一切割空 晶圓」之 4、「拉伸 粒」之步 與步驟4 示,提供 13 曰曰圓310’包含有複數個一體未分離的晶粒311 外,該晶圓310係可具有一積體電路形成表面312 背面3 1 3,該晶圓3丨〇係更具有複數個位於該積 略形成表面312之銲墊314(如第8圖所示)。 接著,進行步驟3»如第7圖B及第8圖所示 、 點著層330 ’並貼附或轉印於該晶圓310之該 電路形成表面312’其中該黏著層33〇係形成於一 張膜340。該可擴張膜340係具有可拉張伸展之特 並在本實施例中,該黏著層3 3 0係可顯露出位於該 電路形成表面312之該些銲塾314,以避免該黏著層 於高溫時產生流動而溢膠污染到該些銲塾3丨4。 如第7圖C所示,在步驟3之後,可執行一晶 磨步驟,以使該晶圓3 1 0達到預定之厚度。具體而 該黏著層330形狀大致與該晶圓310形狀相同或略 該晶圓3 1 0。在本實施例中’該黏著層3 3 0可應用 磨步驟時,代替習知之晶背研磨膠帶,能提供該 31〇良好的固定而不發生剝離,並可保護該晶圓3 該積體電路形成表面312不受損傷及吸收研磨時 擊力確保該晶圓310不會破裂。 之後,進行第3圖之步驟2與步驟4。可參閱 圖D與第8圖所示,依照預先設定好之切割道,利 切割刀具3 6 0往該背面3 1 3往下延伸至切穿該晶虐 形成一切割空隙3 1 5而分離該晶圓3 1 〇使其分離成 個晶粒3 11。同時,該切割刀具3 60並往下切割到 0此 以及 體電 ,提 積體 可擴 性。 積體 ,330 背研 丨言, 大於 於研 晶圓 10之 的衝 第7 用一 J 310 複數 該黏 1377614 著層330,但並不切穿該黏著層330,而形成一預 槽331。具體而言,該切割空隙315與該預裂導槽 係可由同一動作利用該切割刀具360在同一時間 成。可省去本發明之第一實例中,分二次實施切割 驟,而以一次切割步驟來完成切割該晶圓3 1 0以及 該黏著層330形成該預裂導槽331之步驟。較佳地 如第8圖所示,該切割刀具360係具有一 V形刀鈎 使該預裂導槽331具有V形截面,以方便在步驟5 離該黏著層330。 之後,進行第3圖之步驟5。如第7圖E及第 所示,可利用一固定夾具351與一拉伸平台352拉 可擴張膜340,使其產生一水平擴張拉力而使該黏 3 3 0沿著該預裂導槽 3 3 1之紋路予以***。在本 中,該黏著層3 3 0沿著該預裂導槽3 3 1之紋路予以 後,會形成一裂痕332,利用此撕裂動作不會使該 層330形成往下突出之切割毛邊,進而解決習知以 刀完全切割該黏著層 33 0造成切割毛邊導致黏晶 附傾斜與黏晶餘隙的問題。此外,在拉伸該可擴 340之後,可另包含之步驟為:喪失或減少該可擴 3 4 0對該黏著層3 3 0之黏性,以便於取出該些晶粒 最後,進行第3圖之步驟6。如第7圖G所示 一真空吸嘴(圖未繪出)由該可擴張膜340取出該些 有已***黏著層3 3 0之晶粒3 11。 因此*本發明提供之黏性晶粒由晶圓分離之形 裂導 33 1 所形 之步 切割 ,再 ,以 中撕 9圖 伸該 著層 實例 *** 黏著 切割 的貼 張膜 張膜 3 1卜 ,以 貼附 成方 15 1377614 法,在由一已貼附黏著層之晶圓分離形成個 〇* 抑丨王日日粒 不會在黏著層之邊緣時產生突出黏晶面之切割毛 邊進而解決習知切割毛邊引起黏晶貼附傾斜與餘隙的 問題。此外’本發明不會損傷可擴張膜的結構,以確保 良好的拉伸待性,並在低溫(或常溫)分離黏著層以避免 黏著層之邊緣產生不當固化。 以上所述,僅是本發明的較佳實施例而已,並非對 本發明作任何形式上的限制,本發明技術方案範圍當依 所附申晴專利範圍為準。任何熟悉本專業的技術人員可 利用上述揭示的技術内容作出些許更動或修飾為等同 變化的等效實施例’但凡是未脫離本發明技術方案的内 容’依據本發明的技術實質對以上實施例所作的任何簡 單修改、等同變化與修飾,均仍屬於本發明技術方案的 範周内。 【圖式簡單說明】 第1圖:繪示習知黏性晶粒由晶圓分離之形成過程中之 元件截面圖。 第2圖:習知以切割刀切割晶圓以分離黏性晶粒之步驟 中相鄰晶粒之截面局部放大示意圖。 第3圖:依據本發明之第一具體實施例,一種黏性晶粒 由晶圓分離之形成流程圖。 第4圖:依據本發明之第一具體實施例,繪示一種黏性 晶粒由晶圓分離之過程中之元件截面圖。 第5圖:依據本發明之第—具體實施例,在形成一預裂 16 1377614 導槽於黏著層之步驟中相鄰晶粒之截面局部 放大示意圖。 第6圖:依據本發明之第一具體實施例,在拉伸一可擴 張膜之步驟中相鄰晶粒之截面局部放大示.意 圖。 第7圖:依據本發明之第二具體實施例,繪示一種黏性 晶粒由晶圓分離之過程中之7G件截面圖。 第8圖:依據本發明之第二具體實施例,在形成一預裂 導槽於黏著層之步驟中相鄰晶粒之截面局部 放大示意圖。 第9圖:依據本發明之第二具體實施例,在拉伸一可擴 張膜之步驟中相鄰晶粒之截面局部放大不意 圖。 【主要元件符號說明】 D1晶圓厚度 D2切割深度 1 提供一晶圓 2 形成一切割空隙在晶粒之間 3 轉印一黏著層於晶圓 4 形成一預裂導槽於黏著層 5 拉伸可擴張膜 6 由可擴張膜取出晶粒 1 1 0 晶圓 111晶粒 112積體電路形成表面 113背面 1 14銲墊 17 1377614 120 晶 背 研 磨 膠 帶 130 黏 著 層 13 1 毛 邊 140 載 膜 160 切 割 刀 210 晶 圓 211 晶 粒 2 12 積 體 電 路 形 成 表面 213 背 面 214 銲 墊 215 切 割 空 隙 220 晶 背 研 磨 膠 帶 230 黏 著 層 23 1 預 裂 導 槽 232 裂 痕 240 可 擴 張 膜 25 1 固 定 夹 具 252 拉 伸 平 台 260 切 割 刀 具 3 10 晶 圓 3 11 晶 粒 3 12 積 體 電 珞 形 成 表面 3 13 背 面 3 14. 銲 墊 315 切 割 空 隙 330 黏 著 層 33 1 預 裂 導 槽 332 裂 痕 340 可 擴 張 膜 35 1 固 定 夾 具 352 拉 伸 平 台 360 切 割 刀 具The wafer 210 can support the wafer 210 during polishing without dropping the crystal grains 211, and can protect the integrated circuit forming surface 212 of the wafer 210 from damage and absorption and impact. The force ensures that the wafer 21 will not break. Subsequent step 3 can be referred to as shown in Fig. 4E. An adhesive layer 230 is attached or transferred onto the back surface 2 i 3 of the wafer 2 . The adhesive layer 230 can be a double-sided adhesive tape or a b-stage adhesive layer. The adhesive layer 230 is formed on an expandable film 240. The expandable film 214 has a stretchable stretch characteristic and may be selected from the group consisting of UV tape 'thermal tape' or blue tape. Preferably, the step 3 of transferring the adhesive layer 230 (see FIG. 4E) can be performed after the step of half-cutting the wafer (see FIG. 4D) to avoid the gap in the cutting. The curing of the adhesive layer 230 is caused during the formation of 215. In addition, as shown in FIG. 4E, the back grinding tape 220 can be removed after the transfer step of the adhesive layer 230, and can be peeled off by a fitting (not shown) in the direction of the arrow. The solder layer 230 on the surface of the wafer 210 is separated by the solder layer 230 to expose the pads 214 which are originally covered (as shown in FIGS. 4F and 5). The method in which the crystal back grinding tape 220 loses its viscosity and is easily peeled off may be ultraviolet (UV) irradiation. Then, step 4 of FIG. 3 can be referred to FIG. 4G and FIG. 5 to align the cutting gap 215 with a cutting tool 26 to form a pre-cracking groove 231 in the adhesive layer 23. The pre-cracking channel 231 is aligned with the cutting gap 2 15 and does not penetrate the adhesive layer 230. That is, the cutting tool 260 cuts the adhesive layer 230 to a depth no greater than the depth of the entire landing layer 230. Specifically, as shown in Fig. 5, the pre-cracking guide groove 23 1 may have a U-shaped cross section. Thereafter, step 5 of Fig. 3 is performed. As shown in FIG. 4, the expandable film 2400 can be stretched by a fixing jig 251 and a stretching platform 252 to generate a horizontal expansion tension to cause the adhesive layer 2 3 to follow the pre-crack. The lines of the guide grooves 231 are split. As shown in Fig. 4, after the stretchable film 240 is stretched, the adhesive layer 230 is separated into a plurality of sheets attached to the plurality of crystal grains 211. Specifically, as shown in FIG. 6, after the adhesive layer 230 is split along the grain of the pre-cracking channel 23 1 , a crack 232 is formed, which may be uneven but not formed. The protruding burr under the protrusion. Therefore, the cutting burr protruding from the viscous surface can be eliminated by tearing the adhesive layer 203, thereby solving the problem that the cutting burr caused by the cutting of the viscous layer 230 by the dicing blade at a time causes the sticking of the viscous crystal. Further, the structure of the expandable film 12 1377614 24 0 is not damaged to ensure good tensile properties, and the adhesive layer 23 can be split at room temperature to avoid the effect of improper curing of the adhesive layer after the step 5. In addition, after stretching the expandable film 204, it may be further to: lose or reduce the adhesive layer of the expandable film 240 to facilitate the removal of the crystal grains 21. Specifically, the method of reducing the viscosity of the expandable film 240 may include a violet or a heating process to reduce the viscosity of the expandable film 240, and the expandable film 240 can be peeled off to be separated from the adhesive layer 230. Finally, proceed to step 6 of Figure 3. The vacuum nozzle (not shown) of Fig. 4 is taken out from the expandable film 240 by the crystal 2 1 1 of the split adhesive layer 230. The individual dies are fixed and bonded to the specified substrate by the adhesive layer 230 (for example, for semiconductor packaging; or fixed and bonded to a designated crystal to form a multi-wafer stacked package. In the second embodiment of the present invention, Another method for forming a wafer separation is disclosed. As shown in FIG. 3, the steps of the present invention also include the steps of "providing a wafer", "forming a gap between the crystal grains", and "transfer". An adhesive layer in step 3, "forming a pre-cracking channel in the adhesive layer" step 5 of the expandable film" and "removing the crystal 6 from the expandable film. wherein step 2 can be carried out after step 3, and Firstly, step 1 of Fig. 3 can refer to the low temperature of layer 7 or the viscous loss of the layer 230 including the step 2 or the external light irradiation to enable the display: Attached to 2 1 1 can be well-drawn), 2 1 1 , viscous grain-forming process, 1 cut empty wafer, 4, "stretched grain" step and step 4, providing 13 rounds The 310' includes a plurality of integrated undivided grains 311, and the wafer 310 is Having an integrated circuit formed surface of the back 312,313, Shu the wafer 3 has a plurality of square-based located more product forming surface slightly bonding pad 314 of 312 (as shown in FIG. 8). Next, step 3», as shown in FIGS. 7B and 8 , the layer 330' is attached and attached or transferred to the circuit forming surface 312' of the wafer 310, wherein the adhesive layer 33 is formed on the substrate A film 340. The expandable film 340 has the characteristics of stretchable stretching. In the embodiment, the adhesive layer 330 can expose the solder pads 314 located on the circuit forming surface 312 to prevent the adhesive layer from being exposed to high temperatures. When the flow is generated, the glue is contaminated to the soldering holes 3丨4. As shown in Fig. 7C, after step 3, a crystallization step can be performed to bring the wafer 310 to a predetermined thickness. Specifically, the adhesive layer 330 has a shape substantially the same as or slightly different from the wafer 310. In the present embodiment, when the adhesive layer 310 can be applied to the grinding step, instead of the conventional back grinding tape, the 31 〇 good fixing can be provided without peeling, and the integrated circuit of the wafer 3 can be protected. Forming the surface 312 without damage and absorbing the impact force during polishing ensures that the wafer 310 does not break. Thereafter, step 2 and step 4 of FIG. 3 are performed. Referring to FIG. D and FIG. 8 , according to the pre-set cutting lane, the cutting tool 360 extends downwardly to the back surface 3 1 3 to cut through the crystal to form a cutting gap 3 1 5 and separate the cutting. The wafer 3 1 is separated into a die 3 11 . At the same time, the cutting tool 3 60 is cut down to 0 and the body power and the expandable body are expandable. Integral, 330 back research rumors, greater than the lithography of the wafer 10, the seventh is a J 310 plural, the viscous 1377614 layer 330, but does not cut through the adhesive layer 330, forming a pre-groove 331. Specifically, the cutting gap 315 and the pre-cracking channel can be formed at the same time by the cutting tool 360 by the same action. The first example of the present invention may be omitted, and the cutting step is performed twice, and the step of cutting the wafer 310 and the adhesive layer 330 to form the pre-cracking guide 331 is completed in one cutting step. Preferably, as shown in Fig. 8, the cutting tool 360 has a V-shaped hook such that the pre-cracking channel 331 has a V-shaped cross section to facilitate the separation of the adhesive layer 330 at step 5. Thereafter, step 5 of FIG. 3 is performed. As shown in FIG. 7E and FIG. 7, the expandable film 340 can be pulled by a fixing jig 351 and a stretching platform 352 to generate a horizontal expansion pulling force to cause the adhesive 3 3 0 along the pre-cracking channel 3. The pattern of 3 1 is split. In this case, the adhesive layer 303 is disposed along the grain of the pre-cracking channel 3 3 1 to form a crack 332. The tearing action does not cause the layer 330 to form a cutting burr protruding downward. Further, it is conventional to solve the problem that the adhesive layer 33 0 is completely cut by a knife to cause the cutting burr to cause the adhesion of the adhesive crystal and the adhesion of the crystal. In addition, after stretching the expandable 340, the method further comprises the steps of: losing or reducing the viscosity of the expandable layer 340 to the adhesive layer, so as to take out the crystal grains, and finally performing the third Step 6 of the figure. A vacuum nozzle (not shown) as shown in Fig. 7G removes the crystal grains 3 11 having the split adhesive layer 303 from the expandable film 340. Therefore, the viscous crystal grains provided by the present invention are cut by the shape of the cleavage guide 33 1 of the wafer separation, and then the delamination film is formed by the cleavage of the delamination film. , by attaching the square 15 1377614 method, forming a 〇 by a wafer attached to the adhesive layer* 丨 丨 日 日 日 日 不会 不会 不会 不会 日 日 日 日 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒 粒Conventional cutting of the burrs causes problems with the adhesion of the viscous crystals to the slanting and clearance. Further, the present invention does not damage the structure of the expandable film to ensure good stretchability, and separates the adhesive layer at a low temperature (or normal temperature) to prevent improper curing of the edges of the adhesive layer. The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the present invention. The scope of the technical solutions of the present invention is subject to the scope of the patent application. Any person skilled in the art can make a few changes or modifications to the equivalent embodiment by using the technical content disclosed above, but the content without departing from the technical solution of the present invention is made according to the technical essence of the present invention. Any simple modification, equivalent change and modification are still within the scope of the technical solution of the present invention. [Simple description of the drawing] Fig. 1 is a cross-sectional view showing the components in the process of forming a conventional viscous grain by wafer separation. Fig. 2 is a partially enlarged schematic view showing the cross section of adjacent crystal grains in the step of cutting the wafer by a dicing blade to separate the viscous crystal grains. Figure 3 is a flow chart showing the formation of a viscous die separated from a wafer in accordance with a first embodiment of the present invention. Fig. 4 is a cross-sectional view showing the element in the process of separating viscous grains from a wafer in accordance with a first embodiment of the present invention. Fig. 5 is a partially enlarged schematic cross-sectional view showing the adjacent crystal grains in the step of forming a pre-cracked 16 1377614 trench in the adhesive layer in accordance with the first embodiment of the present invention. Fig. 6 is a partially enlarged plan view showing a section of an adjacent crystal grain in the step of stretching an expandable film according to the first embodiment of the present invention. Figure 7 is a cross-sectional view showing a 7G piece of a process in which a viscous die is separated from a wafer in accordance with a second embodiment of the present invention. Fig. 8 is a partially enlarged plan view showing the cross section of adjacent crystal grains in the step of forming a pre-cracked guide groove in the adhesive layer in accordance with the second embodiment of the present invention. Fig. 9 is a partial enlarged view of a section of an adjacent crystal grain in the step of stretching an expandable film according to a second embodiment of the present invention. [Main component symbol description] D1 wafer thickness D2 cutting depth 1 provides a wafer 2 to form a cutting gap between the crystal grains 3 transfer an adhesive layer on the wafer 4 to form a pre-cracking guide groove on the adhesive layer 5 The expandable film 6 is taken out from the expandable film. The wafer 1 111 Wafer 111 Grain 112 Integrated circuit Forming surface 113 Back surface 1 14 Pad 17 1377614 120 Crystal back grinding tape 130 Adhesive layer 13 1 Burr 140 Carrier film 160 Cutter 210 Wafer 211 Grain 2 12 Integrated Circuit Forming Surface 213 Back Side 214 Pad 215 Cutting Space 220 Crystal Back Grinding Tape 230 Adhesive Layer 23 1 Pre-cracking Channel 232 Crack 240 Expandable Film 25 1 Fixing Fixture 252 Stretching Platform 260 Cutting tool 3 10 Wafer 3 11 Grain 3 12 Integrated body forming surface 3 13 Back 3 14. Pad 315 Cutting gap 330 Adhesive layer 33 1 Pre-cracking channel 332 Crack 340 Expandable film 35 1 Fixing fixture 352 Stretching platform 360 cutting knife

Claims (1)

1377614 (v 十、申請專利範圍: 1、一種黏性晶粒由晶圓分離之形成方法,主要包含以 下步驟: 提供一晶圓,包含複數個一體未分離的晶粒; 形成一切割空隙在該些晶粒之間; 轉印一黏著層於該晶圓,其中該黏著層係形成於一 可擴張膜;1377614 (v. Patent application scope: 1. A method for forming a viscous die from a wafer, comprising the steps of: providing a wafer comprising a plurality of integrated undivided grains; forming a cutting gap in the Between the crystal grains; transferring an adhesive layer to the wafer, wherein the adhesive layer is formed on an expandable film; 形成一預裂導槽於該黏著層,該預裂導槽係對準於 該切割空隙並且不貫穿該黏著層; 拉伸該可擴張膜,以使該黏著層沿著該預裂導槽之 紋路予以***;以及 由該可擴張膜取出該些貼附有已***黏著層之晶 粒。Forming a pre-cracking channel in the adhesive layer, the pre-cracking channel is aligned with the cutting gap and does not penetrate the adhesive layer; stretching the expandable film to cause the adhesive layer to follow the pre-cracking channel The lines are split; and the crystal grains to which the split adhesive layer is attached are taken out from the expandable film. 2 '如申請專利範圍第1項所述之黏性晶粒由晶圓分離 之形成方法,其中該晶圓係具有一積體電路形成表 面以及一背面,該晶圓係更具有複數個位於該積體 電路形成表面之銲墊。 3、如申請專利範圍第2項所述之黏性晶粒由晶圓分離 之形成方法,其中該黏著層係轉印於該晶圓之該背 面。 4、如申請專利範圍第1或3項所述之黏性晶粒由晶圓 分離之形成方法,其中上述形成該切割空隙在該些 晶粒之間的步驟係實施在該黏著層之轉印步驟之 前並包含一晶圓半切割之步驟。 19 1377614 曰修正替換頁 5、 如申請專利範圍第4項所述之黏性晶粒由晶圓分離 之形成方法,其中由上述晶圓半切割步驟中形成的 切割空隙具有一小於該晶圓厚度之深度,並另包含 一晶背研磨步驟,以使該些晶粒為分離。 6、 如申請專利範圍第5項所述之黏性晶粒由晶圓分離 之形成方法,其中在上述晶背研磨步驟之前,貼附 一晶背研磨膠帶於該晶圓並遮覆該切割空隙。 7、 如申請專利範圍第6項所述之黏性晶粒由晶圓分離 之形成方法,其中該晶背研磨膠帶係在該黏著層之 轉印步驟之後予以移除。 8、 如申請專利範圍第1項所述之黏性晶粒由晶圓分離 之形成方法,其中在拉伸該可擴張膜之後,另包含 之步驟為:喪失或減少該可擴張膜對該黏著層之黏 性,以便於取出該些晶粒。 9、 如申請專利範圍第8項所述之黏性晶粒由晶圓分離 之形成方法,其中上述喪失或減少該可擴張膜之黏 性之方法係包含紫外光照射。 1 0、如申請專利範圍第1項所述之黏性晶粒由晶圓分 離之形成方法,其中該預裂導槽係具有U形截面。 1 1、如申請專利範圍第1項所述之黏性晶粒由晶圓分 離之形成方法,其中該預裂導槽係具有V形截面。 1 2、一種黏性晶粒由晶圓分離之形成方法,主要包含 以下步驟: 提供一晶圓,包含複數個一體未分離的晶粒; 20 1377614 ^丨賊)正替換 轉印一黏著層於該晶圓,其中該黏著層係形成於一 可擴張膜; 同時形成一切割空隙在該些晶粒之間並形成一預裂 導槽於該黏著層内,該預裂導槽係對準於該切割空 隙並且不貫穿該黏著層; 拉伸該可擴張膜,以使該黏著層沿著該預裂導槽之 紋路予以***;以及2' The method for forming a viscous die by wafer separation as described in claim 1, wherein the wafer has an integrated circuit forming surface and a back surface, and the wafer system has a plurality of The integrated circuit forms a solder pad on the surface. 3. A method of forming a viscous die by wafer separation as described in claim 2, wherein the adhesive layer is transferred to the back side of the wafer. 4. The method for forming a viscous die separated by a wafer according to claim 1 or 3, wherein the step of forming the dicing gap between the dies is performed on the transfer of the adhesive layer. The step of including a wafer half-cut is included before the step. 19 1377614 曰Revision and Replacement Page 5, the method for forming a viscous die separated by a wafer according to claim 4, wherein the dicing gap formed by the wafer half-cutting step has a thickness smaller than the thickness of the wafer The depth is further included in a crystal back grinding step to separate the grains. 6. The method for forming a viscous die separated by a wafer according to claim 5, wherein before the crystal back grinding step, a back grinding tape is attached to the wafer and the cutting gap is covered. . 7. A method of forming a viscous die separated by a wafer as described in claim 6 wherein the back grinding tape is removed after the transfer step of the adhesive layer. 8. The method for forming a viscous die separated by a wafer according to claim 1, wherein after the stretchable film is stretched, the further step of: removing or reducing the expandable film to the adhesive The viscosities of the layers facilitate the removal of the grains. 9. A method of forming a viscous die separated by a wafer as described in claim 8 wherein said method of losing or reducing the viscosity of said expandable film comprises ultraviolet light irradiation. A method of forming a viscous grain by wafer separation as described in claim 1 wherein the pre-cracking channel has a U-shaped cross section. 1 1. A method of forming a viscous grain by wafer separation as described in claim 1 wherein the pre-cracking channel has a V-shaped cross section. 1 2, a method for forming a viscous die from a wafer, comprising the steps of: providing a wafer comprising a plurality of integrated undivided grains; 20 1377614 ^ thief) replacing the transfer of an adhesive layer The wafer, wherein the adhesive layer is formed on an expandable film; and a cutting gap is formed between the crystal grains to form a pre-cracking guide groove in the adhesive layer, the pre-cracking guide groove is aligned with Cutting the void and not penetrating the adhesive layer; stretching the expandable film to cause the adhesive layer to split along the texture of the pre-cracking channel; 由該可擴張膜取出該些貼附有已***黏著層之晶 粒。 1 3、如申請專利範圍第1 2項所述之黏性晶粒由晶圓分 離之形成方法,其中該晶圓係具有一積體電路形成 表面以及一背面,該晶圓係更具有複數個位於該積 體電路形成表面之銲墊,其中該黏著層係轉印於該 晶圓之該積體電路形成表面。The crystal grains to which the split adhesive layer is attached are taken out from the expandable film. 1 . The method for forming a viscous die separated by a wafer according to claim 12, wherein the wafer has an integrated circuit forming surface and a back surface, and the wafer has a plurality of a pad located on a surface on which the integrated circuit is formed, wherein the adhesive layer is transferred to the integrated circuit forming surface of the wafer. 1 4、如申請專利範圍第1 2項所述之黏性晶粒由晶圓分 離之形成方法,其中該切割空隙與該預裂導槽係由 同一步驟中之切割刀具所形成。 21 1377614 十一、圓式: ί啊^月乃時(次)正替換IfA method of forming a viscous grain by wafer separation as described in claim 12, wherein the cutting gap and the pre-cracking channel are formed by a cutting tool in the same step. 21 1377614 十一, round type: ί 啊 ^月乃时 (次) is replacing If 22 137761422 1377614 丨*1)^月修(更)正替換頁丨*1)^月修(more) replacement page 第2圖 23 1377614 卜年^月’3修(更)正替換頁The second page 23 1377614 The year of the month ^ 3 repair (more) is the replacement page 66 24 1377614 和年u月4日修(更)正替換頁24 1377614 and the year 4th, the repair (more) replacement page 25 1277614 V«〇年^月V)日修(更)正替25 1277614 V«〇年^月V)日修(more)正正 第5圖Figure 5 212 231 215 211 214212 231 215 211 214 第6 B 26 13776146 B 26 1377614 27 1377614 印年丨 > 月 日修(更)正替換頁27 1377614 印年丨 > Month day repair (more) replacement page 第8圖Figure 8 314 312 31 1 315 331 311 313314 312 31 1 315 331 311 313 2828
TW97112546A 2008-04-07 2008-04-07 Method for forming adhesive dies singulated from a wafer TWI377614B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97112546A TWI377614B (en) 2008-04-07 2008-04-07 Method for forming adhesive dies singulated from a wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97112546A TWI377614B (en) 2008-04-07 2008-04-07 Method for forming adhesive dies singulated from a wafer

Publications (2)

Publication Number Publication Date
TW200943402A TW200943402A (en) 2009-10-16
TWI377614B true TWI377614B (en) 2012-11-21

Family

ID=44869007

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97112546A TWI377614B (en) 2008-04-07 2008-04-07 Method for forming adhesive dies singulated from a wafer

Country Status (1)

Country Link
TW (1) TWI377614B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201306104A (en) * 2011-07-27 2013-02-01 Lextar Electronics Croportion A chip sawing apparatus and method of manufacturing the same
JP6021687B2 (en) * 2013-02-25 2016-11-09 株式会社ディスコ Laminated wafer processing method
JP7193920B2 (en) * 2018-03-09 2022-12-21 株式会社ディスコ Package substrate processing method
JP2020121374A (en) * 2019-01-30 2020-08-13 株式会社ディスコ Cutter original position registration method

Also Published As

Publication number Publication date
TW200943402A (en) 2009-10-16

Similar Documents

Publication Publication Date Title
JP5391158B2 (en) Wafer sticking adhesive sheet and wafer processing method using the same
US20060040472A1 (en) Method for separating semiconductor substrate
US9099546B2 (en) Workpiece dividing method including two laser beam application steps
TW201916153A (en) Semiconductor die singulation method and apparatus
JP2005032903A (en) Semiconductor device and its manufacturing method
TW201232654A (en) Semiconductor device, and manufacturing method and manufacturing apparatus of the same
CN111900078B (en) Method for thinning lithium niobate wafer
US8329561B2 (en) Method of producing semiconductor device
US7863104B2 (en) Method of producing a thin semiconductor chip
TWI251874B (en) Semiconductor device manufacturing apparatus and its manufacturing method
TWI377614B (en) Method for forming adhesive dies singulated from a wafer
CN105140165A (en) Die bonding/dicing sheet
JP2003203886A (en) Method for isolating element, and method for transferring the element
TW201501222A (en) Method for manufacturing semiconductor chip
JP2008277778A (en) Laminated sheet for semiconductor manufacturing device
CN101567301B (en) Method for forming viscous grain by wafer separation
JP2004193241A (en) Dividing method of semiconductor wafer
KR20140001784A (en) Method of manufacturing an led
TW201250923A (en) Pre-cut wafer applied underfill film
KR100675001B1 (en) Method of dicing wafer and die being fabricated using the same method
JP6298699B2 (en) Wafer processing method
JP4553878B2 (en) Manufacturing method of semiconductor device
TWI234234B (en) Method of segmenting a wafer
JP6362484B2 (en) Semiconductor wafer dicing method
JP2008098428A (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees