TWI375628B - Transmission - Google Patents

Transmission Download PDF

Info

Publication number
TWI375628B
TWI375628B TW094128371A TW94128371A TWI375628B TW I375628 B TWI375628 B TW I375628B TW 094128371 A TW094128371 A TW 094128371A TW 94128371 A TW94128371 A TW 94128371A TW I375628 B TWI375628 B TW I375628B
Authority
TW
Taiwan
Prior art keywords
transmission mechanism
clutch
transmission
gear
ratio
Prior art date
Application number
TW094128371A
Other languages
Chinese (zh)
Other versions
TW200610666A (en
Inventor
Robert Krupic
Ling Qiu
Frank Bauer
Sandi Prizmic
Kent Jian Liu
John Morey
Simon Smith
Paul Anthony Donnelly
Darren Lee Firth
Stephen Tapper
Richard Terrence Tamba
Original Assignee
Dsi Holdings Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004904780A external-priority patent/AU2004904780A0/en
Application filed by Dsi Holdings Pty Ltd filed Critical Dsi Holdings Pty Ltd
Publication of TW200610666A publication Critical patent/TW200610666A/en
Application granted granted Critical
Publication of TWI375628B publication Critical patent/TWI375628B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0206Layout of electro-hydraulic control circuits, e.g. arrangement of valves
    • F16H2061/0209Layout of electro-hydraulic control circuits, e.g. arrangement of valves with independent solenoid valves modulating the pressure individually for each clutch or brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0052Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising six forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • F16H61/061Smoothing ratio shift by controlling rate of change of fluid pressure using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Transmission Device (AREA)
  • Structure Of Transmissions (AREA)

