TWI279290B - Polishing pad for electrochemical-mechanical polishing - Google Patents

Polishing pad for electrochemical-mechanical polishing Download PDF

Info

Publication number
TWI279290B
TWI279290B TW093116251A TW93116251A TWI279290B TW I279290 B TWI279290 B TW I279290B TW 093116251 A TW093116251 A TW 093116251A TW 93116251 A TW93116251 A TW 93116251A TW I279290 B TWI279290 B TW I279290B
Authority
TW
Taiwan
Prior art keywords
polishing pad
grooves
polishing
substrate
groove
Prior art date
Application number
TW093116251A
Other languages
Chinese (zh)
Other versions
TW200510124A (en
Inventor
Roland K Sevilla
Original Assignee
Cabot Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Microelectronics Corp filed Critical Cabot Microelectronics Corp
Publication of TW200510124A publication Critical patent/TW200510124A/en
Application granted granted Critical
Publication of TWI279290B publication Critical patent/TWI279290B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing
    • B23H5/08Electrolytic grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/046Lapping machines or devices; Accessories designed for working plane surfaces using electric current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

The invention provides a polishing pad comprising a body having a top surface comprising a first set of grooves with a first depth and first width and a bottom surface comprising a second set of grooves with a second depth and second width, wherein the first set of grooves and second set of grooves are interconnected and are oriented such that they are not aligned.

Description

1279290 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種可用於電化學機械抛光之抛光塾。 【先前技術】 胃抱光製程可用錄電子裝置之製造中以於半導體晶圓、 場發射顯示器及許多其他微電子基板上形成平面。例如, 半導阮裝置的製造一般包括形成多個處理層、選擇性除去 或圖案化這些層之一部分並將其他處理層沉積在半導體基 板表面上以形成半導體晶圓。舉例來說,處理層可包括絕 緣層、栅極氧化物層、傳導層及金屬或玻璃層等。在晶圓 製程之特定步驟中,一般希望處理層的最上面是平面,即 平的以供後續各層;冗積。#光製程如化學機械抛光("c m p 係用於平面化處理層,其中已沉積材料,如傳導或絕緣材 料係被拋光以平面化晶圓以供後續製程步驟使用。 由方;銅理想的電性質,其逐漸被用於製造微電子裝置。 在銅基板特徵的製造中,目前係使用如鑲嵌及雙鑲嵌製程 等技術。在鑲嵌製程中,特徵被定義在介電材料中,屏障 層材料係沉積在此特徵表面上,然後銅沉積在該屏障層及 週遭場上。此製程造成過多銅沉積在基板表面上,必須在 後續加工之前先將其除去(如藉由拋光)。 過多銅的去除係受到傳導材料與屏障層間之界面一般不 平之事實的挑戰。殘留銅可保留在非平面界面所形成之不 規則性中。自基板表面除去傳導及屏障材料經常係以不同 速率進行’其可能造成過多傳導材料如殘留物般保留在基 93689.doc 1279290 板表面_L另外,基板表面可能具有不同的表面地形,視 其中所形成特徵之密度或尺寸而定,隨基板表面不同的表 也开八成不同的銅去除速率。所有這些特點使自基板表 面有效去除鋼及最終絲表面之平面性不易達到。 β所有基板表面所需銅可藉過度抛光基板表面除去。但 疋過度拋光可此造成地形缺陷,如特徵凹陷或下沉("淺 碟化”)或過度去除介電材料(,,磨們。淺碟化及純之地形 缺陷可能另外導致不均句去除其他層,如其下所沉積之屏 障層。 、利用低㈧包g數(低士)材料在基板表面上形成銅鑲嵌形 成另一個有關拋光銅表面之問題。低斗介電材料,如摻有 碳 < 二氧化矽在慣用拋光下壓力(即4〇仟帕)下可能變形或 破农,其可旎對基板拋光品質及裝置形成有不利影響。例 如,基板與拋光墊間之相對旋轉移動可能沿著基板表面謗 發一剪切力並使低-k材料變形而形成地形缺陷。 一種將包含銅及低-k介電材料之基板中的拋光缺陷減至 最低的方法係利用電化學機械拋光(ECMP)拋光該銅。相較 於慣用CMP製程,ECMP可藉電化學溶解,同時以較低機械 研磨拋光基板以自基板表面除去傳導材料。電化學溶解係 藉施加偏壓於陰極與基板表面之間完成以將傳導材料自芙 板表面除去落入周遭電極落液或泥漿中。在一個ECMP系統 之具體貫施例中’偏壓係藉基板支撐裝置,如基板運輸頭 中一 %與基板表面電交流之傳導接點施加。但是,已觀容 到接觸環在基板表面上呈現電流不均勻分布現象,造成溶 93689.doc 1279290 、句勻機械研磨係藉將基板置於與慣用抛光塾接觸並 2供其間相對移動完成。但是,慣用拋光塾經常限制電解 洛夜流入基板表面。另外,拋光墊可能是由絕緣材料構成, 其可能干擾偏壓對基板表面之施加並造成材料自基板表面 不均勻或可變溶解。 結果,需要一種較佳拋光墊以在ECMP期間除去基板表面 上的傳導材料。本發明提供此拋光墊。由本文所提供之本 發明描述可清楚明白本發明這些及其他優點以及其他本發 明特點。 【發明内容】 、本發明係提供-種抛光塾,其包含—具有頂部表面及底 邵表面之主體,其中頂部表面包含第一組凹槽,而底部表 面包含第二組凹槽,而且第一組凹槽與第二組凹槽互連並 疋向使他們不成一直線。本發明另外提供一種電化學機械 拋光之方法,其包括拋光墊的使用。 【實施方式】 本發明係關於一種用於電化學機械拋光(,,ECMpn)之拋光 墊。此拋光墊包含一具有頂部表面及底部表面之主體。這 頂部表面及底部表面皆有凹槽。此頂部表面包含第一組凹 槽,而底部表面包含第二組凹槽。此第一組與第二組凹槽 係互連。這第一組與第二組凹槽最好彼此定向以便提供最 大電解液流以橫越通過拋光墊主體並提供最大電解液流過 整個拋光墊主體之均勻性。 凹槽可具有任何適合截面形狀。例如,第一組與第二組 93689.doc -7- 1279290 凹槽之截面形狀可由線(如平行線、χγ斜交平行線)、曲線、 圓形(如同心圓)、橢圓形、正方形、矩形、三角形、菱形或 其組合物組成。第一組凹槽之截面形狀可與第二組凹槽之 截面形狀相同或不同。而且,第一組與第二組凹槽可各包 含一不同截面凹槽形狀組合。第一組與第二組凹槽中最好 至少一組包含直線凹槽。較佳係第一組與第二組凹槽包 含,本質上係由或係由直線凹槽組成。 第一組與第二組定向使他們不成一直線。因此,第一組 與弟一組凹槽貫吳或完全不應彼此重疊。若第一組與第二 組凹槽佔據相同的拋光墊平面,其應彼此定向使其相交(如 交叉)。 弟一組與第一組凹槽之特定位向至少部分係視凹槽的形 狀及數目而定。例如,當第一組與第二組凹槽係由直線凹 槽組成時,第一組與第二組凹槽定向,使這些線不平行(如 斜的)。一般,第一組與第二組凹槽定向,使面向頂部或底 部表面觀看(即以垂直頂部或底部表面之視線)時,第一組凹 槽相對於第二組凹槽係旋轉10。至90。角。較佳地,第一組 凹槽相對於第二組凹槽係旋轉45。至90。角(如60。至90。)。此 拋光墊係描繪於圖以及卬中。拋光墊具有包含第一組凹槽 (12)之頂部表面(10)及包含第二組凹槽幻之底部表面 (14),其中第一組凹槽(12)相對於第二組凹槽(16)係旋轉 角。當第一組與第二組凹槽是曲線凹槽時,第一組與第二 組凹槽最好以不同方向定向。例如,帛一組凹槽相對於第 二組凹槽係旋轉10〇至18〇〇角(如9〇0、12〇0或18〇〇)。此包含 93689.doc Ϊ279290 相對於第二組曲線凹槽(16)旋轉45。之第一組凹槽(丨2)的拋 光墊係描繪於圖2中。 第一組與第二組凹槽各包含截面形狀為圓形、橢圓形、 正方形、矩形或二角形之凹槽時,這些凹槽定向使第一組 凹槽橫向移離第二組凹槽一適當距離。例如,第二組凹槽 σ移離第、组凹槽#又距離,其中此距離為各凹槽對稱軸 間距之10%或更大(如20%或更大或40%或更大)。或者,第 、,且凹槽相對於第二組凹槽係旋轉10。至180。角(如卯。、 12〇。或18〇。)。圖3描緣包含第一組圓形凹槽(12)及第二組圓 形凹槽⑽之抛光墊,其中第—組圓形凹槽係移離第二組圓 形凹槽-段距離,其中此距離為各凹槽對稱軸間距之5〇%。 :槽可具有任何適合寬度。第一或第二凹槽組内各凹槽 :寬度可能相同或不同。一般,凹槽寬度將為〇1釐米至2 厘米。凹槽寬度可沿拋光墊表面隨凹槽不同而變化。第一 、、且凹七之平均寬度係定義為第—間寬度。同樣地第二 、、且凹槽之平均寬度係定義為第二凹槽寬度。第—及第 槽覓度可能相同或不同。 這些凹槽具有任何適合深 槽的深度可能相同或不同。第二=二槽組内各凹 我笛一 „ X」弟組凹槽之平均深度係定義 為第二Τ’也’第二組凹槽之平均深度係定義 例ΓΓ 一及第二凹槽深度可能相同或不同。 弟凹槽深度可比第二凹槽深度大,或第二凹 又可比第一凹槽深度大。 曰冰 弟-及第二凹槽深度的總和提供總凹槽深度。在—個具 93689.doc 1279290 體實施例中,總凹槽深度係等於或大於拋光墊之總厚度(即 從拋光墊頂部表面至底部表面之總距離)。例如,第一凹槽 深度與第二凹槽深度各可等於一半拋光墊厚度。或者,第 一凹槽深度可為拋光墊厚度之55%或更高(如6〇%或更高, 或65%或更高),而第二凹槽深度為拋光墊厚度之45%或更 低(如40%或更低,或35%或更低)。在另一個具體實施例 中,總凹槽深度係小於拋光墊之總厚度。例如,總凹槽深 度可為拋光墊總厚度之90%或更高(或甚至8〇%或更高,7〇% 或更高或60%或更高)。 較佳地,總凹槽深度係等於或大於拋光墊之總厚度。當 總凹槽深度係等於或大於拋光墊的厚度時,第一組及第二 組凹槽將藉由第一通道互連,其中第一通道係朝垂直拋光 墊之頂部及底部表面的方向。這些第一通道的尺寸係以第 一及第二凹槽組的寬度定義之。第一通道容許電解液流過 拋光墊主體。此第一通道(20)係如圖ΙΑ、1B、2及3所示般。 若總凹槽深度小於拋光墊之總厚度,使拋光墊之頂部及 底部表面開槽後無形成第一通道,則第一及第二組凹槽可 藉第二通道互連以幫助電解液流過拋光塾厚度。就如第_ 通道’苐一通道係從拋光塾頂部表面延伸至底部表面而且 是朝垂直於頂部及底部表面的方向。第二通道可具有任何 適合的截面形狀(如圓形、橢圓形、正方形、三角形、菱形 及類似形狀)及任何適合尺寸。第二通道的直徑可為任何適 合直徑。例如,第二通道之直徑可與第一通道的直徑相同 或不同。第二通道可被放在拋光墊上任何適合位置。例如, 93689.doc -10- 1279290 第二通道可被放在凹槽内或凹槽外(如介於凹槽之間)。第二 通道的數目及尺寸將視,至少部分視欲拋光基板的類型而 定。圖4係描繪包含第一組凹槽(12)、第二組凹槽(16)及許 多第二通道(22)之本發明拋光墊,其中第二通道係位於第一 組及第二組凹槽相交處。 §然’弟二通道可與第一通道組合使用。在較佳具體實 施例中,第一組及第二組凹槽皆包含總凹槽深度等於或大 於拋光墊厚度之直線凹槽,使這些凹槽以第一通道互連, 其中凹槽組定向形成90。角。圖5A及5B描繪另一種包含頂部 表面(10)及底部表面(14)之較佳拋光墊,其中頂部表面包含 第一組凹槽(12),而底部表面包含第二組凹槽(16),其中第 一組與第二組凹槽相交處產生第一通道(2〇),而且該拋光墊 另包含許多第二通道(22)。 拋光塾隶好具有南空隙體積以便最大化通過抛光塾之電 解液流。例如,空隙體積可為3〇%或更高(如5〇%或更高, 70/❶或更咼或甚至80%或更高)。一般,拋光墊的空隙體積 將為95%或更低(如90%或更低)。拋光墊的空隙體積係由拋 光墊主體内第一組與第二組凹槽、第一及第二通道及任何 空隙空間(如孔洞)所構成。拋光墊主體内空隙空間的空隙體 積可大於、等於或小於凹槽的空隙體積。拋光墊主體最好 包含可吸收或傳送電解液之開室孔洞結構。 最好最佳化第一組與第二組凹槽之數目、寬度、深度及 位向以製造通過拋光墊χ、y及Z各方向之均勻電解液流。電 解液流過拋光墊可藉拋光期間拋光墊的抽送作用幫助。例 93689.doc -11- 1279290 如,多孔拋光墊在拋光期間可吸收電解液,然後在拋光工 具之較大下壓力下釋放電解液泥漿。抽送作用將使通過拋 光墊的電解液流不規律地隨拋光墊(及陽極)之旋轉速度及/ 或基板載體而變。第一組與第二組凹槽之數目、寬度、深 度及位向可經最佳化以最大化此與拋光裝置之抽送動作之 共振。藉由電解液中氣泡的存在性可幫助電解液流過拋光 墊。這些氣泡可包含任何適合氣體,較佳係包含空氣。 在一具體實施例中,凹槽的寬度及/或深度以及凹槽的空 隙體積由拋光墊一侧至拋光墊另一(如相反)側逐漸變小。圖 6描繪此具體實施例之拋光墊,其具有第一組直線凹槽(ι2) 及相對於第一組凹槽朝90。方向之第二組直線凹槽(16),其 中第一組與第二組凹槽的寬度由拋光墊一側至另一側地增 加,因此產生一凹槽體積梯度。具有梯度凹槽構型之拋光 墊係特別適合用於使用一或多個泵浦以將電解液局部導入 拋光墊表面上之ECMP裝置。將電解液局部導入拋光墊中具 有較少電解液容積的區域時,拋光墊的設計將限制電解液 /’il體並迫使電解液在離開拋光墊之前先流入拋光墊其他區 域中。無此墊阻力存在時,電解液可能只流過小拋光墊區 域。電解液流過拋光墊之均勻性對達到基板去除之均勻性 是重要的。 第一組與第二組凹槽可成一角度。凹槽的角度可為任何 適。角度,例如凹槽角度相對於拋光墊平面可為乃。、、 5或30第一組與第二.組凹槽的角度最好使電解液流指 向t過拋光墊。較佳係第一組與第二組凹槽具有相反角度 93689.doc -12- 1279290 使第一通道(若存在)不筆直延伸穿過拋光墊主體,而是具有 可用於限制電解液流之彎曲。 本發明拋光墊主體可包含任何適合材料。一般,拋光墊 主體包含聚合物樹脂。較佳係聚合物樹脂係選自熱塑性彈 性體、熱塑性聚胺基甲酸酯、熱塑性聚烯烴、聚碳酸酯、 聚乙烯醇、尼龍、彈性體橡膠、彈性體聚乙烯、聚四氟乙 烯、聚對苯二甲酸乙二酯、聚醯亞胺、聚芳醯胺、聚伸芳 基、聚丙烯酸酯、聚苯乙烯、聚甲基丙烯酸甲酯、其共聚 物及其混合物組成之群。更佳地,聚合物樹脂是一種熱塑 性聚胺基甲酸酯樹脂。 因為拋光墊之高度開槽性質及伴隨高空隙體積,聚合物 樹脂的類型及該聚合物樹脂之物理性質對保持拋光墊的物 理完整性是重要的。拋光墊主體可為固體材料、閉室材料 或開室材料。拋光墊中所存在孔隙程度及類型將視,至少 部分視欲拋光基板的類型而定。 在一些具體實施例中,拋光墊主體是傳導的。照此,拋 光墊主體可包含傳導聚合物或非傳導聚合物,其中該非傳 導聚合物包含傳導元件埋於或形成於其中。傳導聚合物可 為任何傳導聚合物。傳導元件可為任何適合元件。例如, 傳導元件可由均勻分散在整個聚合物樹脂中之粒子、纖 維、金屬線、線圈或薄板組成。傳導元件可包含任何適合 的傳導材料包括碳,傳導金屬如銅、#、錢有鉬之銅及紹 和類似物。適合的傳導拋光墊元件之實例係描述於美國專 利申請公開案第2002/0119286 A1號。 93689.doc •13- 1279290 拋光墊主體可包含兩或多個拋光墊層。例如,第一組凹 槽可被包含在第一拋光塾層内,而第二組凹槽可被包含在 第二拋光墊層内。不同的拋光墊層可具有不同化學及物理 性貝。在一些具體貫施例中,可能希望第一抛光塾層比第 一拋光墊層硬。多個拋光塾層可利用黏合劑或經由焊接或 擠壓結合在一起。 本發明拋光墊可理想地用於一種藉由ECMP拋光基板的 方法中。該方法包括⑴提供一包含本發明拋光墊之ECMP 裝置,(ii)提供欲拋光基板,(iii)將導電流體供入ECMP裝置 中,(iv)施加電化學電位至基板表面,並(v)相對於基板移 動拋光墊以磨耗基板並因此拋光基板。視應用而定,施加 在基板上之電化學電位可固定或隨時間而變。 ECMP裝置可為任何適合ECMp裝置,其中許多是技術上 已知的 般,ECMI^置包含ECMP站及載具。ECMP站最 好包含電解室、陰極、陽極、參考電極、半透膜及本發明 拋光墊。如圖7所不,載具(36)係被支撐在:ECMP站上方。 陰極(32)最好置於電解室(3())底部並浸在電解液⑷)中。陽 極可,是-傳導碟(34),其上置有本發明拋光墊州。或 者,陽極可能是本發明傳導拋光墊。陰極可具有任何適合 形狀及尺寸並可包含任何適合電極材料。-般,陰極是-包含異於沉積材料之材料的非自耗電極,纟中該沉積材料 係欲藉陽極溶解除去。例如,陽極可包含m呂、金、 ’、、烏及類似物。佳係陰極包含翻。參考電極(Μ)可包含 任何適口電極材料並最好放置在電解液⑷)内。 93689.doc -14- 1279290 半透膜(38)最好是置於陽極碟(34)與陰極(32)之間。半透 膜的孔徑容許電解液通過,但阻止拋光碎片及拋光期間陰 極所放出之空氣泡(如氫氣泡)通過。較佳地,半透膜是孔徑 為5至150微米之玻璃熔塊。 導電流體(即電解液)一般包含液體載體及一或多種電解 鹽。液體載體可為任何適合溶劑,最好包含水,或者是水。 電解鹽可為任何適合電解鹽並可以任何適合量存在於液體 載體中。一般,電解鹽係以硫酸、鱗酸、過氯酸或乙酸為 基底。適合的電解鹽包括這些選自硫酸氫鹽、氯化氫、磷 酸氫鹽、麟酸鉀及其組合物組成之群。較佳為電解鹽是鱗 酸鉀。電解液也可包含-基底化合物,例如氫氧化卸。電 ㈣的濃度最好是0.2M或更高(如〇.5M或更高,或i〇m或 更尚)。電解液可具任何適合pH。一般,電解液的?11是2至 11(如3至10,或4至9)。 電解液視情況包含研磨劑粒子及拋光添加劑。研磨劑可 為任何適合研磨劑並可選自二氧化矽、氧化鋁、氧化鉛、 乳化鈦、氧化鍺、氧化鎂、氧化錦及其組合物組成之群。 拋光研磨劑可選自隸抑制劑、成膜劑、界面活性劑及其 組合物組成之群。 本毛明拋光墊係適合用於一種拋光多種類型之基板(如 晶圓)及基板材料的方法。例如,拋光墊可用於拋光基板, 包括記憶儲存裝置、玻璃基板、記憶或硬碟、金屬(如貴重 金屬)、磁頭、層内介電(ILD)層、聚合膜、低及高介電常數 膜、鐵電材料、微電機械系統(mems)、半導體晶圓、場發 93689.doc -15- 1279290 射顯示器及其他微電子基板,特別是包含絕緣層(如金屬氧 化物、氮化矽或低介電材料)及/或含傳導材料層(如含金屬 層)的基板。”記憶或硬碟”一詞相當於任何磁碟、硬碟、硬 - 碟或以電磁形式保留資料的記憶碟。記憶或硬碟一般具有 一包含鎳-磷之表面,但此表面可包含任何其他適合材料。 一般,基板包含至少一種傳導材料。適合的傳導材料包括, 例如銅、钽、鶴、銘、鎳、鈦、麵、釕、姥、銀、其合金 及其混合物。基板一般也包含金屬氧化物絕緣層。適合的 _ 金屬氧化物絕緣層包括,例如氧化鋁、氧化矽、氧化鈦、 氧化鈽、氧化錘、氧化鍺、氧化鎂及其組合物。而且,基 板可包含,本質上係由或係由任何適合金屬複合物所組 成。適合的金屬複合物包括,例如金屬氮化物(如氮化鈕、 氮化鈦及氮化鎢)、金屬碳化物(如碳化矽及碳化鎢)、鎳_ 磷、硼矽酸鋁、硼矽酸玻璃、磷矽酸玻璃(ps⑺、硼磷矽酸 玻璃(BPSG)、矽/鍺合金及矽/鍺/碳合金。基板也包含,本 質上係由或係由任何適合半導體基底材料組成。適合的半 _ 導體基底材料包括單晶矽、多晶質矽、非晶質矽、絕緣層 上覆矽及砷化鎵。 熟諳此技者將容易了解本發明拋光墊可用於其他涉及電 化學活性或需要顯著量拋光組合物流(如液體載體及拋光 添加劑)通過拋光墊之製造方法中。例如,本發明拋光墊可 用於電化學沉積及電化學機械電鍍製程(ECMPP),其包含 電化學沉積與化學機械拋光之組合。 . 【圖式簡單說明】 93689.doc -16- 1279290 圖1A為描繪具有頂部表面(1〇)及底部表面(14)之本發明 拋光墊的片段、部分截面透視圖,其中頂部表面包含第一 組直線凹槽(12),底部表面包含相對於第一組凹槽朝9〇〇方 向之第二組直線凹槽(16),而且第一組與第二組凹槽相交產 生第一通道(20)。 圖1B為描繪包含第一組直線凹槽(12)及第二組直線凹槽 (16)之本叙明拋光墊的片段俯視圖,其中第二組直線凹槽相 對於第一組凹槽係朝90。方向,而且第一組與第二組凹槽相 交產生第一通道(20)。 圖2為描繪包含第一組曲線凹槽(12)及第二組曲線凹槽 (16)之本發明拋光墊的片段俯視圖,其中第二組曲線凹槽相 對於第一組凹槽係朝45。方向,而且第一組與第二組凹槽相 交產生第一通道(20)。 圖3為描繪包含第一組圓形凹槽(12)及第二組圓形凹槽 (16)之本發明拋光墊的片段俯視圖,其中第二組圓形凹槽係 位移一半圓形凹槽直徑之距離,而且第一組與第二組凹槽 相交產生第一通道(20)。 圖4為描繪包含第一組直線凹槽(12)、第二組直線凹槽〇6) 及第二通道(22)之本發明拋光墊的片段俯視圖。 圖5A為描繪具有頂部表面(10)及底部表面(14)之本發明 拋光墊的片段、部分截面透視圖,其中頂部表面包含第一 組直線凹槽(12),底部表面包含相對於第一組凹槽朝9〇。方 向之第二組直線凹槽(16),而第一組與第二組凹槽相交產生 第一通道(20),而且該拋光墊另包含第二通道(22)。 93689.doc -17· 1279290 圖5B為描繪包含第一組直線凹槽(12)及第二組直線凹槽 (16)之本發明拋光墊的片段俯視圖,其中第二組直線凹槽相 對於第一組凹槽係朝90。方向,而且該拋光墊另包含第一通 道(20)及第二通道(22)。 圖6為描繪包含第一組直線凹槽(12)及第二組直線凹槽 (16)之本發明拋光墊的片段俯視圖,其中第二組直線凹槽相 對於第一組凹槽係朝90。方向,而且第一組與第二組凹槽的 寬度由拋光墊一側至另一側地增加。 圖7為一包含本發明拋光墊之電化學機械拋光裝置的截 面圖。 【主要元件符號說明】 10 12 頂部表面 第一組直線凹槽; 弟一組曲線凹槽·, 14 16 第一組圓形凹槽 底部表面 第二組直線凹槽; 第二組曲線凹槽; 20 22 30 32 34 93689.doc 第二組圓形凹槽 第一通道 弟二通道 電解室 陰極 傳導碟 -18- 1279290 36 載具 38 半透膜 40 抛光塾 42 電解液 44 參考電極 93689.doc1279290 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a polishing crucible that can be used for electrochemical mechanical polishing. [Prior Art] The gastric glazing process can be used in the fabrication of electronic recording devices to form planes on semiconductor wafers, field emission displays, and many other microelectronic substrates. For example, fabrication of a semiconductor device generally includes forming a plurality of processing layers, selectively removing or patterning portions of the layers and depositing other processing layers on the surface of the semiconductor substrate to form a semiconductor wafer. For example, the handle layer can include an insulating layer, a gate oxide layer, a conductive layer, and a metal or glass layer. In a particular step of the wafer process, it is generally desirable that the uppermost layer of the processing layer be planar, i.e., flat for subsequent layers; redundancy. #光工艺如化工机械抛光("cmp is used in the planarization layer where deposited materials such as conductive or insulating materials are polished to planarize the wafer for subsequent processing steps. Electrical properties, which are increasingly being used to fabricate microelectronic devices. In the fabrication of copper substrate features, techniques such as damascene and dual damascene processes are currently used. In the damascene process, features are defined in the dielectric material, the barrier layer material It is deposited on the surface of the feature and then copper is deposited on the barrier layer and the surrounding field. This process causes excessive copper to deposit on the surface of the substrate and must be removed prior to subsequent processing (eg by polishing). The removal is challenged by the fact that the interface between the conductive material and the barrier layer is generally uneven. Residual copper can remain in the irregularities formed at non-planar interfaces. Removal of conductive and barrier materials from the substrate surface is often performed at different rates. Causes too much conductive material such as residue to remain on the base 93689.doc 1279290 Plate surface _L In addition, the substrate surface may have different The surface topography depends on the density or size of the features formed therein, and the table with different surface of the substrate also has a different copper removal rate. All of these characteristics make it difficult to achieve the planarity of effectively removing steel from the surface of the substrate and the surface of the final wire. The copper required on the surface of all the substrates can be removed by over-polishing the surface of the substrate. However, over-polishing can cause topographic defects such as characteristic depression or sinking ("shallow dishing) or excessive removal of dielectric materials (,, grinding Shallow disc and pure terrain defects may additionally cause the uneven layer to remove other layers, such as the barrier layer deposited under it. Using a low (eight) package g number (lower) material to form a copper mosaic on the surface of the substrate to form another The problem of polishing the copper surface. Low-fluid dielectric materials, such as carbon doped with cerium oxide, may deform or break under the pressure of conventional polishing (ie, 4 kPa), which can be used to polish the substrate quality and device formation. There is an adverse effect. For example, the relative rotational movement between the substrate and the polishing pad may cause a shear force along the surface of the substrate and deform the low-k material to form a topographical defect. A method of minimizing polishing defects in a substrate comprising copper and a low-k dielectric material is to polish the copper by electrochemical mechanical polishing (ECMP). Compared to conventional CMP processes, ECMP can be electrochemically dissolved while The substrate is polished at a lower mechanical polishing to remove conductive material from the surface of the substrate. Electrochemical dissolution is accomplished by applying a bias between the cathode and the surface of the substrate to remove conductive material from the surface of the wafer into the surrounding electrode or slurry. In a specific embodiment of an ECMP system, the biasing is applied by a substrate supporting device, such as a conductive contact of one of the substrate transport heads and the surface of the substrate. However, it has been observed that the contact ring is present on the surface of the substrate. Uneven current distribution phenomenon, causing dissolution 93689.doc 1279290, sentence uniform mechanical grinding by placing the substrate in contact with the conventional polishing crucible and 2 for relative movement between them. However, conventional polishing enamel often limits the flow of electrolysis to the surface of the substrate. Additionally, the polishing pad may be constructed of an insulating material that may interfere with the application of a bias voltage to the surface of the substrate and cause material to be uneven or variablely soluble from the surface of the substrate. As a result, a preferred polishing pad is needed to remove conductive material from the surface of the substrate during ECMP. The present invention provides such a polishing pad. These and other advantages of the present invention, as well as other features of the present invention, are apparent from the description of the invention. SUMMARY OF THE INVENTION The present invention provides a polishing crucible comprising: a body having a top surface and a bottom surface, wherein the top surface includes a first set of grooves and the bottom surface includes a second set of grooves, and first The set of grooves are interconnected with the second set of grooves and are oriented such that they are not in line. The invention further provides a method of electrochemical mechanical polishing comprising the use of a polishing pad. [Embodiment] The present invention relates to a polishing pad for electrochemical mechanical polishing (, ECMpn). The polishing pad includes a body having a top surface and a bottom surface. Both the top and bottom surfaces have grooves. The top surface includes a first set of grooves and the bottom surface includes a second set of grooves. This first group is interconnected with the second set of grooves. The first and second sets of grooves are preferably oriented relative to one another to provide a maximum electrolyte flow across the polishing pad body and to provide maximum uniformity of electrolyte flow throughout the polishing pad body. The grooves can have any suitable cross-sectional shape. For example, the cross-sectional shapes of the grooves of the first group and the second group 93689.doc -7- 1279290 may be by lines (such as parallel lines, χγ oblique parallel lines), curves, circles (like a circle of hearts), ovals, squares, It consists of a rectangle, a triangle, a diamond or a combination thereof. The cross-sectional shape of the first set of grooves may be the same or different from the cross-sectional shape of the second set of grooves. Moreover, the first set and the second set of grooves may each comprise a combination of different cross-sectional groove shapes. Preferably, at least one of the first set and the second set of grooves comprises a linear groove. Preferably, the first set and the second set of grooves comprise, consist essentially of or consist of linear grooves. The first group and the second group are oriented so that they are not in line. Therefore, the first group and the younger group should not overlap each other. If the first set and the second set of grooves occupy the same polishing pad plane, they should be oriented to intersect each other (e.g., intersect). The set of the first set of grooves and the particular position of the first set of grooves are at least partially dependent on the shape and number of grooves. For example, when the first set and the second set of grooves are comprised of linear grooves, the first set and the second set of grooves are oriented such that the lines are not parallel (e.g., oblique). Typically, the first set and the second set of grooves are oriented such that when viewed toward the top or bottom surface (i.e., the line of sight of the vertical top or bottom surface), the first set of grooves are rotated 10 relative to the second set of grooves. To 90. angle. Preferably, the first set of grooves are rotated 45 relative to the second set of grooves. To 90. Angle (such as 60. to 90.). This polishing pad is depicted in the figure and in the enamel. The polishing pad has a top surface (10) comprising a first set of grooves (12) and a bottom surface (14) comprising a second set of grooves, wherein the first set of grooves (12) are opposite to the second set of grooves (12) 16) The rotation angle. When the first set and the second set of grooves are curved grooves, the first set and the second set of grooves are preferably oriented in different directions. For example, a set of grooves is rotated 10 〇 to 18 相对 (e.g., 9 〇 0, 12 〇 0, or 18 相对) relative to the second set of grooves. This includes 93689.doc Ϊ 279290 rotated 45 relative to the second set of curved grooves (16). The polishing pad of the first set of grooves (丨2) is depicted in Figure 2. When the first set and the second set of grooves each comprise a circular, elliptical, square, rectangular or quadrangular groove having a cross-sectional shape, the grooves are oriented such that the first set of grooves are laterally displaced from the second set of grooves Proper distance. For example, the second set of grooves σ are moved away from the first set of grooves #, where the distance is 10% or more of the pitch of the symmetry axes of the grooves (e.g., 20% or more or 40% or more). Or, the first, and the groove is rotated 10 relative to the second set of grooves. To 180. Angle (such as 卯., 12〇. or 18〇.). 3 depicts a polishing pad comprising a first set of circular grooves (12) and a second set of circular grooves (10), wherein the first set of circular grooves are moved away from the second set of circular groove-segment distances, Wherein the distance is 5〇% of the pitch of the symmetry axes of the grooves. : The groove can have any suitable width. Each groove in the first or second groove group: the width may be the same or different. Typically, the groove width will be from 1 cm to 2 cm. The groove width can vary along the surface of the polishing pad as a function of the groove. The average width of the first and concave seven is defined as the first-to-interwidth. Similarly, the second, and the average width of the grooves is defined as the second groove width. The first and third slots may be the same or different. These grooves may have the same or different depths for any deep groove. The second = two groove group, each concave I _ X, the average depth of the groove is defined as the second Τ 'also 'the second group of grooves, the average depth is defined by the example ΓΓ one and the second groove depth May be the same or different. The depth of the groove may be greater than the depth of the second groove, or the second recess may be greater than the depth of the first groove. The sum of the depths of the ice and the second groove provides the total groove depth. In a body embodiment of 93689.doc 1279290, the total groove depth is equal to or greater than the total thickness of the polishing pad (i.e., the total distance from the top surface of the polishing pad to the bottom surface). For example, the first groove depth and the second groove depth may each be equal to half the polishing pad thickness. Alternatively, the first groove depth may be 55% or more of the thickness of the polishing pad (eg, 6〇% or higher, or 65% or higher), and the second groove depth is 45% or more of the thickness of the polishing pad. Low (eg 40% or lower, or 35% or lower). In another embodiment, the total groove depth is less than the total thickness of the polishing pad. For example, the total groove depth can be 90% or more of the total thickness of the polishing pad (or even 8〇% or higher, 7〇% or higher or 60% or higher). Preferably, the total groove depth is equal to or greater than the total thickness of the polishing pad. When the total groove depth is equal to or greater than the thickness of the polishing pad, the first and second sets of grooves will be interconnected by the first channel, wherein the first channel is oriented in the direction of the top and bottom surfaces of the vertical polishing pad. The dimensions of these first channels are defined by the width of the first and second groove sets. The first passage allows electrolyte to flow through the polishing pad body. This first channel (20) is as shown in Figures 1, 1B, 2 and 3. If the total groove depth is less than the total thickness of the polishing pad, and the first channel is not formed after the top and bottom surfaces of the polishing pad are grooved, the first and second groups of grooves may be interconnected by the second channel to help the electrolyte flow. Over polished thickness. Just as the _ channel '苐 channel extends from the top surface of the polishing crucible to the bottom surface and is oriented perpendicular to the top and bottom surfaces. The second channel can have any suitable cross-sectional shape (e.g., circular, elliptical, square, triangular, diamond, and the like) and any suitable size. The diameter of the second passage can be any suitable diameter. For example, the diameter of the second passage may be the same or different than the diameter of the first passage. The second channel can be placed in any suitable position on the polishing pad. For example, 93689.doc -10- 1279290 The second channel can be placed in or outside the groove (eg between the grooves). The number and size of the second channels will depend, at least in part, on the type of substrate to be polished. 4 depicts a polishing pad of the present invention comprising a first set of grooves (12), a second set of grooves (16), and a plurality of second channels (22), wherein the second channel is in the first and second sets of depressions The intersection of the slots. § The second channel can be used in combination with the first channel. In a preferred embodiment, the first set and the second set of grooves each include a linear groove having a total groove depth equal to or greater than the thickness of the polishing pad, such that the grooves are interconnected by the first channel, wherein the groove group is oriented Form 90. angle. 5A and 5B depict another preferred polishing pad comprising a top surface (10) and a bottom surface (14), wherein the top surface comprises a first set of grooves (12) and the bottom surface comprises a second set of grooves (16) Wherein the first group intersects the second set of grooves to create a first channel (2〇), and the polishing pad further comprises a plurality of second channels (22). The polished crucible is sized to have a south void volume to maximize the flow of electrolyte through the polishing crucible. For example, the void volume may be 3% or more (e.g., 5〇% or higher, 70/❶ or more or even 80% or higher). Typically, the polishing pad will have a void volume of 95% or less (e.g., 90% or less). The void volume of the polishing pad is comprised of the first and second sets of grooves, the first and second channels, and any void spaces (e.g., holes) in the body of the polishing pad. The void volume of the void space in the body of the polishing pad may be greater than, equal to, or less than the void volume of the groove. Preferably, the polishing pad body comprises an open cell structure that absorbs or transports the electrolyte. Preferably, the number, width, depth and orientation of the first and second sets of grooves are optimized to produce a uniform flow of electrolyte through the polishing pads, y and Z. The flow of electrolyte through the polishing pad can be aided by the pumping action of the polishing pad during polishing. Example 93689.doc -11- 1279290 For example, a porous polishing pad can absorb electrolyte during polishing and then release the electrolyte slurry under the greater downward pressure of the polishing tool. The pumping action will cause the flow of electrolyte through the polishing pad to vary irregularly with the rotational speed of the polishing pad (and anode) and/or the substrate carrier. The number, width, depth and orientation of the first and second sets of grooves can be optimized to maximize this resonance with the pumping action of the polishing apparatus. The electrolyte can help the electrolyte flow through the polishing pad by the presence of bubbles in the electrolyte. These bubbles may comprise any suitable gas, preferably containing air. In a specific embodiment, the width and/or depth of the groove and the void volume of the groove taper from one side of the polishing pad to the other (as opposed to) side of the polishing pad. Figure 6 depicts a polishing pad of this embodiment having a first set of linear grooves (ι2) and facing 90 relative to the first set of grooves. A second set of linear grooves (16) in the direction wherein the width of the first set and the second set of grooves increases from one side of the polishing pad to the other, thereby creating a groove volume gradient. A polishing pad having a gradient groove configuration is particularly suitable for ECMP devices that use one or more pumps to locally introduce electrolyte into the polishing pad surface. When the electrolyte is partially introduced into the polishing pad where there is less electrolyte volume, the design of the polishing pad will limit the electrolyte /' il body and force the electrolyte to flow into other areas of the polishing pad before exiting the polishing pad. Without this pad resistance, the electrolyte may only flow through the small pad area. The uniformity of the electrolyte flowing through the polishing pad is important to achieve uniformity of substrate removal. The first set can be at an angle to the second set of grooves. The angle of the groove can be any suitable. The angle, such as the groove angle, may be relative to the plane of the polishing pad. Preferably, the angle of the first set and the second set of grooves of 5, 30 or 30 causes the flow of electrolyte to point toward the polishing pad. Preferably, the first set and the second set of grooves have opposite angles 93689.doc -12 - 1279290 such that the first passage, if present, does not extend straight through the polishing pad body, but has a bend that can be used to limit electrolyte flow . The polishing pad body of the present invention may comprise any suitable material. Typically, the polishing pad body comprises a polymeric resin. Preferably, the polymer resin is selected from the group consisting of thermoplastic elastomers, thermoplastic polyurethanes, thermoplastic polyolefins, polycarbonates, polyvinyl alcohols, nylons, elastomeric rubbers, elastomeric polyethylenes, polytetrafluoroethylenes, poly A group consisting of ethylene terephthalate, polyimide, polyarylamine, polyarylene, polyacrylate, polystyrene, polymethyl methacrylate, copolymers thereof, and mixtures thereof. More preferably, the polymeric resin is a thermoplastic polyurethane resin. Because of the highly grooved nature of the polishing pad and the attendant high void volume, the type of polymeric resin and the physical properties of the polymeric resin are important to maintain the physical integrity of the polishing pad. The polishing pad body can be a solid material, a closed cell material or an open cell material. The degree and type of porosity present in the polishing pad will depend, at least in part, on the type of substrate to be polished. In some embodiments, the polishing pad body is conductive. As such, the polishing pad body can comprise a conductive polymer or a non-conductive polymer, wherein the non-conductive polymer comprises a conductive element embedded or formed therein. The conductive polymer can be any conductive polymer. The conductive element can be any suitable element. For example, the conductive element can be composed of particles, fibers, wires, coils or sheets that are uniformly dispersed throughout the polymer resin. The conductive element can comprise any suitable conductive material including carbon, conductive metals such as copper, #, copper with molybdenum, and the like. An example of a suitable conductive polishing pad component is described in U.S. Patent Application Publication No. 2002/0119286 A1. 93689.doc • 13- 1279290 The polishing pad body can contain two or more polishing pads. For example, a first set of recesses can be included in the first polishing layer and a second set of grooves can be included in the second polishing pad layer. Different polishing pads can have different chemical and physical properties. In some specific embodiments, it may be desirable for the first polishing layer to be harder than the first polishing layer. The plurality of polishing layers can be bonded together using an adhesive or by welding or extrusion. The polishing pad of the present invention is ideally used in a method of polishing a substrate by ECMP. The method comprises (1) providing an ECMP device comprising a polishing pad of the invention, (ii) providing a substrate to be polished, (iii) supplying a conductive fluid to the ECMP device, (iv) applying an electrochemical potential to the surface of the substrate, and (v) The polishing pad is moved relative to the substrate to abrade the substrate and thus polish the substrate. Depending on the application, the electrochemical potential applied to the substrate can be fixed or varied over time. The ECMP device can be any suitable ECMp device, many of which are known in the art, and the ECMI device includes an ECMP station and a carrier. The ECMP station preferably comprises an electrolysis chamber, a cathode, an anode, a reference electrode, a semipermeable membrane, and a polishing pad of the present invention. As shown in Figure 7, the carrier (36) is supported above the ECMP station. The cathode (32) is preferably placed at the bottom of the electrolysis chamber (3 ()) and immersed in the electrolyte (4)). The anode is a conductive disc (34) on which the polishing pad state of the present invention is placed. Alternatively, the anode may be the conductive polishing pad of the present invention. The cathode can have any suitable shape and size and can comprise any suitable electrode material. Typically, the cathode is a non-consumable electrode containing a material different from the material of the deposition in which the deposited material is to be removed by anodic dissolution. For example, the anode may comprise mlu, gold, ', ruthenium, and the like. The best cathode contains a turn. The reference electrode (Μ) may comprise any suitable electrode material and is preferably placed in the electrolyte (4)). 93689.doc -14- 1279290 The semipermeable membrane (38) is preferably placed between the anode disc (34) and the cathode (32). The pore size of the semipermeable membrane allows the electrolyte to pass through, but prevents the polishing debris and the passage of air bubbles (e.g., hydrogen bubbles) emitted by the cathode during polishing. Preferably, the semipermeable membrane is a glass frit having a pore size of 5 to 150 microns. The electrically conductive fluid (i.e., electrolyte) typically comprises a liquid carrier and one or more electrolytic salts. The liquid carrier can be any suitable solvent, preferably water or water. The electrolytic salt can be any suitable electrolytic salt and can be present in the liquid carrier in any suitable amount. Generally, the electrolytic salt is based on sulfuric acid, scaly acid, perchloric acid or acetic acid. Suitable electrolytic salts include those selected from the group consisting of hydrogen sulfate, hydrogen chloride, hydrogen phosphate, potassium citrate, and combinations thereof. Preferably, the electrolytic salt is potassium citrate. The electrolyte may also comprise a base compound such as a hydroxide. The concentration of electricity (iv) is preferably 0.2M or higher (e.g., M5M or higher, or i〇m or more). The electrolyte can have any suitable pH. In general, the electrolyte? 11 is 2 to 11 (such as 3 to 10, or 4 to 9). The electrolyte optionally contains abrasive particles and polishing additives. The abrasive can be any suitable group of abrasives and can be selected from the group consisting of ceria, alumina, lead oxide, emulsified titanium, cerium oxide, magnesium oxide, oxidized bromine, and combinations thereof. The polishing abrasive can be selected from the group consisting of inhibitors, film formers, surfactants, and combinations thereof. The present polishing pad is suitable for use in a method of polishing a plurality of types of substrates (e.g., wafers) and substrate materials. For example, polishing pads can be used to polish substrates, including memory storage devices, glass substrates, memory or hard disks, metals (such as precious metals), magnetic heads, intralayer dielectric (ILD) layers, polymeric films, low and high dielectric constant films. , ferroelectric materials, micro-electromechanical systems (mems), semiconductor wafers, field hair 93689.doc -15- 1279290 projection displays and other microelectronic substrates, especially containing insulating layers (such as metal oxides, tantalum nitride or low A dielectric material) and/or a substrate comprising a layer of conductive material, such as a metal containing layer. The term "memory or hard disk" is equivalent to any disk, hard disk, hard-dish or memory that retains data in electromagnetic form. Memory or hard disks typically have a surface comprising nickel-phosphorus, but the surface may comprise any other suitable material. Typically, the substrate comprises at least one conductive material. Suitable conductive materials include, for example, copper, ruthenium, crane, imprint, nickel, titanium, face, tantalum, niobium, silver, alloys thereof, and mixtures thereof. The substrate typically also contains a metal oxide insulating layer. Suitable metal oxide insulating layers include, for example, aluminum oxide, cerium oxide, titanium oxide, cerium oxide, oxidizing hammer, cerium oxide, magnesium oxide, and combinations thereof. Moreover, the substrate can comprise, consist essentially of, or consist of any suitable metal composite. Suitable metal composites include, for example, metal nitrides (such as nitride buttons, titanium nitride, and tungsten nitride), metal carbides (such as tantalum carbide and tungsten carbide), nickel-phosphorus, aluminum borosilicate, and borosilicate. Glass, phosphoric acid glass (ps(7), borophosphoric acid glass (BPSG), bismuth/niobium alloy and tantalum/niobium/carbon alloy. The substrate also contains, essentially consists of or consists of any suitable semiconductor substrate material. Suitable The semi-conductor substrate material includes single crystal germanium, polycrystalline germanium, amorphous germanium, insulating layer overlying germanium and gallium arsenide. It will be readily appreciated by those skilled in the art that the polishing pad of the present invention can be used for other electrochemical activities or needs. A significant amount of polishing composition stream (such as a liquid carrier and polishing additive) is passed through a polishing pad manufacturing process. For example, the polishing pad of the present invention can be used in electrochemical deposition and electrochemical mechanical plating processes (ECMPP), which include electrochemical deposition and chemical mechanical A combination of polishing. [Simplified illustration] 93689.doc -16- 1279290 Figure 1A is a fragment depicting a partial polishing of a polishing pad of the present invention having a top surface (1 inch) and a bottom surface (14). Wherein the top surface comprises a first set of linear grooves (12), the bottom surface comprises a second set of linear grooves (16) in a direction of 9 turns relative to the first set of grooves, and the first set and the second set are concave The grooves intersect to create a first channel (20). Figure 1B is a fragmentary plan view of the presently described polishing pad including a first set of linear grooves (12) and a second set of linear grooves (16), wherein the second set of straight grooves The slot is oriented 90 degrees relative to the first set of grooves, and the first set intersects the second set of grooves to create a first channel (20). Figure 2 is a depiction including a first set of curved grooves (12) and a second A top view of a segment of the polishing pad of the present invention with a set of curved grooves (16), wherein the second set of curved grooves are oriented 45 with respect to the first set of grooves, and the first set intersects with the second set of grooves to produce a first Channel (20). Figure 3 is a fragmentary plan view depicting a polishing pad of the present invention comprising a first set of circular grooves (12) and a second set of circular grooves (16), wherein the second set of circular grooves are displaced The distance of the half of the circular groove diameter, and the first group intersects the second group of grooves to produce the first channel (20). Comprising a first set of linear grooves painted (12), a second set of linear grooves 〇6) and the second channel (22) of the polishing pad of the present invention, a plan view of a fragment. 5A is a fragmentary, partial cross-sectional perspective view depicting a polishing pad of the present invention having a top surface (10) and a bottom surface (14), wherein the top surface includes a first set of linear grooves (12), the bottom surface including relative to the first The group groove is facing 9〇. The second set of linear grooves (16) are oriented, and the first set intersects the second set of grooves to create a first passage (20), and the polishing pad further includes a second passage (22). 93689.doc -17 1279290 FIG. 5B is a fragmentary plan view depicting a polishing pad of the present invention comprising a first set of linear grooves (12) and a second set of linear grooves (16), wherein the second set of linear grooves is relative to the first A set of grooves is oriented toward 90. Direction, and the polishing pad further includes a first channel (20) and a second channel (22). Figure 6 is a fragmentary plan view of a polishing pad of the present invention comprising a first set of linear grooves (12) and a second set of linear grooves (16), wherein the second set of linear grooves are oriented 90 relative to the first set of grooves . The direction, and the width of the first and second sets of grooves is increased from one side of the polishing pad to the other. Figure 7 is a cross-sectional view of an electrochemical mechanical polishing apparatus comprising the polishing pad of the present invention. [Main component symbol description] 10 12 The first set of linear grooves on the top surface; a set of curved grooves ·, 14 16 The second set of linear grooves on the bottom surface of the first set of circular grooves; The second set of curved grooves; 20 22 30 32 34 93689.doc The second group of circular grooves, the first channel, the second channel, the electrolysis chamber, the cathode conducting plate, 18-1279290, 36, the carrier, the semipermeable membrane 40, the polishing 塾42, the electrolyte 44, the reference electrode, 93689.doc

Claims (1)

1279290 十、申請專利範圍: L 種拋光墊,其包含一具有(a)包含具有第一深度及第一 見度之第一組凹槽之頂部表面及(b)包含具有第二深度及 第二寬度之第二組凹槽之底部表面之主體,其中該第一 、、且凹槽與第二組凹槽係互連並定向使彼等不成一直線。 2·如凊求項1之拋光墊,其中該第一組及第二組凹槽具有選 自由線、曲線、圓形、橢圓形、正方形、矩形、三角形、 菱形及其組合物組成之群之截面形狀。 3·如請求項2之拋光墊,其中該凹槽是直線凹槽。 4·如請求項3之拋光墊,其中該第一組及第二組凹槽是不平 行的。 5·如清求項1之拋光墊,其中該拋光墊具有3〇%或更高之空 隙體積。 6·如明求項5之拋光墊,其中該拋光墊具有7〇%或更高之空 隙體積。 月求項1之拋光墊,其中該第一組凹槽相對於該第二組 凹槽係旋轉1〇。至9〇。肖度。 ^。月求項7之拋光墊,其中該角度是90。。 •求項R拋光塾,其中該第一組凹槽之第一深度與該 第、、且凹槽之第二深度組合以具有-等於或大於該拋光 墊厚度之總凹槽深度。 10·::求項9之拋光墊,纟中該第一組凹槽及第二組凹槽係 ' t道互連,其中该等第一通道係朝垂直該拋光墊 頂部表面的方向。 93689.doc 1279290 11·如請求項10之拋光墊,另外包含許多延伸穿過該拋光墊 厚度之第二通道。 12_如請求項1之拋光墊,其中該第一組凹槽之第一凹槽深度 與该第一組凹槽之第二凹槽深度組合以具有一小於該拋 光墊厚度之總凹槽深度。 13. 如請求項12之拋光墊,其中該第一組及第二組凹槽係以 許多延伸穿過該拋光墊厚度之第二通道互連。 14. 如請求項1之拋光墊,其中該第一組凹槽、該第二組凹槽 或其組合物具有0.1釐米至2釐米之平均凹槽寬度。 15·如請求項1之拋光墊,其中該第一凹槽寬度與該第二凹槽 寬度從該拋光墊一側至該拋光塾另一側地增加。 16.如請求項1之拋光墊,其中該主體包含一聚合物樹脂,其 係選自由熱塑性彈性體、熱塑性聚胺基甲酸酯、熱塑性 聚烯烴、聚碳酸酯、聚乙烯醇、尼龍、彈性體橡膠、彈 性體聚乙烯、聚四氟乙烯、聚對苯二曱酸乙二酯、聚醯 亞胺、聚芳醯胺、聚伸芳基、聚丙烯酸酯、聚苯乙稀、 聚甲基丙烯酸曱酯、其共聚物及其混合物所組成之群。 17·如請求項16之拋光墊,其中該聚合物樹脂是熱塑性聚胺 基甲酸酯樹脂。 1 8.如請求項1之拋光墊,其中該拋光墊主體另包含研磨劑粒 子。 19·如請求項丨之拋光墊,其中該拋光墊是傳導的。 2〇·如請求項19之拋光墊,其中該拋光墊主體另包含傳導元 件。 93689.doc 1279290 21.如請求項19之拋光墊,其中該拋光墊主體另包含傳導聚 合物。 22_ —種藉由電化學機械拋光以拋光基板之方法,其包括: (i) 提供一包含如請求項1之拋光墊的電化學機械拋光 (ECMP)裝置, (ii) 提供一欲拋光基板, (iii) 將導電流體供入該ECMP裝置中, (iv) 施加電化學電位至該基板表面,並 (v) 相對於該基板移動該拋光墊以磨耗該基板並因此拋 光基板。 23. 如請求項22之方法,其中該電化學電位係隨時間而變。 24. 如請求項22之方法,其中該導電流體係以一或多個果浦 供應。 25·如請求項22之方法,其中該導電流體包含氣泡。 26.如請求項22之方法,其中該拋光墊是傳導的。 93689.doc1279290 X. Patent Application Range: L polishing pad comprising a top surface having (a) a first set of grooves having a first depth and a first degree of visibility and (b) comprising a second depth and a second a body of a bottom surface of the second set of grooves of the width, wherein the first, and the grooves are interconnected with the second set of grooves and oriented such that they are not in line. 2. The polishing pad of claim 1, wherein the first and second sets of grooves have a group selected from the group consisting of a line, a curve, a circle, an ellipse, a square, a rectangle, a triangle, a diamond, and combinations thereof. Section shape. 3. The polishing pad of claim 2, wherein the groove is a linear groove. 4. The polishing pad of claim 3, wherein the first and second sets of grooves are non-parallel. 5. The polishing pad of claim 1, wherein the polishing pad has a void volume of 3% or more. 6. The polishing pad of claim 5, wherein the polishing pad has a void volume of 7% or more. The polishing pad of claim 1, wherein the first set of grooves is rotated 1 turn relative to the second set of grooves. To 9 〇. Xiao Duo. ^. The polishing pad of item 7, wherein the angle is 90. . • The item R is polished, wherein the first depth of the first set of grooves is combined with the second and the second depth of the groove to have a total groove depth equal to or greater than the thickness of the polishing pad. 10::: The polishing pad of claim 9, wherein the first set of grooves and the second set of grooves are interconnected, wherein the first channels are oriented perpendicular to a top surface of the polishing pad. 93689.doc 1279290 11. The polishing pad of claim 10, additionally comprising a plurality of second passages extending through the thickness of the polishing pad. 12) The polishing pad of claim 1, wherein a first groove depth of the first set of grooves is combined with a second groove depth of the first set of grooves to have a total groove depth less than a thickness of the polishing pad . 13. The polishing pad of claim 12, wherein the first and second sets of grooves are interconnected by a plurality of second channels extending through the thickness of the polishing pad. 14. The polishing pad of claim 1, wherein the first set of grooves, the second set of grooves, or a combination thereof has an average groove width of from 0.1 cm to 2 cm. 15. The polishing pad of claim 1, wherein the first groove width and the second groove width increase from one side of the polishing pad to the other side of the polishing pad. 16. The polishing pad of claim 1 wherein the body comprises a polymeric resin selected from the group consisting of thermoplastic elastomers, thermoplastic polyurethanes, thermoplastic polyolefins, polycarbonates, polyvinyl alcohols, nylons, elastomers Body rubber, elastomeric polyethylene, polytetrafluoroethylene, polyethylene terephthalate, polyimide, polyarylamine, polyarylene, polyacrylate, polystyrene, polymethyl a group of decyl acrylates, copolymers thereof, and mixtures thereof. 17. The polishing pad of claim 16, wherein the polymeric resin is a thermoplastic polyurethane resin. The polishing pad of claim 1, wherein the polishing pad body further comprises abrasive particles. 19. A polishing pad as claimed in claim 1, wherein the polishing pad is conductive. 2. The polishing pad of claim 19, wherein the polishing pad body further comprises a conductive element. The polishing pad of claim 19, wherein the polishing pad body further comprises a conductive polymer. A method of polishing a substrate by electrochemical mechanical polishing, comprising: (i) providing an electrochemical mechanical polishing (ECMP) device comprising the polishing pad of claim 1, (ii) providing a substrate to be polished, (iii) feeding a conductive fluid into the ECMP device, (iv) applying an electrochemical potential to the surface of the substrate, and (v) moving the polishing pad relative to the substrate to abrade the substrate and thereby polishing the substrate. 23. The method of claim 22, wherein the electrochemical potential system changes over time. 24. The method of claim 22, wherein the conductive flow system is supplied in one or more fruit cells. The method of claim 22, wherein the electrically conductive fluid comprises air bubbles. 26. The method of claim 22, wherein the polishing pad is conductive. 93689.doc
TW093116251A 2003-06-23 2004-06-04 Polishing pad for electrochemical-mechanical polishing TWI279290B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/601,601 US20040259479A1 (en) 2003-06-23 2003-06-23 Polishing pad for electrochemical-mechanical polishing

Publications (2)

Publication Number Publication Date
TW200510124A TW200510124A (en) 2005-03-16
TWI279290B true TWI279290B (en) 2007-04-21

Family

ID=33517994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093116251A TWI279290B (en) 2003-06-23 2004-06-04 Polishing pad for electrochemical-mechanical polishing

Country Status (7)

Country Link
US (1) US20040259479A1 (en)
EP (1) EP1638733A1 (en)
JP (1) JP2007518577A (en)
KR (1) KR20060026437A (en)
CN (1) CN1809445A (en)
TW (1) TWI279290B (en)
WO (1) WO2005000525A1 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153410B2 (en) * 2000-08-30 2006-12-26 Micron Technology, Inc. Methods and apparatus for electrochemical-mechanical processing of microelectronic workpieces
US7160176B2 (en) * 2000-08-30 2007-01-09 Micron Technology, Inc. Methods and apparatus for electrically and/or chemically-mechanically removing conductive material from a microelectronic substrate
US7129160B2 (en) 2002-08-29 2006-10-31 Micron Technology, Inc. Method for simultaneously removing multiple conductive materials from microelectronic substrates
US7078308B2 (en) 2002-08-29 2006-07-18 Micron Technology, Inc. Method and apparatus for removing adjacent conductive and nonconductive materials of a microelectronic substrate
US7094131B2 (en) * 2000-08-30 2006-08-22 Micron Technology, Inc. Microelectronic substrate having conductive material with blunt cornered apertures, and associated methods for removing conductive material
US7192335B2 (en) * 2002-08-29 2007-03-20 Micron Technology, Inc. Method and apparatus for chemically, mechanically, and/or electrolytically removing material from microelectronic substrates
US7134934B2 (en) * 2000-08-30 2006-11-14 Micron Technology, Inc. Methods and apparatus for electrically detecting characteristics of a microelectronic substrate and/or polishing medium
US7153195B2 (en) 2000-08-30 2006-12-26 Micron Technology, Inc. Methods and apparatus for selectively removing conductive material from a microelectronic substrate
US7220166B2 (en) 2000-08-30 2007-05-22 Micron Technology, Inc. Methods and apparatus for electromechanically and/or electrochemically-mechanically removing conductive material from a microelectronic substrate
US7112121B2 (en) * 2000-08-30 2006-09-26 Micron Technology, Inc. Methods and apparatus for electrical, mechanical and/or chemical removal of conductive material from a microelectronic substrate
JP2005123232A (en) * 2003-10-14 2005-05-12 Toshiba Corp Polishing device, polishing method, and method of manufacturing semiconductor device
US7442116B2 (en) * 2003-11-04 2008-10-28 Jsr Corporation Chemical mechanical polishing pad
US7153777B2 (en) 2004-02-20 2006-12-26 Micron Technology, Inc. Methods and apparatuses for electrochemical-mechanical polishing
US7097536B2 (en) * 2004-06-30 2006-08-29 Intel Corporation Electrically enhanced surface planarization
US7566391B2 (en) 2004-09-01 2009-07-28 Micron Technology, Inc. Methods and systems for removing materials from microfeature workpieces with organic and/or non-aqueous electrolytic media
JP3872081B2 (en) * 2004-12-29 2007-01-24 東邦エンジニアリング株式会社 Polishing pad
US20060151615A1 (en) * 2005-01-12 2006-07-13 Taiwan Name Plate Co., Ltd. Radio identifiable mark
JP2006332526A (en) * 2005-05-30 2006-12-07 Renesas Technology Corp Manufacturing method of semiconductor device, electrolytic polishing method, and polishing pad
US7807252B2 (en) * 2005-06-16 2010-10-05 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad having secondary polishing medium capacity control grooves
US7503833B2 (en) * 2006-02-16 2009-03-17 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Three-dimensional network for chemical mechanical polishing
US7604529B2 (en) * 2006-02-16 2009-10-20 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Three-dimensional network for chemical mechanical polishing
US20080283502A1 (en) * 2006-05-26 2008-11-20 Kevin Moeggenborg Compositions, methods and systems for polishing aluminum oxide and aluminum oxynitride substrates
US7635290B2 (en) * 2007-08-15 2009-12-22 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Interpenetrating network for chemical mechanical polishing
US7828634B2 (en) 2007-08-16 2010-11-09 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Interconnected-multi-element-lattice polishing pad
US7517277B2 (en) * 2007-08-16 2009-04-14 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Layered-filament lattice for chemical mechanical polishing
TWI409868B (en) * 2008-01-30 2013-09-21 Iv Technologies Co Ltd Polishing method, polishing pad and polishing system
JP2009297817A (en) * 2008-06-11 2009-12-24 Elpida Memory Inc Method of manufacturing polishing pad, polishing pad, and method of manufacturing substrate using the same
US8894799B2 (en) * 2011-09-22 2014-11-25 Dow Global Technologies Llc Method of forming layered-open-network polishing pads
US9108291B2 (en) * 2011-09-22 2015-08-18 Dow Global Technologies Llc Method of forming structured-open-network polishing pads
US8801949B2 (en) 2011-09-22 2014-08-12 Dow Global Technologies Llc Method of forming open-network polishing pads
JP5696024B2 (en) * 2011-11-09 2015-04-08 株式会社東芝 Chemical planarization method and chemical planarization apparatus
CN102601471B (en) * 2012-03-28 2013-07-24 华南理工大学 Finish machining method for space curve meshing gear mechanism
US20150056895A1 (en) * 2013-08-22 2015-02-26 Cabot Microelectronics Corporation Ultra high void volume polishing pad with closed pore structure
TWI550140B (en) * 2014-01-28 2016-09-21 國立中山大學 Electrochemial abrasive polishing apparatus with its polishing method
TWI595968B (en) 2016-08-11 2017-08-21 宋建宏 Polishing pad and method for manufacturing the same
US10879087B2 (en) * 2017-03-17 2020-12-29 Toshiba Memory Corporation Substrate treatment apparatus and manufacturing method of semiconductor device
US10201887B2 (en) * 2017-03-30 2019-02-12 Taiwan Semiconductor Manufacturing Co., Ltd. Polishing pad having grooves on bottom surface of top layer
US11878388B2 (en) * 2018-06-15 2024-01-23 Taiwan Semiconductor Manufacturing Company, Ltd. Polishing pad, polishing apparatus and method of manufacturing semiconductor package using the same
CN109434568A (en) * 2018-10-23 2019-03-08 青岛韬谱光学科技有限公司 A kind of optical device polishing method of the high high roughness of face type
CN112536738B (en) * 2020-12-10 2022-05-27 郑州磨料磨具磨削研究所有限公司 Diamond roller rapid electroplating device and process
CN114918823B (en) * 2022-05-20 2023-08-25 安徽禾臣新材料有限公司 White pad for polishing large-size substrate and production process thereof

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288620A (en) * 1987-05-22 1988-11-25 Kobe Steel Ltd Electrolytic compound supermirror machining method for aluminum
US4793895A (en) * 1988-01-25 1988-12-27 Ibm Corporation In situ conductivity monitoring technique for chemical/mechanical planarization endpoint detection
US5256565A (en) * 1989-05-08 1993-10-26 The United States Of America As Represented By The United States Department Of Energy Electrochemical planarization
US5212910A (en) * 1991-07-09 1993-05-25 Intel Corporation Composite polishing pad for semiconductor process
JP3042593B2 (en) * 1995-10-25 2000-05-15 日本電気株式会社 Polishing pad
US5858813A (en) * 1996-05-10 1999-01-12 Cabot Corporation Chemical mechanical polishing slurry for metal layers and films
US5645469A (en) * 1996-09-06 1997-07-08 Advanced Micro Devices, Inc. Polishing pad with radially extending tapered channels
US5911619A (en) * 1997-03-26 1999-06-15 International Business Machines Corporation Apparatus for electrochemical mechanical planarization
US5807165A (en) * 1997-03-26 1998-09-15 International Business Machines Corporation Method of electrochemical mechanical planarization
US5888121A (en) * 1997-09-23 1999-03-30 Lsi Logic Corporation Controlling groove dimensions for enhanced slurry flow
US6171467B1 (en) * 1997-11-25 2001-01-09 The John Hopkins University Electrochemical-control of abrasive polishing and machining rates
US6395152B1 (en) * 1998-07-09 2002-05-28 Acm Research, Inc. Methods and apparatus for electropolishing metal interconnections on semiconductor devices
US6413388B1 (en) * 2000-02-23 2002-07-02 Nutool Inc. Pad designs and structures for a versatile materials processing apparatus
US6113759A (en) * 1998-12-18 2000-09-05 International Business Machines Corporation Anode design for semiconductor deposition having novel electrical contact assembly
US6217426B1 (en) * 1999-04-06 2001-04-17 Applied Materials, Inc. CMP polishing pad
US6299741B1 (en) * 1999-11-29 2001-10-09 Applied Materials, Inc. Advanced electrolytic polish (AEP) assisted metal wafer planarization method and apparatus
US6379223B1 (en) * 1999-11-29 2002-04-30 Applied Materials, Inc. Method and apparatus for electrochemical-mechanical planarization
US6241596B1 (en) * 2000-01-14 2001-06-05 Applied Materials, Inc. Method and apparatus for chemical mechanical polishing using a patterned pad
US6368190B1 (en) * 2000-01-26 2002-04-09 Agere Systems Guardian Corp. Electrochemical mechanical planarization apparatus and method
US7059948B2 (en) * 2000-12-22 2006-06-13 Applied Materials Articles for polishing semiconductor substrates
US7066800B2 (en) * 2000-02-17 2006-06-27 Applied Materials Inc. Conductive polishing article for electrochemical mechanical polishing
US6375549B1 (en) * 2000-03-17 2002-04-23 Motorola, Inc. Polishing head for wafer, and method for polishing
US6478936B1 (en) * 2000-05-11 2002-11-12 Nutool Inc. Anode assembly for plating and planarizing a conductive layer
US6500054B1 (en) * 2000-06-08 2002-12-31 International Business Machines Corporation Chemical-mechanical polishing pad conditioner
US6656019B1 (en) * 2000-06-29 2003-12-02 International Business Machines Corporation Grooved polishing pads and methods of use
JP2002046024A (en) * 2000-08-04 2002-02-12 Sony Corp Electrolytic polishing device, electrolytic polishing method, and wafer to be polished
JP2002093761A (en) * 2000-09-19 2002-03-29 Sony Corp Polishing method, polishing system, plating method and plating system
JP2002110592A (en) * 2000-09-27 2002-04-12 Sony Corp Polishing method and apparatus
JP2002254248A (en) * 2001-02-28 2002-09-10 Sony Corp Electrochemical machining device
US6811680B2 (en) * 2001-03-14 2004-11-02 Applied Materials Inc. Planarization of substrates using electrochemical mechanical polishing
US6592742B2 (en) * 2001-07-13 2003-07-15 Applied Materials Inc. Electrochemically assisted chemical polish
US6723224B2 (en) * 2001-08-01 2004-04-20 Applied Materials Inc. Electro-chemical polishing apparatus
US6599175B2 (en) * 2001-08-06 2003-07-29 Speedfam-Ipeca Corporation Apparatus for distributing a fluid through a polishing pad
US20030194959A1 (en) * 2002-04-15 2003-10-16 Cabot Microelectronics Corporation Sintered polishing pad with regions of contrasting density
US6884156B2 (en) * 2003-06-17 2005-04-26 Cabot Microelectronics Corporation Multi-layer polishing pad material for CMP

Also Published As

Publication number Publication date
CN1809445A (en) 2006-07-26
WO2005000525A1 (en) 2005-01-06
JP2007518577A (en) 2007-07-12
US20040259479A1 (en) 2004-12-23
KR20060026437A (en) 2006-03-23
TW200510124A (en) 2005-03-16
EP1638733A1 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
TWI279290B (en) Polishing pad for electrochemical-mechanical polishing
US6776693B2 (en) Method and apparatus for face-up substrate polishing
KR102350350B1 (en) Polishing pads and systems and methods of making and using the same
US6988942B2 (en) Conductive polishing article for electrochemical mechanical polishing
TWI279287B (en) Electrochemical-mechanical polishing system
US6837979B2 (en) Method and apparatus for depositing and controlling the texture of a thin film
US7323416B2 (en) Method and composition for polishing a substrate
JP4955535B2 (en) Low surface energy CMP pad
US20040214510A1 (en) Conductive polishing pad with anode and cathode
US20070131564A1 (en) Electro-Chemical Mechanical Planarization Pad With Uniform Polish Performance
US20100116685A1 (en) Methods and apparatuses for electrochemical-mechanical polishing
JP2005101585A (en) Polishing pad for electrochemical mechanical polishing
US20050173260A1 (en) System for electrochemical mechanical polishing
WO2004111146A1 (en) Polishing composition and method for polishing a conductive material
TW200402100A (en) Conductive polishing article for electrochemical mechanical polishing
KR20070103091A (en) Conductive polishing article for electrochemical mechanical polishing
CN1701136A (en) Low-force electrochemical mechanical processing method and apparatus
US20070066201A1 (en) Conductive polishing article for electrochemical mechanical polishing
KR100986950B1 (en) Method and apparatus to form a planarized cu interconnect layer using electroless membrane deposition
KR20070104479A (en) Polishing composition and method for polishing a conductive material
US7399516B2 (en) Long-life workpiece surface influencing device structure and manufacturing method
US7344432B2 (en) Conductive pad with ion exchange membrane for electrochemical mechanical polishing
KR20040103756A (en) Electrolytic polishing liquid, electrolytic polishing method and method for fabricating semiconductor device
JP2018531157A (en) Polyurethane CMP pad with high modulus ratio
TWI300026B (en) Conductive polishing article for electrochemical mechanical polishing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees