JP2013023664A - Thermal conductive composition and thermal conductive sheet obtained by treating the same - Google Patents

Thermal conductive composition and thermal conductive sheet obtained by treating the same Download PDF

Info

Publication number
JP2013023664A
JP2013023664A JP2011162382A JP2011162382A JP2013023664A JP 2013023664 A JP2013023664 A JP 2013023664A JP 2011162382 A JP2011162382 A JP 2011162382A JP 2011162382 A JP2011162382 A JP 2011162382A JP 2013023664 A JP2013023664 A JP 2013023664A
Authority
JP
Japan
Prior art keywords
mass
parts
filler
heat
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011162382A
Other languages
Japanese (ja)
Inventor
Kazuteru Kobayashi
和輝 小林
Masanobu Ichinose
正信 一瀬
Sumihiko Kurita
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011162382A priority Critical patent/JP2013023664A/en
Priority to PCT/JP2012/068555 priority patent/WO2013015233A1/en
Publication of JP2013023664A publication Critical patent/JP2013023664A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal conductive composition easy in manufacture, excellent in the improvement of the thermal conductivity and heat resistance, having high flexibility and capable of forming a thin sheet; and to provied a thermal conductive sheet obtained by treating the same.SOLUTION: The thermal conductive composition having 0.5-400 W/m K thermal conductivity is obtained by adding 30-1,500 pts.mass filler to 100 pts.mass fluororesin in which melting extrusion molding is possible, other than polytetrafluoro ethylene (PTFE) and poly vinyl fluoride (PVF). Because the filler having various characteristics is added easily and in a large quantity into the fluororesin, the thermal conductive composition is easily manufactured, is capable of easily exhibiting the characteristics of the filler, has improved thermal conductivity, excellent heat dissipation, satisfactory heat resistance and durability and high flexibility, and is capable of forming even a thin sheet.

Description

本発明は、半導体製品などの熱伝導用部品、耐熱用部品、電気絶縁用部品、電気伝導用部品などに利用される熱伝導性組成物に関し、詳しくは、ポリテトラフルオロエチレン及びポリフッ化ビニルを除く溶融押し出し成形が可能なフッ素樹脂に、フィラーを添加することで、特に熱伝導率を高めた熱伝導性組成物及びこれを加工した熱伝導性シートに関する。   The present invention relates to a heat conductive composition used for heat conducting parts such as semiconductor products, heat resistant parts, electrical insulating parts, electrical conducting parts and the like, and more specifically, polytetrafluoroethylene and polyvinyl fluoride. The present invention relates to a heat conductive composition having a particularly high heat conductivity by adding a filler to a fluororesin that can be melt-extruded, and a heat conductive sheet obtained by processing the heat conductive composition.

コンピュータ(CPU)、トランジスタ、発光ダイオード(LED)、サイリスタなどの半導体製品は、使用中に発熱し、その熱のためこれら半導体製品の性能が低下することがある。このため、このように発熱する半導体製品には、放熱材料を挟んでヒートシンクなどの放熱器が取り付けられ、半導体製品が冷却されるようになっている。   Semiconductor products such as computers (CPUs), transistors, light emitting diodes (LEDs), and thyristors generate heat during use, and the performance of these semiconductor products may be reduced due to the heat. For this reason, the semiconductor product that generates heat is attached with a radiator such as a heat sink with a heat dissipation material interposed therebetween, so that the semiconductor product is cooled.

また、近年、パワーエレクトロニクス化が進み、上記半導体製品は無論、モジュールとしても発熱量が膨大になってきている。加えて、モジュールが小型化し、それに伴い放熱器も小型化して、冷却効率を良くするためにモジュールに直接接する放熱材料も高熱伝導率を要求されるようになった。   Further, in recent years, power electronics have been advanced, and of course, the amount of heat generated by the semiconductor products has become enormous as a module. In addition, the module has been downsized, and the heat sink has also been downsized. Accordingly, in order to improve the cooling efficiency, the heat dissipating material directly in contact with the module has been required to have high thermal conductivity.

一般的に、放熱材料の熱伝導率を上げるには、素材である高分子材料にフィラーを多く添加することが必要になる。しかしながら、高分子材料にフィラーを多く添加すると、耐熱性が低下することが多く、且つ硬くなり加工性や耐久性が低下してしまうという問題がる。   In general, in order to increase the thermal conductivity of the heat dissipation material, it is necessary to add a large amount of filler to the polymer material as the material. However, when a large amount of filler is added to the polymer material, there is a problem that the heat resistance often decreases and becomes hard and the workability and durability decrease.

このような状況から、さまざまな提案がなされ、ゴム材料に高熱伝導性フィラーである窒化ホウ素を添加することで、フィラー添加量を減らし、耐熱性の低下と硬くなることを防いだ熱伝導性組成物が知られている(例えば、特許文献1参照)。   Under such circumstances, various proposals have been made, and by adding boron nitride, which is a highly thermally conductive filler, to the rubber material, the amount of filler added is reduced, and the heat conductive composition prevents the heat resistance from decreasing and becoming hard. A thing is known (for example, refer patent document 1).

また、耐熱性のよいシリコーンゴムに、窒化物あるいは炭化物と塩基性金属酸化物とを併用したフィラーを添加して、耐熱性を向上させ、軟質とした熱伝導性組成物が知られている(例えば、特許文献2参照)。   Further, a heat conductive composition is known in which a heat-resistant silicone rubber is added to a silicone rubber having good heat resistance to improve the heat resistance by adding a filler in which a nitride or carbide and a basic metal oxide are used in combination ( For example, see Patent Document 2).

また、耐熱性のよいシリコーンゴムに、高温下でもシリコーンゴムの熱劣化を助長しないカーボンフィラーを添加し、さらに、耐熱向上剤として酸化セリウムを添加して、耐熱性を向上させ、軟質とした熱伝導性組成物が知られている(例えば、特許文献3参照)。   In addition, carbon filler that does not promote thermal degradation of silicone rubber even at high temperatures is added to silicone rubber with good heat resistance, and cerium oxide is added as a heat resistance improver to improve heat resistance and soften heat. Conductive compositions are known (see, for example, Patent Document 3).

また、耐熱性のよいフッ素樹脂に、窒化ホウ素であるフィラー添加を添加して、耐熱性が高く、軟質とした熱伝導性組成物が知られている(例えば、特許文献4参照)。   Further, a heat conductive composition having high heat resistance and softness by adding a filler which is boron nitride to a fluororesin having good heat resistance is known (see, for example, Patent Document 4).

特開2005−343728号公報JP 2005-343728 A 特開平09−151324号公報JP 09-151324 A 特開平07−119010号公報JP 07-1101010 A 特開2010−137562号公報JP 2010-137562 A

特許文献1の熱伝導性組成物における窒化ホウ素は、ゴム材料に添加する量が少なくてすむから、耐熱性の良好な熱伝導性組成物のフィラーとして優れている。しかしながら、窒化ホウ素は、上記ゴム材料に添加するのが難しく、熱伝導率の改善につながりづらく、加えて、価格が高いという難点がある。   Boron nitride in the heat conductive composition of Patent Document 1 is excellent as a filler for heat conductive compositions with good heat resistance because it requires less amount to be added to the rubber material. However, boron nitride is difficult to add to the rubber material, and it is difficult to improve the thermal conductivity. In addition, there is a problem that the price is high.

特許文献2は、耐熱性の良いシリコーンゴムの熱伝導率を高めるため、窒化物あるいは炭化物と塩基性金属酸化物とを併用したフィラーを多く添加する結果、シリコーンゴムの耐熱性が低下してしまう難点がある。   In Patent Document 2, in order to increase the thermal conductivity of silicone rubber having good heat resistance, the addition of a large amount of filler using a combination of nitride or carbide and a basic metal oxide results in a decrease in the heat resistance of the silicone rubber. There are difficulties.

特許文献3は、カーボンフィラーが期待ほどシリコーンゴムの熱伝導率を向上させることがなく、多量のカーボンフィラーを添加することで、酸化セリウムの耐熱性向上の効果が薄れてしまう難点がある。   In Patent Document 3, there is a difficulty that the effect of improving the heat resistance of cerium oxide is reduced by adding a large amount of carbon filler without adding a large amount of carbon filler as expected without the carbon filler improving the thermal conductivity.

さらに、特許文献4は、フッ素樹脂に窒化ホウ素であるフィラーを直接添加しているため、添加作業が困難であり、また、フッ素樹脂は溶融しづらいから、シート加工が難しく薄いシートを得ることが困難である。   Furthermore, since Patent Document 4 directly adds a filler, which is boron nitride, to a fluororesin, the addition operation is difficult, and the fluororesin is difficult to melt, so that it is difficult to process the sheet and obtain a thin sheet. Have difficulty.

そこで、本発明の目的は、製造が容易であり、熱伝導率を改善させるとともに、耐熱性が良好で、その上、柔軟性に富み薄いシートを得ることが出来る熱伝導性組成物及びこれを加工した熱伝導性シートを提供することにある。   Accordingly, an object of the present invention is to provide a thermally conductive composition that is easy to manufacture, improves thermal conductivity, has good heat resistance, and can obtain a flexible and thin sheet. It is in providing the processed heat conductive sheet.

本発明は、上記目的を達成するために提案されたものであって、下記の構成からなることを特徴とするものである。
すなわち、本発明によれば、ポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニール(PVF)を除く溶融押し出し成形が可能なフッ素樹脂100質量部に、フィラー30ないし1500質量部を添加し、熱伝導率が0.5ないし400W/m・Kの範囲にあることを特徴とする熱伝導性組成物が提供される。
The present invention has been proposed in order to achieve the above object, and is characterized by having the following configuration.
That is, according to the present invention, 30 to 1500 parts by mass of filler is added to 100 parts by mass of a fluororesin that can be melt-extruded excluding polytetrafluoroethylene (PTFE) and polyvinyl fluoride (PVF), and the thermal conductivity. Is provided in the range of 0.5 to 400 W / m · K.

また、本発明によれば、前記フッ素樹脂はこれのディスパージョンである熱伝導性組成物が提供される。   Moreover, according to this invention, the said fluororesin provides the heat conductive composition which is a dispersion of this.

また、本発明によれば、前記フッ素樹脂に耐熱性フィラーを添加し、耐熱温度を180℃以上とした熱伝導性組成物が提供される。   Moreover, according to this invention, the heat conductive composition which added the heat resistant filler to the said fluororesin, and was made into heat resistant temperature 180 degreeC or more is provided.

また、本発明によれば、前記フッ素樹脂に電気伝導性フィラーを添加した熱伝導性組成物が提供される。   Moreover, according to this invention, the heat conductive composition which added the electroconductive filler to the said fluororesin is provided.

また、本発明によれば、前記フィラーは、織布、不織布、耐熱フィルムから選択された1種類以上である熱伝導性組成物が提供される。   Further, according to the present invention, there is provided a thermally conductive composition in which the filler is one or more selected from a woven fabric, a nonwoven fabric, and a heat resistant film.

また、本発明によれば、上記した複数の熱伝導性組成物から選択された1の熱伝導性組成物をシート状に加工してなることを特徴とする熱伝導性シートが提供される。   In addition, according to the present invention, there is provided a heat conductive sheet characterized by processing one heat conductive composition selected from the plurality of heat conductive compositions described above into a sheet shape.

本発明によれば、ポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニール(PVF)を除く溶融押し出し成形が可能なフッ素樹脂に、種々の特性を有するフィラーを大量に且つ容易に添加出来るため、まず、製造が容易であり、添加したフィラーの特性を顕在化させ易く、特に、熱伝導率の改善を図れて放熱性に優れ、耐熱性や耐久性も良好であり、柔軟性に富み薄いシートも得ることが出来る効果がある。   According to the present invention, fillers having various characteristics can be easily added in large quantities to a fluororesin that can be melt-extruded except polytetrafluoroethylene (PTFE) and polyvinyl fluoride (PVF). Easy to manufacture, easily reveal the characteristics of the added filler, especially improve the thermal conductivity, excellent heat dissipation, good heat resistance and durability, and obtain a flexible and thin sheet There is an effect that can be.

本発明の熱伝導性組成物の利用形態を示す正面図である。It is a front view which shows the utilization form of the heat conductive composition of this invention. 本発明の熱伝導性組成物の利用形態を示す側面図である。It is a side view which shows the utilization form of the heat conductive composition of this invention. 本発明の熱伝導性シートをLED電球に適用した状態を示す側面図である。It is a side view which shows the state which applied the heat conductive sheet of this invention to the LED bulb.

本発明の熱伝導性組成物のベースとして使われる高分子材料は、ポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニル(PVF)を除く溶融押し出し成形が可能なフッ素樹脂(以下、単に「フッ素樹脂材料」という)である。
本発明において使用出来るフッ素樹脂材料は、具体的には、パーフルオロアルコキシアルカン(PFA)、パーフルオロエチレンプロペンコポリマー(FEP)、エチレン−テトラフルオロエチレンコポリマー(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン−クロロトリフルオロエチレンコポリマー(ECTFE)、テトラフルオロエチレン−パーフルオロジイオキソールコポリマー(TFE/PDD)などであり、これ以外にもPTFE及びPVFを除く溶融押し出し成形が可能なフッ素樹脂であればよく、これらから1種あるいは2種以上の混合物でもよく、さらに、上記のフッ素樹脂材料あるいはフッ素樹脂材料を主体とする混合物に、これらのフッ素樹脂材料以外の耐熱性のある高分子材料を混合したものでもよい。
The polymer material used as the base of the heat conductive composition of the present invention is a fluororesin that can be melt-extruded except polytetrafluoroethylene (PTFE) and polyvinyl fluoride (PVF) (hereinafter simply referred to as “fluororesin material”). ").
Specific examples of the fluororesin material that can be used in the present invention include perfluoroalkoxyalkane (PFA), perfluoroethylene propene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE), and polychlorotrifluoroethylene (PCTFE). , Ethylene-chlorotrifluoroethylene copolymer (ECTFE), tetrafluoroethylene-perfluorodioxole copolymer (TFE / PDD), etc., and any other fluororesin that can be melt-extruded except PTFE and PVF. One or a mixture of two or more of these may be used, and a heat-resistant polymer material other than these fluororesin materials may be mixed with the above fluororesin material or a mixture mainly composed of the fluororesin material. Did But good.

そして、上記のフッ素樹脂材料は、ディスパージョン溶液であり、そのフッ素樹脂材料濃度は10ないし90質量%の範囲であることが好ましく、より好ましくは40ないし70質量%の範囲である。   The fluororesin material is a dispersion solution, and the fluororesin material concentration is preferably in the range of 10 to 90 mass%, more preferably in the range of 40 to 70 mass%.

また、本発明に使われるフィラーとしては、金属酸化物、窒化物、炭化物、金属粉、カーボン、カーボンナノチューブ、グラファイト、炭素繊維などが挙げられる。上記の金属酸化物としては、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化チタン、酸化珪素などがあり、窒化物としては、窒化ホウ素、窒化アルミニウム、窒化珪素などがあり、炭化物としては、炭化珪素、炭化ホウ素などがあり、さらに、金属粉としては、銀、金、銅、アルミニウムなどがあり、これらから1種あるいは2種以上の混合物も使用できる。
なお、上記各種フィラーのうち、特に電気伝導性を付与するものとしては、金属粉、カーボン、グラファイトであり、これらから電気伝導性の強度により選択され、さらに、添加するフィラーはこれらから1種あるいは2種以上の混合物としてもよい。
Examples of the filler used in the present invention include metal oxides, nitrides, carbides, metal powders, carbon, carbon nanotubes, graphite, and carbon fibers. Examples of the metal oxide include aluminum oxide, magnesium oxide, zinc oxide, titanium oxide, and silicon oxide. Examples of the nitride include boron nitride, aluminum nitride, and silicon nitride. Examples of the carbide include silicon carbide, Examples of the metal powder include silver, gold, copper, and aluminum, and one or a mixture of two or more thereof can be used.
Of the various fillers, those imparting electrical conductivity are metal powder, carbon, and graphite, and are selected based on the strength of electrical conductivity, and the filler to be added is one or more of these. It is good also as a mixture of 2 or more types.

本発明のフッ素樹脂材料に添加して、例えば、熱伝導性を高めるためのフィラーの粒子形状は、球状あるいは繊維状いずれでもよく、この熱伝導性フィラーの平均粒径は0.02ないし200μmの範囲である。また、熱伝導性フィラーの形状が繊維状である場合は、繊維長分布0.01ないし1500μmの範囲であり、平均繊維長は、0.05ないし300μmの範囲であることが好ましく、この場合の平均繊維径は、0.01ないし15μmの範囲であることが好ましい。   In addition to the fluororesin material of the present invention, for example, the filler particle shape for enhancing the thermal conductivity may be either spherical or fibrous, and the average particle size of the thermally conductive filler is 0.02 to 200 μm. It is a range. Further, when the shape of the thermally conductive filler is fibrous, the fiber length distribution is in the range of 0.01 to 1500 μm, and the average fiber length is preferably in the range of 0.05 to 300 μm. The average fiber diameter is preferably in the range of 0.01 to 15 μm.

なお、熱伝導性フィラーの形状は、球状あるいは繊維状の1種類に統一する必要はなく、その際の平均粒径も必要に応じて、2種類以上を組み合わせて使用してもよい。   The shape of the heat conductive filler does not need to be unified into one type of spherical or fibrous, and the average particle size at that time may be used in combination of two or more types as necessary.

上記した熱伝導性フィラーは、フッ素樹脂材料100質量部に対して30ないし1500質量部の範囲で添加され、より好ましくはフッ素樹脂材料100質量部に対して50ないし1200質量部の範囲である。   The heat conductive filler described above is added in the range of 30 to 1500 parts by mass with respect to 100 parts by mass of the fluororesin material, and more preferably in the range of 50 to 1200 parts by mass with respect to 100 parts by mass of the fluororesin material.

また、フッ素樹脂材料に添加するフィラーは、表面処理をするのがよく、この表面処理剤として、シランカップリング剤、チタンカップリング剤、アルミニウムカップリング剤、フッ素系カップリング剤、高級アルコール、含フッ素高級アルコール、高級脂肪酸、含フッ素高級脂肪酸、含フッ素安息香酸、含フッ素安息香酸誘導体、ポリジメチルシロキサンなどが例示でき、これらの例示に拘束されない。これらの表面処理剤の濃度は、フィラーに対して0.1ないし5質量%の範囲である。なお、表面処理剤は、フィラーの種類毎に変えるのがよく、その処理方法は乾式法、湿式法、インテグラル法など公知の方法を使用することができる。   The filler added to the fluororesin material should be surface-treated. As the surface treatment agent, a silane coupling agent, a titanium coupling agent, an aluminum coupling agent, a fluorine coupling agent, a higher alcohol, Fluorine higher alcohol, higher fatty acid, fluorine-containing higher fatty acid, fluorine-containing benzoic acid, fluorine-containing benzoic acid derivative, polydimethylsiloxane and the like can be exemplified, and are not limited to these examples. The concentration of these surface treatment agents is in the range of 0.1 to 5% by mass with respect to the filler. In addition, it is good to change a surface treating agent for every kind of filler, and the processing method can use well-known methods, such as a dry method, a wet method, and an integral method.

主に機械的強度を高めるフィラーとしては、織布、不織布、耐熱フィルムなどがあるが、これらの材料の耐熱温度は200℃以上あることが望ましく、材質としては、硝子繊維、ポリフェニレンスルフィド、ポリアミド、ポリイミド、テトラフルオロエチレンなどを例示できるが、これらの例示に限定されるものではない。   As fillers mainly increasing mechanical strength, there are woven fabric, non-woven fabric, heat-resistant film, etc., but the heat-resistant temperature of these materials is desirably 200 ° C. or higher, and the materials include glass fiber, polyphenylene sulfide, polyamide, Although polyimide, tetrafluoroethylene, etc. can be illustrated, it is not limited to these illustrations.

織布は、平織、綾織などがあり、いずれを用いてもよいが、特に平織が好ましい。これらの織布、不織布、耐熱フィルムの厚みは2ないし100μmの範囲であることが好ましく、より好ましい厚みは、4ないし50μmの範囲である。さらに、フィラーとして織布、不織布を使用する場合は、これらに存在する編み目、空隙を埋めておくのが電気絶縁性を向上させる点で好ましい。これら編み目、空隙を埋める作業は、事前に高分子材料単独あるいはフィラー添加の高分子材料のコンパウンドを溶剤で希釈して塗料を作り、この塗料中に織布、不織布をさっと漬けて余分な塗料を掻き取ったあと乾燥硬化させるのがよい。   The woven fabric includes plain weave and twill weave, and any of them may be used, but plain weave is particularly preferable. The thickness of these woven fabrics, nonwoven fabrics, and heat resistant films is preferably in the range of 2 to 100 μm, and more preferably in the range of 4 to 50 μm. Furthermore, when a woven fabric or a non-woven fabric is used as the filler, it is preferable to fill the stitches and voids present in these in terms of improving the electrical insulation. Before filling these stitches and gaps, make a paint by diluting the polymer material alone or the compound of the polymer material with filler added with a solvent, and quickly immerse the woven or non-woven fabric in this paint to remove the extra paint. It is better to dry and harden after scraping.

また、上述のように、フッ素樹脂材料100質量部に対してフィラー30ないし1500質量部の範囲で添加されるが、この際の混合は、ポットミル、プラネタリミキサー、二本ロール、3本ロールなど公知の装置を使用して行われ、目的とする熱伝導性組成物を得ることができる。さらに、得られた熱伝導性組成物のシート成形は、カレンダー成形、スクリーン印刷、プレス成形、押し出し成形、コーティングなど種々あり、どれを用いてもよい。   Further, as described above, the filler is added in the range of 30 to 1500 parts by mass with respect to 100 parts by mass of the fluororesin material. The target heat conductive composition can be obtained by using the apparatus. Furthermore, there are various sheet moldings of the obtained heat conductive composition such as calendar molding, screen printing, press molding, extrusion molding, and coating, and any of them may be used.

なお、熱伝導性組成物1は、例えば、図1、2に示すように、半導体製品2とアルミ板3との間に密着した状態で介在し、さらに、アルミ板3の下にヒートシンク4が設けられていて、半導体製品2とアルミ板3との間を電気絶縁すると共に、アルミ板3に半導体製品2からの熱を伝導して、ヒートシンク4により放熱する。
また、LED電球では、例えば、図3に示すように、LED素子5の下に敷かれた金属基板6の下に、さらに熱伝導性シート1Aが敷かれ、さらに、その下にヒートシンク4Aが設けられて、金属基板6とヒートシンク4Aとの間を電気絶縁すると共に、金属基板6にLED素子5からの熱を伝導して、ヒートシンク4Aにより放熱する。
The heat conductive composition 1 is interposed between the semiconductor product 2 and the aluminum plate 3 as shown in FIGS. 1 and 2, for example. It is provided and electrically insulates between the semiconductor product 2 and the aluminum plate 3, conducts heat from the semiconductor product 2 to the aluminum plate 3, and dissipates heat by the heat sink 4.
In the LED bulb, for example, as shown in FIG. 3, a heat conductive sheet 1A is further laid under the metal substrate 6 laid under the LED element 5, and a heat sink 4A is further provided thereunder. Thus, the metal substrate 6 and the heat sink 4A are electrically insulated from each other, and the heat from the LED element 5 is conducted to the metal substrate 6 to be radiated by the heat sink 4A.

以下に、本発明の熱伝導性組成物及びこれを加工した熱伝導性シートの優位性を検証したので、その状況を詳述する。   Below, since the superiority of the heat conductive composition of this invention and the heat conductive sheet which processed this was verified, the situation is explained in full detail.

[実施例1]
パーフルオロエチレン−プロペンコポリマー(FEP)成分が56質量%のディスパージョン溶液(三井・デュポンポリケミカル株式会社製)(以下、単に「56%FEPディスパージョン溶液」という)178.5質量部に、酸化アルミニウム(AA−3 住友化学社製)(以下、単に「酸化アルミニウム」という)250質量部、溶剤800質量部を添加して、ポットミルにて混練りして塗材にした。この塗材をイミドフィルムに塗布して室温で1時間風乾し、さらに、120℃、1時間の条件で乾燥機にて乾燥させた。そして、イミドフィルムで上下を挟み、熱圧着装置にて300℃、50kg/cm2 の圧力で1分間熱圧着して、0.2mm厚みの熱伝導性シートを得た。
[Example 1]
Dispersion solution (manufactured by Mitsui DuPont Polychemical Co., Ltd.) having a perfluoroethylene-propene copolymer (FEP) component of 56% by mass (hereinafter simply referred to as “56% FEP dispersion solution”) is oxidized to 178.5 parts by mass. 250 parts by mass of aluminum (AA-3 manufactured by Sumitomo Chemical Co., Ltd.) (hereinafter simply referred to as “aluminum oxide”) and 800 parts by mass of a solvent were added, and kneaded in a pot mill to obtain a coating material. This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. And the upper and lower sides were pinched | interposed with the imide film, and it heat-pressed for 1 minute at 300 degreeC and the pressure of 50 kg / cm < 2 > with the thermocompression bonding apparatus, and obtained the 0.2-mm-thick heat conductive sheet.

[実施例2]
56%FEPディスパージョン溶液178.5質量部に、酸化アルミニウム500質量部、溶剤1000質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 2]
To 178.5 parts by mass of the 56% FEP dispersion solution, 500 parts by mass of aluminum oxide and 1000 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.

[実施例3]
56%FEPディスパージョン溶液178.5質量部に、酸化アルミニウム250質量部、シランカップリング剤(KBM−3063、信越化学工業株式会社製)(以下、単に「シランカップリング剤」という)2.5質量部、溶剤800質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 3]
178.5 parts by mass of 56% FEP dispersion solution, 250 parts by mass of aluminum oxide, silane coupling agent (KBM-3063, manufactured by Shin-Etsu Chemical Co., Ltd.) (hereinafter simply referred to as “silane coupling agent”) 2.5 Mass parts and 800 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.

[実施例4]
56%FEPディスパージョン溶液178.5質量部に、酸化アルミニウム500質量部、シランカップリング剤5.0質量部、溶剤1000質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 4]
To 178.5 parts by mass of 56% FEP dispersion solution, 500 parts by mass of aluminum oxide, 5.0 parts by mass of silane coupling agent, and 1000 parts by mass of solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.

[実施例5]
56%FEPディスパージョン溶液178.5質量部に、窒化ホウ素(HP-40、水島合金株式会社製)(以下、単に「窒化ホウ素」という)56質量部、溶剤150質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 5]
Pot mill was added to 178.5 parts by mass of 56% FEP dispersion solution by adding 56 parts by mass of boron nitride (HP-40, manufactured by Mizushima Alloy Co., Ltd.) (hereinafter simply referred to as “boron nitride”) and 150 parts by mass of solvent. Kneaded into a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.

[実施例6]
56%FEPディスパージョン溶液178.5質量部に、窒化ホウ素85質量部、溶剤200質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 6]
To 178.5 parts by mass of the 56% FEP dispersion solution, 85 parts by mass of boron nitride and 200 parts by mass of the solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.

[実施例7]
56%FEPディスパージョン溶液178.5質量部に、グラファイト粉(CGC−50、日本黒鉛工業株式会社製)(以下、単に「グラファイト粉」という)230質量部、増粘剤溶液(外割2%CMC溶液、カルボキシメチルセルロースアンモニウム粉末、和光純薬工業株式会社製)(以下、単に「増粘剤溶液」という)12質量部、溶剤580質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 7]
To 178.5 parts by mass of 56% FEP dispersion solution, 230 parts by mass of graphite powder (CGC-50, manufactured by Nippon Graphite Industry Co., Ltd.) (hereinafter simply referred to as “graphite powder”), thickener solution (2% of outer percent) CMC solution, carboxymethyl cellulose ammonium powder, manufactured by Wako Pure Chemical Industries, Ltd. (hereinafter simply referred to as “thickener solution”) 12 parts by mass, 580 parts by mass of solvent, and kneaded in a pot mill to form a coating material I made it. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.

[実施例8]
56%FEPディスパージョン溶液178.5質量部に、グラファイト粉400質量部、増粘剤溶液12質量部、溶剤1000質量部を添加して、ポットミルにて混練りして塗材にした。この塗材を用いて実施例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Example 8]
To 178.5 parts by mass of 56% FEP dispersion solution, 400 parts by mass of graphite powder, 12 parts by mass of thickener solution, and 1000 parts by mass of solvent were added and kneaded in a pot mill to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Example 1.

[実施例9]
56%FEPディスパージョン溶液(三井・デュポンポリケミカル株式会社製)178.5質量部に対して酸化亜鉛 150質量部(酸化亜鉛1種 堺化学工業株式会社製)、球状酸化亜鉛 600質量部(LPZINC−11 堺化学工業株式会社製)、シランカップリング剤2.5質量部(KBM−3063)、溶剤1000質量部を添加してポットミルにて混練りし塗材にした。
この塗材をイミドフィルムに塗布して室温で1時間風乾し、さらに120℃、1時間の条件で乾燥機にて乾燥させた。更にイミドフィルムで上下挟み熱圧着装置にて温度300℃、加圧50kg/cmで1分間熱圧着し厚み0.2mmの熱伝導性組成物を得た。
[Example 9]
56% FEP dispersion solution (Mitsui / DuPont Polychemical Co., Ltd.) 178.5 parts by mass Zinc oxide 150 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 600 parts by mass (LPZINC -11 Sakai Chemical Industry Co., Ltd.), 2.5 parts by mass of a silane coupling agent (KBM-3063), and 1000 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material.
This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. Further, the film was sandwiched between imide films by thermocompression bonding at a temperature of 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute to obtain a thermally conductive composition having a thickness of 0.2 mm.

[実施例10]
56%FEPディスパージョン溶液(三井・デュポンポリケミカル株式会社製)178.5質量部に対して酸化亜鉛 300質量部(酸化亜鉛1種 堺化学工業株式会社製)、球状酸化亜鉛 1200質量部(LPZINC−11 堺化学工業株式会社製)、シランカップリング剤5.0質量部(KBM−3063)、溶剤1200質量部を添加してポットミルにて混練りし塗材にした。
この塗材をイミドフィルムに塗布して室温で1時間風乾し、さらに120℃×1時間の条件で乾燥機にて乾燥させた。更にイミドフィルムで上下挟み熱圧着装置にて温度300℃、加圧50kg/cmで1分間熱圧着し厚み0.2mmの熱伝導性組成物を得た。
[Example 10]
56% FEP dispersion solution (Mitsui / DuPont Polychemical Co., Ltd.) 178.5 parts by mass Zinc oxide 300 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 1200 parts by mass (LPZINC -11 Sakai Chemical Industry Co., Ltd.), 5.0 parts by mass of a silane coupling agent (KBM-3063), and 1200 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material.
This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. Further, the film was sandwiched between imide films by thermocompression bonding at a temperature of 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute to obtain a thermally conductive composition having a thickness of 0.2 mm.

以上の実施例で得られたシート及び組成物について、熱伝導率、曲げ特性、耐熱性を以下の方法にて測定した。
(1)熱伝導率 ASTM D5470に準じて測定した。
(2)曲げ特性
◎:φ1のピンゲージを使用して熱伝導性シートが割れない場合
○:φ1.1ないし2のピンゲージを使用して熱伝導性シートが割れない場合
△:φ2.1ないし3のピンゲージを使用して熱伝導性シートが割れない場合
×:φ3.1以上のピンゲージを使用して熱伝導性シートが割れる場合
(3)耐熱性
熱伝導性シートを熱風循環式オーブンにて300°C×24時間曝露する。まず、曝露する前の熱伝導性シートが割れない最少径のピンゲージを探査する。次に、曝露したあとの熱伝導性シートが割れない最少径のピンゲージを探査する。そして、曝露前後のピンゲージの径の差により耐熱性を判定する。
◎:ピンゲージ径の差がφ0ないし1.0の場合
○:ピンゲージ径の差がφ1.1ないし2の場合
△:ピンゲージ径の差がφ2.1ないし3の場合
×:ピンゲージ径の差がφ3.1以上の場合
その結果を表1に示した。
About the sheet | seat and composition obtained by the above Example, thermal conductivity, a bending characteristic, and heat resistance were measured with the following method.
(1) Thermal conductivity It measured according to ASTM D5470.
(2) Bending characteristics ◎: When the thermally conductive sheet is not cracked using a pin gauge of φ1 ○: When the thermally conductive sheet is not cracked using a pin gauge of φ1.1 to 2 Δ: φ2.1 to 3 When the heat conductive sheet is not broken using a pin gauge of No. x: When the heat conductive sheet is cracked using a pin gauge of φ3.1 or more (3) Heat resistance The heat conductive sheet is heated in a hot air circulation oven 300 Exposure at ° C x 24 hours. First, a pin gauge with the smallest diameter that does not break the thermal conductive sheet before exposure is searched. Next, a pin gauge of the smallest diameter that does not break the thermally conductive sheet after exposure is searched. And heat resistance is determined by the difference in the diameter of the pin gauge before and after exposure.
◎: When the pin gauge diameter difference is φ0 to 1.0 ○: When the pin gauge diameter difference is φ1.1 to 2 △: When the pin gauge diameter difference is φ2.1 to 3 ×: The pin gauge diameter difference is φ3 .1 or more The results are shown in Table 1.

[比較例1]
シリコーンゴム(SE1183U、東レ・ダウコーニング株式会社製)(以下、単に「シリコーンゴム」という)100質量部に、酸化アルミニウム250質量部、加硫剤(RC−1東レ・ダウコーニング社製)(以下、単に「加硫剤」という)4質量部、キシレン100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材をポリエステルフィルムにコーティングして室温で24時間風乾し、さらに、100℃×30分間の条件で熱風循環式オーブンで硬化させた。ポリエステルフィルムを剥がして、0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 1]
100 parts by mass of silicone rubber (SE1183U, manufactured by Toray Dow Corning Co., Ltd.) (hereinafter simply referred to as “silicone rubber”), 250 parts by mass of aluminum oxide, and vulcanizing agent (manufactured by RC-1 Toray Dow Corning Co., Ltd.) 4 parts by weight and simply 100 parts by weight of xylene were added and kneaded with a planetary mixer to form a coating material. This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off to obtain a 0.2 mm thick thermally conductive sheet.

[比較例2]
シリコーンゴム100質量部に、酸化アルミニウム250質量部、加硫剤6質量部、キシレン100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 2]
To 100 parts by mass of silicone rubber, 250 parts by mass of aluminum oxide, 6 parts by mass of vulcanizing agent, and 100 parts by mass of xylene were added and kneaded with a planetary mixer to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 1.

[比較例3]
シリコーンゴム100質量部に、酸化アルミニウム250質量部、シランカップリング剤2.5質量部、加硫剤4質量部、キシレン100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 3]
To 100 parts by mass of silicone rubber, 250 parts by mass of aluminum oxide, 2.5 parts by mass of silane coupling agent, 4 parts by mass of vulcanizing agent, and 100 parts by mass of xylene are added and kneaded with a planetary mixer to form a coating material. did. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 1.

[比較例4]
シリコーンゴム100質量部に、酸化アルミニウム500質量部、シランカップリング剤5.0質量部、加硫剤6質量部、キシレン100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例1と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 4]
To 100 parts by mass of silicone rubber, 500 parts by mass of aluminum oxide, 5.0 parts by mass of silane coupling agent, 6 parts by mass of vulcanizing agent, and 100 parts by mass of xylene are added and kneaded with a planetary mixer to form a coating material. did. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 1.

[比較例5]
シリコーンゴム100質量部に、窒化ホウ素56質量部、加硫剤4質量部、溶剤100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材をポリエステルフィルムにコーティングして室温で24時間風乾し、さらに、100℃×30分間の条件で熱風循環式オーブンで硬化させた。ポリエステルフィルムを剥がし、さらに、200℃×4時間の二次加硫をして0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 5]
To 100 parts by mass of silicone rubber, 56 parts by mass of boron nitride, 4 parts by mass of vulcanizing agent, and 100 parts by mass of solvent were added and kneaded with a planetary mixer to obtain a coating material. This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off, and further subjected to secondary vulcanization at 200 ° C. for 4 hours to obtain a 0.2 mm thick heat conductive sheet.

[比較例6]
シリコーンゴム100質量部に、窒化ホウ素85質量部、加硫剤6質量部、溶剤100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例5と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 6]
To 100 parts by mass of silicone rubber, 85 parts by mass of boron nitride, 6 parts by mass of vulcanizing agent, and 100 parts by mass of solvent were added and kneaded with a planetary mixer to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 5.

[比較例7]
シリコーンゴム100質量部に、グラファイト粉230質量部、加硫剤4質量部、溶剤100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材をポリエステルフィルムにコーティングして室温で24時間風乾したのち、もう1枚のポリエステルフィルムを被せ、100℃×30分間の条件でプレス加工により硬化させた。ポリエステルフィルムを剥がし、さらに、200℃×4時間の二次加硫をして0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 7]
To 100 parts by mass of silicone rubber, 230 parts by mass of graphite powder, 4 parts by mass of vulcanizing agent, and 100 parts by mass of solvent were added and kneaded with a planetary mixer to obtain a coating material. This coating material was coated on a polyester film and air-dried at room temperature for 24 hours, and then covered with another polyester film and cured by press processing at 100 ° C. for 30 minutes. The polyester film was peeled off, and further subjected to secondary vulcanization at 200 ° C. for 4 hours to obtain a 0.2 mm thick heat conductive sheet.

[比較例8]
シリコーンゴム100質量部に、グラファイト粉400質量部、加硫剤4質量部、溶剤100質量部を添加して、プラネタリミキサーにて混練りして塗材にした。この塗材を用いて比較例7と同様の方法にて0.2mm厚みの熱伝導性シートを得た。
[Comparative Example 8]
To 100 parts by mass of silicone rubber, 400 parts by mass of graphite powder, 4 parts by mass of vulcanizing agent, and 100 parts by mass of solvent were added and kneaded with a planetary mixer to obtain a coating material. Using this coating material, a 0.2 mm thick thermally conductive sheet was obtained in the same manner as in Comparative Example 7.

[比較例9]
シリコーンゴム(SE1183U 東レ・ダウコーニング株式会社製) 100質量部に対して酸化亜鉛 150質量部(酸化亜鉛1種 堺化学工業株式会社製)、球状酸化亜鉛 600質量部(LPZINC−11 堺化学工業株式会社製)、シランカップリング剤2.5質量部(KBM−3063)、溶剤100質量部を添加してプラネタのミキサーにて混練りし塗材にした。
この塗材をポリエステルフィルムにコーティングして室温で24時間風乾し、さらに100℃×30分の条件で熱風循環式のオーブンで硬化させた。ポリエステルフィルムをはがし、さらに、200℃×4時間の二次加硫して厚み0.2mmの熱伝導性組成物を得た。
[Comparative Example 9]
Silicone rubber (SE1183U manufactured by Toray Dow Corning Co., Ltd.) Zinc oxide 150 parts by mass (Zinc oxide 1 type, manufactured by Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 600 parts by mass (LPZINC-11, Sakai Chemical Industry Co., Ltd.) Company), 2.5 parts by mass of a silane coupling agent (KBM-3063), and 100 parts by mass of a solvent were added and kneaded with a planetary mixer to obtain a coating material.
This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off, followed by secondary vulcanization at 200 ° C. for 4 hours to obtain a thermally conductive composition having a thickness of 0.2 mm.

[比較例10]
シリコーンゴム(SE1183U 東レ・ダウコーニング株式会社製) 100質量部に対して酸化亜鉛 300質量部(酸化亜鉛1種 堺化学工業株式会社製)、球状酸化亜鉛 1200質量部(LPZINC−11 堺化学工業株式会社製)、シランカップリング剤5.0質量部(KBM−3063)、溶剤100質量部を添加してプラネタのミキサーにて混練りし塗材にした。
この塗材をポリエステルフィルムにコーティングして室温で24時間風乾し、さらに100℃×30分の条件で熱風循環式のオーブンで硬化させた。ポリエステルフィルムをはがし、さらに、200℃×4時間の二次加硫して厚み0.2mmの熱伝導性組成物を得た。
[Comparative Example 10]
Silicone rubber (SE1183U Toray Dow Corning Co., Ltd.) 100 parts by mass of zinc oxide 300 parts by mass (Zinc oxide type 1 Sakai Chemical Industry Co., Ltd.), spherical zinc oxide 1200 parts by mass (LPZINC-11 Sakai Chemical Industry Co., Ltd.) Company), 5.0 parts by mass of a silane coupling agent (KBM-3063), and 100 parts by mass of a solvent were added and kneaded with a planetary mixer to obtain a coating material.
This coating material was coated on a polyester film, air-dried at room temperature for 24 hours, and further cured in a hot-air circulating oven at 100 ° C. for 30 minutes. The polyester film was peeled off, followed by secondary vulcanization at 200 ° C. for 4 hours to obtain a thermally conductive composition having a thickness of 0.2 mm.

以下、ポリテトラフルオロエチレン(PTFE)を使用した場合の比較例を開示する。
[比較例11]
ポリテトラフルオロエチレン(PTFE)パウダー品100質量部に、酸化アルミニウム250質量部を添加して、320℃の条件にて2軸混練装置にて混練りを試みたが、混練りすることが出来ず、0.2mm厚みの熱伝導性シートは得られなかった。
Hereinafter, a comparative example when polytetrafluoroethylene (PTFE) is used will be disclosed.
[Comparative Example 11]
250 parts by mass of aluminum oxide was added to 100 parts by mass of a polytetrafluoroethylene (PTFE) powder product, and kneading was attempted with a biaxial kneader at 320 ° C., but kneading was not possible. A heat conductive sheet having a thickness of 0.2 mm was not obtained.

[比較例12]
ポリテトラフルオロエチレン(PTFE)パウダー品56質量部に対して、2−プロパノール44質量部を加え攪拌して、実施例1の56%FEPディスパージョン溶液に相当する、56%PTFEディスパージョン溶液を作製した。この56%PTFEディスパージョン溶液178.5質量部に、酸化アルミニウム250質量部、溶剤800質量部を添加して、ポットミルにて混練りして塗材にした。この塗材をイミドフィルムに塗布して室温で1時間風乾し、さらに、120℃、1時間の条件で乾燥機にて乾燥させた。そして、イミドフィルムで上下を挟み、熱圧着装置にて300℃、50kg/cm2 の圧力で1分間熱圧着したが、この場合も、0.2mm厚みの熱伝導性シートを得ることが出来なかった。
[Comparative Example 12]
To 56 parts by mass of polytetrafluoroethylene (PTFE) powder product, 44 parts by mass of 2-propanol was added and stirred to prepare a 56% PTFE dispersion solution corresponding to the 56% FEP dispersion solution of Example 1. did. To 178.5 parts by mass of this 56% PTFE dispersion solution, 250 parts by mass of aluminum oxide and 800 parts by mass of a solvent were added and kneaded in a pot mill to obtain a coating material. This coating material was applied to an imide film, air-dried at room temperature for 1 hour, and further dried in a drier at 120 ° C. for 1 hour. And the upper and lower sides were sandwiched between imide films, and thermocompression bonded with a thermocompression bonding apparatus at 300 ° C. and a pressure of 50 kg / cm 2 for 1 minute. In this case as well, a 0.2 mm thick heat conductive sheet could not be obtained. It was.

以上の方法で得られたシート及び組成物を上記実施例と同様の測定方法で評価し、その結果を表2に示した。
The sheets and compositions obtained by the above methods were evaluated by the same measurement method as in the above Examples, and the results are shown in Table 2.

実施例1ないし10と比較例1ないし10の結果の対比から理解されるように、本発明の実施例に示したPTFE及びPVFを除く溶融押し出し成形が可能な所謂「フッ素樹脂材料」は、比較例のシリコーンゴムよりフィラーを多く添加でき、同量のフィラー添加であれば、実施例の方が比較例よりも曲げ特性が良好であることが分かる。
また、実施例3、4のように表面処理をしたフィラーを使用すると、表面処理をしていない実施例1、2よりも、曲げ特性が良くなっている。これは表面処理をしたフィラーがフッ素樹脂材料との親和性が向上したことを示している。
なお、比較例11は、PTFEに直接フィラーを練り込もうとしたが、練り込み出来なかった。また、比較例12は、実施例1の56%FEPディスパージョン溶液に相当する、56%PTFEディスパージョン溶液としたが、一時的にフィラーを充填できても、乾燥して溶剤がなくなると、シート状に保持することができず、熱圧着作業ができなかった。
そのため、比較例11,12については物性の評価ができなかった。
As can be understood from the comparison between the results of Examples 1 to 10 and Comparative Examples 1 to 10, the so-called “fluororesin material” capable of melt extrusion excluding PTFE and PVF shown in the examples of the present invention is compared. It can be seen that more filler can be added than the silicone rubber of the example, and if the same amount of filler is added, the bending property of the example is better than that of the comparative example.
Moreover, when the filler which surface-treated like Example 3 and 4 is used, a bending characteristic is improved rather than Example 1 and 2 which is not surface-treated. This indicates that the surface-treated filler has improved affinity with the fluororesin material.
In Comparative Example 11, an attempt was made to knead the filler directly into PTFE, but it could not be kneaded. Further, Comparative Example 12 was a 56% PTFE dispersion solution corresponding to the 56% FEP dispersion solution of Example 1. It could not be held in a shape, and thermocompression work could not be performed.
Therefore, physical properties of Comparative Examples 11 and 12 could not be evaluated.

以上、本発明の実施例を説明したが、具体的な構成はこれに限定されず、さらに本発明の要旨を逸脱しない範囲での変更は、適宜可能であることが理解されるべきである。   As mentioned above, although the Example of this invention was described, it should be understood that a concrete structure is not limited to this and can be suitably changed without departing from the gist of the present invention.

本発明の熱伝導性組成物及びこれを加工した熱伝導性シートは、製造が容易であり、熱伝導率の改善は無論のこと、耐熱性が良好で、その上、柔軟性に富み薄いシートを得たいような場合に、その利用可能性が極めて高くなる。   The heat conductive composition of the present invention and the heat conductive sheet processed from the heat conductive composition are easy to manufacture, and of course the improvement of the heat conductivity is excellent, the heat resistance is good, and the sheet is rich and flexible. When it is desired to obtain it, its availability becomes extremely high.

1 熱伝導性組成物
1A 熱伝導性シート
2 半導体製品
3 アルミ板
4、4A ヒートシンク
5 LED素子
6 金属基板
DESCRIPTION OF SYMBOLS 1 Thermal conductive composition 1A Thermal conductive sheet 2 Semiconductor product 3 Aluminum board 4, 4A Heat sink 5 LED element 6 Metal substrate

Claims (6)

ポリテトラフルオロエチレン(PTFE)及びポリフッ化ビニル(PVF)を除く溶融押し出し成形が可能なフッ素樹脂100質量部に、フィラー30ないし1500質量部を添加し、熱伝導率が0.5ないし400W/m・Kの範囲にあることを特徴とする熱伝導性組成物。   30 to 1500 parts by mass of filler is added to 100 parts by mass of fluororesin that can be melt-extruded excluding polytetrafluoroethylene (PTFE) and polyvinyl fluoride (PVF), and the thermal conductivity is 0.5 to 400 W / m. -Thermally conductive composition characterized by being in the K range. 前記フッ素樹脂は、これのディスパージョンである請求項1記載の熱伝導性組成物。   The thermally conductive composition according to claim 1, wherein the fluororesin is a dispersion thereof. 前記フッ素樹脂に耐熱性フィラーを添加し、耐熱温度を180℃以上とした請求項1記載の熱伝導性組成物。   The heat conductive composition of Claim 1 which added the heat resistant filler to the said fluororesin, and made heat-resistant temperature 180 degreeC or more. 前記フッ素樹脂に電気伝導性フィラーを添加した請求項1または2記載の熱伝導性組成物。   The heat conductive composition of Claim 1 or 2 which added the electrically conductive filler to the said fluororesin. 前記フィラーは、織布、不織布、耐熱フィルムから選択された1種類以上である請求項1または2記載の熱伝導性組成物。   The thermally conductive composition according to claim 1 or 2, wherein the filler is at least one selected from a woven fabric, a nonwoven fabric, and a heat resistant film. 請求項1ないし5のいずれか1項記載の熱伝導性組成物をシート状に加工してなることを特徴とする熱伝導性シート。   A heat conductive sheet obtained by processing the heat conductive composition according to claim 1 into a sheet shape.
JP2011162382A 2011-07-25 2011-07-25 Thermal conductive composition and thermal conductive sheet obtained by treating the same Withdrawn JP2013023664A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011162382A JP2013023664A (en) 2011-07-25 2011-07-25 Thermal conductive composition and thermal conductive sheet obtained by treating the same
PCT/JP2012/068555 WO2013015233A1 (en) 2011-07-25 2012-07-23 Thermally conductive composition and thermally conductive sheet formed by processing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011162382A JP2013023664A (en) 2011-07-25 2011-07-25 Thermal conductive composition and thermal conductive sheet obtained by treating the same

Publications (1)

Publication Number Publication Date
JP2013023664A true JP2013023664A (en) 2013-02-04

Family

ID=47601080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011162382A Withdrawn JP2013023664A (en) 2011-07-25 2011-07-25 Thermal conductive composition and thermal conductive sheet obtained by treating the same

Country Status (2)

Country Link
JP (1) JP2013023664A (en)
WO (1) WO2013015233A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015134233A1 (en) 2014-03-07 2015-09-11 Dupont Mitsui Fluorochemicals Company, Ltd. High thermal conductivity resin composition
WO2016081673A1 (en) 2014-11-20 2016-05-26 Dupont-Mitsui Fluorochemicals Co. Ltd Melt processible fluoropolymer composition with excellent heat conductivity, molded product manufactured from the composition and manufacturing method
JP2019214689A (en) * 2018-06-14 2019-12-19 東洋紡株式会社 Thermally conductive insulation elastomer composition, thermally conductive insulation elastomer molding and method for producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3428221B1 (en) * 2016-04-28 2022-01-26 Sekisui Polymatech Co., Ltd. Method for producing thermally-conductive sheet
CN107641276B (en) * 2017-07-17 2018-07-27 常州中英科技股份有限公司 It is a kind of without fibre-reinforced fluorine resin base copper-clad plate and preparation method thereof
CN110606761A (en) * 2019-11-01 2019-12-24 中国电子科技集团公司第四十六研究所 High-heat-stability and high-size-stability microwave composite dielectric substrate and preparation method thereof
CN111320801B (en) * 2020-04-24 2022-09-13 吉林美高管道***有限公司 Crosslinked polyethylene heat-conducting pipe and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3687680B2 (en) * 1995-07-12 2005-08-24 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー Improved fluoropolymer adhesion.
JP2001040102A (en) * 1999-07-27 2001-02-13 Nitto Denko Corp Tubular article
JP2002161244A (en) * 2000-11-27 2002-06-04 Jsr Corp Thermally conductive film, liquid for forming the same, substrate provided with thermally conductive film, method for producing the substrate, heat radiating plate and heat radiating structure
JP4390720B2 (en) * 2004-02-23 2009-12-24 株式会社日本触媒 Thermally conductive composition and thermally conductive film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015134233A1 (en) 2014-03-07 2015-09-11 Dupont Mitsui Fluorochemicals Company, Ltd. High thermal conductivity resin composition
WO2016081673A1 (en) 2014-11-20 2016-05-26 Dupont-Mitsui Fluorochemicals Co. Ltd Melt processible fluoropolymer composition with excellent heat conductivity, molded product manufactured from the composition and manufacturing method
JP2016098301A (en) * 2014-11-20 2016-05-30 三井・デュポンフロロケミカル株式会社 Thermofusion fluorine resin composition excellent in thermal conductivity, molded article manufactured by the composition and manufacturing method therefor
JP2019214689A (en) * 2018-06-14 2019-12-19 東洋紡株式会社 Thermally conductive insulation elastomer composition, thermally conductive insulation elastomer molding and method for producing the same
JP7076099B2 (en) 2018-06-14 2022-05-27 東洋紡株式会社 Thermally conductive insulating elastomer composition, thermally conductive insulating elastomer molded product and its manufacturing method

Also Published As

Publication number Publication date
WO2013015233A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
WO2013015233A1 (en) Thermally conductive composition and thermally conductive sheet formed by processing same
JP5395155B2 (en) Electrically insulating thermally conductive composition and electronic device
JP6302034B2 (en) HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE
JP6136952B2 (en) Thermally conductive composite silicone rubber sheet
JP5322894B2 (en) Insulating heat conductive sheet manufacturing method, insulating heat conductive sheet and heat radiation member
CN1893804A (en) Heat-radiating sheet and heat-radiating structure
JP4572056B2 (en) Thermally conductive silicone rubber composite sheet
TWI475103B (en) Heat spreader structure
JP6662458B2 (en) Thermal conductive silicone rubber composite sheet
TWI674315B (en) Method for producing thermally conductive resin molded article
TW201536906A (en) Heat conductive composite sheet
JP6657616B2 (en) Thermal conductive sheet, cured product of thermal conductive sheet, and semiconductor device
JP2008184549A (en) Manufacturing method for heat-releasing material
JPH11340673A (en) Electromagnetic wave shielding sheet of high thermal conductivity and its manufacture
TW201412967A (en) Thermal conductive sheet and electronic machines
TW200847858A (en) Heat dissipation substrate and heat dissipation material thereof
JP6218594B2 (en) Sheet heater
JP3216215U (en) Multi-layer composite heat conduction structure
WO2014104292A1 (en) Fluororesin sheet and method for producing same
JP2017092322A (en) High thermal conductivity, high insulation heat dissipation sheet
TWI724156B (en) Thermally conductive composite sheet
JP2002003717A (en) Heat conductive sheet
JP2010077220A (en) Molded article for heat conduction and heat-conductive non-silicone liquid rubber composition
CN105086119B (en) Heat-radiating resin composition, and member and electronic device using same
JP3825035B2 (en) Thermally conductive molded body

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141007