Description

1375628 九、發明說明: 【明戶斤屬4貝起^】 發明領域 本發明係有關於一種傳動機構,更特定言之,但非專 5有地,係有關於汽車用的一種多檔齒輪自動傳動機構。 C先前^^标3 發明背景 >*L車用自動傳動機構係廣泛地於現代化車輛中使用, 並能彰顯其之便利性及使用容易。該等自動傳動機構的發 10 展趨勢在於構成具更多前進比(forward ratio),用以提供較 佳的加速度及燃料經濟性。早期的自動傳動機構具有2前進 比並且加速度及燃料經濟性受到限制,如同迫使與該傳動 機構結合的引擎在第一檔齒輪中以相對高速旋轉,係由於 前進比之間的間隔係為廣泛的’為了達到可接受的最高速 15 度能力。然而,最近,汽車用自動傳動機構已發展具3、4、 5及6前進比。藉由具更多前進比,該等前進比能夠間隔得 更為接近同時仍能獲得良好的最高速度能力,引擎能夠在 一窄的理想操作帶内作動用以改良燃料經濟性及/或性能。 然而,該等多重比率自動傳動機構典型地有賴於複數 2〇 之摩擦元件.,為了在不同前進比之間作動。特別地,通常 於每一前進比該多重比率自動傳動機構與至少二摩擦元件 嚙合。該等摩擦元件通常為離合器及煞車帶的形式,由於 其之作動的摩擦性質,所以產生熱量(因而浪費能源)並會造 成磨損。 5 1375628 一特定的多重比率自動傳動機構具有6前進比,係藉由 與以3離合器及2煞車帶所組成的5摩擦元件嚙合/鬆開而作 動。然而,每一前進比需嚙合5摩擦元件中之2摩擦元件。 專利申請人確定此型式的傳動機構不足以高度地使用該等 5 摩擦元件用於控制傳動機構之前進比之間的作動,並且對 於多重比率自動傳動機構而言,少使用摩擦元件係為有利 的0 【發明内容】 發明概要 10 根據一觀點,提供一車輛用之多重比率自動傳動機 構,該傳動機構具有至少一行星齒輪組,複數不同形式之 摩擦元件用於與介於傳動機構之輸入與輸出部分之間的行 星齒輪組之組件耦合,俾便達到複數之傳動比,以及一控 制系統用於選擇性與不同結合方式的摩擦元件嚙合/鬆 15 開,致使選擇傳動比,其中一或更多的摩擦元件之嚙合及/ 或鬆開速率係由該或每一其他的摩擦元件獨立地控制。 有利地,該嚙合及/或鬆開速率之獨立控制使能夠適應 地控制該一或更多的摩擦元件。例如,該適應控制可用於 達到傳動機構齒輪狀態間較為平順的轉變,用於達到合適 20 的變速感覺及/或變速性能,用以適應車輛狀況以及駕駛人 操作,用於在傳動機構之使用壽命期間適應所造成的磨損 或洩漏等。 較佳地,每一前進比係與傳動機構之至少一分離齒輪 狀態相一致,以及至少一齒輪狀態傳動功率流係經由一所 6 1375628 元件嚙合/鬆開而達到所有6前進比間之控制。更佳地,5摩 擦元件包括3離合器及2煞車帶。更佳地,該3離合器之每一 離合器具有一大體上為離心式平衡的作用活塞。至少一煞 車帶具有一位置感應器,用於偵測在一控制系統所用煞車 5 帶之嚙合/鬆開期間該煞車帶的一位置。較佳地,當傳動機 構係位在可任擇齒輪中時,僅與傳動機構之其中之一摩擦 元件嗜合。 較佳地,傳動機構具有第一、第二及第三離合器(例 如,C1、C2及C3),以及第一及第二煞車帶(例如,B1及B2)。 10 更佳地,於第一檔齒輪中,嚙合第二離合器,嚙合第二煞 車帶,以及鬆開其他摩擦元件。較佳地,於可任擇的第一 檔齒輪狀態令,嚙合第二離合器,以及鬆開其他摩擦元件。 於可任擇的第一檔齒輪狀態中,使用單向離合器俾便防止 煞車作動由傳動機構之輸入部分至輸出部分。較佳地,就 15 傳動機構之一第二前進比而言,嚙合第二離合器,嚙合第 一煞車帶,以及鬆開其他摩擦元件。較佳地,就傳動機構 之一第三前進比而言,嚙合第二離合器,嚙合第三離合器, 以及鬆開其他摩擦元件。較佳地,就傳動機構之一第四前 進比而言,嚙合第二離合器,嚙合第一離合器,以及鬆開 20 其他摩擦元件。較佳地,就傳動機構之一第五前進比而言, 嚙合第一及第三離合器,以及鬆開其他摩擦元件。較佳地, 就傳動機構之一第六前進比而言,响合第一離合器,响合 第一煞車帶,以及鬆開其他摩擦元件。較佳地,就傳動機 構之一倒車前進比而言,嚙合第三離合器,嚙合第二煞車 8 1375628 離齒輪狀態相一致,以及其中在至少一齒輪狀態下,傳動 動力流係經由所配置的單向離合器,用以僅於一方向上傳 動驅動裝置,致使單向離合器之轉動防止傳動機構提供煞 車作動由輸入部分至輸出部分,以及於其他齒輪狀態下將 5 離合器旁通用以容許煞車作動由輸入部分至輸出部分。 一多重比率自動傳動機構模組具有一第一行星齒輪 組、控制齒輪組的摩擦元件用以提供複數之前進比,並選 擇性地具有: 一用於控制齒輪組的進一步摩擦元件,用以提供4前進 10 比;或 在由輸入部分至輸出部分的動力傳動機構之方向上, 與第一行星齒輪組及其之下游部分連續的一進一步行星齒 輪組,以及用於控制第二行星齒輪組的構件與第一行星齒 輪組結合作動用以提供至少5前進比。 15 亦可使用該等進一步之組件用以提供進一步的傳動比 及/或該傳動機構經設計用於特定應用,例如,諸如前輪驅 動的應用、混合傳動的應用等。 根據另一觀點,提供一轉換具有至少三摩擦元件的一 自動傳動機構的方法,該方法包括以下步驟: 20 移動一摩擦元件; 提供一行星齒輪組取代摩擦元件;以及 提供一控制系統用以操作其餘相互獨立的摩擦元件。 根據另一觀點,提供一具有6前進比的自動傳動機構, 其中該傳動機構係經構形致使能夠省略機械五金配件,為 10 1375628 了提供一具4前進比的自動傳動機構。 圖式簡單說明 本發明係經由非限定實例,相關於該等伴隨圖式加以 說明,其中: 5 第1A圖係為一傳動機構的一概略斷面圖,同時顯示傳 動機構之一電動液壓控制系統的一概略斷面圖; 第1B圖係為第1A圖之概略斷面圖,顯示附加的代表符 號; Φ 第1C圖係為第1A及1B圖之概略斷面圖,顯示附加的代 10 表符號; 第2A圖係為第1圖之傳動機構的一斷面圖; 第2B圖係為配置於一前輪驅動形式中所用的一傳動機 構的一斷面圖; 第3圖係為一表格顯示由第1及2圖之傳動機構所提供 15 的複數之齒輪中所用的換檀元件; 第4圖係為第1及2圖之傳動機構的一動力流動圖,顯示 • 傳動機構之一空檔狀態; 第5圖係為第1及2圖之傳動機構的一動力流動圖,顯示 於傳動機構之一第一檔齒輪狀態下的動力流動; 20 第6圖係為第1及2圖之傳動機構的一動力流動圖,顯示 於傳動機構之一手動第一檔齒輪狀態下的動力流動; 第7圖係為第1及2圖之傳動機構的一動力流動圖,顯示 於傳動機構之一第二檔齒輪狀態下的動力流動; 第8圖係為第1及2圖之傳動機構的一動力流動圖,顯示 11 1375628 於傳動機構之一第三檔齒輪狀態下的動力流動; 第9圖係為第1及2圖之傳動機構的一動力流動圖,顯示 於傳動機構之一第四檔齒輪狀態下的動力流動; 第10圖係為第1及2圖之傳動機構的一動力流動圖,顯 5 示於傳動機構之一第五檔齒輪狀態下的動力流動; 第11圖係為第1及2圖之傳動機構的一動力流動圖,顯 示於傳動機構之一第六檔齒輪狀態下的動力流動; 第12圖係為第1及2圖之傳動機構的一動力流動圖,顯 > 示於傳動機構之一倒車檔齒輪狀態下的動力流動; 10 第13圖係為第1圖中所示的電動液壓控制系統之一通 常為高可變排放電螺管的壓力對電流之一概略圖; 第14圖係為第1圖中所示的電動液壓控制系統之一通 常為低可變排放電螺管的壓力對電流之一概略圖; 第15圖係為第1圖中所示的電動液壓控制系統之一通 15 常為低0/1排放電螺管的壓力對電流之一概略圖; 第16圖係為針對第1及2圖之傳動機構的一扭矩變換器 • 的一鎖定離合器之一減振器,所施加力/扭矩對減振器位移 的一概略圖;以及 第17圖係為配置用於一混合傳動器中的一傳動機構的 20 一斷面圖。 【實方fe方式】 較佳實施例之詳細說明 序言 相關於第1A、IB、1C及2A圖,一自動傳動機構10,特 12 別是用於-後輪傳動車辆,其具有_包覆—扭矩變換器 的鐘形外殼12、三摩擦離合器C1、C2&C3、二煞車帶扪 及B2、—第一簡單行星齒輪組16、一第二㈣啊型:星1 齒輪组18以及-單向離合H2G。當每—離合器α、C2&c3 以及煞車帶B1及B2係為-摩擦元件(亦即,用於藉由摩擦選 擇性地固持彼此相對的-部分)時,傳動機構1〇因而總= 有五摩擦元件。傳動機構10使用該等機械組件用以在複數 之前進比下將動力自傳動機構10之—輸入部分22傳送至自 傳動機構1G之-輪出部分24。圖式中所示之示範傳動機構 針對車輛之向前推進提供六前進齒輪比,以及針對倒車提 供一倒車檔齒輪比,以及一空檔狀況。 第2B圖所示係為使用一相似傳動機構10的—可任擇形 式,其係為適合於一前輪傳動應用中使用。傳動機構之主 要特徵的配置係與第1A、1B、1(:及2八圖中所示者相似並且 同等特徵係以相同的代表符號標示。如圖可見,主要不同 點在於,於第2B圖中,扭矩變換器14及其之鐘形外殼12係 位在傳動機構之側邊’致使扭矩變換器相關於與傳動機構 之軸間隔開的一軸轉動’俾便容納由典型前輪傳動形式所 造成的空間限制。 以及執行動力傳動機構的該等機械組件’傳動機構1〇 亦包括一電動液壓控制系統26,如第1圖之下部分中概略所 示電動液壓控制系統26具有一池28支標著一液壓流體30 貯存器’其經汲取經由一過濾器32並進入液壓管路網,於 圖式中係以代表符號34標示。液壓管路網34具一泵36用於 提供具壓力的液壓流體,因此其能夠流經該液壓管路網 34、一用於冷卻液壓流體30的冷卻器38、一手動閥4〇其係 了在感應由車輛駕致者移動車輛之齒輪模式選擇哭後作 動、以及控制液壓流體流經液壓管路網34的複數之閥及電 螺管’俾便作動離合器cn、C2及C3,煞車帶b1&b2以及扭 矩變換器14,並用以提供傳動機構1〇潤滑。電螺管係經由 電子控制系統(未顯示)加以控制,其係構成為一控制區域網 路(can),其中資料係與其他電子單元(例如一引擎控制單 元牽引控制單元、防鎖死煞車系統控制單元、氣囊控制 〇 口 一 早疋4)共同使用。 機械綜述 於—典型的將傳動機構10安裝在—車輛中之作業而 舌,車輛引擎係藉由將引擎之飛輪以螺栓栓接至螺栓固定 器42 ’而以螺栓拴接至扭矩變換器14。就其本身而論,飛 輪之轉動係傳動至扭矩變換器14之一外殼44。藉由位在扭 矩邊換器外殼44之内部構成一流體聯結器的液壓流體3〇, 藉由6亥流體聯結器將動力自外殼44傳動至扭矩變換器14之 —渴輪46。更特定言之’位在外殼44之内側上的鰭片在液 壓流體30中轉動,致使液壓流體進入渦輪46之葉片,因而 導致渴輪46轉動。動力係自渦輪傳動至一輸入軸48,依序 地經由輪轂52將動力傳動至簡單行星齒輪組16之一環形齒 輪5〇。 環形齒輪50之輪齒係構成在其之内側,與經安裝用於 相關於一載具56轉動的一小齒輪54之輪齒嚙合。小齒輪54 1375628 亦與一太陽齒輪58嚙合。載具56係與組件60連接,並將動 力傳動至組件60,其亦係構成一至離合器C2的輪入部八。 輸入軸48亦係經由輪轂52與離合器C1之輸入部分幻連 接。離合器C1具有五離合器板64,其能夠經由活塞的而產 5生傳動嚙合,該活塞係經容許液壓流體進入容積7〇中而傳 動對著壓縮彈簧68。當液壓流體30進入容積70中時,活塞 66係移動離開該輪轂52,致使容積7〇膨脹。此活塞之移 動致使活塞66之一外邊緣72夾住離合器板64而達到傳動嚙 合。 10 活塞66係為藉由在室74中的液壓流體而離心平衡,防 止活塞66自行作用,因為當離合器〇1加速轉動時將液壓流 體30向外傳動。當室74具有一相似的向外延伸至容積7〇 ^作用在液壓流體3〇的離心力作用,係藉由作用在室74 中液壓流體的離心力而大大地抵銷。該其他的每一離合器 15 C2及C3亦具有一相似的離心平衡作動活塞。 離合器板64係附裝至組件76並將動力傳動至組件76, 並依序經由齒條80將動力傳動至軸78。經由齒條88軸78將 轉動傳動至承載Ravigneux行星齒輪組丨8之短小齒輪84及 長小齒輪86的載具82。 ί0 離合器C2具有六離合器板90,其能夠在液壓流體3〇進 入容積96時感應活塞92移動對著壓縮彈簧94後產生傳動嚙 合《離合器板90係附裝至組件98並將動力傳動至組件98 , 經由齒條100依序地將動力傳動至軸99。軸99將動力傳動至 Ravigneux行星齒輪組18之一前進太陽齒輪1〇2。 15 1375628 亦係構成至綠合斋C2之輸入部分的組件6〇,其係與離 〇器C3之五離合器板1〇4連接並將動力傳動至該等離合器 板104。由於液壓流體進入容積丨^^,在出自於活塞丨〇8移動 對著壓縮彈簧110的力作用下,離合器板1〇4能夠與離合器 5 C3之—輸出部分106傳動嚙合。離合器C3之輸出部分106經 由煞車帶B1仍能夠相對該鐘形外殼12而固持。輸出部分1〇6 亦經由齒條116與Ravigneux行星齒輪組18之反向太陽齒輪 114連接。 煞車帶B1具有一快速作動活塞117位在一大動力活塞 ίο U9内,於齒輪換檔期間利用一體成型的位置感應器120偵 測推桿122之一位置,精確度達0.1公厘。 反向太陽齒輪114及前進太陽齒輪1〇2二者係與長小齒 輪86傳動嚙合,前進太陽齒輪1〇2係經由短小齒輪料與長小 齒輪86傳動嚙合。長小齒輪係與一環形齒輪118嚙合,依序 15地將傳動機構10之輸出軸24傳動。相關於短及長小齒輪 84、86轉動之載具82係藉由單向離合器20而相對於鐘形外 冗又12固持。特別地,一止輪墊型單向離合器容許載具僅 在相對於鐘形外殼12的一方向上轉動。載具82亦能夠藉由 煞車帶B2在相對於鐘形外殼12的任一方向上由轉動而保持 20 不動。 —B 2煞車帶伺服裝置丨2 4係經由一槓桿12 6與後煞車帶 B2連接’將自飼服裝置124之一活塞128施加至煞車帶B2的 力量増強。 於所示的傳動機構1〇之實例中,單向離合器2〇係為— 16 止輪墊型單向離合器20。然而,於可任擇的實例中,止輪 塾型單向離合器20可由—滾輪離合器、-機械性二極體或 相似裝置所取代。 液壓综述 電動液壓控制系統26具有一抽吸管路2〇〇,經由該管路 自池28汲取液壓流體30,通過過濾器32至泵36。泵%係為 一Parachoidal型式,並於傳動機構1〇之斷面圖中顯示其之 實際位置,介於扭矩變換器14與簡單行星齒輪組16之間。 泵36係藉由扭矩變換器Μ之外殼44傳動,並抽吸液壓流體 30通過液壓管路202,將加壓液壓流體進給至一主調節閥 204、一電磁供給閥206、一管路釋壓閥2〇8以及手動閥4〇。 手動閥40係在感應一齒輪模式選擇器之位置變化後作動, 如由配裝傳動機構10之車輛駕驶人操作,例如藉由移動一T 才干齒輪模式選擇裔、方向盤式變速(c〇lumn shift)、線傳驅 動(ddve-by-wire)控制、按鈕式選擇器等而進行,如於特定 車輛的狀況。 主調節間204經由回饋管路21〇調節管路202中的液壓 流體之壓力。當回饋管路210中壓力增加時,致使主調節閥 204之活塞212向右移動(如第中所示)抵擋由壓縮彈簧 214所施加的力量以及液壓管路2〇2中流體壓力,致使剩餘 壓力係用以將液壓流體沿著管路216進給至扭矩變換器14 並進給至傳動機構1〇之潤滑部分。假若進一步出現剩餘壓 力’則活塞212進一步移動致使剩餘壓力傾注入抽吸管路 200。回饋管路210配置一流動限制孔口或檔板2Π,調整尺 寸因此主調gP閥2〇4錢應液壓流體之壓力後作動至—所 需範圍。 整個液壓官路34之網路配置複數之排放管路218,致使 液壓流體3 G能夠經由該等排放管路2丨8釋放用以茂放回入 池28中。 液壓流體30係自主調節閥2〇4經由管路222進給至一作 用限制調整|§ 220,並經由管路216進給至一釋放限制調整 益224。作用限制調整器220具有一回饋管路226(具流動限 制孔口 227)以及壓縮彈簧228係在與先前說明與主調節閥 204有關的回饋相似的—方式下作動,因此管路23〇中的液 壓流體係位在一已知壓力下。釋放限制調整器224同樣地具 有一回饋管路232(具流動限制孔口 233)以及壓縮彈簧234, 因此管路236中的液壓流體係位在一已知壓力下。 源自於作用限制調整器220的液壓流體係經由管路23〇 進給至一扭矩變換器調節閥238。源自於釋放限制調整器 224的液壓流體係經由管路236進給至扭矩變換器調節闊 238(經由管路分支240),並亦係進給至一冷卻器/潤滑油控 制調節器242(經由管路分支244)。 扭矩變換器調節閥238具有一活塞246其在感應源自於 經由管路230及240進給的液壓流體的壓力、源自於經由回 饋管路248及250進給的液壓流體的壓力、源自於壓縮彈簧 252之力以及源自於管路254中液壓流體的壓力後作動。在 感應該等輸入部分後,在變化速率下沿著扭矩變換器作用 管路256及扭矩變換器釋放管路258進給液壓流體。進給通 1375628 過扭矩變換器作用管路256的液壓流體,致使液壓流體流動 通過扭矩變換器14導致扭矩變換器造成一鎖定狀況,其中 渦輪46係藉由鎖定離合器47(配置在扭矩變換器外殼料内) 之摩擦力對著扭矩變換器外殼44之前壁45而鎖定。相反 5地,進給通過扭矩變換器釋放管路258的液壓流體,致使液 壓流體流動通過介於前壁45與鎖定離合器47之間的通道 260 ’用以自其之與扭矩變換器外殼44的摩擦嚙合中鬆開鎖 定離合器47。 進給通過管路254至扭矩變換器調節閥238的液壓流 10體,係自液壓管路202供給通過手動閥4〇,沿著液壓傳動管 路304經由管路264通過變換器換檔閥39〇至一可變排放電 螺管(VBS)262。變換器換稽閥390係經由一 〇n/〇ff(0/I)電 螺管348,其係藉由通過電磁供給閥2〇6的液壓流體流所提 供。電磁供給閥206配置一回饋管路284(具有一流動限制孔 15 口 285)以及壓縮彈簧286。管路264具有一套管濾器266用於 過濾液壓流體(例如,用於金屬微粒),以及一流體限制孔口 268用於降低由栗36所造成的壓力波動振幅,以及一蓄壓器 270其進一步降低壓力波動並預防鎚現象發生。可變排放電 螺管262係在感應其所提供的一經控制之液壓流體排放後 20 藉由一電子控制系統加以控制,俾便控制管路254中液歷流 體的壓力,如前述其係進給至扭矩變換器調節閥238。就其 本身而論’可變排放電螺管262係為一鎖定壓力電螺管。可 變排放電螺管262係為一常低(NL)型,以致在缺少供給至可 變排放電螺管262的動力下,其預設為一狀況其中液壓流體 19 之輸出係處在低壓下。第14圖中所示係為針對一常低型可 變排放電螺管262的壓力對電流之圖。 管路202亦沿著在可變排放電螺管274之前的管路272 進給液壓流體,通過管路275的液壓流體流係由其所控制。 與前述針對可變排放電螺管262的配置相似,可變排放電螺 管274係與一套管濾器276、一流體限制孔口 278以及一蓄壓 器280連續地配置。當使用一另外的輸入部分用以調整活塞 212之位置時,進給通過管路275的液壓流體係由主調節閥 204接收。就其本身而論,可變排放電螺管274係為一管路 壓力控制電螺管。可變排放電螺管274係為一常高(NH)型, 以致在缺少供給至可變排放電螺管274的動力下,其預設為 一狀況其中液壓流體之輸出係處在高壓下。第13圖中所示 係為針對一常高型可變排放電螺管的壓力對電流之圖。 圖式中虛線所示係為所準備之附加可變排放電螺管 282。可預見的是可使用該一附加可變排放電螺管282,例 如’用以控制與6前進比傳動機構結合使用的一二前進比解 偶器單元之作動’俾便提供總數為7之前進比。 藉由管路236,經由扭矩變換器調節閥238及管路287 或是經由管路分支244及冷卻器/潤滑油控制調節器242提 供液壓流體流動通過冷卻器38並用於潤滑傳動機構1〇。管 路287係配置一回流抑制閥286,使液壓流體僅沿著管路287 單向流動。管路244係分成二管路分支288及29〇,該二者係 作為進給至冷卻器/潤滑油控制調節器242的輸入部分。於 該等分支288及290中液壓流體壓力,連同回饋管路296中液 1375628 壓流體壓力支配冷郃器/潤滑油控制調節器242之一活塞 294移動,用以決定通過一冷卻器管路296及一冷卻器旁通 管路298的液壓流體的分配。於管路接合部分3〇〇處,離開 冷部38的液壓流體與冷卻器旁通管路298中的液壓流體 5重新會合,自該處沿著管路3〇2分配至傳動機構1〇之組件作 為潤滑濟。 每一離合器Cl、C2及C3係藉由—相似的具有—開/關 (〇/1)電螺管的電動液壓控制配置加以控制,作動一換檔閥 > 用於控制液壓流體流動至一 VBS。該VBS控制流動至一離 10合器調節器閥的液壓流體,依序地控制流動至離合器活塞 的液壓流體用以與離合器嗜合/鬆開。 更特定言之,離合器C1之控制係經由自液壓管路202 進給通過手動閥40(當手動閥40係位在—前進模式位置時) 沿著傳動液壓管路3 04及管路3 〇 6將液壓流體進給至c丨換檔 15閥3〇8而達成。C1換檔閥308係藉由一〇/1電螺管31〇,沿著 管路312自電磁供給閥206接收液壓流體而作動。管路312包 籲 括一套管濾器314恰好位在〇/1電螺管31〇之上游。〇/1電螺管 310係為一常低(NL)型’以致在缺少供給至〇/1電螺管31〇的 動力下,其預設為一低壓狀態,如第15圖中所示。ci換檔 20閥308控制液壓流體進給至可變排放電螺管(VBS)316,其之 輸出部分係進給至C1調節閥318。配裝可變排放電螺管 (VBS)316的管路320 ’亦配置一套管濾器322、一蓄壓器324 以及位在可變排放電螺管(VBS)316之任一側邊上的_孔口 326、328。C1調節閥318之活塞330在感應源自於管路32〇、 21 332及回饋管路334巾液壓流體的壓力後移動。Cl調節閥3l8 之輸出部分係經由管路336進給至離合||C1之容積7〇,俾便 移動活塞66。可變排放電螺管(VBS)316係為一常高型VBS。 離合器C2係藉由包含0/1電螺管338、C2換檔閥34〇、可 變排放電螺管(VBS)342以及C2調節閥344的一相似配置加 以控制,控制液壓流體經由管路346流動至容積96,用以控 制活塞92之移動。可變排放電螺管(VBS)342係為一常高型 VBS。 離合器C3亦係藉由包含〇/1電螺管348、C3換檔閥350、 可變排放電螺管(VBS)352以及C3調節閥354的一相似配置 加以控制,控制液壓流體經由管路356流動至容積112,用 以控制活塞108之移動。可變排放電螺管(¥]3幻352係為一常 低型VBS。 用於與煞車帶B1嚙合的前伺服裝置360,亦係藉由與離 合器Cl、C2及C3所用相似的一配置所控制。更特定言之, 該配置包含0/1電螺管362、B1換檔閥364、可變排放電螺管 (VBS)366以及B1調節閥368,控制液壓流體經由管路372流 動至容積370,用以控制活塞117(因而以及推桿122)之移 動。可變排放電螺管(VBS)366係為一常低型VBS。 用於與煞車帶B2嚙合的後伺服裝置124,亦係藉由與離 合器C1、C2及C3以及煞車帶b 1所用相似的一配置所控制。 然而’ B2共用該〇/1電螺管31〇用以控制B2換檔閥392。此 外,B2亦使用可變排放電螺管(VBs)352控制液壓流體經由 管路378流動至容積128及394,用以控制活塞396之移動。 1375628 當傳動機構ίο係處於倒車檔齒輪時,後伺服農置124 係經由進給通過倒車檔液壓管路374、376及378的液壓流體 而致動。將一球型止回閥38〇配置位在管路376之端部,並 防止非所欲回流自管路376進入管路382,反之亦然。 5 於所示之實例中,手動閥40具有四模式位置閥移動(亦 即,P(停車)、r(倒車)、N(空檔)&D(前進手動閥亦可經 構形具有七模式位置閥移動(例如,包括齒輪4、2及1}。當 然,亦應瞭解的是該手動閥亦可具有一不同數目(亦即,4 或7之外)的閥移動模式位置。 10 因此,於所說明的傳動機構中該液壓控制系統具有四 開/關(0/1)電螺管310、338、348、362以及六可變排放電螺 管(VBS)262、274、316、342、352、366(加上所提議的附 加VBS 282)。應瞭解的是該等任一電螺管能夠以具有等效 功能型式的電螺管取代,例如,脈衝寬度調節型式(pwM)、 15可變壓力/力型式(VPS/VFS)排放電螺管等。 於此傳動機構10設計中的每一摩擦元件’如離合器 C卜C2或C3或疋煞車帶Bi或62,於齒輪換棺期間能夠個別 地以電動液壓方式控制,因而提供全範圍之齒輪換播品質 並亦能夠使控制系統本身調整於傳動系統1〇之壽命期間所 20造成的磨損或茂漏。由於控制系統能夠全範圍控制涵蓋任 -摩擦7C件’所以亦能夠在傳動機構1〇係處在前進或是倒 車狀况時’產生$桂狀況,例如當車輛於將交通號該處 停車時’及/或當車辆達到一預定相對低速時(例如,當車辆 將要伶車%)。§傳動機構⑴未負載引擎及/或扭矩變換器 23 1375628 時’例如於道路行車,在長時間空轉的狀況下能夠改良燃 料經濟性。不需駕駛人了解即自然產生此“前進中空檔 (Neutral-in-drive),,的特性。 控制系統包括該等主要特性,當與離合器Cl、C2及C3 '及*’《車f B1及B2唾合或鬆開時能夠使用不同的控制方 法’並能夠將VBS旁通而不使用(例如,藉由將VBS隔離不 致暴露至流體壓力),並能夠減少液壓流體之壓力洩漏,因 而能约減少燃料消耗。經由V B S 274能夠將管路壓力控制至 设計限制範圍内的任一程度,因而亦能夠用於離合器/煞車 1〇 ▼嗜合控制或是產生不當使用防護。管路壓力系統係為一 言路優先系統(line-priority system),其在低油位狀況下維 持B路壓力並犧牲例如冷卻器流的其他迴路需求用以維持 ’力儘皆所示的系_ 36係為一 Parachoidal型式,但此系 勺X任其他適合的粟所取代,諸如一Gerotor、Crescent 15或輪葉(Vane)泵。 扭矩變換器鎖定迴路包含作用限制調整器22〇、釋放限 二周正器224 '扭矩變換器調節閥238及鎖定壓力調節電螺 & ”、’二°又*十俾便控制鎖定離合器47之雙側壓力,因而 20 。控制鎖叱離合态4 7對扭矩變換器外殼4 4產生的滑動。 才丑矩變換器調節閥238係為一獨特設計具有二回饋區 2 ▲ 25〇_供作用壓力所用以及另一供釋放壓力所用。1375628 IX. INSTRUCTIONS: [Ming sylvestris 4 ft.] FIELD OF THE INVENTION The present invention relates to a transmission mechanism, more specifically, but not exclusively, for a multi-speed gear automatic for automobiles Transmission mechanism. C Previously ^^标3 Background of the Invention >*L Automated transmission mechanism for vehicles is widely used in modern vehicles, and it is easy to use and easy to use. The trend of these automatic transmissions is to form a more forward ratio to provide better acceleration and fuel economy. Early automatic transmissions had a 2 forward ratio and acceleration and fuel economy were limited, as forced the engine combined with the transmission to rotate at a relatively high speed in the first gear, due to the wide spacing between the forward ratios. 'To achieve an acceptable maximum speed of 15 degrees. Recently, however, automotive automatic transmission mechanisms have been developed with 3, 4, 5 and 6 forward ratios. With more forward ratios, the forward ratios can be spaced closer together while still achieving good top speed capability, and the engine can be actuated within a narrow ideal operating band to improve fuel economy and/or performance. However, such multiple ratio automatic transmissions typically rely on a plurality of friction elements. In order to operate between different forward ratios. In particular, each of the advancement ratios generally engages the at least two friction elements than the multiple ratio automatic transmission. These friction elements are typically in the form of clutches and brake belts that generate heat (and thus waste energy) and cause wear due to the frictional nature of their actuation. 5 1375628 A particular multi-ratio automatic transmission has a 6 forward ratio that is actuated by engagement/release of a 5 friction element consisting of a 3 clutch and a 2 brake belt. However, each advancement ratio requires engagement of two of the five friction elements. Patent Applicant has determined that this type of transmission is insufficient to highly use the five friction elements for controlling the operation between the forward ratios of the transmission, and that for multiple ratio automatic transmissions, it is advantageous to use less friction elements. 0 SUMMARY OF THE INVENTION According to one aspect, a multi-ratio automatic transmission mechanism for a vehicle is provided, the transmission mechanism having at least one planetary gear set, and a plurality of different types of friction elements for input and output with the transmission mechanism The components of the planetary gear set are partially coupled to each other to achieve a plurality of gear ratios, and a control system is used to selectively engage or loosen the friction elements of different combinations, thereby selecting a gear ratio, one or more of which The rate of engagement and/or release of the friction elements is independently controlled by the or each other friction element. Advantageously, the independent control of the engagement and/or release rate enables adaptive control of the one or more friction elements. For example, the adaptive control can be used to achieve a smoother transition between gear state of the transmission mechanism for achieving a suitable 20-speed shifting feel and/or shifting performance to accommodate vehicle conditions and driver operation for service life of the transmission. Adapt to the wear or leakage caused by the period. Preferably, each of the forward ratios coincides with at least one of the split gear states of the transmission mechanism, and at least one of the gear state transmission power flows is engaged/released by a 6 1375628 element to achieve control of all of the six forward ratios. More preferably, the 5 friction components include a 3 clutch and a 2 brake belt. More preferably, each of the three clutches has a substantially centrifugally balanced active piston. At least one of the belts has a position sensor for detecting a position of the brake belt during engagement/release of the brake belt 5 used in a control system. Preferably, when the transmission mechanism is in the optional gear, it is only compatible with one of the friction elements of the transmission. Preferably, the transmission mechanism has first, second and third clutches (e.g., C1, C2, and C3), and first and second brake belts (e.g., B1 and B2). More preferably, in the first gear, the second clutch is engaged, the second brake belt is engaged, and the other friction elements are released. Preferably, in the optional first gear state, the second clutch is engaged and the other friction elements are released. In the optional first gear state, the one-way clutch is used to prevent the brake from actuating from the input portion of the transmission to the output portion. Preferably, in relation to the second forward ratio of one of the 15 transmission mechanisms, the second clutch is engaged, the first brake belt is engaged, and the other friction elements are released. Preferably, in relation to a third forward ratio of the transmission mechanism, the second clutch is engaged, the third clutch is engaged, and the other frictional elements are released. Preferably, with respect to a fourth forward ratio of the transmission mechanism, the second clutch is engaged, the first clutch is engaged, and the other friction elements are released. Preferably, the first and third clutches are engaged with respect to one of the fifth forward ratios of the transmission mechanism, and the other frictional elements are released. Preferably, in relation to a sixth forward ratio of the transmission mechanism, the first clutch is engaged, the first brake belt is engaged, and the other friction elements are released. Preferably, in the case of a reverse running ratio of the transmission mechanism, the third clutch is engaged, the second brake 8 1375628 is engaged with the gear state, and wherein in at least one gear state, the transmission power flow is via the configured single The clutch is used to drive the drive device in only one direction, so that the rotation of the one-way clutch prevents the transmission mechanism from providing the brake operation from the input portion to the output portion, and in the other gear state, the fifth clutch is used universally to allow the brake to be actuated by the input portion. To the output section. A multiple ratio automatic transmission mechanism module having a first planetary gear set, a friction element of the control gear set for providing a plurality of forward ratios, and optionally having: a further friction element for controlling the gear set for Providing 4 forward 10 ratios; or a further planetary gear set continuous with the first planetary gear set and its downstream portion in the direction of the power transmission mechanism from the input portion to the output portion, and for controlling the second planetary gear set The member cooperates with the first planetary gear set to provide at least 5 forward ratios. 15 Further components may be used to provide further gear ratios and/or the transmission mechanism is designed for specific applications, such as applications such as front wheel drive, hybrid transmission applications, and the like. According to another aspect, a method of converting an automatic transmission having at least three friction elements is provided, the method comprising the steps of: 20 moving a friction element; providing a planetary gear set in place of the friction element; and providing a control system for operation The remaining friction elements are independent of each other. According to another aspect, an automatic transmission having a 6 forward ratio is provided, wherein the transmission is configured such that the mechanical hardware can be omitted and an automatic transmission having a 4 forward ratio is provided for 10 1375628. BRIEF DESCRIPTION OF THE DRAWINGS The invention is illustrated by way of non-limiting examples in connection with the accompanying drawings, wherein: FIG. 1A is a schematic cross-sectional view of a transmission mechanism, showing an electrohydraulic control system of one of the transmission mechanisms A schematic cross-sectional view of FIG. 1B is a schematic cross-sectional view of FIG. 1A showing additional representative symbols; Φ 1C is a schematic cross-sectional view of FIGS. 1A and 1B, showing an additional generation of 10 tables. 2A is a cross-sectional view of the transmission mechanism of FIG. 1; FIG. 2B is a cross-sectional view of a transmission mechanism used in a front wheel drive type; FIG. 3 is a table display The replacement element used in the plurality of gears provided by the transmission mechanisms of Figures 1 and 2; Figure 4 is a power flow diagram of the transmission mechanism of Figures 1 and 2, showing • one of the transmission mechanisms Figure 5 is a power flow diagram of the transmission mechanism of Figures 1 and 2, showing the power flow in the first gear state of one of the transmission mechanisms; 20 Figure 6 is the transmission of Figures 1 and 2 a dynamic flow diagram of the mechanism, shown in the transmission mechanism The power flow in the manual first gear state; Fig. 7 is a power flow diagram of the transmission mechanism of the first and second figures, showing the power flow in the second gear state of one of the transmission mechanisms; A power flow diagram for the transmission mechanism of Figures 1 and 2, showing the power flow of 11 1375628 in the third gear state of the transmission mechanism; Figure 9 is a power flow of the transmission mechanism of Figures 1 and 2 Figure shows the power flow in the fourth gear state of one of the transmission mechanisms; Figure 10 is a power flow diagram of the transmission mechanism of Figures 1 and 2, and shows the fifth gear state of one of the transmission mechanisms. Figure 11 is a power flow diagram of the transmission mechanism of Figures 1 and 2, showing the power flow in the sixth gear state of the transmission; Figure 12 is the first and second diagrams. A power flow diagram of the transmission mechanism, shown in the power state of one of the transmissions in the reverse gear state; 10 Figure 13 is one of the electro-hydraulic control systems shown in Figure 1 is generally high One of the pressure versus current of the variable discharge solenoid Figure 14 is a schematic diagram of one of the pressure versus current of one of the electro-hydraulic control systems shown in Figure 1 which is typically a low variable discharge electric solenoid; Figure 15 is shown in Figure 1 One of the electro-hydraulic control systems is a schematic diagram of one of the pressure-to-currents of the low 0/1 discharge solenoid; Figure 16 is a lock of a torque converter for the transmission of Figures 1 and 2. A schematic diagram of one of the clutch dampers, a force/torque applied to the damper displacement; and a 17th view is a cross-sectional view of a transmission mechanism configured for use in a hybrid actuator. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT The preamble relates to Figures 1A, IB, 1C and 2A, an automatic transmission mechanism 10, specifically for a rear-wheel drive vehicle, having a _ cladding - bell housing 12 of the torque converter, three friction clutches C1, C2 & C3, two brake belts and B2, - first simple planetary gear set 16, a second (four) type: star 1 gear set 18 and - single Clutch H2G. When the clutches α, C2 & c3 and the brake belts B1 and B2 are - friction elements (i.e., for selectively holding the opposite portions of each other by friction), the transmission mechanism 1 thus total = five Friction element. The transmission mechanism 10 uses the mechanical components to transfer the power from the input portion 22 of the transmission mechanism 10 to the wheel-out portion 24 of the self-propelling mechanism 1G before the plural. The exemplary transmission shown in the drawings provides six forward gear ratios for forward propulsion of the vehicle, and a reverse gear ratio for reverse, and a neutral condition. Figure 2B shows an alternative form using a similar transmission mechanism 10 that is suitable for use in a front wheel drive application. The configuration of the main features of the transmission mechanism is similar to that shown in Figures 1A, 1B, 1 (and 28) and the same features are denoted by the same representative symbols. As can be seen, the main difference is that in Figure 2B The torque converter 14 and its bell housing 12 are positioned on the side of the transmission mechanism 'causing the torque converter to rotate about a shaft spaced apart from the shaft of the transmission mechanism' to accommodate the typical front wheel transmission form. The space constraints and the mechanical components of the power transmission mechanism 'transmission mechanism 1' also include an electro-hydraulic control system 26, as schematically illustrated in the lower part of FIG. 1 , the electro-hydraulic control system 26 has a pool of 28 gauges A hydraulic fluid 30 reservoir is drawn through a filter 32 and into a hydraulic line network, indicated by the reference numeral 34 in the drawings. The hydraulic line network 34 has a pump 36 for providing pressurized hydraulic fluid Therefore, it can flow through the hydraulic pipe network 34, a cooler 38 for cooling the hydraulic fluid 30, and a manual valve 4, which is selected to cry in the gear mode of sensing the vehicle driven by the vehicle driver. After actuation, and a plurality of valves and electric solenoids that control the flow of hydraulic fluid through the hydraulic pipe network 34, the brake clutches cn, C2, and C3, the brake belts b1 & b2, and the torque converter 14 are provided to provide the transmission mechanism 1 〇Lubrication. The electric solenoid is controlled by an electronic control system (not shown), which is constructed as a control area network (can), where the data system and other electronic units (such as an engine control unit traction control unit, anti-lock The dead brake system control unit and the airbag control port are used together in the morning. 4) The mechanical review is based on the typical operation of the transmission mechanism 10 in the vehicle, and the vehicle engine is bolted by the engine flywheel. To the bolt holder 42' and bolted to the torque converter 14. As such, the rotation of the flywheel is transmitted to one of the housings 44 of the torque converter 14. By being positioned within the torque converter housing 44 The hydraulic fluid 3〇 constituting a fluid coupling transmits power from the outer casing 44 to the thirst wheel 46 of the torque converter 14 by a 6-well fluid coupling. More specifically, it is located in the outer casing 44. The fins on the side rotate in the hydraulic fluid 30, causing hydraulic fluid to enter the blades of the turbine 46, thereby causing the thirsty wheel 46 to rotate. The powertrain is driven from the turbine to an input shaft 48, sequentially driving power through the hub 52 to a simple One of the planetary gear sets 16 is a ring gear 5. The ring gear of the ring gear 50 is formed on the inner side thereof and meshes with the teeth of a pinion 54 mounted for rotation of a carrier 56. Pinion 54 1375628 Also engaged with a sun gear 58. The carrier 56 is coupled to the assembly 60 and transmits power to the assembly 60, which also forms a wheeled portion 8 to the clutch C2. The input shaft 48 is also input via the hub 52 and the clutch C1. Partial phantom connection. Clutch C1 has a five clutch plate 64 that is capable of engaging via a piston that is driven by hydraulic fluid into volume 7 而 to drive against compression spring 68. When hydraulic fluid 30 enters volume 70, piston 66 moves away from hub 52, causing volume 7 to expand. This movement of the piston causes one of the outer edges 72 of the piston 66 to grip the clutch plate 64 for drive engagement. The piston 66 is centrifugally balanced by hydraulic fluid in the chamber 74 to prevent the piston 66 from acting by itself because the hydraulic fluid 30 is driven outwardly when the clutch 〇1 is rotated. When the chamber 74 has a similar centrifugal force acting outwardly to the volume 7 〇 ^ acting on the hydraulic fluid 3 , it is largely offset by the centrifugal force acting on the hydraulic fluid in the chamber 74 . Each of the other clutches 15 C2 and C3 also has a similar centrifugally balanced actuating piston. The clutch plate 64 is attached to the assembly 76 and powers the assembly 76 and sequentially transmits power to the shaft 78 via the rack 80. The rotation is transmitted via a rack 88 shaft 78 to a short pinion 84 carrying the Ravigneux planetary gear set 丨8 and a carrier 82 of the long pinion 86. Ί0 Clutch C2 has a six-clutch plate 90 that is capable of producing a transmission engagement when the hydraulic fluid 3〇 enters the volume 96 as the induction piston 92 moves against the compression spring 94. The clutch plate 90 is attached to the assembly 98 and is powered to the assembly 98. The power is sequentially transmitted to the shaft 99 via the rack 100. The shaft 99 powers one of the Ravigneux planetary gear sets 18 to advance the sun gear 1〇2. 15 1375628 is also an assembly 6〇 that forms the input portion to the green solids C2, which is coupled to the five clutch plates 1〇4 of the clutch C3 and is powered to the clutch plates 104. As the hydraulic fluid enters the volume 离合器^, the clutch plate 1〇4 can be in driving engagement with the output portion 106 of the clutch 5 C3 under the force of the piston 丨〇 8 moving against the compression spring 110. The output portion 106 of the clutch C3 can still be held relative to the bell housing 12 via the brake belt B1. The output portion 1〇6 is also coupled to the counter-sun gear 114 of the Ravigneux planetary gear set 18 via a rack 116. The brake belt B1 has a quick acting piston 117 located within a large power piston ίο U9 that utilizes an integrally formed position sensor 120 to detect the position of the push rod 122 during gear shifting with an accuracy of 0.1 mm. Both the reverse sun gear 114 and the forward sun gear 1〇2 are in meshing engagement with the long pinion gear 86, and the advancing sun gear 1〇2 is in driving engagement with the long pinion gear 86 via the short pinion material. The long pinion gear meshes with a ring gear 118 to sequentially drive the output shaft 24 of the transmission mechanism 10. The carrier 82 associated with the rotation of the short and long pinions 84, 86 is held by the one-way clutch 20 with respect to the bell shape and 12. In particular, a stop pad type one-way clutch allows the carrier to rotate only in one direction with respect to the bell housing 12. The carrier 82 can also be held 20 by rotation in either direction relative to the bell housing 12 by the brake belt B2. - B 2 brake belt servo 丨 2 4 is connected to the rear brake belt B2 via a lever 12 6 'The force of applying one of the pistons 128 of the self-feeding device 124 to the brake belt B2 is barely strong. In the illustrated embodiment of the transmission mechanism 1, the one-way clutch 2 is a 16-wheel type one-way clutch 20. However, in an alternative example, the rim type one-way clutch 20 may be replaced by a roller clutch, a mechanical diode or the like. Hydraulic Overview The electro-hydraulic control system 26 has a suction line 2 through which hydraulic fluid 30 is drawn from the tank 28 and passed through the filter 32 to the pump 36. The pump % is of a Parachoidal type and shows its actual position in the cross-section of the transmission mechanism 1 between the torque converter 14 and the simple planetary gear set 16. The pump 36 is driven by the outer casing 44 of the torque converter, and the hydraulic fluid 30 is pumped through the hydraulic line 202 to feed the pressurized hydraulic fluid to a main regulating valve 204, an electromagnetic supply valve 206, and a pipeline. Pressure valve 2〇8 and manual valve 4〇. The manual valve 40 is actuated after the position of the induction gear mode selector is changed, such as by the driver of the vehicle equipped with the transmission mechanism 10, for example, by moving a T-truck gear mode selection, steering wheel shift (c〇lumn shift) ), dd-by-wire control, push button selector, etc., as in the case of a particular vehicle. The main regulating chamber 204 regulates the pressure of the hydraulic fluid in the line 202 via the return line 21〇. When the pressure in the feedback line 210 increases, causing the piston 212 of the main regulator valve 204 to move to the right (as shown in the middle) to withstand the force exerted by the compression spring 214 and the fluid pressure in the hydraulic line 2〇2, resulting in the remaining The pressure is used to feed hydraulic fluid along line 216 to torque converter 14 and to the lubrication portion of transmission 1〇. If the residual pressure is further present, the piston 212 is further moved to cause the remaining pressure to be poured into the suction line 200. The feedback line 210 is provided with a flow restricting orifice or baffle 2, and the size is adjusted so that the gP valve 2〇4 is operated by the pressure of the hydraulic fluid to the desired range. The network of the entire hydraulic circuit 34 is provided with a plurality of discharge lines 218 that enable the hydraulic fluid 3G to be released through the discharge lines 2 to 8 for ejection into the pool 28. The hydraulic fluid 30 is autonomously regulated valve 2〇4 fed via line 222 to a limit limiting adjustment § 220 and fed via line 216 to a release limit adjustment 224. The action limit adjuster 220 has a feedback line 226 (with a flow restriction orifice 227) and the compression spring 228 is actuated in a manner similar to the feedback previously described with respect to the main regulator valve 204, thus in the line 23 The hydraulic flow system is at a known pressure. Release limit adjuster 224 likewise has a feedback line 232 (with flow restriction orifice 233) and compression spring 234 so that the hydraulic flow system in line 236 is at a known pressure. The hydraulic flow system originating from the action limit adjuster 220 is fed via line 23 to a torque converter regulating valve 238. The hydraulic flow system originating from the release limit adjuster 224 is fed via line 236 to the torque converter adjustment 238 (via line branch 240) and also to a chiller/lubrication control regulator 242 ( Branch 244) via the pipeline. Torque converter regulating valve 238 has a piston 246 that induces pressure from hydraulic fluid fed via lines 230 and 240, pressure from hydraulic fluid fed via return lines 248 and 250, Actuates after the force of the compression spring 252 and the pressure of the hydraulic fluid originating in line 254. After sensing the input portions, the hydraulic fluid is fed along the torque converter action line 256 and the torque converter release line 258 at a rate of change. Feedthrough 1375628 The hydraulic fluid passing through the torque converter action line 256 causes hydraulic fluid to flow through the torque converter 14 causing the torque converter to cause a locked condition, wherein the turbine 46 is coupled to the torque converter housing by a lockup clutch 47 The friction within the material is locked against the front wall 45 of the torque converter housing 44. Conversely, the hydraulic fluid is released through the torque converter release line 258, causing hydraulic fluid to flow through the passage 260' between the front wall 45 and the lockup clutch 47 for use with the torque converter housing 44. The lockup clutch 47 is released during frictional engagement. The hydraulic flow 10 body fed through line 254 to torque converter regulating valve 238 is supplied from hydraulic line 202 through manual valve 4 〇, along hydraulic transmission line 304 via line 264 through inverter shift valve 39 〇 to a variable discharge electric solenoid (VBS) 262. Inverter switching valve 390 is provided via a 〇n/〇ff(0/I) solenoid 348 which is provided by a flow of hydraulic fluid through electromagnetic supply valve 2〇6. The electromagnetic supply valve 206 is provided with a feedback line 284 (having a flow restriction hole 15 port 285) and a compression spring 286. Line 264 has a casing filter 266 for filtering hydraulic fluid (e.g., for metal particles), and a fluid restriction orifice 268 for reducing the amplitude of pressure fluctuations caused by the pump 36, and an accumulator 270 thereof Further reduce pressure fluctuations and prevent hammering. The variable discharge electric solenoid 262 is controlled by an electronic control system after sensing a controlled hydraulic fluid discharge provided by the control unit, and controls the pressure of the liquid circulation fluid in the line 254, as described above. To the torque converter regulator valve 238. As far as it is concerned, the variable discharge electric solenoid 262 is a locking pressure electric solenoid. The variable discharge electric solenoid 262 is of a normally low (NL) type such that in the absence of power supplied to the variable discharge electric solenoid 262, it is preset to a condition in which the output of the hydraulic fluid 19 is at a low pressure. . The graph of pressure vs. current for a normally low type variable discharge electric solenoid 262 is shown in FIG. Line 202 also feeds hydraulic fluid along line 272 prior to variable discharge solenoid 274, through which the hydraulic fluid flow through line 275 is controlled. Similar to the foregoing configuration for the variable discharge electric solenoid 262, the variable discharge electric screw 274 is continuously disposed with a casing filter 276, a fluid restricting orifice 278, and an accumulator 280. When an additional input portion is used to adjust the position of the piston 212, the hydraulic flow system fed through the line 275 is received by the main regulator valve 204. For its part, the variable discharge electric solenoid 274 is a line pressure control electric solenoid. The variable discharge electric solenoid 274 is of a constant height (NH) type such that in the absence of power supplied to the variable discharge electric solenoid 274, it is preset to a condition in which the output of the hydraulic fluid is at a high pressure. Figure 13 is a plot of pressure versus current for a constant height variable discharge electric solenoid. The additional variable discharge electric solenoid 282 is shown as indicated by the dashed line in the drawing. It is foreseeable that the additional variable discharge electric solenoid 282 can be used, for example, to control the operation of a two-way forward ratio decoupler unit used in conjunction with the 6 forward ratio transmission mechanism. ratio. Hydraulic fluid flows through the cooler 38 via line 236 via torque converter regulating valve 238 and line 287 or via line branch 244 and cooler/lubricant control regulator 242 and is used to lubricate transmission mechanism 1〇. The line 287 is provided with a backflow suppression valve 286 to allow hydraulic fluid to flow only unidirectionally along line 287. Line 244 is divided into two line branches 288 and 29, which serve as input to the cooler/lubricant control regulator 242. The hydraulic fluid pressure in the branches 288 and 290, along with the pressure of the fluid 1375628 in the return line 296, forces the piston 294 of one of the cold/lubrication control regulators 242 to move through a cooler line 296. And the distribution of hydraulic fluid in a cooler bypass line 298. At the pipe joint portion 3, the hydraulic fluid leaving the cold portion 38 recombines with the hydraulic fluid 5 in the cooler bypass line 298, from which it is distributed to the transmission mechanism 1 along the line 3〇2. The components act as lubrication. Each clutch Cl, C2, and C3 is controlled by a similar electro-hydraulic control configuration with an on/off (〇/1) electric solenoid, actuating a shift valve > for controlling the flow of hydraulic fluid to VBS. The VBS controls the flow of hydraulic fluid to a 10-way regulator valve to sequentially control the hydraulic fluid flowing to the clutch piston for engagement/release with the clutch. More specifically, the control of clutch C1 is fed through self-hydraulic line 202 through manual valve 40 (when manual valve 40 is in the -forward mode position) along transmission hydraulic line 3 04 and line 3 〇6 This is achieved by feeding hydraulic fluid to the c丨shift 15 valve 3〇8. The C1 shift valve 308 is actuated by receiving a hydraulic fluid from the electromagnetic feed valve 206 along line 312 by a 〇/1 electric solenoid 31〇. Line 312 includes a casing filter 314 located just upstream of the 〇/1 electric solenoid 31〇. The 〇/1 electric solenoid 310 is of a constant low (NL) type so that it is preset to a low pressure state in the absence of power supplied to the 〇/1 electric solenoid 31〇, as shown in Fig. 15. The ci shift 20 valve 308 controls the hydraulic fluid feed to the variable discharge electric solenoid (VBS) 316, the output portion of which is fed to the C1 regulator valve 318. A line 320' fitted with a variable discharge electric solenoid (VBS) 316 is also provided with a casing filter 322, an accumulator 324 and a side of either side of a variable discharge electric solenoid (VBS) 316. _ orifices 326, 328. The piston 330 of the C1 regulator valve 318 moves after sensing the pressure of the hydraulic fluid from the lines 32A, 21332 and the feedback line 334. The output portion of the Cl regulator valve 318 is fed via line 336 to the volume of the clutch ||C1, 7 〇, and the piston 66 is moved. The variable discharge electric solenoid (VBS) 316 is a constant height VBS. Clutch C2 is controlled by a similar configuration including 0/1 electric solenoid 338, C2 shift valve 34 〇, variable discharge electric solenoid (VBS) 342, and C2 regulating valve 344 to control hydraulic fluid via line 346. Flow to volume 96 for controlling the movement of piston 92. The variable discharge electric solenoid (VBS) 342 is a constant height VBS. Clutch C3 is also controlled by a similar configuration including 〇/1 electric solenoid 348, C3 shift valve 350, variable discharge electric solenoid (VBS) 352, and C3 regulating valve 354 to control hydraulic fluid via line 356. Flow to volume 112 to control movement of piston 108. The variable discharge electric solenoid (¥]3 352 is a normally low VBS. The front servo 360 for meshing with the brake belt B1 is also a configuration similar to that used for the clutches Cl, C2 and C3. More specifically, the configuration includes a 0/1 electric solenoid 362, a B1 shift valve 364, a variable discharge electric solenoid (VBS) 366, and a B1 regulating valve 368 that control the flow of hydraulic fluid to the volume via line 372. 370, for controlling the movement of the piston 117 (and thus the push rod 122). The variable discharge electric screw (VBS) 366 is a normally low VBS. The rear servo device 124 for meshing with the brake belt B2 is also It is controlled by a configuration similar to that used for clutches C1, C2 and C3 and brake belt b 1. However, 'B2 shares the 〇/1 electric solenoid 31〇 for controlling the B2 shift valve 392. In addition, B2 is also used. Variable discharge solenoids (VBs) 352 control the flow of hydraulic fluid to the volumes 128 and 394 via line 378 for controlling the movement of the piston 396. 1375628 When the transmission mechanism ίο is in the reverse gear, the rear servo farm 124 is via The feed is actuated by the hydraulic fluid of the reverse gear hydraulic lines 374, 376 and 378. The check valve 38〇 is positioned at the end of the line 376 and prevents unwanted backflow from line 376 into line 382, and vice versa. 5 In the example shown, manual valve 40 has a four-mode position valve. Movement (ie, P (parking), r (reverse), N (neutral) & D (the forward manual valve may also be configured to have a seven mode position valve movement (eg, including gears 4, 2, and 1}). Of course, it should also be understood that the manual valve may also have a different number (i.e., outside of 4 or 7) of the valve movement mode position. 10 Thus, in the illustrated transmission mechanism, the hydraulic control system has four on/ Off (0/1) electric solenoids 310, 338, 348, 362 and six variable discharge electric solenoids (VBS) 262, 274, 316, 342, 352, 366 (plus the proposed additional VBS 282). It is understood that any of these electric solenoids can be replaced by an electric solenoid having an equivalent functional type, for example, a pulse width adjustment type (pwM), a 15 variable pressure/force type (VPS/VFS) discharge electric solenoid, and the like. Each friction element in the design of the transmission mechanism 10, such as the clutch C C C or C3 or the brake belt Bi or 62, is in the gear change period. It can be individually controlled by electro-hydraulic control, thus providing a full range of gear change quality and also enabling the control system itself to be adjusted for wear or leakage during the life of the drive system. The control system is fully controllable. Covering any-friction 7C piece' so it is also possible to generate a $guili condition when the transmission 1 is in the forward or reverse condition, for example when the vehicle is parked there, and/or when the vehicle reaches When a predetermined relatively low speed is reached (for example, when the vehicle is about to drive a vehicle). § Transmission mechanism (1) When the engine and/or torque converter 23 1375628 is not loaded, for example, road driving can improve fuel economy under long-term idling conditions. The characteristics of this "Neutral-in-drive" are naturally generated without the need of the driver's understanding. The control system includes these main characteristics when used with the clutches Cl, C2 and C3 'and *' "car f B1 And when B2 is sprinkled or loosened, different control methods can be used' and the VBS can be bypassed without being used (for example, by isolating the VBS from exposure to fluid pressure), and the pressure leakage of the hydraulic fluid can be reduced, thereby enabling Reduce fuel consumption by the VBS 274. The line pressure can be controlled to any degree within the design limits, so it can also be used for clutch/brake control or improper use protection. Is a line-priority system that maintains the B-way pressure at low oil levels and sacrifices other loop requirements such as chiller flow to maintain the 'system shown' A Parachoidal version, but this spoon X is replaced by other suitable millet, such as a Gerotor, Crescent 15 or Vane pump. The torque converter lock loop contains the action limit adjuster 22〇, release limit two N 224 'torque converter regulator valve 238 and pressure regulator electrically locking screw & ",' * two and ten ° will serve to control the lockup clutch 47 of the double-sided pressure, thus 20. The sliding of the torque converter housing 44 is controlled by the clutch lock. The ugly moment converter regulating valve 238 is a unique design with two feedback zones 2 ▲ 25 〇 for the applied pressure and the other for the release pressure.

B矩夂換②心閥238及其之尺寸係經設計,致使閥238總 疋作動於二迴路BB _ θΊ屋生—特定壓差。為了成功地控制該 1力扭矩變換器調節間2 3 8需-所熟知的供給壓力源。 24 1375628 此係藉由提供扭矩變換器調節閥238二個別調整器,作用限 制調整器220及釋放限制調整器224。該二調整器22〇、224 係設定至一固定壓力,使能夠預先設定供給至扭矩變換器 調節閥238的來源油。根據自鎖定壓力調節可變排放電螺管 5 262進入扭矩變換器調節閥238的一第三輸入部分,該扭矩 變換器調節閥238將作用或釋放鎖定離合器47,同時維持涵 蓋於該鎖定離合器47的一預定愿差。 潤滑迴路係經設計,因此假若於極低溫期間冷卻器38 堵塞或是流動受限制,則潤滑油能夠繞過冷卻器38並直接 10 地通過進入潤滑油分配管路3〇2。 傳動機構10亦配置一輸入軸速度感應器及—輸出軸速 度感應器。輸入速度感應器提供一速度信號,同時輸出速 度感應器提供一速度及轉動方向信號。對於特定離合器及 煞車帶作用對策,特別是在空檔-前進或空檔_倒車選擇的狀 15況下係為重要的,其中車輛的移動方向對於達到最有效的 換檔控制係為重要的。結合該二速度感應器使能夠閉合迴 路或是採用控制策略連同執行傳動機構滑動診斷。 液邀迴路26係以該-方式配置,因此至傳動機構電螺 管(亦即,0/1電螺管及VBS)的總電力損失的狀況下傳動 20機構10仍能夠維持停車、倒車、空檔及前進(第4檔),同時 維持冷卻器流動、最大管路壓力及潤滑油流動。 傳動機構之作動 以下說明傳動機構經由不同檔齒輪狀態(包括第一檔 及手動第一檔、倒車及空樓)之作動。 25 1375628 1·第一檔齒輪 利用液壓方式’操作者首先移動τ形桿或方向 (C« 傳動位置。如此作動接著致使傳動機構10 進入傳動位置;此移動能夠使用-控制桿、二致π 在傳動位置,該手動閥4。容許油流 動至閥體及栗盍的相關傳動迴 及教車她〜… 、路因而以液壓供給離合器 容;t:= 該等換檔_電動液壓控制且不 10 4油昼進碌合器或煞車帶喝合迴路 制早疋控制為止。一旦該等闊已加塵 錯^•控 壓控制C2換檔閥34〇用 叱夠錯由電動液 田门爛用以觸動(使用〇 蘭或相似元件)進入一容許油壓及流動诵 BS、 至調節閥迴路的位置通過而進入進給 進…痛力控制電螺管 油 15 20 VPS,342或相似元件 _啦、 磨力控制-管方式使^=調;1^4結合 合器喷合作業。因此,能夠藉由電子控制器^而執⑽ 換檔感覺,並能夠經訂製 工…1N_D換棺的 駕驳人輸入動作。假若適合複數之車她況及 則亦能夠藉由解除對離錄體運 護,用以保護傳動管路Λ1動力而執行不當使用防 力控制電螺管,容許將與該等型式之 制在僅需使用電螺管的狀況下。當不需= ‘供給至該處且因而無需自液歷迴路之〉.曳漏,栗 26 1375628 尺寸因而能夠最佳化致使達到最大燃料經濟效益。就用於 C2離合器之替的—可任擇控制方法而言,在N-D過程期 間離合器調節閥344能夠設定至一 m ^ 取大屋力,如此通常造成 一刺耳的換擋震動,然而,為诘 马减fe此狀態,可使用管路壓 力控制電螺管274用以緩慢地升古其 开円官路壓力或源油’因而產 生較為平順的嗜合。 第5圖中係概略顯示針對第1齒輪的動力流動。 以機械方式,出自扭矩變換器14的輪入動作並經由為 行星齒輪組16之形式的前減遠去 ίο 逮w輪組。離合器(^嚙合提供 該輸入動作至後行星齒輪組18 以及動力流動係經安排通 過1-2止輪墊型式單向離合哭 、 。°2〇,因此藉由單向離合器20完 成載具反應扭矩。並無引擎煞皇 …、旱動作,因而車輛能夠滑行。 更特定言之,在加速度下,#& 僅使用單向離合器2〇在反 方向上(亦即,與引擎轉動相反> 15 保待載具不動。在一滑行狀 況下’單向離合器20無法將載夏 聚具保持在實際方向上,因而 動力流動絲持續並且不可能丨擎轉動作。 於扭矩變換器14中並未經由 审5亥鎖疋離合器47提供機械 性鎖定動作,在電動油壓控制 &供機械 ▲卿_番w 系、、先26令能夠防止此現象發 生。利用此配置’能夠見到的 乂1重將一摩擦7L件(C2)藉由 20 一電動液壓控制的液壓活塞66 即可達到第一檔。儘管視為 一 1-2止輪墊型式單向離合器2 視為 但熟知此技藝之人士能夠 確認的疋’能夠以相似裝置達 彳此相同功能,例如一滾輪 式離合器、機械二極體或相似袈置。 2.手動第一擋齒輪 27 1375628 第6圖中概略地顯示手動第一檔齒輪所用的動力流 動,利用一圖式顯示於滑行期間的動力流動以及另一圖$ 顯示於前進期間的動力流動。 手動第一檔齒輪係與第一檔齒輪相似’不同之處在於 5亦使用B2煞車帶致使單向離合器20無法防止由傳動機構之 輸入部分至傳動機構之輸出部分的煞車動作。因此,於手 動第一稽齒輪能夠產生引擎煞車動作。 更特定言之,於手動第-槽齒輪中,B2煞車帶及單向 離合器2〇係用以防止行星齒輪級之載具不致於反向轉動中 1〇 (亦即,與引擎之轉動相反)轉動。由於B2煞車帶並不㈣ 在重踩加速下(亦即,於一前進狀況下)固持載具,單向2合 器20及B2煞車帶共同承擔經由載具所施加的扭矩。對比 地,於一滑行期間,當與前進狀況相較時發生反轉其中 載具言試於前進方向旋轉並因而在相反方向施以—扭矩 15藉由定義,單向離合器2〇僅能夠於—方向防止轉動,因此。, 載具僅藉由B2煞車帶加以固持。由於載具係為不動的,戶 以動力流動持續經由齒輪組並至引擎致使提供引擎煞車^ 此於前進情況,例如,當配裝傳動系統的車 繞—轉彎處及/或下山時,當需要引擎煞車動作時係特2 有利。配置傳動機構之控制部分致使能夠自動地藉由控^ 系統及/或手動地由駕駛者選擇手動第一檔。 二, j X ,於— 式中,傳動機構具有—選擇器能夠在一自動(例如,“前進: 杈式,其中當適於第一前進比時自動地選擇第— ) 28 5 5 而手動地選擇換檔 手動模式,其中駕駛者藉 以及當駕駛者選擇第—前 式之間移動。 由移動選擇器 進比時使用手動第—檔 的二模 心由前ML i 出自於該挺矩變換器14 減“池16。離合It⑽啟,料 ==。煞車帶B2固定載具總成82並產生 敢車動作離合器以及妨B2煞切提供引擎 :車動作。於扭矩變換器14中並未經由鎖定離 10 機械性鎖定,電動液壓控㈣鋒具有—超_(映咖 valve)防止發生鎖定。 以液壓方式,迴路係與第一檔齒輪相同,不同之處在 於B2煞車帶亦係以電動液壓方式4合並能夠在唾合或鬆開 期間滑上或滑下。傳動機構1G-經換至第二樓齒輪,第_ 檔齒輪偏壓閥349觸動並限制油供給之B2迴路(經由管路 15 347),因而防止B2煞車帶滯留以及造成停頓。 3.第二檔齒輪 第7圖中係概略地顯示用於第二檔齒輪之動力流動。 藉由維持供給離合器C2在第一檔齒輪狀態下的動力, 並接著提供煞車帶B1動力而達到第二檔。如此固定反向太 20陽齒輪1〇2及載具總成82,從而致使後行星齒輪組丨8超越該 1-2機械止輪墊式單向離合器20。經由扭矩變換器14中的鎖 定離合器47提供機械式鎖定。此鎖定離合器47通常配裝一 減振器總成用以減輕引擎造成的振動,並且該鎖定離合器 47亦能夠利用壓差控制潸動,進一少地減輕扭轉振動。將 29 1375628 扭矩變換器調節闊238與作用限制調整器22〇及釋放限制調 整盗224結合藉由控制鎖定離合器47之任—側壓力而達到 壓差控制滑動。如此能夠精確地控制鎖定離合器47嗜合對 著扭矩變換器Μ外殼44的前壁45。如此造成超越傳統式僅 5有減振器系統降低在鎖定下的引擎速度,因而達到最大燃 料節約優點。此可應財啟_定的所㈣輪槽狀態。 θ藉由將鎖㈣合器47連續地配裝具㈣㈣的減振器 而提供一多級(multi_stage)(例如三級)減振器,如第Μ圖中 所不’致使對所施加力/她該減振器係為成級變化。該減 10振器之多級變化能夠改良抑制在—該等頻率範圍下的振 動。 以液壓方式,在換檔開始時,管路壓力增加至高於換 樓情況所需的—程度。接著’相_B1換_364係為電動 液壓致動且不谷6午油壓進入則煞車帶响合迴路(亦即,至B1 15調節閥368),直至由電子控制單元控制為止。-旦已對此 閥364提供動力,將油供給至m調節閥細及vbs 366並能 夠藉由電動液壓控制B1調節閥壓力控制電螺管366用以增 加B1煞車帶作用活塞迴路中壓力而執行12換樓。現能夠藉 由電動液壓方式使用調節閥规結合壓力控制電螺管说將 2〇 B1。煞車帶滑上而執行M齡作業。於是能夠藉由電子控 制β控制1-2換棺的換樓感覺,並能夠訂製/校準用以適合複 數之車輛狀況及駕駛者的輸入動作。 就對電子控制器的一附加輸入部分而言,一煞車帶推 桿位置感應11120係包括在制服裝難桿及蓋卜此感應 30 1375628 器120知會煞車帶B1之嗜合的位置的控制器因此能夠應用 不同的控制方法。該等方法包括慢迷控制作用後煞車帶間 隙之快速感知或藉由快速鬆開後慢速杻矩減小。假若不當 使用防護軟體運算已啟動,亦藉由解除對煞車帶提供動力 5 而執行不當使用防護,用以保護傳動管路。 4.第三檔齒輪 弟8圖中係概略地顯示用於第三檔齒輪之動力流動。 藉由嚙合離合器C2及C3而達到第三檔。如此在—Γι 前進比下將後齒輪組18固定在一起。總傳動機構輪出前進 10比因而等於前齒輪組16之前進比。經由扭矩變換器14中的 鎖定離合器47提供機械式鎖定。 以液壓方式,在換檔開始時’管路壓力增加至高於換 檔情況所需的一程度。接著’相關的C3換檔閥350係為電動 液壓致動且不容許油壓進入C3嚙合迴路,直至由電子控制 15 單元控制為止。一旦已對此閥350提供動力,將油供給至口3 調節閥354及VBS 352並能夠藉由電動液壓控制Β1調節間 壓力控制電螺管3 66用以減小Β1煞車帶作用活塞迴路中壓 力而執行2-3換檔,並且同時控制C3調節閥壓力控制電螺管 352用以讓壓力上升,執行Β1迴路與C3迴路交換。一旦Bl 20 迴路已喪失扭矩承載能力,C3迴路現能夠藉由電動液壓方 式使用調節閥354結合壓力控制電螺管352將C3離合器滑上 而完成換槽作業。於是,能夠藉由電子控制器控制2-3換幹 的換檔感覺,並能夠訂製/校準用以適合複數之車輛狀況及 駕駛者的輸入動作。 31 1375628 5.第四檔齒輪 5The B moment 夂 2 valve 238 and its dimensions are designed such that the valve 238 is always actuated to the second circuit BB _ θ Ί 生 - a specific pressure difference. In order to successfully control the 1 force torque converter, the supply pressure source is well known. 24 1375628 This is to limit the regulator 220 and the release limit adjuster 224 by providing a torque converter regulating valve 238 and two individual regulators. The two regulators 22, 224 are set to a fixed pressure so that the source oil supplied to the torque converter regulating valve 238 can be set in advance. The variable discharge electric solenoid 5 262 enters a third input portion of the torque converter regulating valve 238 in accordance with the self-locking pressure adjustment, and the torque converter regulating valve 238 acts or releases the lockup clutch 47 while remaining in the locked clutch 47. One of the scheduled wishes. The lubrication circuit is designed such that if the cooler 38 is blocked or the flow is limited during very low temperatures, the lubricating oil can bypass the cooler 38 and pass directly into the lubricating oil distribution line 3〇2. The transmission mechanism 10 is also provided with an input shaft speed sensor and an output shaft speed sensor. The input speed sensor provides a speed signal while the output speed sensor provides a speed and direction of rotation signal. It is important to deal with specific clutches and brake belts, especially in the case of neutral-forward or neutral-reverse selection, where the direction of movement of the vehicle is important to achieve the most efficient shift control system. Incorporating the two speed sensors enables a closed loop or a control strategy along with a drive mechanism slip diagnostic. The liquid trap circuit 26 is configured in this manner, so that the transmission 20 mechanism 10 can still maintain parking, reverse, and empty under the condition of total power loss to the transmission mechanism solenoid (ie, 0/1 electric solenoid and VBS). Gear and forward (4th gear) while maintaining cooler flow, maximum line pressure and lubricant flow. Actuation of the transmission mechanism The following describes the operation of the transmission mechanism via different gear states (including the first gear and the manual first gear, reverse and empty floor). 25 1375628 1. The first gear is hydraulically operated. 'The operator first moves the τ-bar or direction (C« drive position. This action then causes the transmission 10 to enter the transmission position; this movement can be used - the control lever, the second π Transmission position, the manual valve 4. Allows the oil to flow to the valve body and the relevant transmission of the chestnut and teaches her ~... The road thus supplies hydraulic clutch capacity; t:= These shifts_ electro-hydraulic control and not 10 4 oil 昼 碌 碌 煞 煞 煞 煞 煞 煞 煞 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Touch (using cypress or similar components) to enter a allowable oil pressure and flow 诵 BS, to the position of the regulating valve circuit to enter the feed into the ... pain control electric screw oil 15 20 VPS, 342 or similar components _, The friction control-tube method enables ^=tuning; 1^4 combines with the sprayer cooperation industry. Therefore, it can be controlled by the electronic controller^(10) shifting feeling, and can be customized by the custom... 1N_D People input actions. If it is suitable for multiple cars, then she also It is possible to perform improper use of the force control electric screw by releasing the protection of the deviating body to protect the power of the transmission line ,1, and to allow the type of the system to be used only in the case of using an electric solenoid. There is no need to = 'supplied to the location and thus no need for the liquid level circuit.> Leakage, the size of the chest 26 1375628 can thus be optimized to achieve maximum fuel economy. For the replacement of the C2 clutch - optional control In the method, the clutch regulating valve 344 can be set to a large house force during the ND process, which usually causes a harsh shifting vibration. However, for the state of the horse, the line pressure control screw can be used. The tube 274 is used to slowly raise the pressure of the open road or the source oil, thus resulting in a smoother fit. The power flow for the first gear is schematically shown in Fig. 5. Mechanically, from the torque converter 14 The wheeling action and catches the w wheel set by the front reduction of the form of the planetary gear set 16. The clutch (^ meshing provides the input action to the rear planetary gear set 18 and the power flow is arranged through the 1-2 wheel The type one-way clutch is crying, °2〇, so the carrier response torque is completed by the one-way clutch 20. There is no engine, and the vehicle can slide. More specifically, under acceleration, #&amp Use only the one-way clutch 2〇 in the opposite direction (ie, opposite to the engine rotation) 15 to keep the carrier stationary. In a taxiing condition, the one-way clutch 20 cannot maintain the summer collector in the actual direction. Therefore, the power flow wire continues and it is impossible to turn the engine. In the torque converter 14, the mechanical locking action is not provided via the 5H lock clutch 47, and the electric oil pressure control & The first 26 orders can prevent this from happening. With this configuration, the first 7 steps can be achieved by a frictional 7L piece (C2) by a hydraulically controlled hydraulic piston 66. Although it is considered that a 1-2 wheel pad type one-way clutch 2 is considered to be identifiable by those skilled in the art, the same function can be achieved with a similar device, such as a roller clutch, a mechanical diode or the like. Set. 2. Manual first gear 27 1375628 Fig. 6 schematically shows the power flow used for the manual first gear, using one pattern to show the power flow during coasting and the other figure $ showing the power flow during forward travel. The manual first gear train is similar to the first gear gear. The difference is that the B2 brake belt is also used to prevent the one-way clutch 20 from preventing the braking action from the input portion of the transmission to the output portion of the transmission. Therefore, the manual first gear can generate an engine braking action. More specifically, in the manual slotted gear, the B2 brake belt and the one-way clutch 2 are used to prevent the carrier of the planetary gear stage from being reversed in the reverse direction (ie, opposite to the rotation of the engine). Turn. Since the B2 brake belt does not (4) hold the vehicle under heavy acceleration (i.e., under a forward condition), the one-way coupler 20 and the B2 brake belt jointly bear the torque applied via the vehicle. Contrastly, during a gliding, an inversion occurs when compared to the forward condition, wherein the carrier attempts to rotate in the forward direction and thus in the opposite direction - the torque 15 is defined by the one-way clutch 2 〇 only - The direction prevents rotation, therefore. , the vehicle is only held by the B2 brake belt. Since the vehicle is stationary, the power flow continues through the gear set and to the engine to provide the engine to the vehicle, for example, when the vehicle is equipped with a drive-turn and/or downhill, when needed It is advantageous when the engine brakes. Configuring the control portion of the transmission mechanism enables automatic selection of the manual first gear by the driver and/or manually by the driver. Second, j X , in the formula, the transmission mechanism has a selector that can be manually (for example, "advance: 杈, where automatically selects the first when the first forward ratio is suitable") Selecting the shift manual mode, in which the driver borrows and when the driver selects the first-forward movement. The second mode of the manual first gear is used by the mobile selector to derive the front ML i from the positive torque converter. 14 minus "pool 16. Clutch It(10) starts, material ==. Brake belt B2 fixed vehicle assembly 82 and produces a dare-action clutch and B2 cut-off engine: car action. In the torque converter 14, it is not mechanically locked via the lock-off 10, and the electro-hydraulic control (four) front has a - super _ valve to prevent the lock from occurring. Hydraulically, the circuit is identical to the first gear, except that the B2 brake belt is also electro-hydraulic 4 combined to slide or slide down during slushing or loosening. Transmission mechanism 1G - is shifted to the second floor gear, and the first gear offset valve 349 activates and limits the B2 circuit of the oil supply (via line 15 347), thereby preventing the B2 brake belt from staying and causing a pause. 3. Second gear The Fig. 7 schematically shows the power flow for the second gear. The second gear is reached by maintaining the power of the clutch C2 in the first gear state and then providing the brake belt B1 power. The reverse 20 male gear 1〇2 and the carrier assembly 82 are thus fixed such that the rear planetary gear set 丨8 overtakes the 1-2 mechanical stop-type one-way clutch 20. Mechanical locking is provided via a lockup clutch 47 in the torque converter 14. The lock-up clutch 47 is usually equipped with a damper assembly for mitigating vibrations caused by the engine, and the lock-up clutch 47 is also capable of controlling the sway using the differential pressure to further reduce the torsional vibration. The 29 1375628 torque converter adjustment Width 238 is combined with the action limit adjuster 22 and the release limit adjustment 226 to achieve differential pressure control slip by controlling the side-side pressure of the lock-up clutch 47. This makes it possible to precisely control the lockup clutch 47 to oppose the front wall 45 of the torque converter housing 44. This results in a fuel economy that exceeds the traditional only 5 damper system to reduce the engine speed under locking, thus achieving maximum fuel economy. This can be used to determine the state of the (four) wheel slot. θ provides a multi-stage (eg, three-stage) damper by continuously arranging the lock (four) 47 with the damper of (4) (four), as shown in the figure, causing the applied force/ Her damper is a step change. The multi-stage variation of the damper can improve the suppression of vibrations in the range of frequencies. In hydraulic mode, at the beginning of the shift, the line pressure is increased to a level higher than that required for the floor change. Then, the phase _B1 _364 is electro-hydraulic actuated and the non-valley 6 mid-oil pressure enters the brake belt reciprocating circuit (i.e., to the B1 15 regulating valve 368) until it is controlled by the electronic control unit. Once the valve 364 has been powered, the oil is supplied to the m regulator valve and the vbs 366 and can be executed by the electrohydraulic control B1 regulator valve pressure control solenoid 366 for increasing the pressure in the piston circuit of the B1 brake belt. 12 for the building. It is now possible to use the electrohydraulic method with a regulating valve gauge in combination with a pressure control electric solenoid to say 2〇 B1. The brake belt is slid on and the M-age work is performed. It is then possible to electronically control the beta control 1-2 to change the floor feel and to customize/calibrate to accommodate multiple vehicle conditions and driver input actions. For an additional input portion of the electronic controller, a vehicle belt push rod position sensing 11120 is included in the controller for making the garment difficult rod and covering the sense that the 30 1375628 device 120 knows the fit of the brake belt B1. Different control methods can be applied. These methods include a quick perception of the brake belt gap after slow motion control or a slow torque reduction by rapid release. If improper use of the protective software has been initiated, the improper use protection is also provided to relieve the transmission line by releasing the power to the brake belt. 4. Third gear The figure 8 is a schematic representation of the power flow for the third gear. The third gear is reached by engaging the clutches C2 and C3. The rear gear set 18 is thus secured together at a forward ratio of Γι. The total transmission mechanism is rotated by 10 ratios and thus equals the forward ratio of the front gear set 16. Mechanical locking is provided via a lockup clutch 47 in the torque converter 14. Hydraulically, at the beginning of the shift, the line pressure is increased to a level higher than that required for the shift. The associated C3 shift valve 350 is then electro-hydraulic actuated and does not allow oil pressure to enter the C3 meshing circuit until controlled by the electronic control unit 15. Once the valve 350 has been powered, oil is supplied to port 3 regulating valve 354 and VBS 352 and can be adjusted by electrohydraulic control Β 1 to control the inter-pressure control solenoid 16 66 to reduce the pressure in the piston circuit of the Β 1 煞 belt The 2-3 shift is performed, and at the same time, the C3 regulating valve pressure control electric solenoid 352 is controlled to increase the pressure, and the Β1 circuit and the C3 circuit are exchanged. Once the Bl 20 circuit has lost torque carrying capacity, the C3 circuit is now able to complete the shifting operation by electro-hydraulic using the regulating valve 354 in conjunction with the pressure control electric solenoid 352 to slide the C3 clutch. Thus, the shifting feeling of the 2-3 change can be controlled by the electronic controller, and the order can be customized/calibrated to suit a plurality of vehicle conditions and the driver's input action. 31 1375628 5. Fourth gear 5

10 第9圖中係概略地顯示用於第四檔齒輪之動土 藉由對後齒輪組18具有二輸入動作而達到第力::。一 輸入動㈣出自於前減速齒輪組16及離合器田一 輸入動作係直接出自於輸入轴48(經由離合器卬 器㈣齒輪㈣之載具總成82連接至輸人輪8 麟 太陽齒輪102係自前齒輪組16經由C2離合 變換器14㈣财離合⑽提錢械⑼^。經由扭矩 ^錢方式,以與η換檔相同的方式執叫換棺不 同之處在於C3迴路下降而同時〇迴路上升。 6.第五檔齒輪 1510 Fig. 9 is a schematic view showing the moving soil for the fourth gear. The second force is achieved by the pair of rear gear sets 18 to achieve the first force::. An input movement (4) from the front reduction gear set 16 and the clutch field input operation is directly from the input shaft 48 (via the clutch assembly (4) gear (4) carrier assembly 82 is connected to the input wheel 8 Lin Sun gear 102 series from the front The gear set 16 is controlled by the C2 clutch converter (4), and the money is replaced by the same method as the η shift. The difference is that the C3 loop is lowered and the loop is raised. .Fifth gear 15

糸概略地顯示用於第五構齒輪之 藉由對後齒輪組18具有二輸入動作而達到第五;動一 ^動作係出自於前減速齒輪組I以及 二離合二 伟自〜^感連接至輪人軸l同時反向太陽齒輪Μ 輪戏㈣⑽合器之輸出而傳動 換器14中_定離合器提 由扭矩又 20 以液壓方式,以與3_4換檔相同的方式執行4 同之處在於(:2叫下降而同時c3迴路上升。 7.第六檔齒輪 _5換檔, 不 Γ 由 11: 概略地顯示用於第六檑齒輪之動力流動。 曰 煞車帶將反向太陽齒輪114固定至 進 構外,並接著利用〇離合器自輪入轴48直接二機 32 1375628 入後#輪組載具總成82而達成第六檔。經由扭矩變換哭14 中的鎖定離合器47提供機械式鎖定。 以液壓方式,以與4-5換檔相同的方式執行5_6換檔,不 同之處在於C3迴路下降而同時B1迴路上升。 5 8.倒車檔齒輪 藉由傳動通過前齒輪組16通過C3離合器,以及藉由使 用B2煞車帶將後齒輪組載具總成82固定至傳動機構外殼12 而達成倒車檔。並未經由扭矩變換器中的鎖定離合器们提 供機械性鎖定,並係經由電動液壓控制迴路以液壓方式加 10 以防止。 利用液壓方式,倒車檔係藉由操作者首先移動τ形桿或 方向盤式變速(Column Shift)或是其他齒輪模式方向控制機 構嚙合進入傳動位置。如此作動接著致使傳動機構1〇之手 動閥40移動進入倒車檔位置;此移動能夠使用一控制桿、 15纜索、致動器或電螺管進行。一旦處在倒車檔位置,該手 動閥40容許油流動至閥體及泵蓋的相關倒車檔迴路因而 以液壓供給離合器及煞車帶換檔閥動力。實質上係在以手 動閥40選定倒車位置時立即提供B2煞車帶動力。能夠使用 管路壓力控制其之施加速率,但在倒車檔中未考量針對傳 20動應用所用的偏壓閥349。一旦B2煞車帶開啟,即能夠藉由 電動液壓控制C3換檔閥350用以觸動(使用電螺管348 ' VBS、PWM或相似元件)進入一容許油壓及流動通過而進入 進給至調節閥迴路(亦即,至C3調節閥354)的位置而嚙合。 在同時間,油進給至調節閥壓力控制電螺管(其可為— 33 1375628 PWM、VFS、VPS、VBS 352或相似元件)。現可藉由使用 調節閥354結合壓力控制電螺管352以電動油壓方式使C3離 合器躍立而執行離合器嚙合作業。因此,能夠藉由電子控 制器控制N-R換檔的換檔感覺,並能夠經訂製/校準用以適 5 合複數之車輛狀況及駕駛人輸入動作。假若一不當使用防 護軟體運算已啟動,則亦能夠藉由解除對離合器提供動力 而執行不當使用防護,用以保護傳動管路。當換檔閥致動 時僅藉由將油進給至個別的壓力控制電螺管,容許將與該 等型式之電螺管有關的洩漏限制在僅需使用電螺管的狀況 10 下。當不需電螺管352時,油並未供給至該處且因而無需自 液壓迴路之洩漏,泵尺寸因而能夠最佳化致使達到最大燃 料經濟效益。就用於C3離合器之嚙合的一可任擇控制方法 而言,在N-R過程期間離合器調節閥354能夠設定至一最大 壓力。如此通常造成一刺耳的換標震動,然而,為減輕此 15 狀態,可使用管路壓力控制電螺管274用以緩慢地升高管路 壓力或源油,因而產生較為平順的嚙合。 9.空檔 藉由與所有三離合器Cl、C2及C3鬆開,並亦與煞車帶 B1及B2鬆開而達到傳動機構10之空檔狀況。因此,空檔狀 20 況係為一未煞車的空檔狀況,其中傳動機構的輸入及輸出 部分係相對於傳動機構的外殼自由地轉動。 發展 已發展6前進比(亦即,“6速”)傳動機構,因此其能夠使 用一已用於生產4前進比(亦即,“4速”)傳動機構的現存生產 34 線,並能夠在相同生產線並與該等4速傳動機構同 造。超過70¾之原來4速傳動機構組件及工具準備亦可埯製 6速傳動機構,致使能夠生產一為4及6速變化形式所共^於 基本模組。該基本模組可包括,例如,傳動機構外殼及/ = 一供傳動機構外殼所用的嵌入物。根據所製作的變化形式 可對基本模組增加不同的組件。 將現存4速自動傳動機構的設計,藉由自該4速傳動機 構設計中去除一摩擦元件而轉換用以適合6前進比傳動機 構,提供一行星齒輪組取代該去除的摩擦元件並提供/ 控制系統用以作動相互獨立的該等其餘摩擦元件。 該6速自動傳動機構係經構形,致使為了提供一具有4 前進比的自動傳動機構而能夠省略機械裝備(包括該附加 的行星齒輪组)。 特性 上述說明實例之傳動機構10的特性如下: •一單一輸入軸傳動該傳動機構; 於空彳s (未煞車空檔)中的一完整空檔性能; •使用3離合器' 2煞車帶及一單向離合器用以達到6 前進比; •使用17_以達成傳動機構之整體電動液壓控制; •一鎖定離合器包括在扭矩變換器中; •能夠利用僅—摩擦元件之4合而達到—第—前進比; •使用個別電螺管結合,自零壓力至最大壓力個別地 控制所有摩擦離合器及煞車帶; 1375628 •使用未連接摩擦元件(亦即,該等元件之間無共同壓 力或液壓區域); •針對控制決定使用一輸入軸速度感應器; •針對控制決定使用一正交相位輸出速度感應器; 5 •針對控制決定使用一類比前煞車帶推桿位置感應器; •使用直接離合器及煞車帶控制裝置,使能夠防護車 輛傳動軸裝置的不當使用; •使用直接離合器及煞車帶控制裝置,使前進及倒車 I 檔齒輪狀況自空檔能夠使用電動液壓控制裝置平順地嚙 10 合; •經包裝使能夠將6前進比傳動機構裝置配裝在一 4前 進比傳動機構之原來包裝空間範圍内; •機械式安裝(mechanical hook-up)容許藉由省略機械 裝置建構一 4前進比傳動機構,仍使用6前進比控制系統; 15 •機械式安裝容許使用現存的製造工具配置及設備, 建構6前進比傳動機構; # •使用結合的閉合迴路或是採用控制策略用以確保平 順的變速桿(gearshift)控制; •針對扭矩變換器中鎖定離合器使用一壓差電動液壓 20 控制裝置,使能夠使用滑動控制策略用以達到較低的鎖定 引擎速度,並用以降低2檔、3檔、4檔、5檔及6檔的NVH(噪 音振動刺耳聲); •使用獨立於其他傳動機構性能的全範圍可變管路壓 力控制裝置; 36 1375628 •在電子裝置故障的情況下,一液壓控制系統仍能容 許停車、倒車、空檔及第4檔齒輪之“緊急操作模式 (limp-home)” ; •一液壓控制系統以液壓方式防止在停車、空檔、前 5 進第一檔及倒車檔齒輪中發生扭矩變換器鎖定; •具有一冷卻器旁通迴路的一液壓控制系統,保護傳 動機構不致冷卻器堵塞或是凍結; •使用一定排量泵; • •使用前煞車帶活塞總成中的快速作用特性; 10 •使用自泵供給裝置進給的管路優先壓力; •使用開/關電螺管、可變排放電螺管、換檔閥及壓力 調節閥之結合裝置,用以獲得電動液壓離合器及煞車帶控 制裝置; •在不需電螺管時使電螺管分離並將電螺管洩漏降至 15 最低的閥配置; •模組化設計能力與傳動軸裝置系統變化形式結合, • 諸如:4速、5速、6速、7速、混合傳動機構及前輪傳動。 混合系統 熟知此技藝之人士所瞭解的是,本發明之一傳動機構 20 亦可用於一混合傳動配置中,諸如第17圖中所示的配置。 例如,傳動機構可進一步地配置一上游行星齒輪組401,將 傳動機構與一内燃機(未顯示)及一電動馬達400耦合。 對傳動機構所作的複數之修改及變化,不致背離發明 之精神及範脅。例如,傳動機構可配置一電動油泵,其獨 37 1375628 立於對傳動機構之輸入動作的轉動速度而作動,俾便提供 所需油壓(亦即,“需要的壓力”),特別是在傳動機構之機械 油泵無法提供足夠壓力的一情況下(例如,諸如當一配裝傳 動系統的車輛緩慢地行進或是停車時)。 5 【圖式簡單說明】 第1A圖係為一傳動機構的一概略斷面圖,同時顯示傳 動機構之一電動液壓控制系統的一概略斷面圖; 第1B圖係為第1A圖之概略斷面圖,顯示附加的代表符 ,號; 10 第1C圖係為第1A及1B圖之概略斷面圖,顯示附加的代 表符號; 第2A圖係為第1圖之傳動機構的一斷面圖; 第2B圖係為配置於一前輪驅動形式中所用的一傳動機 構的一斷面圖; 15 第3圖係為一表格顯示由第1及2圖之傳動機構所提供 的複數之齒輪中所用的換稽元件; # 第4圖係為第1及2圖之傳動機構的一動力流動圖,顯示 傳動機構之一空檔狀態; 第5圖係為第1及2圖之傳動機構的一動力流動圖,顯示 20 於傳動機構之一第一檔齒輪狀態下的動力流動; 第6圖係為第1及2圖之傳動機構的一動力流動圖,顯示 於傳動機構之一手動第一檔齒輪狀態下的動力流動; 第7圖係為第1及2圖之傳動機構的一動力流動圖,顯示 於傳動機構之一第二檔齒輪狀態下的動力流動; 38 ^^628 第8圖係為第1及2圖之傳動機構的一動力流動圖顯示 於傳動機構之一第三檔齒輪狀態下的動力流動; 第9圖係為幻及2圖之傳動機構的一翁力流動圖顯示 於傳動機構之一第四檔齒輪狀態下的動力流動; 不 5 第10圖係為第】及2圖之傳動機構的一動力流動圖,顯 示於傳動機構之一第五檔齒輪狀態下的動力流動; ‘· 第11圖係為第1及2圖之傳動機構的一動力流動圖,顯 不於傳動機構之一第六檔齒輪狀態下的動力流動丨θ ”" 第12圖係為第1及2圖之傳動機構的一動力流動圖, 1〇不於傳動機構之一倒車檔齒輪狀態下的動力流動; 顯 第13圖係為第1圖中所示的電動液壓控制系統之—, 常為高可變排放電螺管的壓力對電流之一概略圖; 通 第14圖係為第1圖中所示的電動液壓控制系統之—、 常為低可變排放電螺管的壓力對電流之一概略圖;—通 15 第15圖係為第1圖中所示的電動液壓控制系統之一 吊為低0/1排放電螺管的壓力對電流之—概略圖; ^ 第16圖係為針對第1及2圖之傳動機構的_挺矩變 減振器,所施加力/扭矩對減振界糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 糸 第五 第五 第五 第五 第五 第五 第五 第五 第五 第五 第五 第五The wheel man axis l simultaneously reverses the sun gear Μ the wheel (4) (10) the output of the clutch and the gear changer 14 _ the clutch is torqued by 20 and hydraulically, in the same way as the 3_4 shift. 4 The same thing is ( : 2 is called down while the c3 loop is rising. 7. The sixth gear _5 shifts, no Γ By 11: The power flow for the sixth 檑 gear is roughly shown. The brake belt fixes the reverse sun gear 114 to In addition to the configuration, the second gear is then achieved by the 〇 clutch from the wheel axle 48 directly from the second machine 32 1375628 into the rear wheel carrier assembly 82. The lockup clutch 47 in the torque converter 14 provides a mechanical lock. Hydraulically, the 5_6 shift is performed in the same manner as the 4-5 shift, except that the C3 loop is lowered while the B1 loop is rising. 5 8. The reverse gear is transmitted through the front gear set 16 through the C3 clutch, and By using the B2 brake belt The wheel set carrier assembly 82 is secured to the transmission housing 12 to achieve a reverse gear. The mechanical lock is not provided via the lockup clutches in the torque converter and is hydraulically added 10 via the electro-hydraulic control circuit to prevent. In the hydraulic mode, the reverse gear is engaged by the operator by first moving the τ-shaped rod or the steering shift (Column Shift) or other gear mode directional control mechanism into the transmission position. This action then causes the manual valve 40 of the transmission mechanism 1 to move into Reverse gear position; this movement can be performed using a control lever, 15 cable, actuator or electric solenoid. Once in the reverse gear position, the manual valve 40 allows oil to flow to the relevant reverse gear circuit of the valve body and the pump cover. The hydraulic supply clutch and brakes are equipped with shift valve power. Essentially, the B2 brake belt power is provided immediately when the reverse position is selected by the manual valve 40. The line pressure can be used to control the application rate, but it is not considered in the reverse gear. The bias valve 349 used for the 20-way application can control the C3 shift valve 35 by electro-hydraulic control once the B2 brake belt is opened. 0 is used to engage (using the electric solenoid 348 'VBS, PWM or similar component) to enter a allowable oil pressure and flow through and enter the position of the feed to the regulating valve circuit (ie, to the C3 regulating valve 354) to engage. At the same time, the oil is fed to the regulator valve pressure control solenoid (which can be - 33 1375628 PWM, VFS, VPS, VBS 352 or similar components). It is now possible to use the regulator valve 354 in conjunction with the pressure control solenoid 352 The electric hydraulic mode allows the C3 clutch to jerk and perform clutch engagement. Therefore, the electronic controller can control the shifting feeling of the NR shift, and can be customized/calibrated to suit the vehicle condition and driving. People input actions. If an improper use of the software has been initiated, it can also be used to protect the drive line by disarming the clutch and performing improper use protection. When the shift valve is actuated, only the oil is fed to the individual pressure control solenoids, allowing the leakage associated with these types of solenoids to be limited to conditions 10 where only the solenoids are required. When the electric solenoid 352 is not required, the oil is not supplied thereto and thus there is no need for leakage from the hydraulic circuit, and the pump size can thus be optimized to achieve maximum fuel economy. With respect to an optional control method for engagement of the C3 clutch, the clutch regulator valve 354 can be set to a maximum pressure during the N-R process. This typically results in a harsh, recalibration shock. However, to alleviate this 15 state, the line pressure control solenoid 274 can be used to slowly raise the line pressure or source oil, resulting in a smoother meshing. 9. Neutral The neutral condition of the transmission 10 is achieved by loosening with all of the three clutches Cl, C2 and C3 and also with the brake belts B1 and B2. Therefore, the neutral condition is a neutral condition of an unmanned vehicle in which the input and output portions of the transmission are free to rotate relative to the outer casing of the transmission. Development has developed a 6 forward ratio (ie, "6-speed") transmission mechanism, so it can use an existing production 34 line that has been used to produce a 4 forward ratio (ie, "4-speed") transmission mechanism, and is capable of The same production line is built with these four-speed transmissions. More than 702⁄4 of the original 4-speed transmission components and tools are ready to produce a 6-speed transmission mechanism, enabling the production of a basic module for both 4 and 6 speed variants. The base module can include, for example, a transmission housing and/or an insert for the transmission housing. Different components can be added to the basic module depending on the variations made. The design of the existing 4-speed automatic transmission mechanism is converted to fit the 6 forward ratio transmission mechanism by removing a friction element from the design of the 4-speed transmission mechanism, providing a planetary gear set instead of the removed friction element and providing/controlling The system is used to actuate the remaining friction elements that are independent of one another. The 6-speed automatic transmission mechanism is configured such that mechanical equipment (including the additional planetary gear set) can be omitted in order to provide an automatic transmission having a 4 forward ratio. Features The characteristics of the transmission mechanism 10 described above are as follows: • A single input shaft drives the transmission; a full neutral performance in the open s (unmanned neutral); • Uses a 3 clutch ' 2 brake belt and one One-way clutch is used to achieve 6 forward ratio; • 17_ is used to achieve integral electro-hydraulic control of the transmission; • A lock-up clutch is included in the torque converter; • It can be achieved by using only the friction element. Forward ratio; • Individually control all friction clutches and brake belts from zero to maximum pressure using individual electric solenoids; 1375628 • Use unconnected friction elements (ie, no common pressure or hydraulic area between these elements) • Use an input shaft speed sensor for control decisions; • Use a quadrature phase output speed sensor for control decisions; 5 • Use an analogy of the front brake belt push rod position sensor for control decisions; • Use direct clutch and brake With control device to protect the improper use of the vehicle drive shaft device; • Use direct clutch and brake control The device enables the forward and reverse I gear conditions to be smoothly traversed by the electro-hydraulic control device from the neutral position; • packaged to enable the 6 forward ratio transmission mechanism to be fitted in the original packaging space of the 4 forward ratio transmission mechanism • Mechanical hook-up allows the construction of a 4 forward ratio transmission mechanism by omitting mechanical devices, still using a 6 forward ratio control system; 15 • Mechanical installation allows the use of existing manufacturing tool configurations and equipment, Construct 6 forward ratio transmission mechanisms; # • Use a combined closed loop or use a control strategy to ensure smooth gear shift control; • Use a differential pressure electro-hydraulic 20 control for the lock-up in the torque converter Ability to use a sliding control strategy to achieve lower lock engine speeds and to reduce NVH (noise and vibration) in 2nd, 3rd, 4th, 5th and 6th gears; • Use performance independent of other transmissions Full range of variable line pressure control devices; 36 1375628 • In the event of an electronic device failure, a hydraulic control system "Emergency operation mode (limp-home)" for parking, reverse, neutral and 4th gear; • Hydraulic control system hydraulically prevents stop, neutral, front 5 first gear and reverse gear Torque converter lockout occurs; • A hydraulic control system with a cooler bypass circuit that protects the drive from clogging or freezing of the cooler; • Uses a displacement pump; • Uses the front brake with the piston assembly Fast acting characteristics; 10 • Pipeline priority pressure fed from the pump supply unit; • Use of a combination of on/off electric solenoid, variable discharge electric solenoid, shift valve and pressure regulating valve for electric Hydraulic clutch and brake belt control device; • Separate the electric solenoid when the solenoid is not needed and reduce the leakage of the electric solenoid to the lowest valve configuration of 15; • Modular design capability combined with the system variant of the drive shaft assembly, • Such as: 4-speed, 5-speed, 6-speed, 7-speed, hybrid transmission and front-wheel drive. Hybrid System It is understood by those skilled in the art that one of the transmission mechanisms 20 of the present invention can also be used in a hybrid transmission configuration, such as the configuration shown in FIG. For example, the transmission mechanism can be further configured with an upstream planetary gear set 401 that couples the transmission mechanism to an internal combustion engine (not shown) and an electric motor 400. Modifications and changes to the plurals of the transmission mechanism do not depart from the spirit and scope of the invention. For example, the transmission mechanism can be configured with an electric oil pump, and its independent 37 1375628 acts on the rotational speed of the input action of the transmission mechanism to provide the required oil pressure (ie, "required pressure"), especially in the transmission. The case where the mechanical pump of the mechanism is unable to provide sufficient pressure (for example, such as when a vehicle equipped with a transmission system travels slowly or stops). 5 [Simple description of the drawings] Figure 1A is a schematic cross-sectional view of a transmission mechanism, showing a schematic cross-sectional view of one of the electro-hydraulic control systems of the transmission mechanism; Figure 1B is a schematic diagram of Figure 1A The figure shows the additional representative, number; 10 Figure 1C is a schematic cross-sectional view of Figures 1A and 1B, showing additional representative symbols; Figure 2A is a cross-sectional view of the transmission mechanism of Figure 1. Figure 2B is a cross-sectional view of a transmission mechanism used in a front wheel drive version; 15 Figure 3 is a table showing the use of the plurality of gears provided by the transmission mechanisms of Figures 1 and 2. The change of the components; # Figure 4 is a power flow diagram of the transmission mechanism of Figures 1 and 2, showing a neutral state of the transmission mechanism; Figure 5 is a power of the transmission mechanism of Figures 1 and 2 The flow diagram shows the power flow in the first gear state of one of the transmission mechanisms; Figure 6 is a power flow diagram of the transmission mechanism of Figures 1 and 2, shown in one of the first first gears of the transmission mechanism Power flow in the state; Figure 7 is the transmission of the first and second diagrams a power flow diagram showing the power flow in the second gear state of one of the transmission mechanisms; 38 ^^628 Figure 8 is a power flow diagram of the transmission mechanism of Figures 1 and 2 shown in the transmission mechanism The power flow in the third gear state; Fig. 9 is the flow diagram of the transmission mechanism of the phantom and the two diagrams showing the power flow in the fourth gear state of one of the transmission mechanisms; It is a power flow diagram of the transmission mechanism of the first and second diagrams, showing the power flow in the fifth gear state of one of the transmission mechanisms; '· Figure 11 is a power of the transmission mechanism of the first and second diagrams The flow diagram is not visible in the sixth gear state of the transmission. The power flow 丨 θ ” " Figure 12 is a power flow diagram of the transmission mechanism of Figures 1 and 2, 1 is not the transmission mechanism The power flow in the state of a reverse gear; the 13th figure is the electro-hydraulic control system shown in Figure 1 - a schematic diagram of the pressure versus current of a highly variable discharge solenoid; Figure 14 is the electro-hydraulic control system shown in Figure 1. - A schematic diagram of one of the pressure-to-currents of a low-variable discharge electric solenoid; - 15 is a diagram of the electro-hydraulic control system shown in Figure 1 as a low 0/1 discharge The pressure-to-current diagram of the solenoid; ^ Figure 16 is the θ-torque damper for the transmission mechanism of Figures 1 and 2, the applied force/torque vs. damping

—扭矩變換器 對減振器位移 第17圖係為配置用於-混合傳動器中的-傳動機構的 _斷面圖。 【主要元件符號說明】 10…自動傳動機構 12…鐘形外殼 B1JB2··.煞車帶 匸.1,02,匸3...摩擦離合|^ 39 1375628 14.. .扭矩變換器 58...太陽齒輪 16.. .第一簡單行星齒輪組 60…組件 18.. .第二Ravigneux型行星齒輪組 62·.·輸入部分 20.. .單向離合器 22.. .輸入部分 24.. .輸出部分 26.. .電動液壓控制系統 28.. .池- Torque Converter Displacement of the Shock Absorber Figure 17 is a cross-sectional view of the transmission mechanism configured for use in a hybrid actuator. [Main component symbol description] 10...Automatic transmission mechanism 12... Bell-shaped housing B1JB2··.煞车带匸.1,02,匸3...friction clutch|^ 39 1375628 14.. Torque converter 58... Sun gear 16: first simple planetary gear set 60... component 18.. second Ravigneux type planetary gear set 62 ·. input part 20.. one-way clutch 22.. input part 24.. output Part 26... Electro-hydraulic Control System 28.. Pool

30.. .液壓流體 32.. .過濾器 34.. .液壓管路網 36.. .系 38···冷卻器 40.. .手動閥 42.. .螺栓固定器 44.. .外殼30.. .Hydraulic fluid 32.. .Filter 34.. .Hydraulic pipe network 36.. . Department 38···Cooler 40.. .Manual valve 42.. .Bolt holder 44.. .

64.. .離合器板 66…活塞 68.. .壓縮彈簀 70.. .容積 72.. .外邊緣 74…室 76.. .組件 78…軸 80.. .齒條 82…載具 84.. .短小齒輪 86.. .長小窗輪 88.. .齒條 90.. .離合器板 92.. .活塞 94.. .壓縮彈簧 96.. .容積 98.. .組件 99.. .軸 100.. .齒條 102.. .前進太陽齒輪 45.. .前壁 46.. .渴輪 47.. .鎖定離合器 48.. .輸入軸 50.. .環形齒輪 52.. .輪穀 54.. .小齒輪 56.. .載具 40 1375628 104...離合器板 217...流動限制孔口或檔板 106...輸出部分 218...排放管路 108...活塞 220…作用限制調整器 110...壓缩彈簧 222...管路 112...容積 224...釋放限制調整器 114...反向太陽齒輪 226...回饋管路 116...齒條 227...流動限制孔口 117...快速作動活塞 228...壓縮彈簧 118...環形齒輪 230...管路 119…大動力活塞 232...回饋管路 120...位置感應器 233...流動限制孔口 122...推桿 234...壓縮彈簧 124...伺服裝置 236...管路 126...槓桿 238...扭矩變換器調節閥 128...活塞 240...管路分支 200...抽吸管路 242...冷卻器/潤滑油控制調節器 202...液壓管路 244...管路分支 204...主調節閥 246...活塞 206...電磁供給閥 248,250...回饋管路 208...管路釋壓閥 252...壓縮彈簧 210...回饋管路 254...管路 212...活塞 256...扭矩變換器作用管路 214...壓縮彈簧 258...扭矩變換器釋放管路 216...管路 260...通道 41 1375628 262...可變排故電螺管/鎖定壓 308…換檔閥 力調節電螺管 264.. .管路 266.. .套管德器 268.. .流體限制孔口 270.. .蓄壓器 274.. .可變排放電螺管 275.. .管路 276.. .套管濾器 278.. .流體限制孔口 280.. .蓄壓器 282.. .可變排放電螺管 284.. .回饋管路 285.. .流動限制孔口 286.. .壓縮彈簧/回流抑制閥 287.. .管路 288.290.. .管路分支 294.. .活塞 296.. .冷卻器管路 298.. .冷卻器旁通管路 300.. .管路接合部分 302.. .管路 304.. .傳動液壓管路 306.. .管路 310.. . 0/1電螺管 312.. .管路 314.. .套管濾器 316.. .可變排放電螺管 318.. .調節閥 320.. .管路 322.. .套管濾器 324.. .蓄壓器 326,328 …孔口 330.. .活塞 332…管路 334.. .回饋管路 336…管路 338.. .0.1電螺管 340.. .換檔閥 342.. .可變排放電螺管 344··.調節閥 346,347…管路 348.. .0./0FF(0/I)電螺管 349.. .第一檔齒輪偏壓閥 350.. .換檔閥 352.. .可變排放電螺管 354…調節閥 42 1375628 356...管路 380...球型止回閥 360...前伺服裝置 382...管路 362...0/I電螺管 390...變換器換檔閥 364...換檔閥 392...換檔閥 366...可變排放電螺管 394...容積 368…調節閥 396...活塞 370...容積 400...電動馬達 372.. .管路 374.376.378.. .反向液壓管路 401...上游行星齒輪組 4364.. . Clutch plate 66... Piston 68.. Compressed magazine 70.. Volume 72.. Outer edge 74... Chamber 76.. Assembly 78... Axis 80.. Rack 82... Carrier 84. Short pinion 86.. Long and small window wheel 88.. Rack 90.. Clutch plate 92.. Piston 94.. Compression spring 96.. Volume 98.. .Component 99.. .Axis 100.. .Rack 102.. Advance sun gear 45.. Front wall 46.. Thirsty wheel 47.. Locking clutch 48.. Input shaft 50.. Ring gear 52.. Valley of rotation 54 .. . pinion 56.. carrier 40 1375628 104... clutch plate 217... flow restriction orifice or baffle 106... output portion 218... discharge line 108... piston 220... Action limit adjuster 110...compression spring 222...line 112...volume 224...release limit adjuster 114...reverse sun gear 226...return line 116...rack 227...flow restricting orifice 117...quickly actuating piston 228...compression spring 118...ring gear 230...line 119...large power piston 232...return line 120...position Inductor 233...flow restricting orifice 122...push rod 234...compression spring 124...servo 236...line 126...lever 238...twist Inverter regulating valve 128...piston 240...pipe branch 200...suction line 242...cooler/lubricating oil control regulator 202...hydraulic line 244...pipe branch 204... main regulating valve 246... piston 206... electromagnetic supply valve 248, 250... feedback line 208... line relief valve 252... compression spring 210... feedback line 254. .. line 212... piston 256... torque converter action line 214... compression spring 258... torque converter release line 216... line 260... channel 41 1375628 262. .. variable discharge electric screw / locking pressure 308... shift valve force adjustment electric screw 264.. pipeline 266.. . casing 268.. . fluid restriction orifice 270.. . 274.. variable discharge electric screw 275.. pipeline 276.. casing filter 278.. fluid restriction orifice 280.. . accumulator 282.. variable discharge electric screw 284 .. . Feedback line 285.. Flow restriction orifice 286.. Compression spring / backflow suppression valve 287.. Pipeline 288.290.. . Pipe branch 294.. . Piston 296.. Cooler line 298.. . Cooler bypass line 300.. Pipe connection part 302.. Pipeline 304.. Transmission hydraulic line 306.. . 10.. 0/1 electric screw 312... Pipeline 314.. . Casing filter 316.. variable discharge electric screw 318.. . regulating valve 320.. . Tube filter 324.. . accumulator 326, 328 ... orifice 330.. piston 332 ... line 334.. feedback line 336 ... line 338.. .0.1 electric screw 340.. . shift valve 342. Variable discharge electric screw 344··. regulating valve 346, 347... line 348.. .0./0FF (0/I) electric screw 349.. first gear offset valve 350.. Displacement valve 352.. variable discharge electric screw 354... regulating valve 42 1375628 356... line 380... ball check valve 360... front servo 382... line 362... 0/I electric solenoid 390... inverter shift valve 364... shift valve 392... shift valve 366... variable discharge electric solenoid 394... volume 368... regulating valve 396. .. piston 370... volume 400... electric motor 372... line 374.376.378.. reverse hydraulic line 401... upstream planetary gear set 43

Claims (1)

1375628 第94128371號申請案申範g倏正太—一 十、申請專利範圍: 1· 一種用於車輛之多重比率自動傳動機構,該傳動機構具 有至少一行星齒輪組,複數個摩擦元件,其係用於以不 同組態將該行星齒輪組之組件耦合於該傳動機構之一 輸入與一輸出之間,俾便達到複數之傳動比,以及一控 制系統,其用於選擇性地以不同結合方式與該等摩擦元 件响合/鬆開,以達到選擇傳動比,其中一或更多的摩1375628 Application No. 94128371 申范g倏正太—10, patent application scope: 1. A multi-rate automatic transmission mechanism for a vehicle, the transmission mechanism having at least one planetary gear set, a plurality of friction elements, which are used Coupling the components of the planetary gear set between the input and the output of one of the transmissions in different configurations to achieve a plurality of gear ratios, and a control system for selectively combining the different combinations The friction elements are coupled/released to achieve a selected gear ratio, one or more of which are 擦元件之嚙合及/或鬆開速率係獨立於該者或其他摩擦 元件的每一者控制; 穴1 π 习您%孩得動機構之至少一分離齒輪 狀態’以及在至少-齒輪狀態巾,軸電流係按規劃派 送至-配置來僅以-方向傳動驅動之單向離合器,使得 該單向離合器之轉動可防止該傳動機構提供自輸入至 15 輸出之煞車動作’以及當該傳動機構係處於該至少一齒 輪狀態時’只會與筒動機構之料雜元件中的一個 喷合β 2. 項之傳動機構,其中該控制系統包 括具有複數之電磁操作閥之一電動液屢系純 20The engagement and/or release rate of the wiper element is controlled independently of each of the person or other friction elements; the hole 1 π is at least one of the split gear states of the child-driven mechanism and at least the gear state towel, The shaft current is routed to a one-way clutch that is configured to drive only in the -direction, such that rotation of the one-way clutch prevents the transmission from providing a braking action from input to output 15 and when the transmission is in In the at least one gear state, only one of the material components of the cylinder mechanism is sprayed with the transmission mechanism of the item β 2. The control system includes one of the plurality of electromagnetically operated valves. 3. 如申請專利範圍第2項之傳動機構,# 件中之一或更多者係藉由—專用的電磁:摩擦凡 4. 如申請專利範圍第2項之傳動機構,其中 行該等摩擦元件中的每-者之個別完整蔚圖 5. 如申請專利範園第2項之傳動機構H制。 ^低速或是低於該速度,時, 44 1375628 ϊ^128371號申諳案申請專利範圍修正本 100.11.10.1 操作該等電磁操作閥來與該等摩擦元件中之一或更多 者鬆開,可自動地產生一前進中空稽(neutral-in-drive) 狀況,藉此該傳動機構之該輸出係鬆開而不致由該傳動 機構之該輸入所傳動。 5 6.如申請專利範圍第2項之傳動機構,其具有用以將該等 電磁操作閥中的一或更多個隔離之隔離裝置,在該傳動 機構之任一給定狀態下未使用時,不致暴露於流體壓 力。 7. 如申請專利範圍第6項之傳動機構,其中該控制系統能 10 夠藉由該隔離裝置來隔離該等電磁操作閥中的該一或 更多者。 8. 如申請專利範圍第5項之傳動機構,其中該前進中空檔 狀況係為一未煞車的空擋狀況,其中該傳動機構的該輸 入及該輸出係可相對於該傳動機構的一外殼自由地轉 15 動。 9. 如前述申請專利範圍第1項之傳動機構,其中在該至少 一齒輪狀態之外的齒輪狀態下,該單向離合器係被旁通 以容許自輸入至輸出煞車。 10. 如申請專利範圍第9項之傳動機構,其中該傳動機構具 20 有一給定比的一齒輪狀態,其中容許自輸入至輸出煞 車,以及該至少一齒輪狀態係相同比的一替換性齒輪狀 態,其中該單向離合器係能夠操作來防止自該傳動機構 之該輸入至該傳動機構之該輸出煞車。 11. 如申請專利範圍第10項之傳動機構,其中該給定比係為 45 1375628 第94128371號申請案申請專利範圍修正本_100.11.10. 由該傳動機構所提供的一最低前進比。 12. 如申請專利範圍第10項之傳動機構,其中該傳動機構具 有一自動地選定比之變化的自動模式,以及一手動地選 定比之變化的手動模式,其中該齒輪狀態係用於近取該 5 手動模式中之該給定比,以及該替換性齒輪狀態係用於 近取該自動模式中之該給定比。 13. 如申請專利範圍第1項之傳動機構,其中該單向離合器 係為一止輪墊型單向離合器。 14. 如申請專利範圍第1項之傳動機構,其中該傳動機構具 10 有至少二行星齒輪組,以及該等複數個摩擦元件係可操 作來以不同組態將該等行星齒輪組之組件依序耦合於 該輸入與該輸出之間,俾便達到該等複數個之傳動比。 15. 如申請專利範圍第1項之傳動機構,其中該等摩擦元件 中之每一者係可獨立於其他摩擦元件操作。 15 16.如申請專利範圍第1至15項中之任一項之傳動機構,其 中該傳動機構具有6個前進比,並藉由與5個摩擦元件之 嚙合/鬆開而達到所有6個前進比間之控制。 17.如申請專利範圍第16項之傳動機構,其中該等5個摩擦 元件包括3個摩擦離合器及2個煞車帶。 2〇 18·如申請專利範圍第17項之傳動機構,其中該傳動機構具 有第一、第二及第三離合器、以及第一及第二煞車帶, 以及其中當於一第一比之一第一齒輪狀態中,該第二離 合器係被嚙合,該第二煞車帶係被嚙合,以及其他摩擦 元件(該第一離合器、第三離合器和第一煞車帶)係被鬆 46 1375628 第94128371號申請案申請專利範圍修正本_100.11.10. 開。 19. 如申請專利範圍第18項之傳動機構,其中於該第一比之 一替換性齒輪狀態中,該第二離合器係被嚙合,以及其 他摩擦元件(該第一離合器、第三離合器、第一煞車帶 5 和第二煞車帶)係被鬆開。 20. 如申請專利範圍第19項之傳動機構,其中針對該傳動機 構之一第二比,該第二離合器係被嚙合,該第一煞車帶 係被嚙合,以及其他摩擦元件(該第一離合器、第三離 合器和第二煞車帶)係被鬆開。 10 21.如申請專利範圍第20項之傳動機構,其中針對該傳動機 構之一第三比,該等第二及第三離合器係被嚙合,以及 其他摩擦元件(該第一離合器、第一煞車帶和第二煞車 帶)係被鬆開。 22. 如申請專利範圍第21項之傳動機構,其中針對該傳動機 15 構之一第四比,該等第一及第二離合器係被嚙合,以及 其他摩擦元件(該第三離合器、第一煞車帶和第二煞車 帶)係被鬆開。 23. 如申請專利範圍第22項之傳動機構,其中針對該傳動機 構之一第五比,該等第一及第三離合器係被嚙合,以及 20 其他摩擦元件(該第二離合器、第一煞車帶和第二煞車 帶)係被鬆開。 24. 如申請專利範圍第23項之傳動機構,其中針對該傳動機 構之一第六比,該第一離合器係被嚙合,該第一煞車帶 係被嚙合,以及其他摩擦元件(該第二離合器、第三離 47 1375628 第94128371號申請案申請專利範圍修正本_100.11.10. 合器和第二煞車帶)係被鬆開。 25. 如申請專利範圍第24項之傳動機構,其中針對該傳動機 構之一倒退比,該第三離合器係被嚙合,該第二煞車帶 係被嚙合,以及其他摩擦元件(該第一離合器、第二離 5 合器和第一煞車帶)係被鬆開。 26. 如申請專利範圍第25項之傳動機構,其中針對該傳動機 構之一經選擇空檔狀況,並未嚙合任何摩擦元件。3. For the transmission mechanism of the second application of the patent scope, one or more of the # parts are by the special electromagnetic: friction. 4. The transmission mechanism of the second application of the patent scope, wherein the friction Individual completeness of each of the components. 5. For the transmission mechanism H of the second application of the patent application. ^ Low speed or lower than this speed, 44 1375628 ϊ ^ 128371 application for patent scope revision 100.11.10.1 operation of these electromagnetically operated valves to loosen with one or more of the friction elements, A forward-in-drive condition can be automatically generated whereby the output of the transmission is released without being driven by the input of the transmission. 5. The transmission mechanism of claim 2, having an isolating device for isolating one or more of the electromagnetically operated valves, when not in use in any given state of the transmission mechanism Do not expose to fluid pressure. 7. The transmission mechanism of claim 6, wherein the control system is capable of isolating the one or more of the electromagnetically operated valves by the isolation device. 8. The transmission mechanism of claim 5, wherein the forward hollow condition is a neutral condition of an unmanned vehicle, wherein the input of the transmission and the output are freely relative to a casing of the transmission Turn 15 times. 9. The transmission mechanism of claim 1, wherein the one-way clutch is bypassed to allow self-input to output brakes in a gear state other than the at least one gear state. 10. The transmission mechanism of claim 9, wherein the transmission mechanism 20 has a gear ratio of a given ratio, wherein a replacement gear is allowed from the input to the output brake, and the at least one gear state is the same ratio State wherein the one-way clutch is operable to prevent the output of the transmission from the transmission to the output brake of the transmission. 11. The transmission mechanism of claim 10, wherein the given ratio is 45 1375628, application No. 94128371, the patent application scope revision _100.11.10. A minimum advance ratio provided by the transmission mechanism. 12. The transmission mechanism of claim 10, wherein the transmission mechanism has an automatic mode in which a ratio is automatically selected, and a manual mode in which a ratio is manually selected, wherein the gear state is used for proximity The given ratio in the 5 manual mode, and the alternate gear state is used to approximate the given ratio in the automatic mode. 13. The transmission mechanism of claim 1, wherein the one-way clutch is a one-wheel clutch type one-way clutch. 14. The transmission mechanism of claim 1, wherein the transmission mechanism 10 has at least two planetary gear sets, and the plurality of friction elements are operable to adapt the components of the planetary gear sets in different configurations. The sequence is coupled between the input and the output, and the plurality of gear ratios are achieved. 15. The transmission mechanism of claim 1, wherein each of the friction elements is operable independently of the other friction elements. The transmission mechanism of any one of claims 1 to 15, wherein the transmission mechanism has 6 forward ratios and all 6 advances are achieved by engagement/release with 5 friction elements Control between comparisons. 17. The transmission mechanism of claim 16, wherein the five friction elements comprise three friction clutches and two brake belts. 2. The transmission mechanism of claim 17, wherein the transmission mechanism has first, second, and third clutches, and first and second brake belts, and wherein the first ratio is one In a gear state, the second clutch is engaged, the second brake belt is engaged, and the other friction elements (the first clutch, the third clutch, and the first brake belt) are applied by Matsui 46 1375628 No. 94128371 The scope of application for patent application is revised _100.11.10. 19. The transmission mechanism of claim 18, wherein in the first ratio replacement gear state, the second clutch is engaged, and the other friction elements (the first clutch, the third clutch, the first A car belt 5 and a second brake belt are released. 20. The transmission mechanism of claim 19, wherein the second clutch is engaged for a second ratio of the transmission, the first brake belt is engaged, and the other friction element (the first clutch The third clutch and the second brake belt are released. 10. The transmission mechanism of claim 20, wherein the second and third clutches are engaged with respect to a third ratio of the transmission, and the other friction elements (the first clutch, the first brake) The belt and the second brake belt are released. 22. The transmission mechanism of claim 21, wherein the first and second clutches are engaged with respect to a fourth ratio of the transmission 15 and other friction elements (the third clutch, first The brake belt and the second brake belt are released. 23. The transmission mechanism of claim 22, wherein the first and third clutches are engaged for a fifth ratio of the transmission, and the other friction elements (the second clutch, the first brake) The belt and the second brake belt are released. 24. The transmission mechanism of claim 23, wherein the first clutch is engaged for a sixth ratio of the transmission, the first brake belt is engaged, and the other friction element (the second clutch Third, 47 1375628 No. 94128371 application for patent scope revision _100.11.10. The clutch and the second brake belt are released. 25. The transmission mechanism of claim 24, wherein the third clutch is engaged for a reverse ratio of the transmission, the second brake belt is engaged, and the other friction element (the first clutch, The second clutch and the first brake belt are released. 26. The transmission mechanism of claim 25, wherein no friction element is engaged with one of the transmission mechanisms selected for the neutral condition. 4848
TW094128371A 2004-08-20 2005-08-19 Transmission TWI375628B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AU2004904780A AU2004904780A0 (en) 2004-08-20 Transmission

Publications (2)

Publication Number Publication Date
TW200610666A TW200610666A (en) 2006-04-01
TWI375628B true TWI375628B (en) 2012-11-01

Family

ID=35907180

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094128371A TWI375628B (en) 2004-08-20 2005-08-19 Transmission

Country Status (6)

Country Link
KR (1) KR20070083577A (en)
CN (1) CN101133266B (en)
HK (1) HK1117585A1 (en)
MY (1) MY149206A (en)
TW (1) TWI375628B (en)
WO (1) WO2006017905A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006014941A1 (en) 2006-03-31 2007-05-24 Zf Friedrichshafen Ag Operating method e.g. for automatic transmission, involves having automatic transmission having five logic elements, and in moment transmission and or power transmission in forward or reverse gear, three logic elements are closed
DE102006014947A1 (en) * 2006-03-31 2007-10-04 Zf Friedrichshafen Ag Automatic transmission e.g. step automatic transmission, operating method for motor vehicle, involves closing three switching elements of step automatic transmission for moment and/or power transmission into forward gear and reverse gear
DE102006014946A1 (en) 2006-03-31 2007-03-29 Zf Friedrichshafen Ag Motor vehicle`s automatic transmission e.g. step-automatic transmission, operating method, involves completely opening one of switching units during gear releasing to transfer transmission from forward or reverse gear into neutral position
EP2573424A3 (en) 2007-04-24 2017-07-26 Fallbrook Intellectual Property Company LLC Electric traction drives
US8150586B2 (en) * 2009-04-22 2012-04-03 GM Global Technology Operations LLC Method for synchronized transmission gear ratio engagement
US8216111B2 (en) * 2010-01-15 2012-07-10 GM Global Technology Operations LLC Clutch control for a transmission

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229147A (en) * 1988-03-07 1989-09-12 Toyota Motor Corp Oil pressure control device for automatic transmission
GB2286641B (en) * 1994-02-17 1998-01-07 Acg France Method and apparatus for controlling a gear change in an automatic transmission
US5658218A (en) * 1994-11-01 1997-08-19 Hyundai Motor Co. Hydraulic control system of an automatic transmission used in a vehicle
US5634865A (en) * 1994-11-09 1997-06-03 Hyundai Motor Corp. Hydraulic control system for vehicle automatic transmission
KR100193254B1 (en) * 1994-11-09 1999-06-15 정몽규 Shift control system of automatic transmission for vehicle
US5809442A (en) * 1995-10-27 1998-09-15 Ford Global Technologies, Inc. Multiple ratio transmission having swap-shift controls with optimum ratio upshifts
US5835875A (en) * 1995-10-27 1998-11-10 Ford Global Technologies, Inc. Swap-shift control system for a multiple ratio transmission
KR100331625B1 (en) * 2000-06-08 2002-04-09 이계안 Hydraulic control system for automatic transmission
JP2003166631A (en) * 2001-11-29 2003-06-13 Toyota Motor Corp Control device for automatic transmission for vehicle
US6577939B1 (en) * 2002-05-20 2003-06-10 Ford Global Technologies, Llc Pressure control system and control method for a multiple-ratio transmission with pre-staged ratio shifts

Also Published As

Publication number Publication date
CN101133266A (en) 2008-02-27
CN101133266B (en) 2011-06-22
TW200610666A (en) 2006-04-01
KR20070083577A (en) 2007-08-24
WO2006017905A1 (en) 2006-02-23
MY149206A (en) 2013-07-31
HK1117585A1 (en) 2009-01-16

Similar Documents

Publication Publication Date Title
US8052577B2 (en) Torque converter
US20120077632A1 (en) Systems and methods for hybridization of a motor vehicle using hydraulic components
TWI375628B (en) Transmission
EP2257720B1 (en) Dual clutch transmission having area controlled clutch cooling circuit
JP4922224B2 (en) Multi-speed automatic transmission
DE102012205125A1 (en) Electrohydraulic control system for an automatic transmission
CN101445055A (en) Transfer case for a motor vehicle powertrain
DE102009050001A1 (en) Control system for dual-clutch transmission
JPS5861349A (en) Automatic transmission of automobile
US20160144864A1 (en) Transmission And Integrated Transfer Case
DE102017114118A1 (en) HYDRAULIC CONTROL SYSTEM FOR AN AUTOMATIC TRANSMISSION WITH ELECTRONIC GEARBOX SELECTION
JPH08500562A (en) Hydraulic control system of automatic transmission for vehicle
CN106499814A (en) Hydraulic control system for the multi-mode electro-mechanical drive unit of automatic transmission
US4858500A (en) Apparatus for controlling lock-up clutch in automatic transmission system having main transmission and sub-transmission
JP2021038776A (en) Control device of automatic transmission
JPH10502434A (en) Drives for motor vehicles, especially for construction vehicles
AU2005274690B2 (en) Multi-ratio automatic transmission with independent rate of engagement and/or disengagement control of friction elements
AU2005274687B2 (en) Torque converter
JPH057579B2 (en)
CN108730466A (en) Manually and automatically slepless power variable speed case
JP2015055264A (en) Power transmission device
CN104455386B (en) Hydraulic control system for multi-speed transmission with multiple torque transfer mechanisms
JPS5926660A (en) Method and apparatus for controlling oil pressure in automatic transmission
US10125862B2 (en) Hydraulic control device for automatic transmission
JP2666423B2 (en) Line pressure control device for automatic transmission

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees