TWI302372B - Heat dissipation substrate for electronic device - Google Patents

Heat dissipation substrate for electronic device Download PDF

Info

Publication number
TWI302372B
TWI302372B TW095131947A TW95131947A TWI302372B TW I302372 B TWI302372 B TW I302372B TW 095131947 A TW095131947 A TW 095131947A TW 95131947 A TW95131947 A TW 95131947A TW I302372 B TWI302372 B TW I302372B
Authority
TW
Taiwan
Prior art keywords
heat
electronic component
substrate
dissipating substrate
component according
Prior art date
Application number
TW095131947A
Other languages
Chinese (zh)
Other versions
TW200812025A (en
Inventor
Fu Hua Chu
David Shau Chew Wang
Jyh Ming Yu
En Tien Yang
Kuo Hsun Chen
Original Assignee
Polytronics Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polytronics Technology Corp filed Critical Polytronics Technology Corp
Priority to TW095131947A priority Critical patent/TWI302372B/en
Priority to US11/803,039 priority patent/US20080057333A1/en
Priority to JP2007152629A priority patent/JP2008060535A/en
Publication of TW200812025A publication Critical patent/TW200812025A/en
Application granted granted Critical
Publication of TWI302372B publication Critical patent/TWI302372B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/034Organic insulating material consisting of one material containing halogen
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09309Core having two or more power planes; Capacitive laminate of two power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0307Providing micro- or nanometer scale roughness on a metal surface, e.g. by plating of nodules or dendrites
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12472Microscopic interfacial wave or roughness

Description

1302372 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種散熱基板,特別係用於電子元件散熱 之散熱基板。 【先前技術】 近幾年來,白光發光二極體(led)是最被看好且最受全球 矚目的新興產品。它具有體積小、耗電量低、壽命長和反 應速度佳等優點,能解決過去白熾燈泡所難以克服的問 題。LED應用於顯示器背光源、迷你型投影機、照明及汽 車燈源專市場愈來愈獲得重視。 目前歐美和日本等國基於節約能源與環境保護的共識, 皆積極開發白光發光二極體作為本世紀照明的新光源。再 加上目前許多國家的能源都仰賴進口, 上的發展極具價值。根據專家評估,日本若是將 燈以白光發光二極體取代,則每年可省下卜2座發電廠的 • #電量,間接減少的耗油量達職公升,而且在發電過程 中所排放的二氧化礙也會減少,進而抑制了溫室效應。基 此,目前歐美和日本等先進國家都投注了非常多的人力推 動研么帛。十在未來十年内,可以普遍替代傳統的照明器 具0 然而,對於照明用之高功率LED而言,其輸入的功 率約只有! 5~2G%轉換成光,其餘⑼〜㈣轉換成熱。這些熱 ^果無法適時逸散至環境,將使得咖元件的介面溫度過 向而影響其發光強度及錢壽命。因此,LED元件的熱管 1302372 理問題愈來愈受到重視。 不_疋顯示器月光源或一般照明,通常係將多個led元 件組裝在一電路基板上。電路基板除了扮演承载LED模組 的角色外,亦需提供散熱的功能。傳統led之工作電流僅 約為20mA左右,因發熱量不大,其散熱問題尚不嚴重,因 此只要運用一般電子用的銅箔印刷電路板(PCB)即可。但隨 著高功率LED之普遍應用,其工作電流可達以以上,習知 利用玻璃纖維FR4表面設置銅箔之印刷電路板(散熱係數約 〇.3W/m· K)已不足以應付散熱需求。 【發明内容】 本發明之主要目的係提供一種散熱基板,其具有優異散 熱特性,且兼㈣高電壓介電絕緣特性、可撓曲機械結構 特性,以及金屬層與導熱高分子介電絶緣材料層間之優良 接合拉力強度,而得以提供例如LED等高功率元件之應用 (例如摺疊式手機)。 為了達到上述目的,本發明揭示一種電子元件之散熱基 板,其包含一第一金屬層、一第二金屬層及一導熱高分子 介電絕緣材料層。該第一金屬層之表面係承載該電子元件 (例如發光二極體(LED)元件)。該導熱高分子介電絕緣材料 層係疊設於該第一金屬層及第二金屬層之間並形成物理接 觸,該導熱高分子介電絕緣材料層與該第一和第二金屬層 之介面包含至少一微粗糙面(粗糙度以大於7〇,依據B 0601 1994)。該微粗糙面包含複數個瘤狀突出物,且該瘤狀 犬出物之粒徑主要分佈於〇1至1〇〇微米之間,該導熱高八 1302372 子介電絕緣材料層之導熱係數大於1 W/m · Κ,厚度小於 0.5mm,且包含:(1)含氟高分子聚合物,其溶點高於150°C, 且體積百分比介於30-60%之間;及(2)導熱填料,散佈於該 含氟高分子聚合物中,且其體積百分比介於40-70%之間。 較佳地,該含氟高分子聚合物可選自聚氟化亞乙烯(Poly Vinylidene Fluoride ; PVDF)或乙烯一四氟乙稀共聚物 (polyethylenetetrafluoroethylene ; PETFE),而溶點以大於 150°C為佳,且以大於220°C為更佳。該導熱填料則可選用 如氮化物及氧化物等陶瓷導熱材料。 本發明之散熱基板亦可經過〇〜20 Mrad之放射線照射使 該導熱高分子介電絕緣材料層交鏈固化,除了具良好的導 熱及絕緣效果外,若將該第一金屬層及第二金屬層之厚度 分別製作小於〇· 1mm及0.2mm,而該導熱高分子介電絕緣材 料層之厚度小於〇.5mm(0.3mm更佳),其可通過將lcm寬之 試驗基板繞曲成5mm直徑圓柱之撓曲測試,其表面不會有 斷裂或裂痕之情形發生,而得用於摺疊式之產品應用。 此外,因含氟高分子材料一般均具有較高熔點(例如 PVDF約165°C,PETFE約240°C)且具阻燃特性,可耐高溫, 且不易起火燃燒,而更具安全上之應用價值。 【實施方式】 參照圖1,一LED元件10係承載於一散熱基板20上。該散 熱基板20包含一第一金屬層21、一第二金屬層22及一疊設 於該第一金屬層21及第二金屬層22間之導熱高分子介電絕 緣材料層23。該LED元件10係設置於該第一金屬層21表 1302372 面,且該第一及第二金屬層21和22與該導熱高分子介電絕 緣材料層23間之介面係形成物理接觸,且其中至少一介面 為微粗糙面,該微粗糙面包含複數個瘤狀突出物,且談瘤 狀突出物之粒徑主要分佈於0.1至1〇〇微米之間,藉此增加 彼此間之拉力強度。 上述散熱基板20之製作方式例示如下:將批式混鍊機 (HAAKE-600P)進料溫度定在材料熔點(Tm)+2〇〇c,加入該 導熱高分子介電絕緣材料層23之配方預混料(原料置於鋼 杯先以量匙攪拌均勻)。初始時混鍊機旋轉之轉速為 40rpm,3分鐘之後將其轉速提高至70rpm,繼續混鍊15分鐘 後下料,而形成一具有散熱特性之散熱複合材料。 將上述散熱複合材料以上下對稱方式置入外層為鋼板, 中間厚度為所需厚度(例如0 · 15 mm)之模具中,模且上下各 置一層鐵弗龍脫模布,先預熱5分鐘,再壓合15分鐘(操作 壓力150kg/cm2 ’溫度同混鍊溫度),之後形成一厚度為 0.15mm之散熱薄片。 將該散熱薄片上、下置該第一金屬層21及第二金屬層22 再壓合一次,先預熱5分鐘,再壓合5分鐘(操作壓力 150kg/cm2,溫度同混鍊溫度),形成中間為該導熱高分子介 電絕緣材料層23,而上下貼合該第一金屬層21及第二金屬 層22之散熱基板20。 表一所示為不同粗韃度之拉力及耐電壓測試實驗結果, 其中導熱高分子介電絕緣材料層23係選用聚氟化亞乙烯 (Poly Vinylidene Fluodde ; PVDF)(熔點約 i65°C)為基材, •1302372 且於PVDF中散佈導熱填料氧化鋁(Al2〇3),且兩者之體積百 分比分別為40%及60%。本實施例中,該導熱高分子材料層 23之厚度均小於〇 3mm。該拉力實驗係符合日本JIS C6481 規範’以測試介面間之剝離強度。 表一1302372 IX. Description of the Invention: [Technical Field] The present invention relates to a heat dissipating substrate, particularly to a heat dissipating substrate for dissipating heat of electronic components. [Prior Art] In recent years, white light-emitting diodes (LEDs) have been the most optimistic and most popular products in the world. It has the advantages of small size, low power consumption, long life and good response speed, which can solve the problems that past incandescent bulbs can't overcome. LEDs are increasingly used in display backlights, mini projectors, lighting and automotive lighting sources. At present, countries such as Europe, America and Japan are actively developing white light-emitting diodes as a new light source for this century based on the consensus on energy conservation and environmental protection. Coupled with the fact that many countries now rely on imports for energy, the development is extremely valuable. According to experts' assessment, if Japan replaces the lamp with white light-emitting diodes, it can save the electricity consumption of the two power plants every year. The indirect reduction of fuel consumption is up to the liter, and the two emissions during the power generation process. Oxidation is also reduced, which in turn inhibits the greenhouse effect. Based on this, advanced countries such as Europe, America and Japan are currently betting a lot of manpower to promote research. Ten can replace the traditional luminaires in the next ten years. However, for high-power LEDs for lighting, the input power is only about! 5~2G% is converted into light, and the rest (9)~(iv) is converted into heat. These heats are not able to escape to the environment at the right time, which will cause the interface temperature of the coffee element to be excessive and affect its luminous intensity and life. Therefore, the heat pipe 1302372 of the LED element has become more and more important. Do not 疋 display monthly light source or general illumination, usually a plurality of led components are assembled on a circuit substrate. In addition to the role of the LED module, the circuit board also needs to provide heat dissipation. The working current of the conventional led is only about 20 mA. Since the heat generation is not large, the heat dissipation problem is not serious, so it is only necessary to use a copper foil printed circuit board (PCB) for general electronics. However, with the widespread application of high-power LEDs, the operating current can reach above. It is known that the printed circuit board with copper foil on the surface of glass fiber FR4 (heat dissipation coefficient about W3W/m·K) is insufficient to meet the heat dissipation requirements. . SUMMARY OF THE INVENTION The main object of the present invention is to provide a heat dissipating substrate which has excellent heat dissipation characteristics, and has (four) high voltage dielectric insulating properties, flexible mechanical structural characteristics, and a layer between the metal layer and the thermally conductive polymer dielectric insulating material. The excellent joint tensile strength provides an application such as a high power component such as an LED (for example, a foldable mobile phone). In order to achieve the above object, the present invention discloses a heat dissipation substrate for an electronic component, comprising a first metal layer, a second metal layer, and a thermally conductive polymer dielectric insulating material layer. The surface of the first metal layer carries the electronic component (e.g., a light emitting diode (LED) component). The thermally conductive polymer dielectric insulating material layer is stacked between the first metal layer and the second metal layer to form a physical contact, and the interface between the thermally conductive polymer dielectric insulating material layer and the first and second metal layers Contains at least one slightly rough surface (roughness greater than 7 〇, according to B 0601 1994). The micro-rough surface comprises a plurality of knob-like protrusions, and the particle size of the tumor-like dog product is mainly distributed between 〇1 and 1〇〇μm, and the thermal conductivity of the layer of the thermal conductive high-eight 1302372 sub-dielectric insulating material is greater than 1 W/m · Κ, thickness less than 0.5 mm, and containing: (1) fluoropolymer with a melting point above 150 ° C and a volume percentage between 30-60%; and (2) A thermally conductive filler is dispersed in the fluoropolymer and has a volume percentage of between 40 and 70%. Preferably, the fluoropolymer may be selected from the group consisting of polyvinyl fluorene (PVDF) or ethylenetetrafluoroethylene (PETFE), and the melting point is greater than 150 ° C. Preferably, it is more preferably greater than 220 ° C. The thermally conductive filler can be selected from ceramic thermal materials such as nitrides and oxides. The heat dissipating substrate of the present invention may also be subjected to radiation irradiation of 〇20 Mrad to cure the layer of the thermally conductive polymer dielectric insulating material, in addition to having good heat conduction and insulation effects, if the first metal layer and the second metal are The thickness of the layer is less than 〇·1 mm and 0.2 mm, respectively, and the thickness of the thermally conductive polymer dielectric insulating material layer is less than 〇5 mm (more preferably 0.3 mm), which can be bent into a diameter of 5 mm by rotating the test substrate of 1 cm width. The flexural test of the cylinder does not occur on the surface without cracks or cracks, but it can be used for folding products. In addition, fluoropolymer materials generally have a higher melting point (for example, PVDF of about 165 ° C, PETFE of about 240 ° C) and have flame retardant properties, can withstand high temperatures, and are not easy to ignite, and more safe applications value. Embodiments Referring to FIG. 1, an LED element 10 is mounted on a heat dissipation substrate 20. The heat dissipation substrate 20 includes a first metal layer 21, a second metal layer 22, and a thermally conductive polymer dielectric insulating material layer 23 stacked between the first metal layer 21 and the second metal layer 22. The LED element 10 is disposed on the surface of the first metal layer 21, the surface of the first metal layer 21, and the interface between the first and second metal layers 21 and 22 and the layer of the thermally conductive polymer dielectric material 23 is in physical contact, and wherein At least one interface is a micro-rough surface comprising a plurality of knob-like protrusions, and the particle diameter of the tumor-like protrusions is mainly distributed between 0.1 and 1 μm, thereby increasing the tensile strength between each other. The manufacturing method of the heat dissipation substrate 20 is as follows: the feed temperature of the batch type chain mixer (HAAKE-600P) is set at the melting point of the material (Tm) + 2 〇〇 c, and the formula of the thermal conductive polymer dielectric insulating material layer 23 is added. Premix (the raw material is placed in a steel cup and stirred evenly with a measuring spoon). Initially, the speed of the chain machine rotation was 40 rpm, and after 3 minutes, the rotation speed was increased to 70 rpm, and the chain was further mixed for 15 minutes, and then the material was discharged to form a heat dissipation composite material having heat dissipation characteristics. The above heat-dissipating composite material is placed in a lower symmetrical manner in a mold having an outer layer of a steel plate and a thickness of the desired thickness (for example, 0 · 15 mm), and a layer of Teflon release cloth is placed on the upper and lower sides, and the preheating is performed for 5 minutes. It was further pressed for 15 minutes (operating pressure 150 kg/cm2 'temperature and mixed chain temperature), and then a heat-dissipating sheet having a thickness of 0.15 mm was formed. The first metal layer 21 and the second metal layer 22 are pressed up and down once on the heat dissipating sheet, and preheated for 5 minutes and then pressed for 5 minutes (operating pressure 150kg/cm2, temperature and mixed chain temperature). The heat dissipation polymer dielectric material layer 23 is formed in the middle, and the heat dissipation substrate 20 of the first metal layer 21 and the second metal layer 22 is bonded to the upper and lower sides. Table 1 shows the tensile and to withstand voltage test results of different roughness. The thermal conductive polymer dielectric insulating layer 23 is made of polyvinylfluoride (PVDF) (melting point about i65 ° C). The substrate, • 1302372, is dispersed in PVDF with a thermally conductive filler alumina (Al2〇3), and the volume percentages of the two are 40% and 60%, respectively. In this embodiment, the thickness of the thermally conductive polymer material layer 23 is less than 〇 3 mm. The tensile test was in accordance with Japanese JIS C6481 specification to test the peel strength between the interfaces. Table I

編號 __金屬箔 導熱高分 子層厚度 (mm) 拉力 (N/cm) 導熱 係數 (W/m · K) 耐電壓 測試 種類 規格 粗糙度 (Rz) 1 銅箔 1 oz 7.0-9.0 0.21 14.3 1.7 >5kV 2 銅箔 2oz 9.5-11.5 0.24 16.8 1.6 >5kV 3 銅箔 4oz 10.0-12.0 0.22 17.5 1.7 >5kV 4 鋼-鎳 箔 1 oz 9.5-11.5 0.23 16.9 1.7 >5kV 5 銅-鎳 箔 2oz 10.0-12.0 0.23 17.8 1.6 >5kV 6 鎳箔 1 oz 10.0-12.0 0.24 18.1 1.6 >5kV 對照 組 銅箔 1 oz 3.0-4.5 0.23 7.5 1.6 >5kV 由表一可知,對照組之表面粗糙度(Rz)在於3〇〜45之 間’其小於編说1-6之實驗組’而其拉力7.5 N/cm遠小於編 號1-6之實驗組之拉力(至少大於8.〇N/cm)。顯見較大的表面 粗糙度可增加該導熱高分子介電絕緣材料層23與第一和第 一金屬層21和22間的剝離強度。另外,所有之實驗組均可 通過5kV(或至少大於3 kV)之耐電壓測試,且其導熱係數均 1302372 大於 1.0W/m · K。 表二係針對不同種類的高分子聚合物之測試比較表。 表二 ______No.__Metal foil thermal conductive polymer layer thickness (mm) Tensile force (N/cm) Thermal conductivity (W/m · K) Withstand voltage test type Specification roughness (Rz) 1 Copper foil 1 oz 7.0-9.0 0.21 14.3 1.7 &gt ;5kV 2 copper foil 2oz 9.5-11.5 0.24 16.8 1.6 >5kV 3 copper foil 4oz 10.0-12.0 0.22 17.5 1.7 >5kV 4 steel-nickel foil 1 oz 9.5-11.5 0.23 16.9 1.7 >5kV 5 copper-nickel foil 2oz 10.0-12.0 0.23 17.8 1.6 >5kV 6 Nickel foil 1 oz 10.0-12.0 0.24 18.1 1.6 > 5kV Controlled copper foil 1 oz 3.0-4.5 0.23 7.5 1.6 > 5kV From Table 1, the surface roughness of the control group ( Rz) lies between 3〇~45 'it is less than the experimental group of 1-6' and its tensile force is 7.5 N/cm far less than the tensile force of the experimental group of numbers 1-6 (at least greater than 8.〇N/cm). It is apparent that a large surface roughness increases the peel strength between the thermally conductive polymer dielectric insulating material layer 23 and the first and first metal layers 21 and 22. In addition, all experimental groups can pass the withstand voltage test of 5kV (or at least greater than 3 kV), and their thermal conductivity is 1302372 greater than 1.0W/m · K. Table 2 is a test comparison table for different types of high molecular polymers. Table II ______

編號 高分子 聚合物 導熱南 分子材 料層厚 度(mm) 導熱 係數 (W/m· K) 拉力 (N/cm) 可撓 曲性 (5mm) 錫爐 測試 (260〇C ) 耐電壓 測試 1 PVDF 0.22 1.6 14.5 PASS PASS >5kV 2 PETFE 0.24 1.7 16.8 PASS PASS >7kV 對照 組1 HDPE 0.21 1.7 15.7 PASS FAIL <2kV 對照 組2 EPOXY 0.20 1.6 22.1 FAIL PASS >3kV 編號1及2之實驗組分別選用PVDF及PETFE (TefzelTM)作 為聚合物基材,而導熱填料選用氧化鋁(ai2o3),對照組1 和2之聚合物則選用不含氟之高分子聚乙烯(HDPE)及環氧 樹酯(EPOXY)。上述實驗組及對照組之聚合物及導熱填料 之體積百分比均為40%及60%,且採用粗糙度Rz同為7.0-9.0 之銅箔作為第一及第二金屬層。 該環氧樹酯(EPOXY)對照組係包含液態環氧樹酯、 Novolac樹酯、二氰二胺(dicyandiamide)、尿素催化劑(urea catalyst)、氧化鋁(Al2〇3)。該液態環氧樹酯係採用陶氏化學 公司(Dow Chemical Company)之型號 DER33 1 產品;Novolac 樹酯係採用陶氏化學公司之型號DEN438產品;二氰二胺係 1302372 採用 Degussa Fine Chemicals公司之 Dyhard 100S ;該尿素催 化劑係採用 Degussa Fine Chemicals 公司之 Dyhard UR500;該氧化鋁之顆粒大小於5 to 45微米之間,其係產自 Denki Kagaku Kogyo Kabushiki Kaisya公司 ° 該環氧樹酯(EPOXY)可依以下方法製備:混合50份的 DER331 及 50份的 DEN438於一 80〇C 之樹酯壺(resin kettle) 中直到形成同質溶液(homogeneous solution)。其次加入10 份Dyhard 100S和3份Dyhard UR300於該樹酯壺中於80°C繼 續混合20分鐘。之後,加入570份的AI2O3填料於該樹醋壺 中並持續進行混合直到該填料完全散佈於該樹酯中形成樹 酯漿(slurry)。真空去除樹酯漿中所含氣體30分鐘,接著將 樹酯漿放置於一銅箔表面,且放置另一銅箔於該樹酯漿表 面以形成一銅箔/樹酯漿/銅箔複合結構。該銅箔/樹酯漿/銅 箔複合結構置於一 3mm厚之金屬架中,使用橡膠滾筒對於 該銅箔表面進行平坦化。將該複合結構(連同金屬架)置於 130°C爐中進行預固化(pre-cure)l小時。之後將該複合結構 連同金屬架置於一真空熱壓機中(真空度為10 torr,壓力為 50 kg/cm2),進一步於150°C之溫度進行固化1小時。將該複 合結構於50 kg/cm2之壓力下冷卻至低於50°C,並由該熱壓 機中移除該複合結構。 將該PVDF和PETFE實驗組及HDPE和EPOXY對照組之試 驗基板係經過以下試驗: 1 ·可繞曲性:將1 cm寬之試驗基板繞曲成5mm直徑之圓 柱,表面不可有斷裂或裂痕之情形。 1302372 2·錫爐測試:將試驗基板置於260。〇之錫爐5分鐘,表面不 可有起泡或其它外觀異常。 3·拉力(剝離強度)測試:依照日本工業標準JIS C6481進 行。 4·介電強度(絕緣破壞電壓)測試:即耐電壓測試,係依照 曰本工業標準JIS C2110進行。 由表二可知,含氟之高分子聚合物PVDF及PETFE之實驗 組具有良好的可撓曲性及耐高溫特性,且亦可通過耐電壓 測試而可承受5kV以上之高電壓。反觀,採用HDPE為聚合 物之對照組1,雖然通過可撓曲性測試,然而其並未通過260 °C之錫爐高溫測試,且耐電壓小於2kV,明顯小於編號1及2 之實驗組。至於採用EPOXY為聚合物之對照組2,雖然可通 過高溫之錫爐測試,然而其硬度較高而不具可撓曲性。 此外,上述PVDF及PETFE之含氟材料具有不易燃燒及不 助燃的特性(符合UL 94 V-0),而相較於HDPE及EPOXY更能 提供安全上之應用。 該含氟高分子聚合物及導熱填料之體積百分比可作某程 度的調整而仍維持同樣特性。較佳地,該含氟高分子聚合 物之體積百分比介於30_60%之間;而導熱填料之體積百分 比介於40-70%之間,且尤以百分比介於50-65%為更佳。 除了上述之材料選用外,導熱高分子聚合物亦可選用聚 四氟乙烯(poly(tetrafluoroethylene) ; PTFE)、四氟乙烯-六 氟丙烯共聚物(tetrafluoroethylene-hexafluoro-propylene copolymer ; FEP)、 乙烯-四氟乙烯共聚物 -12- 1302372No. Polymer polymer heat conductive South molecular material layer thickness (mm) Thermal conductivity (W/m·K) Tensile force (N/cm) Flexibility (5mm) Tin furnace test (260〇C) Withstand voltage test 1 PVDF 0.22 1.6 14.5 PASS PASS >5kV 2 PETFE 0.24 1.7 16.8 PASS PASS >7kV Control group 1 HDPE 0.21 1.7 15.7 PASS FAIL < 2kV Control group 2 EPOXY 0.20 1.6 22.1 FAIL PASS > 3kV The experimental groups of numbers 1 and 2 were selected respectively PVDF and PETFE (TefzelTM) are used as polymer substrates, while thermal conductive fillers are made of alumina (ai2o3). Polymers of control groups 1 and 2 are selected from non-fluorinated high molecular polyethylene (HDPE) and epoxy resin (EPOXY). ). The volume percentages of the polymer and the thermally conductive filler of the above experimental group and the control group were 40% and 60%, and a copper foil having a roughness Rz of 7.0 to 9.0 was used as the first and second metal layers. The epoxy resin (EPOXY) control group contained liquid epoxy resin, Novolac resin, dicyandiamide, urea catalyst, and alumina (Al2〇3). The liquid epoxy resin is model DER33 1 from Dow Chemical Company; the Novolac resin is from the Dow Chemical Company model DEN 438; the dicyandiamide 13023 is from Dyhard from Degussa Fine Chemicals. 100S; the urea catalyst is Dyhard UR500 from Degussa Fine Chemicals; the alumina has a particle size of 5 to 45 microns and is produced by Denki Kagaku Kogyo Kabushiki Kaisya. The epoxy resin (EPOXY) can be used. The following procedure was prepared by mixing 50 parts of DER331 and 50 parts of DEN 438 in a 80 〇C resin kettle until a homogeneous solution was formed. Next, 10 parts of Dyhard 100S and 3 parts of Dyhard UR300 were added and the mixture was continuously mixed at 80 ° C for 20 minutes in the resin kettle. Thereafter, 570 parts of AI2O3 filler was added to the vinegar jug and mixing was continued until the filler was completely dispersed in the resin to form a slurry. The gas contained in the resin emulsion was removed by vacuum for 30 minutes, then the resin emulsion was placed on the surface of a copper foil, and another copper foil was placed on the surface of the resin slurry to form a copper foil/salt pulp/copper foil composite structure. . The copper foil/salt pulp/copper foil composite structure was placed in a 3 mm thick metal frame, and the surface of the copper foil was flattened using a rubber roller. The composite structure (along with the metal frame) was placed in a 130 ° C oven for pre-cure for 1 hour. Thereafter, the composite structure was placed in a vacuum hot press (vacuum degree: 10 torr, pressure: 50 kg/cm2) together with a metal frame, and further cured at a temperature of 150 ° C for 1 hour. The composite structure was cooled to less than 50 ° C under a pressure of 50 kg/cm 2 and the composite structure was removed from the hot press. The test substrates of the PVDF and PETFE experimental groups and the HDPE and EPOXY control groups were subjected to the following tests: 1) Flexibility: The test substrate of 1 cm width was bent into a cylinder of 5 mm diameter, and the surface was not broken or cracked. situation. 1302372 2. Tin furnace test: Place the test substrate at 260. For 5 minutes, the surface of the tin can not be blistering or other abnormal appearance. 3. Pull force (peel strength) test: According to Japanese Industrial Standard JIS C6481. 4. Dielectric strength (insulation breakdown voltage) test: The withstand voltage test is carried out in accordance with JIS C2110, the industry standard. It can be seen from Table 2 that the experimental group of the fluorine-containing polymer PVDF and PETFE has good flexibility and high temperature resistance, and can withstand a high voltage of 5 kV or more by withstand voltage test. In contrast, the control group 1 using HDPE as a polymer, although passing the flexibility test, did not pass the 260 °C tin furnace high temperature test, and the withstand voltage was less than 2 kV, which was significantly smaller than the experimental groups of Nos. 1 and 2. As for the control group 2 using EPOXY as a polymer, although it can be tested by a high temperature tin furnace, its hardness is high and it is not flexible. In addition, the above-mentioned PVDF and PETFE fluorine-containing materials have the characteristics of being non-flammable and non-combustible (in accordance with UL 94 V-0), and are more safe than HDPE and EPOXY. The volume percentage of the fluoropolymer and the thermally conductive filler can be adjusted to some extent while still maintaining the same characteristics. Preferably, the volume percentage of the fluoropolymer is between 30 and 60%; and the volume percentage of the thermally conductive filler is between 40 and 70%, and more preferably between 50 and 65%. In addition to the above materials, the thermally conductive polymer may also be selected from polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoro-propylene copolymer (FEP), and ethylene. Tetrafluoroethylene copolymer-12- 1302372

(ethylene-tetrafluoroethylene copolymer ; ETFE)、全氟烴 氧改質 四 氟乙烯(perfluoroalkoxy modified tetrafluoroethylenes ; PFA)、聚(氣三-氟四氟乙 烯)(poly(chlorotri-fluorotetrafluoroethylene) ; PCTFE)、二 氣乙浠-四 氟乙稀聚合物 (vinylidene fluoride-tetrafluoroethylene copolymer) ; VF-2-TFE)、聚二 氟乙浠(poly(vinylidene fluoride))、四氟乙烯-全氟間二氧 雜環戊浠共聚物(tetrafluoroethylene-perfluorodioxole copolymers)、二氟乙烯-六氟丙稀共聚物(vinylidene fluoride-hexafluoropropylene copolymer)、二氟乙烯-六氟丙 稀-四 氣乙稀 三聚物 (vinylidene fluoride-hexafluor opr opylene-tetrafluoro ethylene terpolymer)、及四氟乙烯-全氣甲基乙稀基醚 (tetrafluoroethylene-perfluoromethylvinylether)力口上固 4匕域 之單體三聚物(cure site monomer terpolymer)等。 導熱填料可選用氮化物(nitride)或氧化物(oxide)。氮化物 包含氮化錯(zirconium nitride ; ZrN)、氮化蝴(Boron nitride ; BN)、氮化铭(Aluminum nitride ; AIN)、氮化石夕 (Silicon nitride ; SiN)。氧化物包含氧化銘(Aluminum oxide; AI2O3)、氧化镁(Magnesium oxide ; MgO)、氧化鋅 (Zinc oxide ; ZnO)、二氧化鈦(Titaninum dioxide ; Ti02)等。 另外,若應用於LED之高功率發光元件,承載LED元件 10之該第一金屬層21可採用銅,而得製作出LED元件之相 關電路,而底部之第二金屬層22則可採用銅、鋁或其合金。 -13- 1302372 本發明之散熱基板,不僅具有高導熱效率、耐高電壓、 耐高溫等特性,更具備高拉力強度及可撓曲性,而得以應 用於目前照明用之LED模組散熱,甚至可用於筆記型電 腦、手機等摺疊式散熱之應用。 本發明之技術内容及技術特點已揭示如上,然而熟悉本 項技術之人士仍可能基於本發明之教示及揭示而作種種不 背離本發明精神之替換及修飾。因此,本發明之保護範圍 應不限於實施例所揭示者,而應包括各種不背離本發明之 替換及修飾,並為以下之申請專利範圍所涵蓋。 【圖式簡單說明】 圖1例示本發明一實施例之散熱基板。 【主要元件符號說明】 10 LED元件 2 0 散熱基板 21第一金屬層 22 第二金屬層 23 導熱高分子介電絕緣材料層 -14-(ethylene-tetrafluoroethylene copolymer; ETFE), perfluoroalkoxy modified tetrafluoroethylenes (PFA), poly(chlorotri-fluorotetrafluoroethylene; PCTFE), second gas Vinidyl fluoride-tetrafluoroethylene copolymer; VF-2-TFE), poly(vinylidene fluoride), tetrafluoroethylene-perfluorodioxetane copolymer (tetrafluoroethylene-perfluorodioxole copolymers), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-hexafluor opr opylene Tetrafluoroethylene terpolymer), and tetrafluoroethylene-perfluoromethylvinylether, a tetraester-terminated urethane (cure site monomer terpolymer). The heat conductive filler may be selected from a nitride or an oxide. The nitride includes zirconium nitride (ZrN), boron nitride (BN), aluminum nitride (AIN), and silicon nitride (SiN). The oxide includes aluminum oxide (AI2O3), magnesium oxide (Magnesium oxide; MgO), zinc oxide (ZnO), titanium dioxide (Titanium dioxide; Ti02). In addition, if the high-voltage light-emitting element is applied to the LED, the first metal layer 21 carrying the LED element 10 can be made of copper, and the related circuit of the LED element can be fabricated, and the second metal layer 22 at the bottom can be made of copper. Aluminum or its alloy. -13- 1302372 The heat dissipating substrate of the invention not only has high thermal conductivity, high voltage resistance, high temperature resistance and the like, but also has high tensile strength and flexibility, and can be applied to heat dissipation of LED modules for current lighting, and even It can be used for folding heat sink applications such as notebook computers and mobile phones. The technical contents and technical features of the present invention have been disclosed as above, and those skilled in the art can still make various substitutions and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the present invention should be construed as being limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates a heat dissipation substrate according to an embodiment of the present invention. [Main component symbol description] 10 LED component 2 0 heat dissipation substrate 21 first metal layer 22 second metal layer 23 thermal conductive polymer dielectric insulating material layer -14-

Claims (1)

1302372 十、申請專利範圍: 1' —種電子元件之散熱基板,包含: 一第一金屬層,其一表面承載該電子元件; 一第二金屬層;以及 一導熱高分子介電絕緣材料層,疊設於該第一金屬層 及第一金屬層之間並形成物理接觸,該導熱高分子介電絕 緣材料層與該第一和第二金屬層之介面包含至少一粗糙 • 度Rz大於7·〇之微粗糙面,該微粗糙面包含複數個瘤狀突 出物,且該瘤狀突出物之粒徑主要分佈於0.1至100微米之 間,該導熱高分子介電絕緣材料層之導熱係數大於 K ’厚度小於〇 ^πιηι,且包含: (1) 含氟南分子聚合物,其熔點高於15〇〇C,且體積 百分比介於30-60%之間;及 (2) 導熱填料,散佈於該含氟高分子聚合物中,且其 體積百分比介於4〇_7〇°/〇之間。 ••根據請求項1之電子元件之散熱基板,其中該第-金屬層 之尽度小於0.1 mm。 3 根據晴求項1之電子元件之散熱基板,其中該第二金屬層 之尽度小於0.2mm。 據π求項1之電子元件之散熱基板,其中該含氟高分子 聚合物之熔點高於220°C。 據明求項1之電子元件之散熱基板,其中該導熱填料之 體積百分比介於50-65%。 根據凊求項1之電子元件之散熱基板,其中該導熱高分子 *1302372 介電絕緣材料層錢第一及第丨電極㈣之拉力強度大 於 8N/cm。 7·根據請求項1之電子元件之散熱基板,其係1cm寬之試驗 基板繞曲成5mm直徑之圓柱時表面無斷裂或裂痕產生。 8.根據明求項1之電子元件之散熱基板,其置於之錫 爐5分鐘,表面無起泡及外觀異常。 9·根據請求項1之電子元件之散熱基板,其可耐電壓大於 3kV 〇 1〇·根據明求項1之電子元件之散熱基板,其中該含氣高分子 聚a物係選自聚氟化亞乙豨或乙烯—四氟乙烯共聚物。 11·根據請求項1之電子元件之散熱基板,其中該含氣高分子 聚口物係選自聚四氟乙烯、四氟乙稀一六氣丙稀共聚物、 乙烯—四氟乙烯共聚物、全氟烴氧改質四氟乙烯、聚(氣 三一氟四氟乙烯)、二氟乙烯—四氟乙烯聚合物、聚二氟乙 烯、四氟乙烯-全氟間二氧雜環戊烯共聚物、二氟乙烯一 /、氟丙稀共聚物、二氟乙稀—六氟丙烯-四氟乙烯三聚 物及四氟乙烯-全氟曱基乙烯基醚加上固化域之單體三 聚物。 12.根據請求項丨之電子元件之散熱基板,其中該導熱填料係 選自氮化物或氧化物。 13·根據明求項12之電子凡件之散熱基板,其中該氮化物係 選自氮化錘、氮化硼、氮化鋁、氮化矽。 14·根據明求項12之電子元件之散熱基板,其中該氧化物係 選自氧化鋁、氧化鎂、氧化鋅、二氧化鈦。 -1302372 15·根據請求項1之電子元件之散熱基板,其係經過$2〇Mraci 之放射線照射使該導熱高分子介電絕緣材料層交鏈固 化 16·根據請求項1之電子元件之散熱基板,其中該電子元件係 一發光二極體(LED)元件。 該第一金屬層 17·根據請求項1之電子元件之散熱基板,其中 係包含钢。 18.=求項1之電子元件之散熱基板,其中該第二金屬層 你包含銘。1302372 X. Patent application scope: 1' - a heat dissipating substrate for an electronic component, comprising: a first metal layer, one surface of which carries the electronic component; a second metal layer; and a thermally conductive polymer dielectric insulating material layer, Laminating between the first metal layer and the first metal layer and forming a physical contact, the interface between the thermally conductive polymer dielectric insulating material layer and the first and second metal layers includes at least one roughness • the degree Rz is greater than 7· a micro-rough surface comprising a plurality of knob-like protrusions, wherein the diameter of the knob-like protrusions is mainly distributed between 0.1 and 100 micrometers, and the thermal conductivity of the layer of the thermally conductive polymer dielectric insulating material is greater than K 'thickness is less than 〇^πιηι, and contains: (1) a fluorine-containing southern molecular polymer having a melting point higher than 15 ° C and a volume percentage between 30-60%; and (2) a thermally conductive filler, dispersed In the fluorine-containing polymer, and the volume percentage thereof is between 4 〇 7 〇 ° / 。. • The heat sink substrate of the electronic component of claim 1, wherein the first metal layer has a fullness of less than 0.1 mm. 3. The heat dissipating substrate of the electronic component according to claim 1, wherein the second metal layer has a fullness of less than 0.2 mm. The heat-dissipating substrate of the electronic component according to π, wherein the fluoropolymer has a melting point higher than 220 °C. The heat dissipating substrate of the electronic component of claim 1, wherein the thermally conductive filler has a volume percentage of 50-65%. According to the heat-dissipating substrate of the electronic component of claim 1, wherein the heat-conductive polymer *1302372 dielectric insulating material layer first and second electrode (four) has a tensile strength greater than 8 N/cm. 7. The heat-dissipating substrate of the electronic component according to claim 1, wherein the test substrate is 1 cm wide and the surface of the test substrate is not broken or cracked when it is bent into a cylinder having a diameter of 5 mm. 8. The heat-dissipating substrate of the electronic component according to claim 1, which is placed in the tin furnace for 5 minutes, and has no blistering on the surface and an abnormal appearance. The heat-dissipating substrate of the electronic component according to claim 1 which is resistant to a voltage greater than 3 kV. The heat-dissipating substrate of the electronic component according to claim 1, wherein the gas-containing polymer poly-a system is selected from the group consisting of polyfluorinated Ethylene or ethylene-tetrafluoroethylene copolymer. The heat dissipation substrate of the electronic component according to claim 1, wherein the gas-containing polymer agglomerate is selected from the group consisting of polytetrafluoroethylene, tetrafluoroethylene hexapropylene copolymer, and ethylene-tetrafluoroethylene copolymer. Perfluorocarbon oxygen modified tetrafluoroethylene, poly(gas trifluorotetrafluoroethylene), difluoroethylene-tetrafluoroethylene polymer, polydifluoroethylene, tetrafluoroethylene-perfluorodioxole copolymer Monomers of monomers, difluoroethylene-/fluoropropane copolymer, difluoroethylene-hexafluoropropylene-tetrafluoroethylene terpolymer and tetrafluoroethylene-perfluorodecyl vinyl ether plus solidification domain Things. 12. A heat dissipating substrate for an electronic component according to the claims, wherein the thermally conductive filler is selected from the group consisting of nitrides or oxides. 13. The heat dissipating substrate of the electronic article according to claim 12, wherein the nitride is selected from the group consisting of a nitriding hammer, boron nitride, aluminum nitride, and tantalum nitride. The heat-dissipating substrate of the electronic component according to claim 12, wherein the oxide is selected from the group consisting of alumina, magnesia, zinc oxide, and titanium oxide. -1302372 15. The heat-dissipating substrate of the electronic component according to claim 1 which is subjected to radiation irradiation of $2〇Mraci to cross-link the thermally conductive polymer dielectric insulating layer. 16. The heat-dissipating substrate of the electronic component according to claim 1 The electronic component is a light emitting diode (LED) component. The first metal layer 17. The heat-dissipating substrate of the electronic component according to claim 1, wherein the heat-containing substrate comprises steel. 18. = The heat sink substrate of the electronic component of claim 1, wherein the second metal layer contains the name.
TW095131947A 2006-08-30 2006-08-30 Heat dissipation substrate for electronic device TWI302372B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW095131947A TWI302372B (en) 2006-08-30 2006-08-30 Heat dissipation substrate for electronic device
US11/803,039 US20080057333A1 (en) 2006-08-30 2007-05-11 Heat dissipation substrate for electronic device
JP2007152629A JP2008060535A (en) 2006-08-30 2007-06-08 Radiating substrate for electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095131947A TWI302372B (en) 2006-08-30 2006-08-30 Heat dissipation substrate for electronic device

Publications (2)

Publication Number Publication Date
TW200812025A TW200812025A (en) 2008-03-01
TWI302372B true TWI302372B (en) 2008-10-21

Family

ID=39152025

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095131947A TWI302372B (en) 2006-08-30 2006-08-30 Heat dissipation substrate for electronic device

Country Status (3)

Country Link
US (1) US20080057333A1 (en)
JP (1) JP2008060535A (en)
TW (1) TWI302372B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10195816B2 (en) 2014-12-01 2019-02-05 Industrial Technology Research Institute Metal/polymer composite material and method for fabricating the same
US10463500B2 (en) 2014-11-07 2019-11-05 Industrial Technology Research Institute Medical composite material, method for fabricating the same and applications thereof

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100032702A1 (en) * 2008-08-11 2010-02-11 E. I. Du Pont De Nemours And Company Light-Emitting Diode Housing Comprising Fluoropolymer
GB2464668A (en) * 2008-10-20 2010-04-28 Sensitive Electronic Co Ltd Thin light emitting diode circuit substrate and lamp strip
DE102009034138B4 (en) * 2009-07-22 2011-06-01 Semikron Elektronik Gmbh & Co. Kg Power semiconductor module with a sandwich with a power semiconductor device
TWI419382B (en) * 2009-10-28 2013-12-11 Physics Hsu Resonant light emitting diode light source device
US10290788B2 (en) * 2009-11-24 2019-05-14 Luminus Devices, Inc. Systems and methods for managing heat from an LED
EP2506320A4 (en) * 2009-11-26 2017-12-06 Nitto Denko Corporation Substrate for led mounting
JP5759192B2 (en) * 2010-01-29 2015-08-05 日東電工株式会社 Backlight and liquid crystal display device
JP5759191B2 (en) 2010-01-29 2015-08-05 日東電工株式会社 Power module
JP2012049495A (en) 2010-01-29 2012-03-08 Nitto Denko Corp Light-emitting diode device
EP2654075B1 (en) 2010-03-31 2016-09-28 EV Group E. Thallner GmbH Method for permanently connecting two metal surfaces
WO2012030421A1 (en) * 2010-05-25 2012-03-08 Qd Vision, Inc. Devices and methods
JP5684511B2 (en) * 2010-08-11 2015-03-11 三菱樹脂株式会社 Metal foil laminate, LED mounting substrate and light source device
US8803183B2 (en) 2010-10-13 2014-08-12 Ho Cheng Industrial Co., Ltd. LED heat-conducting substrate and its thermal module
CN103190204B (en) 2010-11-03 2016-11-16 3M创新有限公司 There is the flexible LED device of wire bond-tube core
WO2012061183A2 (en) 2010-11-03 2012-05-10 3M Innovative Properties Company Flexible led device for thermal management and method of making
US9698563B2 (en) 2010-11-03 2017-07-04 3M Innovative Properties Company Flexible LED device and method of making
DE102010051959A1 (en) 2010-11-19 2012-05-24 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
KR101824038B1 (en) * 2011-07-22 2018-01-31 엘지이노텍 주식회사 display apparatus
WO2013025402A2 (en) 2011-08-17 2013-02-21 3M Innovative Properties Company Two part flexible light emitting semiconductor device
KR101267252B1 (en) * 2011-08-19 2013-05-23 유한회사 한국 타코닉 High heat dissipative bendable metal copper clad laminate
US9349932B2 (en) 2011-08-29 2016-05-24 Koninklijke Philips N.V. Flexible lighting assembly, a luminaire, and a method of manufacturing a flexible layer
JP5665199B2 (en) * 2011-10-24 2015-02-04 マハジャン ニティン Endoscope with LED assembly
JP5932480B2 (en) 2012-05-02 2016-06-08 デュポン株式会社 Polyester composition filled with graphite
US9385102B2 (en) * 2012-09-28 2016-07-05 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming supporting layer over semiconductor die in thin fan-out wafer level chip scale package
WO2014091417A1 (en) 2012-12-12 2014-06-19 Koninklijke Philips N.V. Carrier structure and method of manufacturing the same
CN106304759B (en) * 2015-05-29 2018-12-11 旭景光电股份有限公司 Ultra-thin equal backing
CN105161595B (en) * 2015-08-07 2018-06-19 佛山市雄飞光电有限公司 Large-power light-emitting diodes
KR102609888B1 (en) * 2018-01-04 2023-12-05 엘지이노텍 주식회사 Heat dissipation board
EP3828233A4 (en) * 2018-08-28 2022-04-20 Daikin Industries, Ltd. Resin composition and molded article
TWI725518B (en) * 2019-08-22 2021-04-21 聚鼎科技股份有限公司 Thermally conductive board
JP7443837B2 (en) 2020-03-09 2024-03-06 株式会社豊田中央研究所 Composite dielectric material
US11312109B2 (en) * 2020-09-01 2022-04-26 Mitsubishi Chemical Composites America, Inc. Composite panel having noncombustible polymer matrix core
TWI766401B (en) * 2020-10-26 2022-06-01 南亞塑膠工業股份有限公司 Fluoride-based resin prepreg material and printed circuit board using the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4518737A (en) * 1978-12-26 1985-05-21 Rogers Corporation Dielectric material and method of making the dielectric material
US4689475A (en) * 1985-10-15 1987-08-25 Raychem Corporation Electrical devices containing conductive polymers
US5155655A (en) * 1989-08-23 1992-10-13 Zycon Corporation Capacitor laminate for use in capacitive printed circuit boards and methods of manufacture
US6175084B1 (en) * 1995-04-12 2001-01-16 Denki Kagaku Kogyo Kabushiki Kaisha Metal-base multilayer circuit substrate having a heat conductive adhesive layer
EP0744884A3 (en) * 1995-05-23 1997-09-24 Hitachi Chemical Co Ltd Process for producing multilayer printed circuit board
US6274224B1 (en) * 1999-02-01 2001-08-14 3M Innovative Properties Company Passive electrical article, circuit articles thereof, and circuit articles comprising a passive electrical article
JP2000273196A (en) * 1999-03-24 2000-10-03 Polymatech Co Ltd Heat-conductive resin substrate and semiconductor package
US20030058650A1 (en) * 2001-09-25 2003-03-27 Kelvin Shih Light emitting diode with integrated heat dissipater

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10463500B2 (en) 2014-11-07 2019-11-05 Industrial Technology Research Institute Medical composite material, method for fabricating the same and applications thereof
US10195816B2 (en) 2014-12-01 2019-02-05 Industrial Technology Research Institute Metal/polymer composite material and method for fabricating the same

Also Published As

Publication number Publication date
TW200812025A (en) 2008-03-01
US20080057333A1 (en) 2008-03-06
JP2008060535A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
TWI302372B (en) Heat dissipation substrate for electronic device
CN101140915A (en) Heat radiation substrate of electronic element
US20130163253A1 (en) White reflective flexible printed circuit board
TWI339088B (en) Heat dissipation substrate and heat dissipation material thereof
JP2018523592A (en) Organosilicone resin aluminum-based copper-clad laminate and preparation method thereof
JP5385685B2 (en) Cover-lay film, light-emitting element mounting substrate, and light source device
JP5941847B2 (en) Silicone / organic resin composite laminate, method for producing the same, and light-emitting semiconductor device using the same
JP2005139387A (en) Acrylic adhesive sheet
JP2018507279A (en) Silicone resin composition, and white prepreg and white laminate using the same
CN101316499B (en) Cooling substrates and cooling material
JP5230532B2 (en) White film, metal laminate, LED mounting substrate and light source device
JP2013023664A (en) Thermal conductive composition and thermal conductive sheet obtained by treating the same
CN104788919B (en) A kind of PBT plastic of heat conductive insulating fire resistance enhancing and preparation method thereof
JP2016150959A (en) Thermosetting resin composition, prepreg, and laminated plate
WO2020100314A1 (en) Resin composition, prepreg, and laminated plate
KR101387086B1 (en) Insulative and heat-dissipative master batch and insulative and heat-dissipative products
CN101894902B (en) LED substrate and manufacturing method thereof
CN1273289C (en) Process for preparing high performance copper-clad polytetrafluoroethylene plate
JP2005307059A (en) Poly(4-methyl-1-pentene) resin film
TW201108882A (en) Thermal conductivity copper-clad substrate
JP5514702B2 (en) Cover-lay film, light-emitting element mounting substrate, and light source device
CN113927974A (en) Epoxy resin composition copper-clad plate and preparation method thereof
Kunimune et al. High-conductivity adhesive for light-emitting diode die-attachment by low-temperature sintering of micrometer-sized Ag particles
JP2012116003A (en) Metal laminate, board for mounting led, and light source device
CN203840631U (en) High-heat-conductivity self-adhesive LED flexible circuit board