TWI295233B - Laminate and uses thereof - Google Patents

Laminate and uses thereof Download PDF

Info

Publication number
TWI295233B
TWI295233B TW93121117A TW93121117A TWI295233B TW I295233 B TWI295233 B TW I295233B TW 93121117 A TW93121117 A TW 93121117A TW 93121117 A TW93121117 A TW 93121117A TW I295233 B TWI295233 B TW I295233B
Authority
TW
Taiwan
Prior art keywords
layer
transparent
film
window
laminate
Prior art date
Application number
TW93121117A
Other languages
Chinese (zh)
Other versions
TW200508032A (en
Inventor
Yoshikai Masaaki
Okada Satoru
Mizuma Hirokazu
Asakawa Yukinori
Ito Tomoaki
Ota Masanari
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of TW200508032A publication Critical patent/TW200508032A/en
Application granted granted Critical
Publication of TWI295233B publication Critical patent/TWI295233B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials

Landscapes

  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

1295233 域 : 領 明s 說; 明屬 發所 明 、發九ί 說 地 細 詳 更 ο 器 光 濾 用 器 示 顯 及 體 層 積 於 係 明 發 本 器 示 顯 及 體 層 積 性 電 導 明 透 之 良 優 性 久 耐 質 品 高 於 0¾ 係 器 光 用 術 技 前 先 隨著多媒體社會、數位社會之進展,發送、發佈之資訊 或者被處理之圖像資訊或數位資訊均大幅地增加。因此, 為顯示該等用之監視器之顯示裝置係作為聯結人與通信機 器、影像機器、電腦等之介面或關鍵裝置,其重要性日益 增加。 作為這樣之顯示裝置,代替以往重、厚、且難以大型化 之陰極射線管(C R T)監視器,正集中精力研究各種薄型顯示 器,其中以薄型化、大晝面化均較易實現之電漿顯示板(P D P) 或場致發射顯示器(F E D )等正受到注意。 特別是P.DP係已進入量產階段,各製造公司均計晝年年 倍增之大幅度增產計晝。另一方面,由於還有新聲明加入 之製造者,因此報紙等已預測其今後之市場將迅速地擴大。 PDP係有如上所述之於薄型化、大型化上為有利之優 點,但因其利用放電之緣故,故在理論上有發生強之電磁 波洩漏之問題。因此,有必要將從電漿顯示器發生之洩漏 電磁波抑制在規定之安全基準值[例如,在日本, VCCI(Voluntary Control Council for Interference by data processing equipment electronic office 6 326\專利說明書(補件)\93-11\93121117 1295233 machine);在美國,FCC(Federal Communication Commission)]以内 。 另外,PDP也產生強之近紅外線光。因無線LAN 電話、紅外線遙控器等為利用近紅外線之機器,故 被指出有引起該等機器之錯誤動作之可能性。由於 實,係有其必要進行之下述措施:要在P D P中,將 洩漏減低至上述規定之範圍内,以將在近紅外線區 8 0 0〜1 0 0 0 n m波長區域之光削減至實際使用上不產生 動作之水準為止。 透過像金屬般之導電性材料覆蓋PDP整體,雖可 上所述之電磁波與近紅外線放射出來,但在圖像顯 則需要使用除導電性外還具有透明性之材料。因此, 之顯示部分適合使用具有透明導電性之濾光器。作 示器用濾光器之較佳例,可舉出有在玻璃板等之基 上配置透明導電性薄膜之透明導電性薄膜型之光學 器。透明導電性薄膜型之光學濾光器係已知在基體 用於遮蔽電磁波之透明導電性薄膜與具有防止反射 防眩機能之薄膜所構成之積層構造。 顯示器用濾光器之電磁波遮蔽能力係理所當然, 該顯示器用濾光器之面電阻值越低越好,故適合使 質中比電阻值最低之銀或以銀為主體之金屬薄膜作 透明導電性薄膜。實際上,進一步以達到透射率上 屬薄膜層之穩定性提高為目的,通常將利用透明高 薄膜層所夾入以銀為主體之金屬薄膜層之積層體作 326\專利說明書(補件)\93-11\93121117 7 無線 PDP也 以上事 電磁波 域之 錯誤 抑制如 示部分 在PDP 為該顯 體全面 濾光 上具有 機能或 但由於 用純物 為上述 升及金 折射率 為透明 1295233 導電性薄膜。 但是,如眾所周知般,適合作為金屬薄膜層材料使用之 銀係存在有極容易發生原子聚集之大問題。當銀薄膜層之 銀原子發生聚集,除損害作為金屬薄膜之低電阻性外,還 會產生銀白色之點(亦稱點狀缺陷,或反射性缺陷、白點)。 在顯示器用濾光器這種產生多數反射性缺陷之情況下,上 述反射性缺陷,在已固定該濾光器之大型電漿顯示器上所 放映出之優良影像上成為白點出現,從而產生降低影像品 質之缺點。上述之反射性缺陷係有喪失該金屬薄膜材料所 具有之高透明性與低電阻性之大問題,同時,作為濾光器 之商品價值也就大幅度下降。 先前已知,例如在氯離子或異物(粒子)等存在下容易發 生銀薄膜層之銀原子之聚集。隨著市場期望影像之大型 化,預計加入每1片濾光器中之粒子等數目將會增加。因 此,在每片濾光器上產生之白點數將增加,預計濾光器生 產之良率將降低。因此,對於越來越大型化之PDP用光學 濾光器而言,今後將進而考慮要求更有效防止銀薄膜層上 產生白點之技術。 在日本專利特公昭5 9 — 4 4 9 9 3號公報或曰本專利特開平 9 一 3 3 1 4 8 8號公報中記載有進行去除如上述異物·氯之嘗 試,但為以高良率生產大型顯示器用濾光器,需要求以更 高水準抑制銀原子之聚集。 另一方面,亦嘗試透過增厚透明高折射率薄膜層,以防 止該氯離子等到達銀薄膜層。但如上所述地,由於光學濾、 326\專利說明書(補件)\93-11\93121117 8 1295233 91 10. -3 替換頁 光器要 生限制 其他 層在銀 或面電 如上 構造的 另一 其需求 有被他 另外, 也有電 收,容 泡漏之 來越高 各種建 等,除 外,對 氣效率 為了 為主體 同地, 下落、 準抑制 it|δ > 求高度透明性,故透明高折射率薄膜層之厚度將產 ,從而適用上述方法亦有其界限。 之嘗試雖也有將銅或鉑等有耐蝕性之金屬薄膜積 薄膜層上之方法,但存在有隨之而來的透明性降低 阻上升之問題。 所述,至今仍沒有可輕易抑制反射性缺陷之發生之 顯示器用濾、光器。 方面,近年來無線機器與電子機器之發展開始,且 急速增加。無線機器固然便利,但所使用之電磁波 人截收,而有獲取該電磁波載有之資訊之危險性。 不僅無線機器,在電子機器中除本體以外,電線類 磁波之發生,因此與無線機器同樣地有被他人截 易地讀取該資訊之危險性。為了抑制伴隨該電磁波 資訊之洩漏,近年來,對電磁波遮蔽材料之要求越 。雖然能夠用金屬般之導電性材料遮蔽電磁波,但 築物之窗或汽車車窗、各種顯示機器之顯示部分 電磁波遮蔽性能外,還要求具有透明性之材料。另 於窗等之用途來說,為了提高盛夏之建築物内之冷 以節約能量,亦要求其具有對紅外線反射性能。 實現這些電磁波遮蔽性能與紅外線反射性能,以銀 之薄膜應具有合適之性質。但是,與上述顯示器相 在這些用途中,亦有因發生白點所引起之商品價值 良率降低、耐用年數降低等問題,從而要求以高水 之銀原子聚集。1295233 Field: The stipulations of the singer; the genus of the genus, the ninth, the nucleus of the illuminator, the illuminator, the illuminator, the body layer, the body layer, the body, the conductance Excellent quality and long-term quality products are higher than the 03⁄4 system light technology. With the progress of the multimedia society and the digital society, the information sent or released or the processed image information or digital information has increased greatly. Therefore, the display device for displaying such a monitor is increasingly important as an interface or a key device for a connection person, a communication device, a video device, a computer, or the like. As such a display device, a cathode ray tube (CRT) monitor that is heavy and thick and difficult to increase in size has been concentrated, and various thin displays have been concentrated on research, and plasmas which are easy to realize in a thinner and larger surface are being realized. Display panels (PDPs) or field emission displays (FEDs) are receiving attention. In particular, the P.DP system has entered the mass production phase, and each manufacturing company has calculated a large increase in production that is multiplied annually. On the other hand, newspapers and the like have predicted that their future markets will expand rapidly as there are new manufacturers to join. The PDP is advantageous in terms of thinning and enlargement as described above. However, since it utilizes discharge, there is a problem that a strong electromagnetic wave leaks theoretically. Therefore, it is necessary to suppress leakage electromagnetic waves generated from the plasma display to a specified safety reference value [for example, in Japan, VCCI (Voluntary Control Council for Interference by data processing equipment electronic office 6 326\patent specification (supplement)\93 -11\93121117 1295233 machine); Within the United States, within the FCC (Federal Communication Commission). In addition, the PDP also produces strong near-infrared light. Since a wireless LAN telephone, an infrared remote controller, or the like is a machine that uses near-infrared rays, it is pointed out that there is a possibility of causing malfunction of such machines. As a matter of fact, it is necessary to carry out the following measures: in the PDP, reduce the leakage to the above-mentioned range to reduce the light in the near-infrared region of the wavelength range of 800 to 1 0 0 nm to the actual Use no level of action. The entire PDP is covered with a conductive material such as a metal, and although electromagnetic waves and near-infrared rays are emitted as described above, it is necessary to use a material having transparency in addition to conductivity in the image. Therefore, the display portion is suitable for use with a filter having transparent conductivity. A preferred embodiment of the filter for a display device is a transparent conductive film type optical device in which a transparent conductive film is disposed on a glass plate or the like. The transparent conductive film type optical filter is known as a laminated structure of a transparent conductive film for shielding electromagnetic waves and a film having anti-reflection and anti-glare function. The electromagnetic wave shielding capability of the filter for display is of course, the lower the surface resistance of the filter for the display is, the better, so it is suitable for the transparent conductivity of the silver or silver-based metal film with the lowest specific resistance value. film. In fact, for the purpose of improving the stability of the film layer of the transmittance, the layered body of the metal film layer mainly composed of silver is usually sandwiched by the transparent high film layer as a 326\patent specification (supplement)\ 93-11\93121117 7 The wireless PDP also has the above-mentioned error suppression of the electromagnetic wave field. The part shown in the PDP is functional for the full-scale filtering of the explicit body, but because of the pure matter, the above-mentioned rising and gold refractive index is transparent. 1295233 Conductive film . However, as is well known, silver which is suitable for use as a metal thin film layer material has a large problem that atomic aggregation is extremely likely to occur. When the silver atoms of the silver thin film layer are aggregated, in addition to impairing the low electrical resistance as a metal thin film, silver white points (also called point defects, or reflective defects, white spots) are generated. In the case of a display filter, which produces a plurality of reflective defects, the reflective defect becomes a white spot on the excellent image projected on the large plasma display to which the filter is fixed, thereby causing a decrease. The shortcomings of image quality. The above-mentioned reflective defects have a large problem of losing the high transparency and low electrical resistance of the metal thin film material, and the commercial value as a filter is also greatly reduced. It has been previously known that, for example, aggregation of silver atoms which tend to occur in a silver thin film layer in the presence of chloride ions or foreign matter (particles). As the market expects an increase in image size, it is expected that the number of particles added to each filter will increase. Therefore, the number of white spots generated on each filter will increase, and the yield of the filter production is expected to decrease. Therefore, in order to increase the size of the optical filter for PDP, it is necessary to further consider a technique for more effectively preventing white spots from being formed on the silver thin film layer. An attempt to remove the foreign matter/chlorine as described above is described in Japanese Patent Publication No. Sho 59- 4,491, the disclosure of which is incorporated herein by reference. Filters for large displays require a higher level of suppression of the accumulation of silver atoms. On the other hand, it has been attempted to increase the thickness of the transparent high refractive index film layer to prevent the chloride ions and the like from reaching the silver thin film layer. But as mentioned above, due to the optical filter, 326\patent specification (supplement) \93-11\93121117 8 1295233 91 10. -3 replacement of the pager to produce another layer that limits the other layers in silver or surface electricity as above The demand is influenced by him, and there is also electricity collection. The higher the bubble is, the higher the construction is, except for the gas efficiency, in order to be the same body, the drop, the quasi-suppression of it|δ > seeking high transparency, so transparent high The thickness of the refractive index film layer will be produced, so that the above method has its limits. At the same time, there is a method of depositing a thin film of a metal thin film having corrosion resistance such as copper or platinum, but there is a problem that the transparency is lowered and the resistance is increased. As described above, there is still no filter or optical device for display which can easily suppress the occurrence of reflective defects. In recent years, the development of wireless devices and electronic devices has begun, and has rapidly increased. Wireless machines are convenient, but the electromagnetic waves used are intercepted and there is a danger of obtaining information contained in the electromagnetic waves. In addition to wireless devices, magnetic waves are generated in addition to the main body in electronic devices. Therefore, similarly to wireless devices, there is a risk that the information can be easily read by others. In order to suppress leakage accompanying the electromagnetic wave information, in recent years, the demand for electromagnetic wave shielding materials has increased. Although it is possible to shield electromagnetic waves with a metal-like conductive material, a material having transparency is required in addition to the electromagnetic wave shielding performance of the window of the building, the window of the automobile, and the display portion of various display devices. In addition, for the purpose of windows and the like, in order to improve the cooling in the building in the summer to save energy, it is also required to have infrared reflection performance. To achieve these electromagnetic wave shielding properties and infrared reflection properties, silver films should have suitable properties. However, in connection with the above-mentioned displays, there are problems such as a decrease in the yield of the product due to the occurrence of white spots and a decrease in the number of years of durability, and it is required to concentrate with silver atoms of high water.

擊 蕙 326\總檔\93\93121117\93121117(替換 Η 9 94. l〇. -3 替換頁 1295233 [發明内容】 爷丨〇 ^ 因此,本發明之目的在於提供極少發生如上述之反射性 缺陷之(透明導電性)積層體及使用該積層體之顯示器用濾 光器、電磁波遮蔽薄膜、紅外線反射薄膜與窗材等。 發明者等係進行銳意研究之結果,發現由無機微粒子與 黏合劑材料所構成之保護層與透明導電性薄膜層所構成之 積層體可解決本發明之問題,從而完成了本發明。蕙 326\总档\93\93121117\93121117 (Replace Η 9 94. l〇. -3 Replacement page 1295233 [Inventive content] 丨〇 丨〇 ^ Therefore, the object of the present invention is to provide a reflection defect that rarely occurs as described above (transparent conductive) laminate, filter for display using the laminate, electromagnetic shielding film, infrared reflective film, window material, etc. The inventors have conducted intensive research and found that inorganic fine particles and adhesive materials are used. The laminated body composed of the protective layer and the transparent conductive thin film layer can solve the problems of the present invention, and the present invention has been completed.

按照本發明,提供以下之發明。 亦即,本發明係一種積層體,其特徵在於,至少包含: 透明基體(A )、 含銀之透明導電性薄膜層(B )、及 含黏合劑材料(C 1 )與無機微粒子(C 2 )之保護層(C ),透明導 電性薄膜層(B )與保護層(C )相接觸。 另外,本發明之積層體係以無機微粒子(C 2 )最好為金屬 氧化物為其特徵之積層體。 此外,本發明之積層體係無機微粒子(C 2 )以至少為含有 _ 氧化録之複合氧化物或者含有氧化録之氧化物之混合物為 其特徵之積層體。 又,本發明之積層體係以黏合劑材料(C 1 )為選自矽酮樹 脂、聚酯樹脂、胺基甲酸酯樹脂中之至少一種樹脂為其特 徵之積層體。 * 另外,本發明之積層體係以含銀之透明導電性薄膜層(B ) 至少包含透明高折射率薄膜層(B 1 )與銀或含銀合金之透明 金屬薄膜層(B2)之上述積層體。 10 326\總檔\93\93121117\93121117(替換)-1 1295233 94. 10. - 3 替換頁 根據本發明,可得到具有高導電性、高透明性、高近紅 外線之反射性,進而具有高紅外線反射性,而且具有白點 之發生非常少之優良特徵之積層體。 此外,本發明係一種顯示器用濾光器,其特徵在於至少 包含上述之積層體與功能性透明層(D)。又,本發明之顯示 器用濾光器係以在6 0 °C、9 0 % RH之條件下暴露2 4小時後, 直徑大於0 . 1 m m之點狀缺陷之發生頻率為2個/ m2以下。According to the present invention, the following invention is provided. That is, the present invention is a laminate comprising at least: a transparent substrate (A), a silver-containing transparent conductive film layer (B), and a binder-containing material (C1) and inorganic fine particles (C2). The protective layer (C), the transparent conductive thin film layer (B) is in contact with the protective layer (C). Further, in the laminated system of the present invention, the inorganic fine particles (C 2 ) are preferably a laminated body characterized by a metal oxide. Further, the inorganic fine particles (C 2 ) of the laminated system of the present invention are at least a laminate comprising a composite oxide containing oxidized or a mixture containing an oxide of oxide. Further, in the laminated system of the present invention, the binder material (C 1 ) is a layered body of at least one selected from the group consisting of an anthrone resin, a polyester resin, and a urethane resin. In addition, the laminated system of the present invention comprises at least the transparent high-refractive-index film layer (B 1 ) and the above-mentioned laminated body of silver or a silver-containing alloy transparent metal film layer (B2) with a silver-containing transparent conductive film layer (B). . 10 326\总档\93\93121117\93121117 (replacement)-1 1295233 94. 10. - 3 Replacement page According to the present invention, high conductivity, high transparency, high near-infrared reflectivity, and thus high Infrared reflective property, and a laminate having excellent characteristics in which white spots occur very little. Further, the present invention is a filter for a display characterized by comprising at least the above laminated body and a functional transparent layer (D). Further, the filter for display of the present invention has a frequency of occurrence of point defects having a diameter of more than 0.1 mm after exposure for 24 hours at 60 ° C and 90% RH of 2 / m 2 or less. .

另外,本發明係使用上述之顯示器用濾光器之顯示裝 置。 根據本發明,因為白點之發生少,所以能夠提供例如能 連續長時間提供美麗影像之顯示器用濾光器及顯示器。 另外,本發明係使用上述之積層體之電磁波遮蔽薄膜。 根據本發明,可得到白點之發生少、連續長時間目視性優 良之電磁波遮蔽薄膜。 又,本發明係使用上述之積層體之紅外線反射薄膜。根 據本發明,可得到白點之發生少、連續長時間目視性優良 之紅外線反射薄膜。 此外,本發明係一種窗用電磁波遮蔽薄膜,其特徵在 於,至少包含上述之積層體、及 功能性透明層(D )。 另外,本發明係一種至少包含上述之積層體、及 功能性透明層(D)。 又,本發明係至少具有上述之窗用電磁波遮蔽薄膜與透 明窗用基板之積層構造之窗。 11 326\總檔\93\93121117\93121117(替換)-1 1295233 94. 10.- ^ ^ / 替換頁 另外,本發明係至少具有上述之窗用紅外線反射薄膜與 透明窗用基板之積層構造之窗。 根據本發明,可提供白點之發生少、連續長時間目視性 優良之、並且能以簡便之方法製作之窗。 此外,本發明係使用上述積層體之半導體裝置。根據本 發明可提供不受由電磁波產生之障礙影響之半導體裝置, 即使在高溫也可使用之半導體裝置等。 【實施方式】 以下,詳細說明本發明。在本發明中所謂黏結材料,係 有包括黏合材料之含義。 本發明之積層體係包含透明基體(A )、 含銀之導電性金屬積層薄膜(B )、及 保護層(C ), 透明導電性薄膜層(B )與保護層(C )相接觸為其特徵之積層 體。又,保護層(C )係以含有黏合劑材料(C 1 )與無機微粒子 (C 2 )為其特徵。 本發明之顯示器用濾光器,係具有包括上述之積層體與 功能性透明層(D)之構造。作為功能性透明層(D),可舉出 有以防反射層、防眩層為頭之硬塗層、紫外線吸收層、防 污染層、防帶靜電層等。另外,配合需要也以可含有黏結 材料層(E )為佳。 本發明之電磁波遮蔽薄膜及紅外線反射薄膜係以含有 本發明之積層體為其特徵。例如,能夠以本發明之積層體 原封不動地作為電磁波遮蔽薄膜及紅外線反射薄膜,或組 12 3 26\總檔\93\93121117\93121117(替換)-1 1295233Further, the present invention is a display device using the above-described filter for display. According to the present invention, since the occurrence of white spots is small, it is possible to provide, for example, a filter for display and a display which can provide beautiful images for a long time. Further, in the present invention, the electromagnetic wave shielding film of the above laminated body is used. According to the present invention, it is possible to obtain an electromagnetic wave shielding film which has less occurrence of white spots and which is excellent in visual properties for a long period of time. Further, in the present invention, the infrared reflective film of the above laminated body is used. According to the present invention, an infrared reflective film having less occurrence of white spots and excellent visual properties for a long period of time can be obtained. Further, the present invention is a window electromagnetic wave shielding film characterized by comprising at least the above laminated body and a functional transparent layer (D). Further, the present invention relates to at least the above laminated body and a functional transparent layer (D). Further, the present invention has at least a window having a laminated structure of the above-described electromagnetic wave shielding film for a window and a substrate for a transparent window. 11 326\总档\93\93121117\93121117 (replacement)-1 1295233 94. 10.- ^ ^ / Replacement page In addition, the present invention has at least the above-described laminated structure for a window infrared reflective film and a transparent window substrate. window. According to the present invention, it is possible to provide a window which is less likely to occur in white spots, is excellent in visual properties for a long period of time, and can be produced by a simple method. Further, the present invention is a semiconductor device using the above laminated body. According to the present invention, it is possible to provide a semiconductor device which is not affected by an obstacle caused by electromagnetic waves, and a semiconductor device which can be used even at a high temperature. [Embodiment] Hereinafter, the present invention will be described in detail. The term "bonding material" as used in the present invention has the meaning of including a bonding material. The laminated system of the present invention comprises a transparent substrate (A), a silver-containing conductive metal laminated film (B), and a protective layer (C), and the transparent conductive film layer (B) is in contact with the protective layer (C). The layered body. Further, the protective layer (C) is characterized by containing a binder material (C 1 ) and inorganic fine particles (C 2 ). The filter for a display of the present invention has a structure including the above laminated body and a functional transparent layer (D). Examples of the functional transparent layer (D) include a hard coat layer comprising an antireflection layer and an antiglare layer, an ultraviolet absorbing layer, an antifouling layer, and an antistatic layer. Further, it is preferable to contain the layer (E) of the bonding material as needed. The electromagnetic wave shielding film and the infrared reflective film of the present invention are characterized by containing the laminate of the present invention. For example, the laminated body of the present invention can be used as an electromagnetic wave shielding film and an infrared reflective film as it is, or a group of 12 3 26\main file\93\93121117\93121117 (replacement)-1 1295233

•η•η

94. 10. 一替换頁 合本發明之積層體與上述之功能性透明層(D)等,以作為電 磁波遮蔽薄膜及紅外線反射薄膜。作為與該等功能性透明 層(D )組合之上述薄膜之較佳用途,係可舉出有窗用電磁波 遮蔽薄膜與窗用紅外線反射薄膜等。作為在上述之窗用薄 膜中所使用之功能性透明層(D ),具體地說,以使用紫外線 吸收層、硬塗層等為佳。 本發明之窗係以具有上述之窗用薄膜與透明窗用基板 之積層構造為其特徵。 以下,說明該等各構成要素。 [透明基體(A)] 作為上述之透明基體(A),塑膠板或玻璃板均適用。塑 膠板之具體例,係可使用以聚曱基丙烯酸曱酯(PMMA)開始 之丙烯酸樹脂、聚碳酸酯樹脂、透明ABS樹脂等,但不限 於該等樹脂。塑膠板之厚度,雖無特別限定,但通常為 1 m m〜1 0 m m左右。使用玻璃板時,以使用進行化學強化加工 或風冷強化加工之半強化玻璃板或強化玻璃板為佳。如從 重量考慮,則其厚度以1〜4mm左右為佳。又,在這些玻璃 板或塑膠板之成為顯示器用濾光器之周邊部之部分,以提 高外觀設計性為目的,亦可實施黑色等有色之外表印刷。 另外,也可將適用在後述之透明導電性薄膜層(B )製作 時所使用之高分子薄膜作為透明基體(A ),或也可將具有耐 衝擊性之柔軟透明薄片作為透明基體(A )。使用該等所得之 光學濾光器係可直接貼合在PDP模組上使用。 上述之塑膠板、玻璃板、高分子薄膜、柔軟透明薄片等 13 326\總檔\93\9312 111 7\93121 7(替換)-1 1295233 係可併用2種以上。此時,除了將該等直接積層組合以外, 也可使用後述之黏著材料層(E)進行貼合使用。 [含銀之透明導電性薄膜層(B )] 本發明之含銀之透明導電性薄膜層(B ),係可無限制地 使用公知之物。例如,除了在透明基體(A)上直接形成之構 造以外,即使為在後述之高分子薄膜上或在具有防止反射 或者防眩機能之薄膜上形成之構造亦可。該等之中,從生 產效率或品質管理方面等觀之,以將在高分子薄膜上形成 含銀之透明導電性薄膜之透明導電性薄膜積層體薄膜作為 透明導電性薄膜層(B)使用之方法為特佳。圖1為表示本發 明中之積層體之層構造之一例。亦即,為將含銀之透明導 電性金屬薄膜1 5與透明高折射率薄膜1 7在透明高分子薄 膜基體1 3上,以透明高折射率薄膜1 7夾持金屬薄膜1 5 般地進行交互積層,再積層後述之保護層2 0之構造。 作為上述之高分子薄膜,以使用厚度1 0〜3 Ο Ο μπι左右之 具有可撓性之透明性高之高分子薄膜為佳,例如,可舉出 有聚對酞酸乙二酯(Ρ Ε Τ )、聚醯亞胺(Ρ I )、聚砜(P S )、聚醚 砜(PES)、聚曱基丙烯酸甲酯(ΡΜΜΑ)、聚碳酸醋(PC)、聚醚 醚酮(PEEK)、聚丙烯(PP)、三醋酸纖維素(TAC)。尤其聚對 酞酸乙二酯(Ρ Ε T )與三醋酸纖維素(T A C )特別適合使用。 在本發明中使用之透明導電性薄膜層(B)係以採用包含 透明高折射率薄膜層(B 1 )與含銀或含銀之合金所構成之透 明金屬薄膜層(B 2 )之積層體為佳。銀係比電阻為 1 . 59x1 0_6(Ω·(:πι),在所有材料中導電性最優良,且薄膜之 14 326\專利說明書(補件)\93-11 \93121117 1295233 可見光透射率良好,因此最適合使用。另一方面,銀作為 薄膜時缺乏穩定性,具有容易受到硫化或氯化等問題,因 此為了提高其穩定性,含銀之合金,具體地說,以銀為主 體之銀合金,例如可使用銀與金之合金、銀與銅之合金、 銀與鈀之合金、銀與銅與鈀之合金、銀與鉑之合金等。 該透明金屬薄膜層(B 2 )之厚度,雖然由多層透明導電性 薄膜層整體之透過性與導電性而決定,但通常就一層而言 為0.5〜lOOnm左右。 再者,在最表面設置金屬薄膜層時,最表面中之主要金 屬之銀元素成分以3〜9 9 % (原子比例)為佳。 透明高折射率薄膜層(B1 ),係可不受限制地使用公知之 物質。例如在形成透明性高之膜厚1 0 0 n m左右之薄膜時, 相對波長4 0 0〜7 0 0 n m之光,以該薄膜之透射率為6 0 %以上 之透明性優良之材料為佳。又,相對於5 5 0 n m之光,以折 射率為1 . 4以上之材料之高折射率材料為佳。該透明高折 射率薄膜層(B 1 )所適用之材料,以使用例如銦與錫之氧化 物(ITO)、氧化鋅(ZnO)、氧化鈦(TiOO、鎘與錫之氧化物 (CT0)、氧化鋁(Al2〇3)、鋅與鋁之氧化物(AZ0)、氧化鎂 (MgO)、氧化钍(Th〇2)、氧化錫(Sn〇2)、氧化鑭(La〇2)、氧 化矽(S i 0 2)、氧化銦(I η 2 0 3 )、氧化鈮(N b 2 0 3 )、氧化銻 (Sb2〇〇、氧化鍅(Zr〇2)、氧化鈽(Ce〇2)、氧化鉍(BiOO等 為佳。另外,也可以使用透明高折射率硫化物,如具體地 例示的話,可舉出有硫化鋅(Z n S )、硫化鎘(C d S )、硫化銻 (Sb2S3)等。作為透明高折射率薄膜層(B1 )用材料,上述材 15 326\專利說明書(補件)\93-1 ]\93121117 1295233 料中,以ITO、ZnO與Ti〇2為特佳。ITO及ZnO係具有導 電性,且可視區域之折射率高達2. 0左右,進而在可視區 域幾乎不吸收。T i 0 2為絕緣物質,雖然在可視區域具有些 許之吸收,但由對可見光之折射率大到2 . 3左右而引起。 上述之透明金屬薄膜層(B 2 )與透明高折射率薄膜層(B 1 ) 之多層積層體之形成,係可利用濺鍍法、離子鍍敷法、真 空沉積法等以往公知之方法形成。其中以濺鍍法適合於控 制膜厚之多層積層之形成,能夠使金屬薄膜層與高折射率 薄膜層之積層,與例如由銀或含銀之合金所構成之金屬薄 膜層與以氧化銦為主所構成之透明高折射率薄膜層容易反 復連續地成膜,因此為佳。 具體地說,在本發明之透明金屬薄膜層(B 2 )之形成中, 作為最佳例,可舉出以銀或含銀之合金作為靶材,濺鍍氣 體使用氬等惰性氣體,通常在壓力0 . 0卜3. 0 P a下,採用直 流(D C )或高頻(R F )磁控管濺鍍法。 另外,在本發明之透明高折射率薄膜層(B 1 )之形成中, 可以應用例如使用以銦作為主成分之金屬靶材或以氧化#0 作為主成分之燒結體靶材,濺鍍氣體使用氬等惰性氣體, 反應性氣體使用氧,通常在壓力0 . 0 1〜3 . 0 P a下,利用直分 (D C )或者高頻(R F )磁控管濺鍍法之反應性濺鍍法。 關於其他更詳細之内容,可以採用在日本專利特開平1 〇 一 2 1 7 3 8 0號公報或日本專利特開2 0 0 2 — 3 2 3 8 6 1號公報箏 中記載之内容。 [保護層(C)] 16 326\專利說明書(補件)\93-11\93121117 1295233 本發明之保護層(C )係由黏合劑材料(C 1 )與無機微粒子 (C2)所構成之層。 其中,以由含有黏合劑材料(C 1 )與水或有機溶劑等液體 所構成之溶液中,將使無機微粒子(C 2 )分散而得到之塗佈 液進行塗佈/乾燥而得到之層作為保護層(C)為特佳。另 外,上述之塗佈液,也可以為黏合劑(C 1 )與無機微粒子(C 2 ) 分散成乳液。而也可使用在含有黏合劑(C 1 )與液體之乳液 狀態之液體中,分散無機微粒子(C 2 )之態樣。 以下,詳細地描述無機微粒子(C 2 )分散在上述之黏合劑 材料(C 1 )溶液中之塗佈液。 作為由上述之黏合劑材料(C 1 )與液體所構成之溶液,以 無色、透明性高、無機微粒子之分散性良好者適合使用。 本發明之黏合劑材料(C 1 )係以樹脂為佳,更具體地說, 可例舉有丙稀酸系樹脂、石夕酮系樹脂、聚S旨系樹脂、胺基 曱酸酯系樹脂、氟系樹脂等。在該等樹脂中,從到手之容 易性、後述之無機微粒子(C 2 )對黏合劑材料(C 1 )之分散性 等觀點來看,以選自矽酮系樹脂、聚酯系樹脂、胺基曱酸 酯系樹脂中之1種以上之樹脂為佳。作為如上述般之樹 脂,也可以使用具有黏著性或黏接性之物質,在保護層(C) 上賦予後述之黏結材料層(E )之機能亦屬可能。另外,上述 之樹脂也可以併用2種以上。 本發明之保護層(C ),一般使用後述之黏結劑(E ),而可 容易與其他層貼合。因此,與後述之功能性透明層(D )等進 行積層時,可無限制地使用以往之黏接材料之積層方法(貼 17 326\專利說明書(補件)\93-11\93121117 1295233 合方法)。 作為溶劑,可以使用水、醇、丙酮、曱苯等公知之液體。 在本發明中,以如後述般之無機微粒子(C 2 )儘可能地覆 蓋透明導電性薄膜層來進行配置為佳。因此,以無機微粒 子(C 2 )在黏合劑材料(C 1 )溶液中之分散性良好,可保持無 機微粒子(C 2 )不易沉降之狀態為佳。根據無機微粒子之種 類,透過適宜地選擇樹脂或液體就能夠實現該狀態。例如 對於容易沉降之無機微粒子來說,以比重高之樹脂或溶液 之黏性變得較高之樹脂或液體為佳。 有關本發明之無機微粒子(C 2 ),係如上所述,作為保護 層(C)最好在透明導電性薄膜層中無間隙且緻密填充地含 有。又,有關本發明之無機微粒子(C 2 ),如果根據後述之 防止白點之推斷機構,以氯或氯化物、硫或硫化物等之透 過性低者為佳。無機微粒子(C 2 )如果為氣或氯化物、硫或 硫化物等之吸收性能優良者更佳。作為合適之例子,例如 可舉出金屬氧化物之微粒子。金屬氧化物有與氯化氫等容 易反應之一般傾向,因此具有容易吸附氯化物之性質為上 述之理由。作為更具體之金屬氧化物之例子,可舉出有二 氧化碎、氧化錫、氧化鋅、氧化銦、氧化錄、氧化紹、氧 化鍅等,在形成透明高折射率薄膜層(B 1 )時與合適之材料 相同之金屬氧化物。這些材料也可以組合2種以上使用。 例如,可作為複合氧化物使用,又可作為氧化物之混合物 使用。另外,上述之金屬氧化物也能與金屬組合使用。作 為上述之複合氧化物之具體例子,可舉出氧化銦一錫等。 18 326\專利說明書(補件)\93-11\93 ] 21117 1295233 該等之中,以由含有氧化銻之複合氧化物或含有氧化銻 之氧化物之混合物所構成之微粒子為佳,以氧化銻一氧化 錫複合氧化物、氧化銻一氧化鋅複合氧化物為特佳。 這些金屬氧化物,係與為上述之高折射率透明薄膜層 (B 1 )之一例的金屬氧化物之薄膜層相比,通常光線透射率 低,但借助該粒徑小,而能夠實現不影響實用之透明性。 又,無機微粒子(C 2 )之粒徑如果過大,則與黏合劑材料 (C 1 )之分散性就變差。另外,當無機微粒子(C 2 )粒徑變大, 則往往不能緻密地覆蓋透明導電性薄膜層。 另一方面,粒徑如果過小,就有作為粒子之處理變得困 難之可能性。 因此,無機微粒子(C 2 )之平均粒徑較好為1〜1 0 0 0 n m,更 好為5〜500nm,最好為5〜200nm。 再有,如後所述,無機微粒子(C 2 )最好均勻地覆蓋透明 導電性薄膜層(B )整體,因此無機微粒子(C 2 )之粒度分佈以 窄為佳。 本發明之無機微粒子(C 2 ),係例如透過與黏合劑材料 (C 1 )組合使用,而可實現上述般之透明性,而且如後所述 地,在防止白點效果上具有非常良好之極有用之特性。 上述之塗佈液,最好為黏合劑材料(C 1 )與液體所構成之 溶液與無機微粒子(C 2 )實質上均勻地混合。為了得到這樣 之塗佈液,以將溶劑與無機微粒子(C 2 )處於均勻分散狀態 之液體與由黏合劑材料(C 1 )與溶劑所構成之溶液進行混合 為佳。 19 326\專利說明書(補件)\93-11 \93121117 1295233 又,在所述塗佈液中也可以添加為提高無機微粒子之分 散性之穩定劑或用於提高塗佈性之平滑劑等。 作為形成使用依此所得塗佈液之保護層(c)之方法,係 可無限制地使用公知之塗佈方法,例如可舉出有棒塗法、 反轉塗佈法、凹版印刷塗佈法、輥塗法等。塗佈液之種類、 黏度、塗佈量等也沒有限制,但可以適宜地選擇在上述塗 佈法中為合適之塗佈液之條件。 保護層(C)之厚度,如果考慮具有黏合劑材料之機能, 以1 Ο Ο μ m以下為佳,以8 Ο μ m以下較佳。2 μ m以下係已足夠, 而以1 μ m以下更加,以0 · 0 5 μ m以上、0 . 5 μ m以下為特佳。 另外,依此所得之保護層之視覺平均透射率以5 0 %以上 為佳,以7 0 %以上為較佳,而以8 0 %以上為特佳。 在本發明中,如後所述般,無機微粒子(C 2 )以儘可能地 覆蓋透明導電性薄膜層地配置為佳。 因此,本發明之保護層中之黏合劑材料(C 1 )與無機微粒 子(C 2 )之組成,係相對於黏合劑材料(C 1 )以無機微粒子(C 2 ) 之量較多為佳。但是,當無機微粒子(C 2 )之含有率過高, 則無機微粒子(C 2 )就不能充分地固定,而導致保護層之剝 離或發生裂紋等,故得不到充分之保護效果。 黏合劑材料(C 1 )與無機微粒子(C 2 )之最合適之比例,係 由所使用之黏合劑材料(C 1 )與無機微粒子(C 2 )之分散性而 決定。因此,最好因應使用之黏合劑材料(C 1 )及無機微粒 子(C 2 )之種類,適宜地求出含有比例。一般說來,黏合劑 材料(C 1 )與無機微粒子(C 2 )之較佳重量比(無機微粒子 20 326\專利說明書(補件)\93_11\93121117 1295233 94· ίΟ· -94. 10. A replacement page The laminated body of the present invention and the functional transparent layer (D) described above are used as an electromagnetic wave shielding film and an infrared reflective film. Preferred examples of the film to be combined with the functional transparent layer (D) include a window electromagnetic wave shielding film and a window infrared reflection film. As the functional transparent layer (D) used in the above-mentioned window film, specifically, an ultraviolet absorbing layer, a hard coat layer or the like is preferably used. The window of the present invention is characterized by a laminated structure having the above-described window film and transparent window substrate. Hereinafter, each of these constituent elements will be described. [Transparent Substrate (A)] As the above transparent substrate (A), a plastic plate or a glass plate is suitable. As a specific example of the plastic sheet, an acrylic resin, a polycarbonate resin, a transparent ABS resin or the like starting with polydecyl methacrylate (PMMA) can be used, but is not limited to these resins. The thickness of the plastic plate is not particularly limited, but is usually about 1 m m to 10 m m. When a glass plate is used, it is preferable to use a semi-reinforced glass plate or a tempered glass plate which is subjected to chemical strengthening processing or air-cooling strengthening processing. For the sake of weight, the thickness is preferably about 1 to 4 mm. Further, in order to improve the design of the glass plate or the plastic plate as the peripheral portion of the filter for display, it is also possible to perform color printing such as black. Further, a polymer film used in the production of the transparent conductive film layer (B) to be described later may be used as the transparent substrate (A), or a soft transparent sheet having impact resistance may be used as the transparent substrate (A). . The optical filters obtained using these can be directly attached to the PDP module for use. The above-mentioned plastic plate, glass plate, polymer film, soft transparent sheet, etc. 13 326\total file\93\9312 111 7\93121 7 (replacement)-1 1295233 Two or more types can be used in combination. In this case, in addition to the direct lamination, the adhesive material layer (E) described later may be used in combination. [Silver-containing transparent conductive thin film layer (B)] The silver-containing transparent conductive thin film layer (B) of the present invention can be used without any limitation. For example, in addition to the structure directly formed on the transparent substrate (A), it may be a structure formed on a polymer film to be described later or on a film having antireflection or antiglare function. Among these, a transparent conductive thin film laminated film in which a silver-containing transparent conductive film is formed on a polymer film is used as the transparent conductive thin film layer (B) in terms of production efficiency and quality management. The method is particularly good. Fig. 1 is a view showing an example of a layer structure of a laminate in the present invention. In other words, the silver-containing transparent conductive metal thin film 15 and the transparent high refractive index film 17 are formed on the transparent polymer film substrate 13 by sandwiching the metal thin film 15 with the transparent high refractive index film 17 The layers are alternately laminated, and the structure of the protective layer 20 described later is laminated. As the above-mentioned polymer film, a polymer film having a high transparency and a high transparency of about 10 to 3 Ο Ο μπι is preferably used, and for example, polyethylene terephthalate (Ρ Ε 可) is exemplified. Τ), polyimine (Ρ I ), polysulfone (PS ), polyether sulfone (PES), polymethyl methacrylate (poly), polycarbonate (PC), polyether ether ketone (PEEK), Polypropylene (PP), cellulose triacetate (TAC). In particular, polyethylene terephthalate (Ρ Ε T ) and cellulose triacetate (T A C ) are particularly suitable for use. The transparent conductive thin film layer (B) used in the present invention is a laminate body comprising a transparent metal thin film layer (B 2 ) comprising a transparent high refractive index thin film layer (B 1 ) and a silver-containing or silver-containing alloy. It is better. The silver specific resistance is 1. 59x1 0_6 (Ω·(:πι), which is the most excellent in all materials, and the film 14 326\patent specification (supplement)\93-11 \93121117 1295233 has good visible light transmittance. Therefore, it is most suitable for use. On the other hand, silver lacks stability as a film, and is susceptible to problems such as vulcanization or chlorination. Therefore, in order to improve its stability, a silver-containing alloy, specifically, a silver-based silver alloy. For example, an alloy of silver and gold, an alloy of silver and copper, an alloy of silver and palladium, an alloy of silver and copper with palladium, an alloy of silver and platinum, etc. The thickness of the transparent metal thin film layer (B 2 ), although The multilayer transparent conductive thin film layer is determined by the overall permeability and conductivity, but is usually about 0.5 to 100 nm in one layer. Further, when the metal thin film layer is provided on the outermost surface, the silver metal of the main metal in the outermost surface is used. The component is preferably 3 to 99% (atomic ratio). The transparent high refractive index film layer (B1) can be used without any limitation, for example, a film having a film thickness of about 100 nm which is high in transparency is formed. Relative wave The light of 4 0 0 to 7 0 0 nm is preferably a material having a transparency of 60% or more of the transmittance of the film, and a refractive index of 1.4 or more with respect to light of 550 nm. Preferably, the high refractive index material of the material is suitable for the transparent high refractive index thin film layer (B 1 ), such as indium and tin oxide (ITO), zinc oxide (ZnO), titanium oxide (TiOO, Cadmium and tin oxides (CT0), alumina (Al2〇3), zinc and aluminum oxides (AZ0), magnesium oxide (MgO), strontium oxide (Th〇2), tin oxide (Sn〇2), Cerium oxide (La〇2), yttrium oxide (S i 0 2), indium oxide (I η 2 0 3 ), yttrium oxide (N b 2 0 3 ), yttrium oxide (Sb2〇〇, yttrium oxide (Zr〇2) ), cerium oxide (Ce 〇 2), cerium oxide (BiOO, etc.). Further, a transparent high refractive index sulfide may be used, and as exemplified, zinc sulfide (Z n S ) and cadmium sulfide may be mentioned. (C d S ), strontium sulfide (Sb2S3), etc. As a material for the transparent high refractive index film layer (B1), the above material 15 326\patent specification (supplement)\93-1]\93121117 1295233 , ZnO and Ti〇2 are ITO and ZnO are electrically conductive, and the refractive index of the visible region is as high as about 2.0, and is hardly absorbed in the visible region. T i 0 2 is an insulating material, although it has some absorption in the visible region, but The refractive index of visible light is as large as about 2.3. The formation of the multilayered layer of the transparent metal thin film layer (B 2 ) and the transparent high refractive index thin film layer (B 1 ) can be formed by sputtering or ion plating. It is formed by a conventionally known method such as a coating method or a vacuum deposition method. Among them, the sputtering method is suitable for controlling the formation of a multi-layered layer of film thickness, and the layer of the metal thin film layer and the high refractive index thin film layer can be laminated with a metal thin film layer composed of, for example, silver or a silver-containing alloy, and indium oxide. It is preferred that the transparent high refractive index film layer composed of the main film is easily formed continuously and continuously. Specifically, in the formation of the transparent metal thin film layer (B 2 ) of the present invention, silver or a silver-containing alloy is used as a target, and an inert gas such as argon is used as the sputtering gas. The pressure is 0. 0 Bu 3. 0 P a, using direct current (DC) or high frequency (RF) magnetron sputtering. Further, in the formation of the transparent high refractive index film layer (B 1 ) of the present invention, for example, a metal target using indium as a main component or a sintered body target having oxidation #0 as a main component, sputtering gas can be applied. Use an inert gas such as argon, the reactive gas uses oxygen, usually at a pressure of 0. 0 1~3 . 0 P a, reactive sputtering using direct-difference (DC) or high-frequency (RF) magnetron sputtering law. For the details of the other details, the contents described in Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. 2 1 7 3 8 0 or Japanese Patent Laid-Open No. 2 0 0 2 - 3 2 3 8 6 1 can be used. [Protective layer (C)] 16 326\Patent specification (Supplement)\93-11\93121117 1295233 The protective layer (C) of the present invention is a layer composed of a binder material (C 1 ) and inorganic fine particles (C2). . In addition, a layer obtained by coating/drying a coating liquid obtained by dispersing inorganic fine particles (C 2 ) in a solution containing a binder material (C 1 ) and a liquid such as water or an organic solvent is used. The protective layer (C) is particularly good. Further, the coating liquid described above may be obtained by dispersing a binder (C 1 ) and inorganic fine particles (C 2 ) into an emulsion. Alternatively, the inorganic fine particles (C 2 ) may be dispersed in a liquid containing the binder (C 1 ) and the liquid in an emulsion state. Hereinafter, the coating liquid in which the inorganic fine particles (C 2 ) are dispersed in the above-mentioned binder material (C 1 ) solution will be described in detail. The solution comprising the above-mentioned binder material (C 1 ) and a liquid is preferably used because it is colorless, has high transparency, and has good dispersibility of inorganic fine particles. The binder material (C 1 ) of the present invention is preferably a resin, and more specifically, an acrylic resin, a linoleic resin, a poly S-based resin, or an amino phthalate-based resin. , fluorine resin, etc. The resin is selected from the group consisting of an anthrone-based resin, a polyester resin, and an amine from the viewpoints of ease of handling, dispersibility of the inorganic fine particles (C 2 ) to the binder material (C 1 ) to be described later, and the like. One or more resins of the phthalic acid ester-based resin are preferred. As the resin as described above, it is also possible to use a substance having adhesiveness or adhesion, and to impart a function of the bonding material layer (E) to be described later on the protective layer (C). Further, the above resins may be used in combination of two or more kinds. The protective layer (C) of the present invention is generally bonded to another layer by using a binder (E) to be described later. Therefore, when laminating with the functional transparent layer (D) or the like to be described later, the conventional bonding method of the bonding material can be used without limitation (Paste 17 326\Patent Specification (Supplement)\93-11\93121117 1295233 ). As the solvent, a known liquid such as water, alcohol, acetone or toluene can be used. In the present invention, it is preferable to arrange the inorganic fine particles (C 2 ) as described later to cover the transparent conductive thin film layer as much as possible. Therefore, the dispersion of the inorganic fine particles (C 2 ) in the binder material (C 1 ) solution is good, and it is preferable that the inorganic fine particles (C 2 ) are not easily settled. This state can be achieved by appropriately selecting a resin or a liquid depending on the kind of the inorganic fine particles. For example, in the case of inorganic fine particles which are easily settled, it is preferred that the resin or liquid having a high specific gravity or a high viscosity of the solution be used. The inorganic fine particles (C 2 ) of the present invention are preferably contained as a protective layer (C) as described above in the transparent conductive thin film layer without gaps and densely packed. Further, the inorganic fine particles (C 2 ) of the present invention preferably have a low permeability such as chlorine or chloride, sulfur or sulfide, according to a mechanism for preventing white spots. The inorganic fine particles (C 2 ) are preferably those having excellent absorption properties such as gas or chloride, sulfur or sulfide. As a suitable example, for example, fine particles of a metal oxide can be mentioned. The metal oxide has a general tendency to easily react with hydrogen chloride or the like, and therefore the property of easily adsorbing the chloride is the reason described above. Examples of more specific metal oxides include sulphur dioxide, tin oxide, zinc oxide, indium oxide, oxide oxide, oxidized cerium oxide, cerium oxide, etc., in forming a transparent high refractive index film layer (B 1 ). The same metal oxide as the appropriate material. These materials can also be used in combination of 2 or more types. For example, it can be used as a composite oxide or as a mixture of oxides. Further, the above metal oxide can also be used in combination with a metal. Specific examples of the above composite oxide include indium oxide monotin and the like. 18 326\Patent specification (supplement)\93-11\93 ] 21117 1295233 Among these, fine particles composed of a composite oxide containing cerium oxide or a mixture containing cerium oxide are preferred for oxidation. The niobium tin oxide composite oxide and the niobium oxide zinc oxide composite oxide are particularly preferred. These metal oxides generally have a lower light transmittance than the thin film layer of the metal oxide which is one of the above-mentioned high refractive index transparent film layers (B 1 ), but can be achieved without being affected by the small particle diameter. Practical transparency. Further, if the particle diameter of the inorganic fine particles (C 2 ) is too large, the dispersibility with the binder material (C 1 ) is deteriorated. Further, when the particle diameter of the inorganic fine particles (C 2 ) is increased, the transparent conductive thin film layer may not be densely covered. On the other hand, if the particle diameter is too small, there is a possibility that handling as a particle becomes difficult. Therefore, the average particle diameter of the inorganic fine particles (C 2 ) is preferably from 1 to 1 0 0 0 n m, more preferably from 5 to 500 nm, most preferably from 5 to 200 nm. Further, as described later, the inorganic fine particles (C 2 ) preferably uniformly cover the entirety of the transparent conductive thin film layer (B), and therefore the particle size distribution of the inorganic fine particles (C 2 ) is preferably narrow. The inorganic fine particles (C 2 ) of the present invention can be used in combination with the binder material (C 1 ), for example, to achieve the above-described transparency, and as described later, it is excellent in preventing white spots. Very useful feature. The coating liquid described above is preferably such that the binder material (C 1 ) and the solution of the liquid and the inorganic fine particles (C 2 ) are substantially uniformly mixed. In order to obtain such a coating liquid, it is preferred to mix a liquid in which the solvent and the inorganic fine particles (C 2 ) are uniformly dispersed with a solution composed of the binder material (C 1 ) and a solvent. Further, in the coating liquid, a stabilizer for improving the dispersibility of the inorganic fine particles or a smoothing agent for improving the coating property may be added to the coating liquid. As a method of forming the protective layer (c) using the coating liquid thus obtained, a known coating method can be used without limitation, and examples thereof include a bar coating method, a reverse coating method, and a gravure coating method. , roll coating method, etc. The type, viscosity, coating amount and the like of the coating liquid are not limited, but the conditions of the coating liquid suitable for the above coating method can be appropriately selected. The thickness of the protective layer (C) is preferably 1 Ο Ο μ m or less, and preferably 8 Ο μ m or less, in consideration of the function of the adhesive material. It is sufficient for 2 μm or less, and more preferably 1 μm or less, and more preferably 0·05 μm or more and 0.5 μm or less. Further, the visual average transmittance of the protective layer thus obtained is preferably 50% or more, more preferably 70% or more, and particularly preferably 80% or more. In the present invention, as described later, the inorganic fine particles (C 2 ) are preferably disposed so as to cover the transparent conductive thin film layer as much as possible. Therefore, the composition of the binder material (C 1 ) and the inorganic fine particles (C 2 ) in the protective layer of the present invention is preferably such that the amount of the inorganic fine particles (C 2 ) is larger than that of the binder material (C 1 ). However, when the content ratio of the inorganic fine particles (C 2 ) is too high, the inorganic fine particles (C 2 ) are not sufficiently fixed, and peeling of the protective layer or cracking occurs, so that a sufficient protective effect cannot be obtained. The most suitable ratio of the binder material (C 1 ) to the inorganic fine particles (C 2 ) is determined by the dispersibility of the binder material (C 1 ) and the inorganic fine particles (C 2 ) to be used. Therefore, it is preferable to appropriately determine the content ratio depending on the type of the binder material (C 1 ) and the inorganic fine particles (C 2 ) to be used. In general, the preferred weight ratio of binder material (C 1 ) to inorganic microparticles (C 2 ) (inorganic microparticles 20 326\patent specification (supplement)\93_11\93121117 1295233 94· Ο -

替換I (C 2 ) /黏合劑材料(C 1 ))為Ο . 0卜1 Ο Ο,而以Ο · Ο 3〜3 0為較 佳,以Ο . Ο 5〜2 Ο為特佳。 [功能性透明層(D )] 作為功能性透明層(D ),可舉出防止反射層或防眩層為 較佳例子。而且可進一步採用硬塗層或防污染層、紫外線 吸收層、防帶靜電層、調色層等公知之層。該等層係在上 述之透明導電性薄膜層(B)之形成中使用之高分子薄膜、透 明基體(A )、上述之保護層(C )上形成亦可,也能夠使用具 有如防反射薄膜或防眩薄膜等之上述機能之薄膜或黏著材 料層。關於這些功能性透明層,更詳細地可採用在日本專 利特開平1 0 — 2 1 7 3 8 0號公報與日本專利特開2 0 0 2 — 3 2 3 8 6 1號公報中記載之功能性透明層。 為適合在本發明之窗用電磁波遮蔽薄膜與窗用紅外線 反射薄膜中使用之功能性透明層(D)的紫外線吸收層或硬 塗層,如果具有透明性與能夠對抗後述之窗施工之性能, 就能夠無限制地使用公知之材料。作為硬塗層,具體地說, 其合適之例子可舉出透明性、價格、施工性優良之丙烯酸 系之材料。又,作為形成硬塗層之方法,可以無限制地使 用公知之方法。具體地說,可舉出棒塗法、反轉塗佈法、 凹版印刷塗佈法、輥塗法等。在塗佈液之種類、黏度、塗 佈量上也沒有限制,可以適宜地選擇適合上述之塗佈法之 條件。另外,所得硬塗層之鉛筆硬度(日本工業標準 (J I S ) K 5 4 0 0標準)係以Η以上為佳,而以2 Η以上為特佳。 作為上述之紫外線吸收層,只要為透明,就可無限制地 21 326\總檔\93\93121117\93121117(替換)-1 1295233 使用公知之材料。又,在紫外線吸收層之形成方法上也沒 有特別限制。作為具體之例子,可以對高分子薄膜賦予紫 外線吸收機能之紫外線吸收薄膜或賦予紫外線吸收機能之 透明基體(A)、保護層(C)、硬塗層、後述之黏合劑層(E) 等形式使用。 [黏著材料層(E )] 在本發明中,透明基體(A)、透明導電性薄膜層(B)、保 護層(C )及功能性透明層(D)係可根據需要隔著黏結材料層 (E )進行貼合。作為具體之例子,在形成透明基體(A )—透 明導電性薄膜層(B )之高分子薄膜間、透明基體(A) —保護 層(C )間、透明基體(A ) —功能性透明層(D )間、保護層(C ) —功能性透明層(D )間、形成透明導電性薄膜層(B)之高分 子薄膜一功能性透明層(D)間等之貼合中使用。 再者,本發明之黏著劑,也包含黏接劑之含義而使用。 作為本發明之黏著材料層(E ),只要為透明,就能夠無 限制地使用公知之黏結材料。又,透過在黏著材料層(E) 中含有色素也能夠具有調色層之機能。另外也可以使含有 防銹成分。除此之外,如上所述般之透過分散無機微粒子 (C 2 ),也能夠賦予保護層之機能。 作為黏結劑層(E ),更具體之内容可以採用在曰本專利 特開平1 0 - 2 1 7 3 8 0號公報或日本專利特開2 0 0 2 — 3 2 3 8 6 1 號公報中記載之内容。 [積層體之製作] 本發明之積層體,至少包含透明基體(A )、含銀之透明 22 326\專利說明書(補件)\93] 1\93121117 1295233 導電性薄膜層(B )、黏合劑材料(C 1 )及無機微粒子(C 2 ),以 由厚度2 μ Π1以下之保護層(C )所構成’以透明導電性薄膜 層(Β )與保護層(C )相接觸為其特徵。只要透明導電性薄膜 層(Β )與保護層(C )相接觸,透明基體(A )之位置係為任意。 也可以在透明基體(A)上直接形成透明導電性薄膜層(B), 也可以用黏結材料層(E)貼合透明基體(A )與透明導電性薄 膜層(B )。另外,也可以用黏結材料層(E )貼合透明基體(A ) 與保護層(C)。 表示有關本發明之積層體之層構造之一例的剖面圖為 上述之圖1。更詳細地說,在圖1中示出由在透明高分子 薄膜基體1 3上所形成之含銀之透明導電性金屬薄膜層1 5 與透明高折射率薄膜層1 7重複形成之透明導電性薄膜層 及在其上所形成之保護層所構成之積層體。 [光學濾光器之組合] 本發明之光學濾光器係由透明基體(A)、 含銀之導電性金屬積層薄膜(B)、 保護層(C )、 功能性透明層(D )、及 根據需要之黏結材料層(E)所構成。 黏結材料層係除了在積層體之製作中使用之方法以外,使 用作為功能性透明層(D)之防止反射薄膜或防眩薄膜等之 功能性透明薄膜時,可以在與其他層貼合中使用之。 在本發明之顯示器用濾光器中,只要透明導電性薄膜層 (B )與保護層(C )接觸,該等層之構成係為任意,但在使用 23 326\專利說明書(補件)\93-11 \93121117 1295233 作為功能性透明層(D)之防止反射薄膜或防眩薄膜時,以將 該等層在最外層形成佳。 作為本發明之顯示器用濾光器之具體構造,可舉出例 如: 1 ·用黏結材料層(E )貼合作為透明基體(A )之玻璃板與 高分子薄膜之多層透明基板、在作為透明導電性薄膜層(B ) 之上述高分子膜上形成之透明導電性薄膜、由作為與電導 性金屬積層薄膜層(B )接觸之保護層(C )之黏合劑材料(C 1 ) 與無機微粒子(C 2 )所構成之層、具有作為功能性透明層(D) 之防止反射機能或防眩機能之薄膜,及用黏結劑層(E)貼合 上述該等之構造; 2 .作為透明基體(A )之玻璃板、透明導電性薄膜層(B )係 在上述玻璃板上所形成之透明導電性薄膜、由作為與上述 透明導電性薄膜接觸之保護層(C )之黏合劑材料(C 1 )與無 機微粒子(C 2 )所構成之層、作為功能性透明層(D )之具有防 止反射機能或者防眩機能之薄膜,及用黏合劑層(E)貼合上 述該等之構造。 圖2為表示有關本發明之顯示器用濾光器之層構造之一 例的剖面圖。更詳細地說,在圖2中係表示用黏合劑3 5 將由透明高分子薄膜基體1 3與多層透明導電性薄膜層1 8 及保護層2 0所構成之透明導電性薄膜積層體薄膜、具有防 止反射機能之薄膜3 0 (以下,稱為防止反射薄膜)或具有防 眩機能之薄膜3 0 ’(以下,稱為防眩性薄膜)、及透明支撐 基板3 3進行貼合,使與多層透明導電性薄膜層1 8接觸地 24 326\專利說明書(補件)\93-11\931211 ] 7 1295233 形成電極5 0之電磁波遮蔽用顯示器用光學濾光器。在此情 況下,用黏合材料層3 5所貼合之透明支撐基板3 3與透明 高分子薄膜基體1 3係相當於透明基體(A)。 上述之電極係以在具有電磁波遮蔽機能等之濾光器中 使用為佳,因此可以無限制地採用公知之物。上述之電極 係為了儘可能從廣大面積上高效率地取出電流,以在外周 部分之框上形成為佳。作為電極之形成方法,可以使用導 電性塗料之塗佈、印刷、導電性帶之貼附等公知之手段。 更詳細地說,可以採用在日本專利特開平1 0 _ 2 1 7 3 8 0號公 報或日本專利特開2 0 0 2 - 3 2 3 8 6 1號公報等中記載之内容。 作為其他之例子,可舉出在圖2中沒有透明支撐基板3 3 之薄膜狀電磁波遮蔽用顯示器用光學濾光器為較佳例。此 時,透明高分子薄膜基體13成為透明基體(A)。又,上述 光學濾光器係透過黏結劑35也可以直接貼合在PDP模組上 使用。 作為其他之例子,代替透明支撐基板3 3,可舉出作為透 明基體(A)使用之具有耐衝擊性之透明薄片。這樣的光學濾 光器,係以透過黏結劑35直接貼合在PDP模組上使用為 佳。如果在PDP模組上直接貼合顯示器用濾光器,則雖然 PDP模組由於外部之撞擊而存在易受破損之可能性,但由 於上述之光學濾光器具有财衝擊性,因此即使直接貼合在 PDP模組上,也具有保護高價之PDP模組不受外部之撞擊 之優良機能,而能夠防止PDP模組之破損。 形成上述之各層之構件,也可以具有數種機能。例如, 25 326\專利說明書(補件)\93 -11 \93121117 1295233The replacement of I (C 2 ) / binder material (C 1 )) is Ο 0 1 1 Ο Ο, and Ο · Ο 3~3 0 is preferred, Ο 〜 5 〜 2 Ο is particularly good. [Functional transparent layer (D)] As the functional transparent layer (D), a reflection preventing layer or an antiglare layer is preferably exemplified. Further, a known layer such as a hard coat layer or an antifouling layer, an ultraviolet absorbing layer, an antistatic layer, a toner layer, or the like can be further used. These layers may be formed on the polymer film, the transparent substrate (A), and the protective layer (C) used for forming the transparent conductive film layer (B), and may have an antireflection film. Or a film or adhesive material layer of the above function such as an anti-glare film. With regard to these functional transparent layers, the functions described in Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. 2 0 0 2 3 3 8 8 1 Sexual transparent layer. An ultraviolet absorbing layer or a hard coat layer suitable for the functional transparent layer (D) used in the electromagnetic wave shielding film for windows of the present invention and the infrared reflective film for windows, if it has transparency and can withstand the performance of window construction described later, It is possible to use known materials without limitation. Specific examples of the hard coat layer include acrylic materials which are excellent in transparency, price, and workability. Further, as a method of forming the hard coat layer, a known method can be used without limitation. Specifically, a bar coating method, a reverse coating method, a gravure coating method, a roll coating method, and the like can be given. There is no limitation on the type, viscosity, and amount of the coating liquid, and conditions suitable for the above coating method can be appropriately selected. Further, the pencil hardness of the obtained hard coat layer (Japanese Industrial Standard (J I S ) K 5 400 standard) is preferably Η or more, and particularly preferably 2 Η or more. As the above-mentioned ultraviolet absorbing layer, as long as it is transparent, a known material can be used without limitation, 21 326\total file\93\93121117\93121117 (replacement)-1 1295233. Further, there is no particular limitation on the method of forming the ultraviolet absorbing layer. As a specific example, an ultraviolet absorbing film having an ultraviolet absorbing function, a transparent substrate (A) for imparting an ultraviolet absorbing function, a protective layer (C), a hard coat layer, and a binder layer (E) to be described later may be applied to the polymer film. use. [Adhesive Material Layer (E)] In the present invention, the transparent substrate (A), the transparent conductive thin film layer (B), the protective layer (C), and the functional transparent layer (D) may be interposed with a layer of a bonding material as needed. (E) Fit. As a specific example, between the polymer film forming the transparent substrate (A) - the transparent conductive film layer (B), the transparent substrate (A) - the protective layer (C), and the transparent substrate (A) - the functional transparent layer It is used for bonding between (D), between the protective layer (C) and the functional transparent layer (D), between the polymer film forming the transparent conductive film layer (B), and between the functional transparent layer (D). Furthermore, the adhesive of the present invention is also used in the meaning of an adhesive. As the adhesive material layer (E) of the present invention, a known adhesive material can be used without limitation as long as it is transparent. Further, it is also possible to have a function of a toner layer by containing a coloring matter in the adhesive material layer (E). It can also contain rust-preventing ingredients. In addition to this, the function of the protective layer can be imparted by dispersing the inorganic fine particles (C 2 ) as described above. As the binder layer (E), more specifically, it can be used in the publication of Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. 1 0 - 2 1 7 3 8 0 or Japanese Patent Laid-Open No. 2 0 0 2 - 2 2 3 8 6 1 The content of the record. [Production of laminated body] The laminated body of the present invention comprises at least a transparent substrate (A), a silver-containing transparent 22 326\patent specification (supplement)\93] 1\93121117 1295233 conductive film layer (B), adhesive The material (C 1 ) and the inorganic fine particles (C 2 ) are characterized in that the transparent conductive thin film layer (Β) is in contact with the protective layer (C) by a protective layer (C) having a thickness of 2 μm or less. The position of the transparent substrate (A) is arbitrary as long as the transparent conductive thin film layer (?) is in contact with the protective layer (C). The transparent conductive thin film layer (B) may be formed directly on the transparent substrate (A), or the transparent substrate (A) and the transparent conductive thin film layer (B) may be bonded together with the adhesive material layer (E). Alternatively, the transparent substrate (A) and the protective layer (C) may be bonded together with the bonding material layer (E). A cross-sectional view showing an example of a layer structure of a laminate according to the present invention is shown in Fig. 1 described above. More specifically, the transparent conductivity formed by repeating the formation of the silver-containing transparent conductive metal thin film layer 15 and the transparent high refractive index thin film layer 17 formed on the transparent polymer film substrate 13 is shown in FIG. A laminate formed of a film layer and a protective layer formed thereon. [Combination of Optical Filters] The optical filter of the present invention comprises a transparent substrate (A), a silver-containing conductive metal laminated film (B), a protective layer (C), a functional transparent layer (D), and It is composed of a layer (E) of bonding material as needed. The bonding material layer can be used in combination with other layers when a functional transparent film such as an antireflection film or an antiglare film which is a functional transparent layer (D) is used in addition to the method used for the production of the laminate. It. In the filter for a display of the present invention, as long as the transparent conductive thin film layer (B) is in contact with the protective layer (C), the composition of the layers is arbitrary, but the use of 23 326\patent specification (supplement) is used. 93-11 \93121117 1295233 When the antireflection film or the antiglare film of the functional transparent layer (D) is used, the layers are preferably formed on the outermost layer. The specific structure of the filter for a display of the present invention includes, for example, a multilayer transparent substrate in which a glass substrate and a polymer film of a transparent substrate (A) are bonded together by a bonding material layer (E), and is transparent. a transparent conductive film formed on the polymer film of the conductive thin film layer (B), and a binder material (C 1 ) and inorganic fine particles as a protective layer (C) in contact with the electrically conductive metal laminated thin film layer (B) a layer composed of (C 2 ), a film having antireflection function or anti-glare function as a functional transparent layer (D), and a structure in which the above-mentioned layers are bonded by a binder layer (E); 2. As a transparent substrate The glass plate (A) and the transparent conductive film layer (B) are a transparent conductive film formed on the glass plate, and a binder material (C) as a protective layer (C) in contact with the transparent conductive film (C) 1) A layer composed of inorganic fine particles (C 2 ), a film having a function of preventing reflection or anti-glare function as a functional transparent layer (D), and a structure in which the above-mentioned structures are bonded by a binder layer (E). Fig. 2 is a cross-sectional view showing an example of a layer structure of a filter for a display of the present invention. More specifically, FIG. 2 shows a transparent conductive thin film laminated film composed of a transparent polymer film substrate 13 and a plurality of transparent conductive film layers 18 and a protective layer 20, with a binder 35. The film 30 of the anti-reflection function (hereinafter referred to as an anti-reflection film) or the film 30' having an anti-glare function (hereinafter referred to as an anti-glare film) and the transparent supporting substrate 33 are bonded to each other. The transparent conductive film layer 18 is in contact with the ground 24 326\patent specification (supplement)\93-11\931211] 7 1295233 The optical filter for the electromagnetic wave shielding display of the electrode 50 is formed. In this case, the transparent supporting substrate 3 3 and the transparent polymer film substrate 13 bonded together by the adhesive layer 35 correspond to the transparent substrate (A). The above-mentioned electrode is preferably used in a filter having an electromagnetic wave shielding function or the like, and thus a known one can be used without limitation. The above-mentioned electrodes are preferably formed on the frame of the outer peripheral portion in order to extract current as efficiently as possible from a large area. As a method of forming the electrode, a known means such as application of a conductive paint, printing, or attachment of a conductive tape can be used. More specifically, the contents described in Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. 2 0 0 2 - 3 2 3 8 6 1 and the like. As another example, an optical filter for a film-shaped electromagnetic wave shielding display having no transparent supporting substrate 3 3 in FIG. 2 is preferable. At this time, the transparent polymer film substrate 13 becomes a transparent substrate (A). Further, the optical filter described above may be directly bonded to the PDP module through the adhesive 35. As another example, in place of the transparent supporting substrate 33, a transparent sheet having impact resistance used as the transparent substrate (A) may be mentioned. Such an optical filter is preferably applied directly to the PDP module through the adhesive 35. If the filter for the display is directly attached to the PDP module, although the PDP module is susceptible to damage due to external impact, the optical filter described above has a financial impact, so even if it is directly attached Combined with the PDP module, it also has the excellent function of protecting the high-priced PDP module from external impact, and can prevent the PDP module from being damaged. The members forming the above layers may also have several functions. For example, 25 326\Patent Specification (supplement)\93 -11 \93121117 1295233

94. 10. - 3 替换頁. 前述之透明導電性薄膜層所形成之防止反射薄膜,係具有 透明基體(A )、透明導電性薄膜層(B)、功能性透明層(D) 之3種機能。若使用這樣之構件,就能夠期待本發明之積 層體或顯示器用濾光器之更加薄型化或由製造時之步驟數 縮短而產生之生產性提高。 [電磁波遮蔽薄膜、紅外線反射薄膜、窗] 本發明之電磁波遮蔽薄膜或紅外線反射薄膜,係能夠適 用在.由於電磁波使其機能受到影響之機器或在高溫下之使 用受限制之機器,例如具有半導體電路等之各種精密機器 等之半導體裝置、辦公室等建築物之窗等。作為半導體裝 置,更具體地說,可例示出彈球遊戲台、遊戲機等要求目 視性之機器。 本發明之窗用電磁波遮蔽薄膜,係以至少包含透明基體 (A)、透明導電性薄膜層(B)、含有黏合劑材料(C 1 )與無機 微粒子(C 2 )之保護層(C )、功能性透明層(D )為其特徵。作 為功能性透明層(D ),以包含硬塗層與紫外線吸收層及根據 需要所使用之黏合劑層為其特徵。作為其具體之層構造, 係以具有將透明基體(A )、透明導電性薄膜層(B )、保護層 (C )、硬塗層依硬塗層/透明基體(A ) /透明導電性薄膜層 (B ) /保護層(C )之順序,或透明基體(A ) /透明導電性薄膜層 (B ) /保護層(C ) /硬塗層之順序之構造為其特徵。在上述構 成中,紫外線吸收層與根據需要所使用之黏結材料層(E ) 等之位置係為任意。 在圖3中示出本發明之窗用電磁波遮蔽薄膜構造之一 2694. 10. - 3 Replacement page. The antireflection film formed by the transparent conductive film layer described above has three kinds of transparent substrate (A), transparent conductive film layer (B), and functional transparent layer (D). function. When such a member is used, it is expected that the laminate of the present invention or the filter for display can be made thinner or the productivity can be improved by shortening the number of steps in the production. [Electromagnetic wave shielding film, infrared reflecting film, and window] The electromagnetic wave shielding film or the infrared reflecting film of the present invention can be applied to a machine that is affected by electromagnetic waves or whose use is restricted at a high temperature, for example, a semiconductor. A semiconductor device such as a circuit such as a circuit or a window of a building such as an office. More specifically, as the semiconductor device, a machine that requires visibility such as a pinball game table or a game machine can be exemplified. The electromagnetic wave shielding film for windows of the present invention comprises at least a transparent substrate (A), a transparent conductive film layer (B), a protective layer (C) containing a binder material (C 1 ) and inorganic fine particles (C 2 ), The functional transparent layer (D) is characterized by it. As the functional transparent layer (D), it is characterized by comprising a hard coat layer and an ultraviolet absorbing layer and a binder layer as needed. As a specific layer structure thereof, the transparent substrate (A), the transparent conductive film layer (B), the protective layer (C), and the hard coat layer are hard-coated/transparent substrate (A)/transparent conductive film. The order of the layer (B) / protective layer (C), or the configuration of the transparent substrate (A) / transparent conductive film layer (B) / protective layer (C) / hard coat layer is characterized. In the above configuration, the position of the ultraviolet absorbing layer and the bonding material layer (E) or the like used as needed is arbitrary. One of the electromagnetic wave shielding film structures for windows of the present invention is shown in FIG.

326\總檔\93\9312 111 7\93121117(替換)-1 1295233 例。326\Total file\93\9312 111 7\93121117 (replace)-1 1295233 Example.

|D|D

94 10. - 3 朁換I 圖3所示之窗用電磁波遮蔽薄膜,係例如用如下之方法 製作。在透明高分子薄膜基體1 3之一面,用濺鍍法交互地 形成4層透明高折射率薄膜層1 7與3層含銀之透明導電性 金屬薄膜層1 5之積層而得到之多層透明導電性薄膜層 1 8,而得到積層體1 0。接著,在積層體1 0之透明高分子 薄膜基體1 3側設置硬塗層4 0。在多層透明導電性薄膜層 1 8上形成由黏合劑樹脂與無機微粒子所構成之保護層 2 0。再在保護層2 0上形成包含紫外線吸收劑之黏結劑材料 層7 0,便得到本發明之窗用電磁波遮蔽薄膜。 本發明之窗用電磁波遮蔽薄膜,係因具有如前述之透明 導電性薄膜層,故電磁波遮蔽性優良。本發明之窗用電磁 波屏蔽薄膜,係以用阿德邦測試(A d v a n t e s t)法決定之電磁 波屏蔽性能在3 0 Μ H z〜6 0 0 0 Μ H z之頻率區域為3 0 d B以上為 佳。而以3 5 d B以上為較佳,以4 0 d B以上為特佳。另外, 放射率以0 . 2 5以下為佳,而以0 · 2 0以下為更佳。 另外,本發明之窗用電磁波遮蔽薄膜,係藉由適宜地選 擇、控制上述之透明導電性薄膜層之構造,也能夠賦予紅 外線反射性能。該紅外線反射性能,係例如可用日射反射 率(J I S A 5 7 5 9 )進行評估。本發明之窗用電磁波遮蔽薄膜 之日射反射率以2 5 %以上為佳,而以3 0 %以上為更佳。 使用本發明之顯示器用濾光器之顯示裝置有例如電漿 顯示器、液晶顯示器、有機EL顯示裝置等各種顯示裝置, 係因使用上述之顯示器用濾光器,因此連續長時間之電磁 2794 10. - 3 朁 I The window shown in Fig. 3 is shielded with electromagnetic waves, for example, by the following method. On one surface of the transparent polymer film substrate 13 , a plurality of layers of transparent high-refractive-index film layer 17 and three layers of silver-containing transparent conductive metal film layer 15 are alternately formed by sputtering. The thin film layer 18 is obtained to obtain a laminated body 10 . Next, a hard coat layer 40 is provided on the side of the transparent polymer film substrate 13 of the laminated body 10. A protective layer 20 composed of a binder resin and inorganic fine particles is formed on the multilayer transparent conductive film layer 18. Further, a layer 7 of a binder material containing an ultraviolet absorber is formed on the protective layer 20 to obtain an electromagnetic wave shielding film for a window of the present invention. The electromagnetic wave shielding film for windows of the present invention has the transparent conductive film layer as described above, and therefore has excellent electromagnetic wave shielding properties. The electromagnetic wave shielding film for window of the present invention has an electromagnetic wave shielding performance determined by an Advantest test method in the frequency region of 30 Μ H z~6 0 0 Μ H z of 30 d B or more. good. It is preferably 3 5 d B or more, and more preferably 40 d B or more. Further, the emissivity is preferably 0.25% or less, and more preferably 0.20 or less. Further, the electromagnetic wave shielding film for a window of the present invention can impart infrared light reflection performance by appropriately selecting and controlling the structure of the above transparent conductive thin film layer. The infrared reflection performance can be evaluated, for example, by the insolation reflectance (J I S A 5 7 5 9 ). The solar radiation shielding film for a window according to the present invention preferably has an insolation reflectance of 25% or more, more preferably 30% or more. The display device using the filter for a display of the present invention includes various display devices such as a plasma display, a liquid crystal display, and an organic EL display device, and the electromagnetic filter for the display is used for a long time.

326\總檔\93\93121117\93121 ]17(替換)-1 1295233 波之洩漏變少,不致引起遙控等之錯誤動作,而且能夠提 供美麗之影像。 [窗] 本發明之窗係具有將上述之窗用電磁波遮蔽薄膜與透 明窗用基板予以積層之構造。作為本發明之透明窗用基 板,可以無限制地使用玻璃板、丙烯酸板等公知之窗用基 板。在圖4中表示出本發明之窗的層構造之一例之剖面 圖。亦即,為在與圖3相同之積層體1 0上設置硬塗層6 0, 在與硬塗層6 0相反側形成由黏合劑樹脂與無機微粒子所 構成之保護層2 0、含紫外線吸收劑之黏結材料層7 0,再貼 合窗用玻璃基板80之構造。 以下示出在透明窗用基板上貼合本發明之窗用電磁波 遮蔽薄膜之一般方法。作為窗用電磁波遮蔽薄膜,以使用 在其表面具有黏結材料層者為佳。首先,將透明窗用基板 與窗用電磁波遮蔽薄膜之黏結材料層側表面,用水與界面 活性劑之混合液體弄濕,接著將上述之透明窗用基板與窗 用電磁波遮蔽薄膜暫時貼合。最後使用橡膠刮板將水刮 出,使窗與薄膜牢固地貼合。 藉由日本之自來水管法,在自來水管之末端的氯濃度, 係規定為0 · 1 p p m (在1升中為1毫克)以上。像這樣,因為 水中存在之氯成分,或在施工時於透明窗用基板與薄膜之 間有微小之垃圾·異物進入,所以如果透明導電性薄膜層與 從外部侵入之氯成分發生接觸,就產生反射性缺陷。 但是,本發明之窗用電磁波遮蔽薄膜係因具有透明導電 28 326\專利說明書(補件)\93-11\93121117 1295233 性薄膜層(B)與保護層(C)相接觸之構造,故反應性缺陷之 發生非常少。此係利用上述之自來水之方法將本發明之窗 用電磁波遮蔽薄膜或本發明之積層體貼合在玻璃上,將其 固定在6 0 °C、9 0 % R Η之高溫高濕度處理裝置内2 4小‘時後, 透過顯微鏡照片觀察/測量因銀之聚集而產生之直徑 0 . 1 m m以上之反射性缺陷發生頻率並可藉由促進評估法確 認。將本發明之積層體或積層體貼合在玻璃上之上述評估 法所產生之反應性缺陷之個數係減低至1 0個/ 1 0 c in2以 下,以減低至8個/ 1 0 c m2以下為佳,而以減低至6個/ 1 0 c m2 以下為特佳。 另外,紫外線吸收層係在透明基體(A)對紫外線之耐久 性不充分時使用為佳。此時,紫外線吸收層係以位於靠近 作為窗用電磁波遮蔽薄膜進行施工之玻璃代表例之透明窗 用基板為佳。在透明導電性薄膜層(B)有反射或吸收紫外線 之機能,但從保護透明基體(A )不受紫外線影響而言並不充 分。另一方面,本發明之窗,係通常將透明窗用基板配置 在室外側,將窗用電磁波遮蔽薄膜配置在室内側。因此, 在透明基體(A )與進行施工之窗玻璃之間以設置紫外線吸 收層(E )為佳。 本發明之積層體或顯示器用濾光器,係因具有透明導電 性薄膜層(B )與保護層(C )相接觸之構造,故上述之反應性 缺陷之發生非常少。此係將本發明之積層體或顯示器用濾 光器固定在6 0 °C、9 0 % R Η之高溫高濕度處理裝置内2 4小時 後,透過顯微鏡照片觀察/測量因銀之聚集而產生之直徑 29326\Total file\93\93121117\93121]17(Replacement)-1 1295233 The leakage of the wave is reduced, causing no malfunction of remote control, etc., and providing beautiful images. [Window] The window of the present invention has a structure in which the above-described window electromagnetic shielding film and the transparent window substrate are laminated. As the transparent window substrate of the present invention, a known window substrate such as a glass plate or an acrylic plate can be used without limitation. Fig. 4 is a cross-sectional view showing an example of a layer structure of the window of the present invention. That is, a hard coat layer 60 is provided on the laminate 10 which is the same as that of FIG. 3, and a protective layer 20 made of a binder resin and inorganic fine particles is formed on the side opposite to the hard coat layer 60, and ultraviolet absorption is contained. The bonding material layer 70 of the agent is bonded to the structure of the glass substrate 80 for windows. The general method of bonding the electromagnetic wave shielding film for windows of the present invention to the substrate for a transparent window is shown below. As the window electromagnetic wave shielding film, it is preferable to use a layer having a bonding material on the surface thereof. First, the side surface of the bonding material layer of the transparent window substrate and the electromagnetic wave shielding film for the window is wetted with the mixed liquid of the water and the surfactant, and then the transparent window substrate and the window electromagnetic shielding film are temporarily bonded together. Finally, the rubber scraper is used to scrape the water so that the window and the film are firmly attached. With the Japanese water pipe method, the chlorine concentration at the end of the water pipe is specified to be 0 · 1 p p m (1 mg in 1 liter) or more. In this way, since there is a chlorine component present in the water or a small amount of garbage or foreign matter enters between the transparent window substrate and the film during the construction, the transparent conductive thin film layer comes into contact with the chlorine component invading from the outside. Reflective defects. However, the electromagnetic wave shielding film for window of the present invention has a structure in which the transparent conductive layer 28 326 \ patent specification (supplement) \93-11\93121117 1295233 film layer (B) is in contact with the protective layer (C), so the reaction Sexual defects occur very little. In this way, the electromagnetic wave shielding film for window of the present invention or the laminated body of the present invention is attached to the glass by the method of tap water described above, and is fixed in a high temperature and high humidity treatment device of 60 ° C and 90% R 2 2 After 4 hours, the frequency of reflection defects with a diameter of 0.1 mm or more due to the aggregation of silver was observed/measured through a microscope photograph and confirmed by a promotion evaluation method. The number of reactive defects generated by the above evaluation method in which the laminate or laminate of the present invention is bonded to glass is reduced to 10 / 10 c in 2 or less to be reduced to 8 / 10 c m 2 or less. It is better, and it is particularly good to reduce it to 6 / 10 0 m 2 or less. Further, the ultraviolet absorbing layer is preferably used when the transparent substrate (A) is insufficient in durability against ultraviolet rays. In this case, the ultraviolet absorbing layer is preferably a transparent glazing substrate which is located near a representative example of glass which is used as a window electromagnetic wave shielding film. The transparent conductive film layer (B) has a function of reflecting or absorbing ultraviolet rays, but it is not sufficient from the viewpoint of protecting the transparent substrate (A) from ultraviolet rays. On the other hand, in the window of the present invention, the transparent window substrate is usually disposed on the outdoor side, and the window electromagnetic wave shielding film is disposed on the indoor side. Therefore, it is preferable to provide the ultraviolet absorbing layer (E) between the transparent substrate (A) and the window glass for construction. Since the filter for a laminate or a display of the present invention has a structure in which the transparent conductive thin film layer (B) is in contact with the protective layer (C), the occurrence of the above-mentioned reactivity defects is extremely small. In this way, the laminate or the display of the present invention is fixed in a high-temperature and high-humidity treatment device of 60 ° C and 90% R 2 for 24 hours, and is observed/measured by the accumulation of silver by a microscope photograph. Diameter 29

326\專利說明書(補件)\93七\93121117 1295233 Ο . 1 in m以上之點狀缺陷(反射性缺陷)發生頻率並可藉由促 進評估法確認。將本發明之積層體或顯示器用濾光器之上 述評估法所產生之反應性缺陷之個數係減低至2個/ m2以 下,以減低至1個/ in2以下為佳,而以減低至0 . 5個/ m2以 下為特佳。 關於上述之反應性缺陷之發生被顯著地抑制之原因,尚 未清楚。但是,認為係因保護層(C ),特別是無機微粒子(C 2 ) 具有使附著在透明導電性薄膜層上之銀產生聚集之成分, 例如氯化物等被捕集之效果,或抑制與銀之反應性之效果 所致。又,推論保護層(C)遮蔽了使銀聚集或與銀反應之成 分從外部之侵入,從而使上述成分不能到達金屬薄膜亦為 一個原因。因此在本發明之保護層(C )中,無機微粒子(C 2 ) 係以無間隙地分佈為佳。另外,無機微粒子(C 2 )以形成薄 且均勻之分佈為佳。上述之均勻性如果太差,則在積層體 之透明性上將發生不均勻,又,無機微粒子(C 2 )如果過厚 地分佈,則可見光之透射率將降低。 在本發明之積層體與使用該積層體之上述用途中,所謂 為透明之由日本工業標準(JIS)R3106規定之可見光之透 射率為1 0〜9 8 %,以2 0〜9 5 %較佳,而以2 0〜9 0 %為特佳。 [分析方法] 本發明中之積層體之分析方法如下。 積層體表面之原子組成,係可以使用俄歇電子分光法 (AES)、螢光X射線法(XRF)、X射線微分析法(XMA)、帶電 粒子激勵X射線分析法(RBS)、X射線電子分光法(XPS)、 30 326\專利說明書(補件)\93-] 1\93121117 1295233326\Patent specification (supplement)\937\93121117 1295233 Ο. The frequency of point defects (reflective defects) above 1 in m can be confirmed by the promotion evaluation method. The number of reactive defects generated by the above-described evaluation method of the laminated body or the display filter of the present invention is reduced to 2/m2 or less, preferably to 1/in2 or less, and is preferably reduced to 0. . 5 / m2 or less is especially good. The reason why the occurrence of the above-mentioned reactive defect is remarkably suppressed is not clear. However, it is considered that the protective layer (C), particularly the inorganic fine particles (C 2 ), has a effect of trapping a component such as chloride which causes aggregation of silver adhering to the transparent conductive thin film layer, or suppressing silver. The effect of the reactivity. Further, it is inferred that the protective layer (C) shields the component which causes silver to aggregate or react with silver from the outside, so that the above components cannot reach the metal thin film. Therefore, in the protective layer (C) of the present invention, the inorganic fine particles (C 2 ) are preferably distributed without a gap. Further, the inorganic fine particles (C 2 ) are preferably formed in a thin and uniform distribution. If the uniformity as described above is too poor, unevenness will occur in the transparency of the laminated body, and if the inorganic fine particles (C 2 ) are excessively distributed, the transmittance of visible light will be lowered. In the above-mentioned use of the laminate of the present invention and the use of the laminate, the transmittance of visible light specified by Japanese Industrial Standards (JIS) R3106 is 100% to 98%, and 2 to 95%. Good, and 2 0~9 0 % is especially good. [Analysis Method] The analysis method of the laminate in the present invention is as follows. The atomic composition of the surface of the laminate can be performed by Auger electron spectroscopy (AES), fluorescent X-ray (XRF), X-ray microanalysis (XMA), charged particle excitation X-ray analysis (RBS), and X-ray. Electron spectroscopy (XPS), 30 326\patent specification (supplement)\93-] 1\93121117 1295233

94. 10. ~ 3 替換頁 真空紫外光電子分析法(UPS )、紅外吸收分光法(I R )、拉曼 分光法、2次離子質量分析法(S I MS )、低能量離子散射分 光法(I S S )等測量。又,可透過沿深度方向實施X射線電子 分光法(XPS)或俄歇電子分光法(AES)或2次離子質量分析 (SIMS)調查積層體中之原子組成及膜厚。 使用剖面之光學顯微鏡測量、掃描電子顯微鏡(S E Μ)測 量、透射電子顯微鏡測量(Τ Ε Μ ),可知積層體之構造與各層 之狀態。 (產業上之可利用性) 本發明之積層體與顯示器用濾光器,係反應性缺陷之發 生極少。因此,與以往相比,良率高,亦即能夠以高生產 率提供PDP等之顯示器用濾光器。另外,因為生產率高, 所以能夠廉價地提供上述顯示器用濾光器。又,因可預計 經過一段時間後之反應性缺陷之發生少,故能夠連續極長 時間地提供高品質之影像。 使用本發明之積層體之電磁波遮蔽薄膜、紅外線反射薄 膜,係即使與自來水等接觸,反應性缺陷之發生也少。因 此,即使使用以往之一般自來水之施工方法製造,也能夠 連續長時間提供除了電磁波遮蔽機能、紅外線反射性能以 外,視覺性優良之窗。 從以上可知,本發明之工業性意義重大。 (實施例) 以下,用實施例說明本發明。在實施例中,%係指重量 %,份係指重量份。 3194. 10. ~ 3 Replacement page vacuum ultraviolet photoelectron analysis (UPS), infrared absorption spectrometry (IR), Raman spectroscopy, secondary ion mass spectrometry (SI MS), low energy ion scattering spectroscopy (ISS) Etc. Further, the atomic composition and film thickness in the laminate can be investigated by performing X-ray electron spectroscopy (XPS) or Auger electron spectroscopy (AES) or secondary ion mass spectrometry (SIMS) in the depth direction. The structure of the laminate and the state of each layer can be known by optical microscopy measurement of the cross section, scanning electron microscopy (S E Μ) measurement, and transmission electron microscopy measurement (Τ Ε Μ ). (Industrial Applicability) The laminate of the present invention and the filter for display have few occurrences of reactive defects. Therefore, compared with the prior art, the yield filter is high, that is, a filter for display such as a PDP can be provided at a high productivity. Further, since the productivity is high, the above-described filter for display can be provided at low cost. Further, since it is expected that the occurrence of reactive defects after a lapse of time is small, it is possible to provide high-quality images for a very long time. When the electromagnetic wave shielding film or the infrared reflecting film of the laminated body of the present invention is used, the occurrence of reactive defects occurs even when it comes into contact with tap water or the like. Therefore, even if it is manufactured by the conventional construction method of tap water, it is possible to provide a window which is excellent in visibility in addition to the electromagnetic shielding function and the infrared reflection performance for a long time. From the above, the industrial significance of the present invention is significant. (Examples) Hereinafter, the present invention will be described by way of examples. In the examples, % means % by weight, and parts means parts by weight. 31

326\總檔\93\93121117\931211 ] 7(替換 Η 1295233 [實施例1 ] (1 )(透明導電性薄膜積層體薄膜之形成) 製成與圖1所示之構造相同之透明導電性薄膜層積層體 薄膜。亦即,作為透明基體,使用聚對酞酸乙二酯薄膜(厚 度7 5 μ m ),在其一方之主面,使用直流磁控滅鍵法,依序 積層由銦與錫之氧化物所構成之I T 0薄膜層(透明高折射 率薄膜層)及銀薄膜層(透明金屬薄膜層),便可得到透明導 電性薄膜積層體薄膜。透明導電性薄膜積層體薄膜之構造 係為透明膜基體 (75pm)/ITO(40nm)/Ag(15nm)/ITO(80nm)/Ag(20nm)/ITO( 80nm)/Ag(15nm)/ITO(80nm) ° 在此,在I TO薄膜層之形成中,作為靶材使用氧化銦· 氧化錫燒結體(I η 2 0 3 ·· S η 0 2 = 9 0 : 1 0 (質量比)),作為濺鍍氣 體使用氬•氧混合氣體(總壓2 6 6 m P a,氧分壓5 m P a )。另外, 在銀薄膜層之形成中,作為靶材使用銀,濺鍍氣體使用氬 氣(總壓2 6 6 m P a )。 另外,透過製膜時間控制各層之厚度。此係以與各層之 製膜條件相同之條件下預先求出成膜速度,係屬可能之事。 (2 )(保護層之形成) 作為黏合劑材料之矽酮樹脂(昭和電工製玻璃樹脂)、與 作為無機微粒子之氧化鋅/氧化銻微粒子(曰產化學製塞爾 那克思)配合作為溶劑之異丙醇(試劑用),以得到矽酮樹脂 3 %、氧化鋅/氧化銻微粒子3 %之懸浮液(以下,稱此般之 懸浮液為塗佈液)。 32 326\專利說明書(補件)\93-11\93121117 1295233 使用微凹版印刷塗佈法在透明導電性薄膜積層體薄膜 最外層之透明高折射率薄膜層上塗佈所得到之塗佈液,在 1 2 (TC下乾燥1分鐘,形成膜厚〇. 2 μ m之保護層,就得到 積層體。 (3 )(顯示器用濾光器之組合) 製成與圖2所示之構造相同之顯示器用濾光器。首先, 在上述之積層體之保護層2 0側之面上,使用黏結材料(含 有0 . 2 %苯半唑)貼合厚度1 Ο Ο μ m之具有防止反射機能之薄 膜(PET製)。又,使用黏結劑貼合該積層體之透明高分子 薄膜基體之一側與作為透明支撐基板之2 m m之Ρ Μ Μ A基板。 再進行篩網印刷銀糊(p a s t e )並乾燥以形成厚度1 5 μ m之電 極,作為顯示器用濾光器。 (4 )(加速财姓試驗) 將所得之顯示器用濾光器固定在6 0 °C 、9 0 % R Η之高溫 高濕度處理裝置内2 4小時後,透過目視或顯微鏡照片觀察 /測量銀之聚集而產生之直徑0 · 1 mm以上之點狀缺陷(反射 性缺陷)發生頻率。 結果示於表1中。 33 326\專利說明書(補件)\93-11 \93121117 1295233 表1 保護層 反射性缺陷 無機微 黏 合 劑 厚 度 發生數密度 粒子 材 料 (μπι) (個 /m2) 實施例1 氧化鋅/氧化銻 矽酮樹脂 0. 2 0. 2 實施例2 氧化鋅/氧化銻 矽酮樹脂 1 0· 1 實施例3 氧化錫/氧化銻 聚酯樹脂 0. 1 0. 1 實施例4 氧化鋅/氧化銻 聚酯樹脂 0. 1 0.4 實施例5 氧化鋅/氧化銻 胺基甲酸酯樹脂 0. 1 0. 6 比較例1 不使用 不使用 — 9. 5 比較例2 不使用 矽酮樹脂 0.2 6. 6 [實施例2 ] 除了使保護層之塗佈•乾燥後之厚度為1 μ m以外,與實 施例1相同地製作顯示器用光學濾光器,對該濾光器同樣 地進行加速耐蝕試驗之結果示於表1中。 [實施例3 ] 除了作為塗佈液使用由作為黏合劑材料之聚酯樹脂、作 為無機微粒子之氧化鋅/氧化銻所構成之塗佈液(商品名: 住友大阪水泥製思米塞發因(s u m i c e f i n e ))、並使保護層之 厚度為0. 1 μπι以外,與實施例1同樣地製作顯示器用光學 濾光器,對該光學濾光器同樣地進行加速耐蝕試驗之結果 示於表1中。 [實施例4 ] 除了使用聚酯樹脂(優尼吉嘉(u n i t i k a )製愛理泰爾 (e 1 i t e 1))作為黏合劑材料、甲苯(試劑用)作為溶劑之塗佈 34 326\專利說明書(補件)\93-11 \93121117 1295233 液,並使保護層之厚度為Ο . 1 μ m以外,與實施例1 進行顯示器用光學濾光器之製作與加速耐蝕試驗。 於表1中。 [實施例5 ] 除了使用胺基曱酸酯樹脂(三井化學製喔雷史塔 (ο 1 e s t e r ))作為黏合劑材料、甲苯(試劑用)作為溶 佈液,並使保護層之厚度為0 . 1 μιτι以外,與實施例 地進行顯示器用光學濾光器之製作與加速耐蝕試驗 示於表1中。 [比較例1 ] 除了不進行形成保護層之步驟以外,與實施例1 組合顯示器用光學遽光器,對其同樣地進行加速耐 之結果示於表1中。 [比較例2 ] 除了塗佈液中之矽酮樹脂為3 %、氧化鋅一銻微 0 %以外,與實施例1同樣地組合顯示器用濾光器, 樣地進行加速耐蝕試驗之結果示於表1中。 從表1可知,形成顯示器用濾光器時,由於在接 層體薄膜之多層導電性金屬積層薄膜之部分上形成 劑材料與無機微粒子所構成之保護層,與不形成保 時,單獨用黏合劑材料形成之情況相比,因銀聚集 之點狀缺陷發生頻率大幅度地降低。 [實施例6 ] (1 )(透明電磁波遮蔽薄膜之形成) 326\專利說明書(補件)\93-11\93121117 35 同樣地 結果示 劑之塗 1同樣 。結果 同樣地 蝕試驗 (SL子為 對其同 觸該積 由黏合 護層 而引起 1295233 作為透明高分子薄膜基體,使用聚對酞酸乙二酯薄膜 (厚度75μιη),在其一方之主面上,作為透明高折射率薄膜 層,使用直流磁控濺鍍法,依序積層由銦與錫之氧化物構 成之I Τ 0薄膜層、作為含銀之透明導電性金屬薄膜層之銀 薄膜層,而得到透明電磁波遮蔽薄膜。透明電磁波遮蔽薄 膜之構造為PET薄膜 (7 5pin)/ITO(40nm)/Ag(10nni)/ITO(80nm)/Ag(10nm)/ITO( 80nm)/Ag(10nm)/ITO(80nm) 〇 在上述構造中之透明電磁波遮蔽薄膜之性能係表面電 阻率為2 Ω / □、電磁波遮蔽能(測量方法:阿德邦測試法) 為42dB,放射率(JISA 5759)為0.10,日射反射率(jisa 5759)為32% (注:上述32%之單位為日射反射率之單位)。 在此’在ITO薄膜層之形成中,作為靶材使用氧化銦· 氧化銻燒結體(In2〇3:Sn〇2 = 90:10(質量比)),作為錢錢氣 體使用氬•氧混合氣體(總壓為2 6 6 mPa,氧分壓為5mpa)。 另外’在銀薄膜層之形成中’作為靶材使用銀,對於濺鍍 氣體來說使用氬氣(總壓為2 6 6 m P a )。 (2)(保護層之形成) 與實施例1相同地形成保護層。 (3 )(黏結劑層與硬塗層之形成) 劑之含有紫外線吸收 製)’在8 0 °C下乾燥2 面的相反側之面上,塗 在上述之保護層上塗佈作為黏結 劑之丙烯酸系黏結劑(東洋油墨公司 分鐘,形成膜厚2 5 μ m之黏結劑層。 另外,在塗佈了上述之黏結劑之 36 326\專利說明書(補件)\93·11\93121117 1295233 佈作為硬塗劑之丙烯酸系硬塗劑(J S R公司製),在8 0 °C下 乾燥2分鐘,透過UV照射進行硬化,形成膜厚3 μπι之硬 塗層。 (4 )(窗試樣之形成) 首先,調製在500ml之日本市内自來水中混合lml界面 活性劑之水貼合用之水。用上述製成之水弄濕玻璃基板(A 4 大小)與附有上述保護層、黏結材料層之透明電磁波遮蔽薄 膜,形成將該等貼合之貼合體,作為透明電磁波遮蔽窗試 樣。 (5 )(加速財餘試驗) 在6 0 °C 、9 0 % R Η之高溫高濕度處理裝置内固定上述所得 之透明電磁波遮蔽試樣,2 4小時後,透過顯微鏡照片觀 察•測量因銀之聚集而產生之直徑0. 1 m m以上之反射性缺 陷發生密度。該值為進行1 0個試樣測量後所得到之平均 值0 結果示於表2。 表2 保護層 反應性缺陷發生 密度(個/10m2) 無機微粒子 黏合劑 厚度(μπι) 實施例6 氧化鋅/氧化銻 矽酮樹脂 0· 2 5 實施例7 氧化鋅/氧化銻 矽酮樹脂 1 1 實施例8 氧化錫/氧化銻 聚酯樹脂 0· 2 4 比較例3 不使用 不使用 一 20 比較例4 不使用 矽酮樹脂 0. 2 15 37 326\專利說明書(補件)\93- ] 1 \931211】7 1295233 [實施例7 ] 除了使保護層之塗佈•乾燥後之厚度為1 μ m以外,與實 施例6同樣地嚷作透明電磁波遮蔽薄膜,對其同樣地進行 加速耐蝕試驗之結果示於表2中。 [實施例8 ] 除了塗佈液使用由作為黏合劑材料之聚酯樹脂、作為無 機微粒子之氧化錫/氧化銻所構成之塗佈液(商品名:住友 大阪水泥製思米塞發因),並使保護層之厚度為0. 1 μπι以 外,與實施例6同樣地製作透明電磁波屏蔽薄膜,對其同 樣地進行加速封餘試驗之結果示於表2中。 [比較例3 ] 除了不進行形成保護層之步驟以外,與實施例6同樣地 製作透明電磁波遮蔽薄膜,對其同樣地進行加速耐蝕試驗 之結果示於表2中。 [比較例4 ] 除了塗佈液中之矽酮樹脂為3 %、不使用氧化鋅一銻微 粒子以外,與實施例6同樣地組合顯示器用濾光器,對其 同樣地進行加速耐蝕試驗之結果示於表2中。 從表2可知,由於在接觸該積層體薄膜之多層導電性金 屬積層薄膜之部分上形成含無機微粒子之保護層,而得到 因銀之聚集而產生之點狀缺陷發生頻率大幅度減少之窗。 【圖式簡單說明】 圖1為表示本發明之透明導電性薄膜積層體薄膜之層構 造之一例之圖。 38 326\專利說明書(補件)\93-11 \93121117 1295233 圖2為表示電磁波遮蔽用顯示器用光學濾光器之層構造 之一例之圖。 圖3為表示本發明之窗用電磁波遮蔽薄膜之層構造之一 例之圖。 圖4為表示本發明之窗之層構造之一例之剖面圖。 【主要元件符號說明】 1 0 透明電磁波遮蔽薄膜 13 透明高分子薄膜基體 15 含銀透明導電性金屬薄膜層 17 透明高折射率薄膜層 18 多層透明導電性薄膜層 20 保護層 30 具有防止反射機能之薄膜(防止反射薄膜) 3 0’具有防眩機能之薄膜(防眩性薄膜) 33 透明支撐基板 35 黏結劑 40 硬塗層 5 0 電極 6 0 硬塗層 7 0 含紫外線吸收材料之黏結材料層 80 窗用玻璃基板 39 326\專利說明書(補件)\93-11\93121117326\总档\93\93121117\931211] 7 (Replacement Η 1295233 [Example 1] (1) (Formation of transparent conductive thin film laminate film) A transparent conductive film having the same structure as that shown in Fig. 1 was produced. A laminated film, that is, as a transparent substrate, a polyethylene terephthalate film (thickness: 7 5 μm) is used, and on one of the main faces, a DC magnetron-killing method is used to sequentially laminate indium and A transparent conductive thin film laminate film can be obtained by forming an IT 0 film layer (transparent high refractive index film layer) and a silver film layer (transparent metal film layer) composed of tin oxide. The structure of the transparent conductive thin film laminated film It is a transparent film substrate (75 pm) / ITO (40 nm) / Ag (15 nm) / ITO (80 nm) / Ag (20 nm) / ITO (80 nm) / Ag (15 nm) / ITO (80 nm) ° Here, at I TO In the formation of the thin film layer, an indium oxide/tin oxide sintered body (I η 2 0 3 ·· S η 0 2 = 9 0 : 1 0 (mass ratio)) is used as a target, and argon/oxygen mixture is used as a sputtering gas. Gas (total pressure 2 6 6 m P a, partial pressure of oxygen 5 m P a ). In addition, in the formation of the silver thin film layer, silver is used as a target, and sputtering gas is used. Gas (total pressure 2 6 6 m P a ). In addition, the thickness of each layer is controlled by the film formation time. It is possible to obtain the film formation rate in advance under the same conditions as the film formation conditions of the respective layers. 2) (Formation of a protective layer) An oxime resin (a glass resin made by Showa Denko) as a binder material, and a zinc oxide/cerium oxide fine particle (Sernaco's sinus) which is an inorganic fine particle is used as a solvent. Isopropanol (for reagents) to obtain a suspension of 3% fluorenone resin and 3% of zinc oxide/cerium oxide fine particles (hereinafter, the suspension is referred to as a coating liquid). 32 326\Patent Specification (Repair) ) \93-11\93121117 1295233 The obtained coating liquid was applied onto the transparent high refractive index film layer of the outermost layer of the transparent conductive thin film laminate film by a micro gravure coating method, and dried at 1 2 (TC 1) In a minute, a protective layer having a film thickness of 2 μm was formed to obtain a laminate. (3) (Combination of filters for display) A filter for display having the same structure as that shown in Fig. 2 was produced. On the surface of the protective layer 20 side of the above laminated body, A bonding material (containing 0.2% benzophenazole) is bonded to a film having a thickness of 1 Ο Ο μm and having a function of preventing reflection (PET). Further, one of the transparent polymer film substrates of the laminate is bonded with a bonding agent. The side and the 2 mm Ρ Μ A substrate as a transparent supporting substrate were further screen-printed with silver paste and dried to form an electrode having a thickness of 15 μm as a filter for display. (4) (Accelerated financial test) The obtained display is fixed in a high temperature and high humidity treatment device of 60 ° C and 90 % R 2 for 24 hours, and then observed/measured by visual or microscopic photographs. The frequency at which point defects (reflective defects) having a diameter of 0 · 1 mm or more are generated by aggregation. The results are shown in Table 1. 33 326\Patent specification (supplement)\93-11 \93121117 1295233 Table 1 Protective layer reflective defects Inorganic micro-adhesive thickness Thickness particle material (μπι) (pcs/m2) Example 1 Zinc oxide/yttria Ketal resin 0. 2 0. 2 Example 2 Zinc oxide / cerium oxide resin 1 0 · 1 Example 3 Tin oxide / cerium oxide polyester resin 0. 1 0. 1 Example 4 zinc oxide / cerium oxide polyester Resin 0. 1 0.4 Example 5 Zinc Oxide/Oxide Oxide Resin Resin 0. 1 0. 6 Comparative Example 1 Not used Not used - 9. 5 Comparative Example 2 No fluorenone resin was used 0.2 6. 6 [Implementation Example 2] An optical filter for a display was produced in the same manner as in Example 1 except that the thickness of the protective layer was 1 μm after application and drying, and the result of the accelerated corrosion resistance test was similarly performed on the filter. in FIG. 1. [Example 3] A coating liquid composed of a polyester resin as a binder material and zinc oxide/ruthenium oxide as an inorganic fine particle was used as a coating liquid (trade name: Sumitomo Osaka Cement Siseifain ( An optical filter for display was produced in the same manner as in Example 1 except that the thickness of the protective layer was changed to 0.1 μm. The results of the accelerated corrosion resistance test were similarly shown in Table 1. . [Example 4] In addition to the use of a polyester resin (eitite made by unitika) as a binder material, toluene (for reagents) as a solvent coating 34 326\patent specification ( Replenishment) \93-11 \93121117 1295233 Liquid, and the thickness of the protective layer was Ο. In addition to 1 μm, the optical filter for display and the accelerated corrosion resistance test were carried out in the same manner as in Example 1. In Table 1. [Example 5] In addition to the use of an amino phthalate resin (manufactured by Mitsui Chemicals, ο 1 ester) as a binder material, toluene (for reagents) as a solution liquid, and the thickness of the protective layer was 0. The production of the optical filter for display and the accelerated corrosion resistance test are shown in Table 1 except for 1 μm. [Comparative Example 1] The results of the acceleration resistance of the optical chopper for display in combination with Example 1 except that the step of forming the protective layer were not carried out are shown in Table 1. [Comparative Example 2] The results of the accelerated corrosion test were shown in the same manner as in Example 1 except that the fluorenone resin in the coating liquid was 3% and the zinc oxide was slightly reduced to 0%. in FIG. 1. As is apparent from Table 1, when the filter for display is formed, a protective layer composed of a material and inorganic fine particles is formed on a portion of the multilayer conductive metal laminated film of the layered film, and the bonding is not formed, and the bonding is performed alone. Compared with the case where the agent material is formed, the frequency of occurrence of spot defects due to silver aggregation is greatly reduced. [Example 6] (1) (Formation of transparent electromagnetic shielding film) 326\Patent specification (supplement)\93-11\93121117 35 Similarly, the coating of the result is the same. As a result, the same etching test was carried out (the SL sub-contacted the product by the adhesion layer to cause 1295233 as a transparent polymer film substrate, and a polyethylene terephthalate film (thickness 75 μm) was used on one of the main faces. As a transparent high refractive index thin film layer, a DC magnetron sputtering method is used to sequentially deposit an I Τ 0 film layer composed of an oxide of indium and tin, and a silver film layer as a silver-containing transparent conductive metal film layer. A transparent electromagnetic wave shielding film is obtained. The structure of the transparent electromagnetic shielding film is PET film (75 pin) / ITO (40 nm) / Ag (10 nni) / ITO (80 nm) / Ag (10 nm) / ITO (80 nm) / Ag (10 nm) /ITO (80nm) The performance of the transparent electromagnetic shielding film in the above structure is 2 Ω / □, the electromagnetic shielding energy (measuring method: Adebon test method) is 42 dB, and the emissivity (JISA 5759) is 0.10, the solar reflectance (jisa 5759) is 32% (Note: The above 32% unit is the unit of the insolation reflectance.) Here, in the formation of the ITO thin film layer, an indium oxide yttrium oxide sintered body is used as a target. (In2〇3: Sn〇2 = 90:10 (mass ratio)), as money The money gas uses an argon-oxygen mixed gas (total pressure is 2 6 6 mPa, partial pressure of oxygen is 5 mpa). In addition, 'in the formation of a silver thin film layer' uses silver as a target, and argon gas is used for a sputtering gas ( The total pressure was 2 6 6 m P a ). (2) (Formation of protective layer) A protective layer was formed in the same manner as in Example 1. (3) (Formation of a binder layer and a hard coat layer) The ultraviolet light absorption system was contained in the agent. ) 'On the opposite side of the dry side of the 2nd surface at 80 ° C, apply the acrylic adhesive as a binder on the above protective layer (Toyo Ink Co., Ltd., to form a bond with a film thickness of 25 μm) In addition, an acrylic hard coat agent (manufactured by JSR Co., Ltd.), which is coated with the above-mentioned adhesive, is used as a hard coating agent (JSR company), in the case of the above-mentioned bonding agent, 36 326\patent specification (supplement)\93·11\93121117 1295233 cloth. After drying at ° C for 2 minutes, it was hardened by UV irradiation to form a hard coat layer having a film thickness of 3 μm. (4) (Formation of window sample) First, 1 ml of a surfactant was mixed in 500 ml of Japanese tap water. Water-adhesive water. Wet glass substrate (A 4 size) and attached with the water made above The transparent electromagnetic wave shielding film of the protective layer and the bonding material layer is formed to form the bonded body as a transparent electromagnetic wave shielding window sample. (5) (accelerated wealth test) at 60 ° C, 90% R The transparent electromagnetic wave shielding sample obtained above was fixed in the high-temperature and high-humidity treatment device of the crucible, and after 24 hours, it was observed through a microscopic photograph to measure the density of the reflective defect having a diameter of 0.1 mm or more which was caused by the aggregation of silver. The value is the average value obtained after 10 samples were measured. The results are shown in Table 2. Table 2 Protective layer reactive defect occurrence density (number / 10 m2) Inorganic fine particle binder thickness (μπι) Example 6 Zinc oxide / cerium oxide resin 0 · 2 5 Example 7 Zinc oxide / cerium oxide resin 1 1 Example 8 Tin Oxide/Yttrium Oxide Polyester Resin 0· 2 4 Comparative Example 3 Not used without using a 20 Comparative Example 4 No fluorenone resin was used 0. 2 15 37 326\Patent Specification (Supplement)\93- ] 1 [931211] 7 1295233 [Example 7] A transparent electromagnetic wave shielding film was produced in the same manner as in Example 6 except that the thickness of the protective layer was 1 μm after application and drying, and the accelerated corrosion resistance test was performed in the same manner. The results are shown in Table 2. [Example 8] A coating liquid composed of a polyester resin as a binder material and tin oxide/cerium oxide as an inorganic fine particle (trade name: Sumitomo Osaka Cement Syme) was used in addition to the coating liquid. A transparent electromagnetic wave shielding film was produced in the same manner as in Example 6 except that the thickness of the protective layer was changed to 0.1 μm. The results of the accelerated sealing test were similarly shown in Table 2. [Comparative Example 3] A transparent electromagnetic wave shielding film was produced in the same manner as in Example 6 except that the step of forming a protective layer was not carried out, and the results of the accelerated corrosion resistance test were similarly shown in Table 2. [Comparative Example 4] The display filter was combined in the same manner as in Example 6 except that the fluorenone resin in the coating liquid was 3%, and zinc oxide-free granules were not used, and the results of the accelerated corrosion resistance test were similarly performed. Shown in Table 2. As is apparent from Table 2, since a protective layer containing inorganic fine particles is formed on a portion of the multilayer conductive metal laminated film which is in contact with the laminated thin film, a window in which the frequency of occurrence of dot defects due to aggregation of silver is greatly reduced is obtained. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing an example of a layer structure of a transparent conductive thin film laminate film of the present invention. 38 326\Patent specification (supplement) \93-11 \93121117 1295233 Fig. 2 is a view showing an example of a layer structure of an optical filter for a shield for electromagnetic wave shielding. Fig. 3 is a view showing an example of a layer structure of an electromagnetic wave shielding film for a window according to the present invention. Fig. 4 is a cross-sectional view showing an example of a layer structure of a window of the present invention. [Description of main components] 1 0 transparent electromagnetic shielding film 13 transparent polymer film substrate 15 silver-containing transparent conductive metal film layer 17 transparent high refractive index film layer 18 multilayer transparent conductive film layer 20 protective layer 30 with anti-reflection function Film (anti-reflective film) 3 0'Anti-glare film (anti-glare film) 33 Transparent support substrate 35 Adhesive 40 Hard coat 5 0 Electrode 6 0 Hard coat 7 0 Bonding material layer with UV absorbing material 80 window glass substrate 39 326\patent specification (supplement)\93-11\93121117

Claims (1)

1295233 十、申請專利範圍: 1 . 一種積層體,其特徵在於至少包含透明基體(A )、 含銀之透明導電性薄膜層(B )、 含黏合劑材料(C 1 )與無機微粒子(C2 )之保護層(C ), 透明導電性薄膜層(B)與保護層(C)相接觸。 2.如申請專利範圍第1項之積層體,其中,無機微粒子 (C 2 )為金屬氧化物。 3 .如申請專利範圍第1項之積層體,其中,無機微粒子 (C 2 )為至少含氧化銻之複合氧化物或含氧化銻之氧化物之 混合物。 4. 如申請專利範圍第1項之積層體,其中,黏合劑材料 (C 1 )為從矽酮樹脂、聚酯樹脂、胺基曱酸酯樹脂中所選出 之1種以上之樹脂。 5. 如申請專利範圍第1項之積層體,其中,含銀之透明 導電性薄膜層(B )為至少包含透明高折射率薄膜層(B 1 )與 由銀或含銀之合金所構成之透明金屬薄膜層(B2)。 6. —種顯示器用濾光器,其特徵在於至少包含申請專利 範圍第1項之積層體與功能性透明層(D)。 7. 如申請專利範圍第6項之顯示器用濾光器,其中,在 6 0 °C、9 0 % R Η之條件下暴露2 4小時後,直徑0 · 1 in m以上 之點狀缺陷之發生頻率為2個/m2以下。 8 . —種顯示裝置,其特徵在於使用申請專利範圍第6項 之顯示器用濾光器。 9 . 一種電磁波遮蔽薄膜,其特徵在於使用申請專利範圍 40 326\專利說明書(補件)\93-11 \93121117 1295233 第1項之積層體。1295233 X. Patent application scope: 1. A laminated body characterized by comprising at least a transparent substrate (A), a silver-containing transparent conductive film layer (B), a binder-containing material (C1) and inorganic fine particles (C2). The protective layer (C), the transparent conductive thin film layer (B) is in contact with the protective layer (C). 2. The laminate according to claim 1, wherein the inorganic fine particles (C 2 ) are metal oxides. 3. The laminate according to claim 1, wherein the inorganic fine particles (C 2 ) are a mixture of at least a composite oxide containing cerium oxide or an oxide containing cerium oxide. 4. The laminate according to the first aspect of the invention, wherein the binder material (C 1 ) is one or more selected from the group consisting of an anthrone resin, a polyester resin, and an amino phthalate resin. 5. The laminate according to claim 1, wherein the silver-containing transparent conductive film layer (B) comprises at least a transparent high refractive index film layer (B1) and an alloy of silver or silver. Transparent metal film layer (B2). A filter for a display characterized by comprising at least a laminate of the first application of the patent scope and a functional transparent layer (D). 7. The filter for display according to item 6 of the patent application, wherein, after exposure for 24 hours under conditions of 60 ° C and 90 % R ,, a point defect having a diameter of 0 · 1 in m or more The frequency of occurrence is 2/m2 or less. A display device characterized by using the filter for display of claim 6 of the patent application. 9. An electromagnetic wave shielding film characterized by using a laminate of the first application of the patent application scope 40 326\patent specification (supplement)\93-11 \93121117 1295233. 94 10. ^ 3 替换頁 1 0 . —種紅外線反射薄膜,其特徵在於使用申請專利範 圍第1項之積層體。 1 1 . 一種窗用電磁波遮蔽薄膜,其特徵在於至少包含申 請專利範圍第1項之積層體與功能性透明層(D)。 1 2 . —種窗用紅外線反射薄膜,其特徵在於至少包含申 請專利範圍第1項之積層體與功能性透明層(D)。94 10. ^ 3 Replacement page 1 0. An infrared reflective film characterized by the use of the laminate of the first application of the patent scope. A window electromagnetic wave shielding film characterized by comprising at least a laminate body and a functional transparent layer (D) of the first aspect of the patent application. An infrared reflective film for a window characterized by comprising at least a laminate of the first aspect of the patent application and a functional transparent layer (D). 1 3. —種窗,其特徵在於至少具有申請專利範圍第11項 之窗用電磁波遮蔽薄膜與透明窗用基板之積層構造。 1 4. 一種窗,其特徵在於至少具有申請專利範圍第1 2項 之窗用紅外線反射薄膜與透明窗用基板之積層構造。 1 5. —種半導體裝置,其特徵在於使用申請專利範圍第1 項之積層體。1 3. A window characterized by having at least a laminated structure of a window electromagnetic wave shielding film and a transparent window substrate of claim 11 of the patent application. 1 A window characterized by having at least a laminated structure of a window-reflecting infrared reflecting film and a transparent window substrate of claim No. 12 of the patent application. 1 5. A semiconductor device characterized by using a laminate of the first aspect of the patent application. 3 2 6\總檔\93\93121117\93121117(替換 Η 413 2 6\Total file\93\93121117\93121117 (replace Η 41
TW93121117A 2003-07-18 2004-07-15 Laminate and uses thereof TWI295233B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003276559 2003-07-18
JP2004113766 2004-04-08

Publications (2)

Publication Number Publication Date
TW200508032A TW200508032A (en) 2005-03-01
TWI295233B true TWI295233B (en) 2008-04-01

Family

ID=34593889

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93121117A TWI295233B (en) 2003-07-18 2004-07-15 Laminate and uses thereof

Country Status (2)

Country Link
CN (1) CN1278136C (en)
TW (1) TWI295233B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587198B (en) * 2011-07-11 2017-06-11 富士軟片股份有限公司 Conductive laminated body, touch panel, and display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462749C (en) * 2006-08-31 2009-02-18 甘国工 Filter plate having electromagnetic radiation prevention and light filtering function of plasma display
CN102666097B (en) * 2009-12-25 2015-03-04 株式会社爱发科 Decoration film for insert molding, insert molded article, method for producing decoration film for insert molding
CN101894670A (en) * 2010-06-11 2010-11-24 杜月良 Method for preparing zinc-evaporated metallized polypropylene film capacitor
CN104109843A (en) * 2014-08-01 2014-10-22 苏州普京真空技术有限公司 Method for eliminating white spots on evaporation coating
JP6184579B2 (en) * 2015-12-14 2017-08-23 日東電工株式会社 Electromagnetic wave absorber and molded body with electromagnetic wave absorber provided with the same
CN107686695A (en) * 2016-08-04 2018-02-13 法国圣戈班玻璃公司 Layered product
CN108767492B (en) * 2018-04-25 2020-12-04 北京邮电大学 Adjustable terahertz broadband wave absorber
CN110426769A (en) * 2019-08-30 2019-11-08 宁波吉欧光电科技有限公司 A kind of high true color filter and its processing method
CN112420236B (en) * 2020-10-27 2022-02-18 苏州欧莱仕电子科技有限公司 Ultra-low resistance transparent conductive substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI587198B (en) * 2011-07-11 2017-06-11 富士軟片股份有限公司 Conductive laminated body, touch panel, and display device

Also Published As

Publication number Publication date
CN1576886A (en) 2005-02-09
CN1278136C (en) 2006-10-04
TW200508032A (en) 2005-03-01

Similar Documents

Publication Publication Date Title
US7396583B2 (en) Laminate and display filter using the same
JP4893097B2 (en) Conductive laminate and protective plate for plasma display
TWI295233B (en) Laminate and uses thereof
JP2008311565A (en) Composite filter for display
WO2011001983A1 (en) Conductive laminate and protective sheet for plasma display
JP2001047549A (en) Transparent conductive film
JP2004255706A (en) Transparent conductive laminated film
JP2001052529A (en) Transparent conductive thin film laminate
WO2017170673A1 (en) Transparent electroconductive laminate
JP2002323860A (en) Optical filter for display and display device and protective plate for display using the same
JP2005321746A (en) Laminate and the use thereof
WO2006057416A1 (en) Optical filter
JP2008191395A (en) Plasma display panel and near infrared ray absorption filter for same
JP2004296140A (en) Transparent conductive thin film laminate
JP2000329934A (en) Transparent electrically conductive film
JP2003098339A (en) Method for manufacturing filter for display
JP2003225964A (en) Transparent conducting thin film laminate and its use application
JP2000105312A (en) Filter for plasma display panel
JP3813034B2 (en) Optical filter
JP3657115B2 (en) Electromagnetic wave shield for display with black electrode
JP2582859B2 (en) Static electricity, electromagnetic wave shielding material
JP3983092B2 (en) Method for producing transparent conductive film
JP2005277228A (en) Transparent electromagnetic wave shield and its use
JP3544878B2 (en) Transparent conductive thin film laminate
JP7451505B2 (en) Method for manufacturing transparent conductive film

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees