TWI311344B - A self-aligned field-effect transistor structure and manufacturing method thereof - Google Patents

A self-aligned field-effect transistor structure and manufacturing method thereof Download PDF

Info

Publication number
TWI311344B
TWI311344B TW95141322A TW95141322A TWI311344B TW I311344 B TWI311344 B TW I311344B TW 95141322 A TW95141322 A TW 95141322A TW 95141322 A TW95141322 A TW 95141322A TW I311344 B TWI311344 B TW I311344B
Authority
TW
Taiwan
Prior art keywords
field effect
effect transistor
transistor structure
seem
fabricating
Prior art date
Application number
TW95141322A
Other languages
Chinese (zh)
Other versions
TW200822233A (en
Inventor
Wei-Chang Yang
Tri-Rung Yew
Original Assignee
Nat Tsing Hua Universit
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Tsing Hua Universit filed Critical Nat Tsing Hua Universit
Priority to TW95141322A priority Critical patent/TWI311344B/en
Publication of TW200822233A publication Critical patent/TW200822233A/en
Application granted granted Critical
Publication of TWI311344B publication Critical patent/TWI311344B/en

Links

Description

1311344 patterned electrodes. 七、指定代表圖: (一)本案指定代表圖為:圖(2B)。 (一)本代表圖之元件符號簡單說明·· 200 基底 202 介電層 204 導體電極(源極、汲極) 206 背面導體電極(閘極) 212 奈米碳管(半導體導電通道) 八、 本案若有化學式時,請揭示最能顯示發明特徵 的化學式: 九、 發明說明: 【發明所屬之技術領域] 本發明是有關於一種積體電路元件及其製作方法, 且特別是有關於一種自動對準場效電晶體及其製作方 法。 【先前技術】 在高積集度的半導體元件中,一般使用金氧半場效 電晶體(metal-oxide-semiconductor field-effect transistor) 作為基本的邏輯元件,利用高濃度參雜單晶石夕、複晶石夕 製作源極(source)、汲極(drain)、與閘極(gate)等電極。 介電層(dielectric layer)則是以矽晶圓高溫下氧化長成之 氧化層構成。為付合莫爾定律之要求’元件線寬持續向 4 1311344 下,正,當通道長度至45奈米以下’目前的金氧半場效 電晶體將屆技術賴。新式元件設計與材料選用將成關 鍵。 立圖1A為習知一種金氧半場效電晶體結構之剖面示 意圖。請參照圖1A,金氧半場效電晶體結構l〇a包含基 底100、介電層1〇2、源極與汲極1〇4、閘極1〇6。源極與 汲極104配置於基底100中。介電層1〇2配置於基底1〇〇上。 閘極106配置於介電層1〇2上。 以奈米碳管製作場效電晶體之技術文件已在國内外 相關期刊有所發表,除扮演取代金氧半場效電晶體的基 =邏輯元件外,亦利用奈米碳管通道作為感測氣體、葡 萄糖、蛋白質之生物感測元件。 圖1B為國内外期刊已發表之奈米碳管場效電晶體之 剖面示意圖。請參照圖1B,奈米碳管場效電晶體結構1〇b 包含基底100、介電層1〇2、閘極1〇6、催化劑層⑽(鐵 或銘或鎳)、源極與汲極114、奈米碳管112。閘極1〇6配 置於基底100中。介電層102配置於基底1〇〇上。催化劑層 108配置於介電層1〇2上。奈米;e炭管配置於介電層上,催化 劑層108間。源極與汲極114配置於催化劑層ι〇8上。另外 為簡化製程,可省略基底100中之閘極106,以高濃度摻雜 删或構之石夕基底取代作為背電極。 在奈米碳管場效電晶體結構l〇b中,奈米碳管112是以 化學氣相沈積的方式形成於介電層102上,催化劑層1〇8 間。再將源極與沒極114定義在催化劑層108上,奈米碳管 112兩端。催化劑層1〇8之成份與前處理,將影響奈米碳管 5 1311344 112之性質。故奈米碳管112有機會同時形成金屬性 (metallic )與半導體性(semiconducting )。若奈米碳管112 為金屬性,則元件失去場效性質而無法組成場效電晶體。在 1產化製程中,鐵元素不適用於現有之半導體工業製程,故 催化劑層108須排除鐵的使用’另外催化劑層1〇8相對地增 加畺產的複雜性(光罩、前處理、製程參數、導電性源極没極 與催化劑層之接觸)。為加速奈米碳管場效電晶體的量產化,1311344 patterned electrodes. VII. Designation of representative drawings: (1) The representative representative of the case is: Figure (2B). (1) A brief description of the symbol of the representative figure·· 200 Substrate 202 Dielectric layer 204 Conductor electrode (source, drain) 206 Back conductor electrode (gate) 212 Carbon nanotube (semiconductor conductive channel) VIII. If there is a chemical formula, please disclose the chemical formula that best shows the characteristics of the invention: IX. Description of the invention: [Technical field of the invention] The present invention relates to an integrated circuit component and a method of fabricating the same, and in particular to an automatic pair Quasi-field effect transistor and its fabrication method. [Prior Art] In a highly integrated semiconductor device, a metal-oxide-semiconductor field-effect transistor is generally used as a basic logic element, and a high concentration of single crystal stone is used. The spar makes electrodes such as source, drain, and gate. The dielectric layer is formed by an oxide layer grown by oxidizing the wafer at a high temperature. In order to meet the requirements of Moore's Law, the line width of the component continues to be 4 1311344, and when the channel length is below 45 nm, the current gold-oxygen half-field effect transistor will be used. New component design and material selection will be key. Figure 1A is a schematic cross-sectional view of a conventional gold oxide half field effect transistor structure. Referring to FIG. 1A, the metal oxide half field effect transistor structure 10a includes a substrate 100, a dielectric layer 1, a source and a drain 1〇4, and a gate 1〇6. The source and drain 104 are disposed in the substrate 100. The dielectric layer 1〇2 is disposed on the substrate 1〇〇. The gate 106 is disposed on the dielectric layer 1〇2. The technical documents for making field-effect transistors with carbon nanotubes have been published in related journals at home and abroad. In addition to acting as the base=logic element instead of the gold-oxygen half-field effect transistor, the carbon nanotube channel is also used as the sensing gas. , biosensor elements for glucose and protein. Fig. 1B is a schematic cross-sectional view of a nanotube carbon field effect transistor which has been published in domestic and foreign journals. Referring to FIG. 1B, the carbon nanotube field effect transistor structure 1〇b includes a substrate 100, a dielectric layer 1〇2, a gate electrode 1〇6, a catalyst layer (10) (iron or indium or nickel), a source and a drain. 114, carbon nanotubes 112. The gate 1〇6 is disposed in the substrate 100. The dielectric layer 102 is disposed on the substrate 1 . The catalyst layer 108 is disposed on the dielectric layer 1〇2. The carbon nanotubes are disposed on the dielectric layer and between the catalyst layers 108. The source and drain electrodes 114 are disposed on the catalyst layer ι8. In addition, in order to simplify the process, the gate 106 in the substrate 100 may be omitted, and the high-density doped or structured Schwarz substrate is substituted as the back electrode. In the carbon nanotube field effect crystal structure l〇b, the carbon nanotubes 112 are formed on the dielectric layer 102 by chemical vapor deposition, and the catalyst layers are between 1 and 8. The source and the dipole 114 are further defined on the catalyst layer 108, and the carbon nanotubes 112 are both ends. The composition and pretreatment of the catalyst layer 1〇8 will affect the properties of the carbon nanotubes 5 1311344 112. Therefore, the carbon nanotubes 112 have the opportunity to simultaneously form metallic and semiconducting. If the carbon nanotubes 112 are metallic, the component loses field effect properties and cannot form a field effect transistor. In the 1st production process, iron element is not suitable for the existing semiconductor industry process, so the catalyst layer 108 must exclude the use of iron. 'Additional catalyst layer 1〇8 relatively increases the complexity of the production (photomask, pretreatment, process) The parameter, the conductive source has no contact with the catalyst layer). In order to accelerate the mass production of nano-carbon nanotube field effect transistors,

須尋求相容於現有之半導體卫業製㈣材料、結構作為奈米 碳管催化劑。 【發明内容】 本發明的目的就是在提供一種奈米碳管場效電晶體結 ,具有可同時擔任催化劑與雜汲極之電極,並藉成份、 =與前處理㈣奈米碳管之性質,使㈣圓上所有元件組 成自動對準奈米碳管場效電晶體。 介電ί發:種電晶體結構’此電晶體結構包含基底、 有二:源極與汲極、閘極、奈米碳管。基底中具 雷:卜i私曰配置於基底上。催化性源極與汲極配置於介 且:炭管配置於介電層上,催化性源極於汲極間, 中'催^源極汲極電性連接。另外為簡化製程 Γ高濃度摻雜石夕基底取代作為背電極。土 體結 之 矽晶圓 管場效電晶體 州如為雜哪切晶®或摻雜磷 構 6 1311344 高度摻_之_取代,為-未 依知本發明實施例所述之奈米碳管場效電晶體結 ^述之介電層材料例如為二氧化啊卿)或其他熟知 ,南)丨電材料,如二氧化給(Hf〇2)、二氧化锆(Zr〇2)、二 乳化组(Ta〇2)、二氧化㈣卿 化給 (HfSiN02)…等。 ’ 依妝本發明實施例所述之奈米碳管場效電晶體結 構’上述之介電層材料例如為二氧化秒,且二氧化石夕的 厚度介於1至500 nm。 依照本發明實施例所述之奈米碳管場效電晶體結 構,上述之催化性源極與汲極的材料例如鈷、鎳的矽化 物,矽化鈷(CoSix)或矽化鎳(NiSix)。 、、依照本個實關之奈轉管場效電晶體結構,上 述之催化性源極與汲極的材料例如為低阻值相矽化鈷 (CoSi2) 〇It is necessary to find a material compatible with the existing semiconductor industry (4) materials and structures as a carbon nanotube catalyst. SUMMARY OF THE INVENTION The object of the present invention is to provide a carbon nanotube field effect transistor junction having an electrode which can serve as both a catalyst and a dopant electrode, and by virtue of the composition, = and the nature of the pretreatment (tetra) carbon nanotube. Make all components on the (4) circle automatically align with the carbon nanotube field effect transistor. Dielectric: a kind of crystal structure 'This crystal structure contains a substrate, two: source and drain, gate, carbon nanotube. There is a mine in the base: the private placement on the substrate. The catalytic source and the drain are disposed on the dielectric layer, and the catalytic source is between the drain electrodes, and the source is electrically connected to the source. In addition, in order to simplify the process, a high concentration doped Shishi substrate is substituted as a back electrode. The carbon nanotubes of the soil structure are replaced by a heterogeneous cleavage crystal or a doped phosphorous structure 6 1311344, which is a carbon nanotube as described in the embodiment of the present invention. The field effect transistor is described as a dielectric layer material such as oxidized or other well-known, south) bismuth materials such as dioxygenation (Hf〇2), zirconium dioxide (Zr〇2), and second emulsification. Group (Ta〇2), dioxide (4), Qinghua (HfSiN02), etc. The carbon nanotube field effect transistor structure described in the embodiments of the present invention is, for example, a second oxidation second, and the thickness of the silica dioxide is from 1 to 500 nm. According to the carbon nanotube field effect transistor structure of the embodiment of the invention, the above-mentioned catalytic source and drain material such as cobalt, nickel telluride, cobalt telluride (CoSix) or nickel telluride (NiSix). According to the actual structure of the transistor, the catalytic source and the material of the drain are, for example, low-resistance phase cobalt (CoSi2).

依照本發明實施例所述之奈米碳管場效電晶體結構的 製作方法,利用石夕、銘、鈦之多層結構,在6〇〇。〇至9〇〇。〇 範圍間,最佳在80(TC至90(TC範圍間,形成低阻值相矽化 鈷(CoSi2:)。 依照本發明實施例所述之奈米碳管場效電晶體結構的 製作方法,上述之形成奈米碳管的方法例如為化學氣相沈積 法0 依照本發明實施例所述之奈米碳管場效電晶體結構的 製作方法’上述之奈米碳管形成溫度例如介於至9〇〇°c 7 1311344 範圍間,最佳在800°C至900°C範圍間。且壓力例如介於1tore 至10 tore,最佳在1 tore附近。所通入之氣體例如為乙炔 (CAX其他例如曱烷ch4、酒精C2H5〇H、曱苯C6H6CH3)、 氫氣(H2)、氬氣(Ar)。 依照本發明實施例所述之奈米碳管場效電晶體結構的 製作方法,上述之乙炔與氫氣的流量比例如介於0.5至8範 圍間。較佳如3至8範圍間。 本發明實施例完成之奈米碳管場效電晶體SEM及場效 電晶體特性如圖3及圖4所示。在本發明之奈米碳管場效 電晶體結構的製作過程中,由於直接將奈米碳管形成於 含有形成奈米碳管之用的矽化鈷催化性源極汲極間,省 去了額外形成奈米碳管的催化劑層之步驟,因此使得製 程更為簡單’若先以圖形化製程定義好場效電晶體的源 極與没極的位置,再透過化學氣相沈積法合成奈米碳 管,即可達到量產的目的。 【實施方式】 圖2A至圖2B為依照本發明實施例所繪示的奈米碳 管場效電晶體結構之製作流程剖面圖。首先,提供基底 2〇〇 ’基底中具有閘極206。閘極206例如為高濃度摻雜 磷之多晶矽。形成方法例如在基底2〇〇上沈積高濃度摻 雜之多晶矽,再進行微影與蝕刻製程,定義閘極2〇4 形。 請繼續參照圖2A,於閘極206上形成介電層202。 介電層202的材料例如為二氧化矽,二氧化矽的厚度介 於1 nm至50〇nm範圍間,較佳為511111至5〇〇11111範圍 8 1311344 在"電層202上形成催化性源極與沒極204。 ίΐ!ί! θθΒ^(Ρ〇1^ ' #(c〇)' ^(T〇^>i 及枉Jo二層2G2上,再以微影與餘刻製程定義源極與 ί 彡’最後在峨至靴溫度範關,形成低 =树聽。可利祕、鈦金屬_厚度的調變,控制 取後形成之魏録厚度,銘金屬薄膜厚度在。5肺至如The method for fabricating a nano-tube field-effect transistor structure according to an embodiment of the present invention utilizes a multilayer structure of Shi Xi, Ming, and Ti, at 6 〇〇. 〇 to 9〇〇. Between the 〇 range, preferably in the range of 80 (TC to 90 (the range of the TC, forming a low-resistance phase cobalt (CoSi2:). The method for fabricating the nano-tube field-effect transistor structure according to the embodiment of the present invention, The method for forming a carbon nanotube according to the above method is, for example, a chemical vapor deposition method. The method for fabricating a nano-carbon tube field-effect transistor structure according to an embodiment of the present invention is described above. 9〇〇°c 7 1311344 Between the range, preferably between 800 ° C and 900 ° C. The pressure is, for example, between 1 tore and 10 tore, preferably around 1 tore. The gas introduced is, for example, acetylene (CAX). Others, such as decane ch4, alcohol C2H5 〇H, fluorene benzene C6H6CH3), hydrogen (H2), argon (Ar). The method for fabricating a nanotube carbon field effect transistor structure according to an embodiment of the present invention, The flow ratio of acetylene to hydrogen is, for example, in the range of 0.5 to 8. Preferably, it is in the range of 3 to 8. The SEM and field effect transistor characteristics of the nanotube field effect transistor completed in the embodiment of the present invention are shown in FIG. 3 and 4 shows that in the process of fabricating the nano-carbon tube field effect transistor structure of the present invention, The carbon nanotubes are formed between the catalytic source and the source of the cobalt-deposited carbon nanotubes for forming the carbon nanotubes, thereby eliminating the step of additionally forming a catalyst layer of the carbon nanotubes, thereby making the process simpler. Firstly, the source and the immersed position of the field effect transistor are defined by a graphical process, and then the carbon nanotubes are synthesized by chemical vapor deposition to achieve mass production. [Embodiment] FIG. 2A to FIG. 2B A cross-sectional view of a fabrication process of a nanotube field effect transistor structure according to an embodiment of the invention. First, a substrate 206 is provided with a gate 206. The gate 206 is, for example, a high concentration doped phosphorous. The polycrystalline germanium is formed by depositing a high concentration doped polysilicon on the substrate 2, and then performing a lithography and etching process to define a gate 2〇4 shape. Please continue to refer to FIG. 2A to form a dielectric on the gate 206. The material of the dielectric layer 202 is, for example, cerium oxide, and the thickness of the cerium oxide is in the range of 1 nm to 50 〇 nm, preferably 511111 to 5 〇〇 11111, and the range is 8 1311344 on the "electric layer 202. Form a catalytic source and a poleless 204. ίΐ! ! θθΒ^(Ρ〇1^ ' #(c〇)' ^(T〇^>i and 枉Jo on the second layer 2G2, and then define the source and ί 彡 by lithography and engraving process. The temperature of the boots is closed, forming a low = tree listening. It can be used to change the thickness of the titanium metal _ thickness, and control the thickness of the Wei film formed after the take-up. The thickness of the metal film is in the 5 lungs.

ΓΛ圍/曰 1 ’較佳為在1 nm至10 nm範圍間,鈦金屬薄 Μ厚度在1 nm至20 nm範圍間,形成之矽化鈷厚度在3 nm至40 nm範圍間。 繼續參照圖2A,在介電層202上形成催化性源極與 及極204。催化性源極與汲極的材料例如為石夕化銘。催化 j·生源極與汲極2〇4除作為奈米碳管場效電晶體之金屬電 極外’亦作為形成奈米碳管212所需之催化劑。 利用化學氣相沈積法形成之奈米碳管212必須藉催 始此合成’故奈米碳管將只會在已定義之催化性源 虽與;及極間2〇4形成’而不會在晶圓上無催化性源極與 及極處形$ ’即所謂的自動對準形成奈米碳管犯,達到 ,面積量產自動對準奈米碳管場效電晶體之目的,可在 整片晶圓上同時形成奈米碳管場效電晶體。 接著參照圖2B ’於介電層2〇2上,催化性源極與汲 極間形成奈米碳管212,且奈米碳管212與催化性源極與 及,2〇4電性連接。形成奈米碳管m的方式例如為化 學氣相沈積法。形成奈米碳管犯的製程溫度例如介於 6〇〇°C至90(TC範圍間’且製程壓力介於1丁〇汀至1〇T〇rr 9ΓΛ 曰 / 曰 1 ' is preferably between 1 nm and 10 nm, and the thickness of the titanium thin metal is between 1 nm and 20 nm, and the thickness of the formed cobalt telluride is between 3 nm and 40 nm. With continued reference to FIG. 2A, a catalytic source and a gate 204 are formed over the dielectric layer 202. The material of the catalytic source and the bungee is, for example, Shi Xihua. The catalyst j· source and drain 2〇4 are used as the catalyst for forming the carbon nanotubes 212, in addition to being used as the metal electrode of the nanotube field effect transistor. The carbon nanotubes 212 formed by chemical vapor deposition must be catalyzed by the synthesis of 'the carbon nanotubes will only form in the defined catalytic source; and the interpolar 2〇4 formation' will not There is no catalytic source on the wafer and the shape of the pole is the so-called automatic alignment to form the carbon nanotubes. The mass production is automatically aligned with the carbon nanotube field effect transistor. A carbon nanotube field effect transistor is simultaneously formed on the wafer. Next, referring to FIG. 2B', on the dielectric layer 2'2, a carbon nanotube 212 is formed between the catalytic source and the anode, and the carbon nanotube 212 is electrically connected to the catalytic source and the cathode. The method of forming the carbon nanotubes m is, for example, a chemical vapor deposition method. The process temperature for forming a carbon nanotube is, for example, between 6 〇〇 ° C and 90 (between TC ranges) and the process pressure is between 1 〇 〇 to 1 〇 T 〇 rr 9

1311344 範圍間,通入之氣體例如為乙炔(C2H2)、氮氣㈣與 氣(Ar)。其中乙炔流量例如介於1〇咖至8〇 s簡範^ 間。乙炔與氫氣流量比例如介於〇 5至8範圍間。在最佳 的實施例中’製程溫度例如為如叱,製程壓力例如為i Torr ’乙块與虱氣之流量比例如為6 : 1。 在本實施例中,々⑽作為奈米碳管形成必需之 巧,同_作為源極姐極2。4之電極材料。在奈米 石厌官形成所需之高溫過程6〇〇。(:至9〇(TC中,矽化鈷亦 時形成,並催化奈米碳管212形成。在本實施例中,^ 阻值相魏祕高溫製節啊)切成催化性源極與沒 極2〇4,在此同時,奈米碳管212直接配置於催化性源極 與沒極2G4㈤’並與低阻值相魏鉛電性連接。故藉 變録、鈦金屬薄膜厚度,及形成奈米碳212所需之势程 溫度,可控制奈米碳管212密度、石墨化程度、電極材 料石夕化狀喊。妹佳之製雜件下,本發明之 對準奈米碳管觀電晶體結構鳥,有效提高奈米碳管 212之石墨化程度’及呈現電晶體之場效特性。 綜上所述’在本發明之場效電晶體結構滿中,直 接將奈米碳管212形成並配至於催化性源極與汲極綱 間’且利用矽化鈷之形成條件(銘、 ;溫巴有效提?米碳管212之石墨 二米炭g 212之在度。組成之奈米碳管場效電晶體獅 電晶體之特性。透過本發明之製程,可有效組成 不米石厌官场效電晶體20b’簡化製程,整合現有之半導體 製程技術、材料,達到量產化之目的。 1311344 本發明已以實施例公開於上’但並非用以限定 之:可作些許之調變,因此本發明以 固田視後附之申請專利範圍所界定者為準。 【圖示簡單說明】 L1A為習知一種金氧半場效電晶體結構之剖面示Between the ranges of 1311344, the gases introduced are, for example, acetylene (C2H2), nitrogen (tetra) and gas (Ar). The acetylene flow rate is, for example, between 1 〇 coffee and 8 〇 s. The acetylene to hydrogen flow ratio is, for example, between 〇 5 and 8. In the preferred embodiment, the process temperature is, for example, 叱, and the process pressure is, for example, i Torr ', and the flow ratio of the block to helium is, for example, 6:1. In the present embodiment, ruthenium (10) is formed as a material for the formation of a carbon nanotube, and is the same as the electrode material of the source. In the high temperature process required for the formation of nano-stones. (: to 9 〇 (in TC, cobalt hydride is also formed, and catalyzes the formation of carbon nanotube 212. In this embodiment, ^ resistance phase Wei secret high temperature section ah) cut into catalytic source and immersion 2〇4, at the same time, the carbon nanotubes 212 are directly disposed in the catalytic source and the electrodeless 2G4(5)' and are electrically connected to the low-resistance phase Wei lead. Therefore, the thickness of the titanium metal film and the formation of the nano-film are formed. The potential temperature required for the carbon carbon 212 can control the density of the carbon nanotubes 212, the degree of graphitization, and the electrode material swaying. Under the miscellaneous parts of the meter, the aligned carbon nanotubes of the present invention are observed. The structure bird effectively increases the degree of graphitization of the carbon nanotubes 212 and exhibits the field effect characteristics of the crystal. In summary, in the field-effect transistor structure of the present invention, the carbon nanotubes 212 are directly formed and It is formulated between the catalytic source and the bungee and uses the formation conditions of cobalt telluride (Ming, Wenba effectively raises the graphite two meters of carbon dioxide 212 of the carbon nanotube 212. The composition of the carbon nanotube field The characteristics of the electro-optic crystal lion crystal. Through the process of the invention, the non-meter stone anaesthetic field effect crystal can be effectively formed. The body 20b' simplifies the process, integrates the existing semiconductor process technology and materials, and achieves mass production. 1311344 The present invention has been disclosed by way of example, but is not intended to be limiting: the invention may be modified. The definition of the patent application scope attached to Gutian is subject to change. [Simplified illustration] L1A is a cross-section of a conventional gold oxide half field effect transistor structure.

=二為習知-種奈米碳管場效電晶體結構之剖面 3=至® 2 B為依照本發明實施例崎示的 準不米碳管場效電晶體結構之製作流裡剖面十 m依肖本發明實施例完成之奈米碳管場效電, 柃描式電子顯微鏡圖。 日日體 :性4圖為依照本發明實施例完成购 【主要元件符號說明】 l〇a :金氧半場效電晶體結構。 10b :奈米碳管場效電晶體結構。 100、200 :基底。 102、202 :介電層。 1〇4、204 :金氧半場效電晶體之源極與及極 106、206 :閘極。 108 :催化劑層 11 Ι3Ί1344 114 :奈米碳管場效電晶體之源極與汲極。 112、212 :奈米碳管。 204 :奈米碳管場效電晶體之催化性源極與汲極 十、申請專利範圍: 1. 一種場效電晶體結構,包括: 一閘極層; 一介電層,配置於該基底之上; 催化性金屬電極,配置於介電層之上;以及 奈米碳管,配置於介電層之上,兩催化性金屬電極之 間,且與兩金屬電極之間電性連接。 2. 如申凊專利範圍第1項所述之場效電晶體結構,其中 基底為掺入雜質之低阻值矽材料。 3·如申睛專利範圍第1項所述之場效電晶體結構,其中 基底為抗南溫砍化物如CoSb及其衍生物等。 4. 如申請專利範圍第1項所述之場效電晶體結構,其中 基底為抗尚溫金屬或化合物如W,Ta,TaN,TiN, WN及以上金屬及化合物之衍生物等。 5. 如申請專利範圍第1項所述之場效電晶體結構,其中 電層為一氧化石夕,或熟知的高介電材料如二氧化 12= 2 is a conventional-species nanocarbon tube field effect transistor structure profile 3 = to ® 2 B is a quasi-millimeter carbon tube field effect transistor structure according to an embodiment of the present invention, the flow profile is ten m According to the embodiment of the invention, the carbon nanotube field effect electric power, scanning electron microscope image. Japanese body: Sex 4 is completed in accordance with an embodiment of the present invention. [Main component symbol description] l〇a: Gold oxide half field effect transistor structure. 10b: Nano carbon tube field effect transistor structure. 100, 200: substrate. 102, 202: dielectric layer. 1〇4, 204: The source and the pole of the gold-oxygen half-field effect transistor 106, 206: gate. 108: Catalyst layer 11 Ι3Ί1344 114: source and drain of the carbon nanotube field effect transistor. 112, 212: carbon nanotubes. 204: Catalytic source and bungee of nano-carbon nanotube field effect transistor. Patent application scope: 1. A field effect transistor structure, comprising: a gate layer; a dielectric layer disposed on the substrate And a catalytic metal electrode disposed on the dielectric layer; and a carbon nanotube disposed on the dielectric layer between the two catalytic metal electrodes and electrically connected to the two metal electrodes. 2. The field effect transistor structure according to claim 1, wherein the substrate is a low resistance 矽 material doped with impurities. 3. The field effect transistor structure as described in claim 1 of the scope of the patent application, wherein the substrate is an anti-Southern temperature cut compound such as CoSb and a derivative thereof. 4. The field effect transistor structure as claimed in claim 1, wherein the substrate is a temperature resistant metal or a compound such as W, Ta, TaN, TiN, WN and a derivative of the above metals and compounds. 5. The field effect transistor structure as described in claim 1, wherein the electrical layer is a oxidized stone, or a well-known high dielectric material such as dioxide 12

Claims (1)

Ι3Ί1344 114 :奈米碳管場效電晶體之源極與汲極。 112、212 :奈米碳管。 204 :奈米碳管場效電晶體之催化性源極與汲極 十、申請專利範圍: 1. 一種場效電晶體結構,包括: 一閘極層; 一介電層,配置於該基底之上; 催化性金屬電極,配置於介電層之上;以及 奈米碳管,配置於介電層之上,兩催化性金屬電極之 間,且與兩金屬電極之間電性連接。 2. 如申凊專利範圍第1項所述之場效電晶體結構,其中 基底為掺入雜質之低阻值矽材料。 3·如申睛專利範圍第1項所述之場效電晶體結構,其中 基底為抗南溫砍化物如CoSb及其衍生物等。 4. 如申請專利範圍第1項所述之場效電晶體結構,其中 基底為抗尚溫金屬或化合物如W,Ta,TaN,TiN, WN及以上金屬及化合物之衍生物等。 5. 如申請專利範圍第1項所述之場效電晶體結構,其中 電層為一氧化石夕,或熟知的高介電材料如二氧化 12 1311344 給(Hf02)、二氧化鍅(Zr〇2)、二氧化鉬(Ta〇2)、二氧 化給矽(HfSi〇2)、二氧化铪矽氮(HfSiN〇2)及以上化 合物之衍生物等,且該介電層厚度介於1 nm至 500nm ’ 較佳為在 1 〇 nm 至 5〇〇nm。 6. 如申請專利範圍第丨項所述之場效電晶體結構,其中 催化性金屬電極為石夕化銘,及石夕化始之衍生物。 7. 如申凊專利範圍第1項所述之場效電晶體結構,其中 催化性金屬電極為矽化鎳,及矽化鎳之衍生物。 8. —種場效電晶體結構的製作方法,包括: 提供一基底; 於該基底上形成一介電層; 於介電層上形成催化性金屬電極;Ι3Ί1344 114: The source and the bungee of the carbon nanotube field effect transistor. 112, 212: carbon nanotubes. 204: Catalytic source and bungee of nano-carbon nanotube field effect transistor. Patent application scope: 1. A field effect transistor structure, comprising: a gate layer; a dielectric layer disposed on the substrate And a catalytic metal electrode disposed on the dielectric layer; and a carbon nanotube disposed on the dielectric layer between the two catalytic metal electrodes and electrically connected to the two metal electrodes. 2. The field effect transistor structure according to claim 1, wherein the substrate is a low resistance 矽 material doped with impurities. 3. The field effect transistor structure as described in claim 1 of the scope of the patent application, wherein the substrate is an anti-Southern temperature cut compound such as CoSb and a derivative thereof. 4. The field effect transistor structure as claimed in claim 1, wherein the substrate is a temperature resistant metal or a compound such as W, Ta, TaN, TiN, WN and a derivative of the above metals and compounds. 5. The field effect transistor structure as described in claim 1, wherein the electric layer is a oxidized stone, or a well-known high dielectric material such as oxidized 12 1311344 (Hf02), cerium oxide (Zr 〇) 2) molybdenum dioxide (Ta〇2), bismuth dioxide (HfSi〇2), cerium oxide nitrogen (HfSiN〇2) and derivatives of the above compounds, and the thickness of the dielectric layer is 1 nm It is preferably from 1 〇 nm to 5 〇〇 nm to 500 nm '. 6. The field effect transistor structure as described in the scope of the patent application, wherein the catalytic metal electrode is Shi Xihuaming, and the derivative of Shi Xihua. 7. The field effect transistor structure according to claim 1, wherein the catalytic metal electrode is a nickel telluride, and a derivative of nickel telluride. 8. A method of fabricating a field effect transistor structure, comprising: providing a substrate; forming a dielectric layer on the substrate; forming a catalytic metal electrode on the dielectric layer; 於電層上、兩催化性金屬電極之間形成奈米碳管,奈 米碳管與兩催化性金屬電極間為電性連接。 9·如申請專利範圍第8項所述之場效電晶體結構的製 作方法,其中基底為摻入雜質之低阻值石夕材料。 1〇·如申請專利範圍第8項所述之場效電晶體結構的製 作方法’其中介電層為高溫氧化錢積而成之二氧 切’或熟知關贱積㈣之高介電材料如二氧 13 1311344 化铪(Hf02)、—氧化锆(Zr〇2)、二氧化钽(丁叫、二 氧化給破(HfSi〇2)、二氧化給♦氮(腦漏2) 及以上 金屬及化合物之时物等,且該介電層厚度介於1 至5〇〇nm,較佳為在至500nm。 U.如申請專利範圍第8項所述之場效電㈣結_製A carbon nanotube is formed on the electric layer between the two catalytic metal electrodes, and the carbon nanotube is electrically connected to the two catalytic metal electrodes. 9. A method of fabricating a field effect transistor structure as described in claim 8 wherein the substrate is a low resistance stone material incorporating impurities. 1〇· The method for fabricating the field effect transistor structure as described in claim 8 of the patent application, wherein the dielectric layer is a high-temperature oxidized money-forming dioxotomy or a high-dielectric material such as a well-known enthalpy (4) Dioxane 13 1311344 bismuth (Hf02), zirconia (Zr〇2), cerium oxide (butyl, dioxygenation (HfSi〇2), dioxide to ♦ nitrogen (skull 2) and above metals and The time of the compound, etc., and the thickness of the dielectric layer is from 1 to 5 〇〇 nm, preferably from 500 nm. U. The field effect electricity (four) junction as described in claim 8 作方法其中催化性金屬電極為石夕化銘,及石夕化链 之衍生物。 12·如申料職_ 11項所述之場效Μ體結構的 製作方法,其中形成魏钻之方法包括利用高溫退 火導致過渡金屬财於介面處相散,發生石夕化 反應,形成矽化物。 13.如申請專利範圍第11項所述之場效電晶體結構的 製作方法,其巾形成催化性金屬電極之方法包括物 理氣相沈鑛,錄金屬薄轉度細崎至2〇麵 辄圍間’較佳為在1醜至1〇_範圍間,鈦金屬薄 膜厚度在丨至2〇議範„,形成^化姑厚度 在3 ηηι至40 nm範圍間。 二申明專利犯圍第8項所述之場效電晶體結構的製 作方法,其中形成奈㈣管之方法包括化學氣相沈 14 1311344 積法。 15. 如申請專利範圍第14項所述之場效電晶體結構的 製作方法,其中形成該奈米碳管時的溫度介於600°C 至900°C之間,且壓力介於1 Torr至lOTorr之間, 所通入的氣體包括反應氣體乙炔(C2H2),其他反應氣 體例如甲烷CH4、酒精C2H5OH、曱苯C6H6CH3,載氣, • 如氫氣(¾)、氬氣(Ar)。 16. 如申請專利範圍第15項所述之場效電晶體結構的 製作方法,其中乙块的流量介於10 seem至80 seem 範圍間,較佳為介於60 seem至80 seem範圍間。 17. 如申請專利範圍第15項所述之場效電晶體結構的製 作方法,其中氫氣的流量介於1 seem至100 seem範 φ 圍間,較佳為介於10 seem至20 seem範圍間。 18. 如申請專利範圍第15項所述之場效電晶體結構的 製作方法,其中氬氣的流量介於4 seem至400 seem 範圍間,較佳為介於90 seem至180 seem範圍間。 19. 如申請專利範圍第15項所述之場效電晶體結構的 製作方法,其中乙炔與氫氣的流量比介於0.5至8 範圍間,較佳為介於3至8範圍間。 15The catalytic metal electrode is a compound of Shi Xihuaming and a derivative of the Shi Xihua chain. 12. The method for fabricating the field effect Μ body structure described in the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . 13. The method for fabricating a field effect transistor structure according to claim 11, wherein the method for forming a catalytic metal electrode comprises a physical vapor phase ore, recording a metal thinness and a fineness to a radius of 2 'It is better to range from 1 ug to 1 〇 _, the thickness of the titanium metal film is 丨 to 2 〇 ,, and the thickness of the nucleus is between 3 ηηι and 40 nm. The method for fabricating a field effect transistor structure, wherein the method for forming a na[iota] tube comprises a chemical vapor deposition 14 1311344 method. 15. The method for fabricating a field effect transistor structure according to claim 14 of the patent application, wherein The temperature at which the carbon nanotube is formed is between 600 ° C and 900 ° C, and the pressure is between 1 Torr and 10 Torr. The gas to be introduced includes the reaction gas acetylene (C 2 H 2 ), and other reaction gases such as methane CH4, alcohol C2H5OH, toluene C6H6CH3, carrier gas, • such as hydrogen (3⁄4), argon (Ar). 16. The method for fabricating the field effect transistor structure according to claim 15 of the patent application, wherein The flow rate is between 10 seem and 80 seem, preferably 17. Between 60 seem and 80 seem. 17. The method for fabricating a field effect transistor structure according to claim 15, wherein the flow rate of hydrogen is between 1 seem and 100 seem φ, preferably Between 10 seem and 20 seem. 18. The method of fabricating the field effect transistor structure according to claim 15 wherein the flow rate of argon gas ranges from 4 seem to 400 seem, preferably between Between 90 seem and 180 seem. 19. The method for fabricating a field effect transistor structure according to claim 15 wherein the flow ratio of acetylene to hydrogen is between 0.5 and 8, preferably between 3 Up to 8 ranges. 15
TW95141322A 2006-11-08 2006-11-08 A self-aligned field-effect transistor structure and manufacturing method thereof TWI311344B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95141322A TWI311344B (en) 2006-11-08 2006-11-08 A self-aligned field-effect transistor structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95141322A TWI311344B (en) 2006-11-08 2006-11-08 A self-aligned field-effect transistor structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200822233A TW200822233A (en) 2008-05-16
TWI311344B true TWI311344B (en) 2009-06-21

Family

ID=44770718

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95141322A TWI311344B (en) 2006-11-08 2006-11-08 A self-aligned field-effect transistor structure and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI311344B (en)

Also Published As

Publication number Publication date
TW200822233A (en) 2008-05-16

Similar Documents

Publication Publication Date Title
EP3379579B1 (en) Semiconductor device and method of manufacturing the same
CN101807668B (en) Carbon nanotube field effect transistor and method of fabricating same
US9425406B2 (en) Gas-phase functionalization of surfaces of microelectronic structures
CN101099248B (en) Self-aligned process for nanotube/nanowire fets
US7253434B2 (en) Suspended carbon nanotube field effect transistor
US9368599B2 (en) Graphene/nanostructure FET with self-aligned contact and gate
JP5519936B2 (en) Interconnection and heat dissipation based on nanostructures
US20060192231A1 (en) Field effect transistor and its manufacturing method
EP1763037A1 (en) Nanotube memory cell with floating gate based on passivated nanoparticles and manufacturing process thereof
WO2004070854A1 (en) Chemical vapor deposition of single walled carbon nanotubes
KR101219769B1 (en) Carbon nanostructured material pattern and manufacturing method of the same, and carbon nanostructured material thin film transistor and manufacturing method of the same
US9923086B2 (en) CMOS device having carbon nanotubes
Lin et al. Ti5Si3 nanowire and its field emission property
JP4984498B2 (en) Functional element and manufacturing method thereof
JP2007509831A (en) Method for synthesizing nanoscale fiber structure and electronic component including the fiber structure
US8394664B2 (en) Electrical device fabrication from nanotube formations
WO2008156583A1 (en) Gas-phase functionalization of surfaces including carbon-based surfaces
US20110268884A1 (en) Formation of nanoscale carbon nanotube electrodes using a self-aligned nanogap mask
US20090236675A1 (en) Self-aligned field-effect transistor structure and manufacturing method thereof
KR20020003782A (en) fabrication method of carbon nanotubes
TW201135935A (en) Self aligned carbide source/drain FET
TWI311344B (en) A self-aligned field-effect transistor structure and manufacturing method thereof
Franklin et al. Toward surround gates on vertical single-walled carbon nanotube devices
Ping et al. Electrochemical Construction of Edge‐Contacted Metal‐Semiconductor Junctions with Low Contact Barrier
KR20120098571A (en) Preparation method of carbon pillar electrode, and the carbon pillar electrode thereby

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees