TWI269631B - Cooling system of electric equipment - Google Patents

Cooling system of electric equipment Download PDF

Info

Publication number
TWI269631B
TWI269631B TW94143897A TW94143897A TWI269631B TW I269631 B TWI269631 B TW I269631B TW 94143897 A TW94143897 A TW 94143897A TW 94143897 A TW94143897 A TW 94143897A TW I269631 B TWI269631 B TW I269631B
Authority
TW
Taiwan
Prior art keywords
temperature
value
cooling system
cooling
electrical device
Prior art date
Application number
TW94143897A
Other languages
Chinese (zh)
Other versions
TW200724019A (en
Inventor
Kuen-Li Wang
Jen-Wang Wei
Jie-Hung Shie
Original Assignee
Habor Precise Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Habor Precise Ind Co Ltd filed Critical Habor Precise Ind Co Ltd
Priority to TW94143897A priority Critical patent/TWI269631B/en
Application granted granted Critical
Publication of TWI269631B publication Critical patent/TWI269631B/en
Publication of TW200724019A publication Critical patent/TW200724019A/en

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

A cooling system of electric equipment comprises a platform cooling apparatus and a refrigerating apparatus. The platform cooling apparatus includes a cooling circulation unit and a pump. The refrigerating apparatus includes a coolant loop and a temperature control assembly. The temperature control assembly includes a first temperature sensor installed at an outlet of a box body of the cooling circulation unit, a second temperature sensor installed at an inlet of the box body and a control circuit assembly electrically connected to the first and the second temperature sensors, the compressor, the switch valve and the pump. A processing unit of the control circuit assembly can compute the temperature signals detected by the first and the second temperature sensors to obtain a real-time response control value so that the operation of the switch valve is controlled through comparing the real-time response control value with the temperature value detected by the second temperature sensor.

Description

1269631 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電氣設備的冷卻系統,特別 是指-種可穩定維持電氣設備内之循環流體之溫度的 冷卻系統。 【先前技術】 參閱圖1所示,一綠值 種傳統用於工作機的冷卻系統 ,可使一工作機4 、 倾% /瓜脰維持一預定溫度, ,經過該工作機4加工制Λ、上、 ^ 衣成的成品(圖未示)可呈 較佳的品質與精度。上、十、义與+ ^循體可為一循環氣體, 或一循%液體(例如: ^ m ^ ^ ^水)。该傳統冷卻系統1包 含一機台冷部裝晉?^ 罝2與一冷凍裝置3。 该機台冷卻梦署9 -…。該冷:吻至。少包括一冷卻循環單元21與 供油箱⑴内之油、:、;:几21具有-油箱211,與可 ,由极通的管路212 〇 該冷凍裝置3包括 ^ 匕枯一瘵發器31、—厭以德^ 冷凝器33、—膨脹間34、_門_【㈣32、— 36’及-流通該蒗 “閥35、-溫控總成 膨脹閥34的冷媒.口- 、、街機32、冷凝器33與 、該冷凝器33、兮昤口 “、、心态31、該壓縮機32 冷煤迴路。該機台冷卻壯…”某早兀37形成-路212是穿經該工 +之冷卻循環單元21的管 舨成-密閉迴路,藉由节、該蒸發器31並與該栗浦22 伕序流過該工作機4日·浦22可使油箱2U内的油 &發器31以進行溫度調節。該 1269631 /里控總点Κ /it 田土 士人BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system for an electrical device, and more particularly to a cooling system capable of stably maintaining the temperature of a circulating fluid in an electrical device. [Prior Art] Referring to Fig. 1, a green value type is conventionally used in a cooling system of a working machine, so that a working machine 4, a tilting/preserving head can be maintained at a predetermined temperature, and processed by the working machine 4, The finished product (not shown) can be of better quality and precision. The upper, ten, right and + ^ cycles can be a cycle of gas, or one cycle of % liquid (for example: ^ m ^ ^ ^ water). The conventional cooling system 1 contains a cold section of the machine. ^ 罝 2 with a freezer 3. The machine cools the dream office 9-... The cold: kiss to. Included is a cooling cycle unit 21 and oil in the fuel supply tank (1),::: 21 has a tank 211, and may be connected by a pole-passing line 212. The freezing device 3 includes a 瘵 瘵 瘵 31 31 , - 以 得 得 ^ condenser 33, - expansion room 34, _ door _ [(4) 32, - 36' and - the circulation of the valve "35, - temperature control assembly expansion valve 34 refrigerant. Port -,, arcade 32 The condenser 33 and the condenser 33, the mouthpiece ", the mental state 31, and the compressor 32 cold coal circuit. The machine is cooled and strong..."A certain early 37 formation-road 212 is a tubular-closed loop through the cooling cycle unit 21 of the work +, by means of the section, the evaporator 31 and the Lipu 22 Flowing through the working machine for 4 days, the Pu 22 can make the oil & the heater 31 in the fuel tank 2U for temperature adjustment. The 1269631 / Li total control point /it Tian Tu Shiren

制兒路組合體可接收该溫度感測器36丨之溫度訊息 進而控制該開關閥3 5之運作。 “操作日寸,藉由忒栗浦22作動可使該油箱21丨内之 常溫油經由該管路212而流過該工作機4,並與工作 栈4之發熱源(例如主軸)作熱交換,以降低其溫度。 接著,經過熱交換的高温油會流經該蒸發器31,與位 於蒸發為3 1中的冷煤單元作熱交換,使降溫回復成常 溫油,最後流入該油箱211中,藉此形成一機台冷卻 猶環。 前述冷凍裝置3之蒸發器3 1、該壓縮機3 2、該冷 /廷器3 3、該膨脹閥3 4、該冷煤單元3 7所形成之冷煤 迴路,主要是利用壓縮機32抽吸該蒸發器31内之常 溫低壓的汽態冷煤,並壓縮成高溫高壓的汽態冷煤後 ’再送至該冷凝器33中,使高溫高壓的汽態冷煤散熱 冷凝成常溫高壓的液態冷煤,接續,再透過該膨脹閥 34使常溫高壓的液態冷煤降壓成低溫低壓的液態冷煤 ,此時,在蒸發器3 1中之低溫低壓的液態冷煤,將該 管路212傳送過來之高溫油作熱交換,而回復成常溫 低壓的汽態冷煤,藉以形成一冷凍循環。 1269631 於實務上,該傳統冷卻系統2是利用該溫控總成 6來判kf工作點溫度(即該工作機4之一循環流體 的溫度)是否達到預設溫度。當低於預設溫度時,該 溫控總成36之溫度感測器361將傳送溫度訊息給該控 制電路組合體’使該開關_ 35打開,讓該壓縮機32 达出之高溫高壓的汽態冷煤直接進人該蒸發器Μ中, 使蒸發器31内之溫度上升’待溫度上升至高於預ρ 度時’將使該開關閥35關閉,使該蒸發器31開:: 冷。供該機台冷卻單元2之冷卻循環單元21可與^ 磋器中之低溫低壓液態冷煤作熱交換,間接進^ 部工作機4之循環流體的溫度。 但是於實務上,該傳統冷卻系統i仍存 失急待解決: 、該冷卻系統1之溫控總成36主要是利用單 感測器361來監控該工作機4之循環流體是否: 設溫度’進而控制開關閥3 5之動彳七 土— 、 … 動作,使蒸發器31產 生製冷或停止製冷’但是,在監控過程中 經過油箱2η(如圖1所示)始能判斷据環流體;否達到 預設溫度,相對造成判斷反應延遲 峻h形,致使豆、、w痒 控制精度僅可達±l°c (如圖2所+ 度 口 2所不,說明該冷卻系绩 使用於一工作機,且採用測試負載 冼 、Q W、環谙、、w痒 為28°C、設定溫度為24t:等條件而旦、、丨少 兄,皿度 試圖),恐不敷工作機4製造出高粹 、2仔的/里度測 ^ 阿品質的Λϋ 了 產品,因而有改良之必要。 1269631 【發明内容】 因此,本發明之目的,是在提供一種可穩定維持 電氣設備内之循環流體之溫度的冷卻系統。 本發明之另一目的,是在提供一種溫度控制精度 可達±0.2°C的冷卻系統。 於是,本發明之電氣設備的冷卻系統,包含一用 以調節該電氣設備之循環流體之溫度的機台冷卻裝置 ,及一與該機台冷卻裝置作溫度調節的冷凍裝置。該 • 機台冷卻裝置包括一冷卻循環單元與一泵浦。該冷凍 裝置是由一蒸發器、一壓縮機、一冷凝器、一膨脹閥 、一開關閥組成一冷煤迴路,且包括一溫控總成。該 • 冷卻循環單元包括内部裝承有工作流體的一箱體,及 ' 一供工作流體流通的管路。該管路穿經該電氣設備、 該蒸發器並與該泵浦組成一密閉迴路,藉由該泵浦可 使工作流體依序流過該電氣設備與蒸發器以進行溫度 調節,其特徵在於: • 該溫控總成包括一設置在該箱體與該工作機之間 的第一溫度感測器、一設置在該箱體與該蒸發器之間 的第二溫度感測器,及一電連接該第一、第二溫度感 測器、該壓縮機、該開關閥與該泵浦的控制電路組合 體。該控制電路組合體具有一處理器單元,及二分別 電連接該第一溫度感測器與第二溫度感測器的轉換單 元。該第一溫度感測器、該第二溫度感測器所偵測到 之溫度訊號可透過該等轉換單元傳送給該處理器單元 並藉由。亥處理器單元演算得到一即時反應控制值, 、乂 14 °亥第一溫度感測器偵測到之溫度值作一比較, 進而控制該開關閥之運作,以有效調節該電氣設備之 .環流體的溫度。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效 在以下配合苓考圖式之四較佳實施例的詳細說明中 ’將可清楚的明白。 在提出詳細說明之前,要注意的是,在以下的敘 述中;類似之元件,是以相同標號來表示。 /閱圖3、4所示,本發明之電氣設備的冷卻系統 之罘-較佳實施例,該電氣設備在本實施例中為一工 :機5,亦可為-CNC線切割機、—雷射加工機、一 制CB鑽孔機、一射出成型機、—印刷機械、一半導體 :造設備、一醫療設備或其他適用的產業機械。該冷 :系統6包含一用以調節該工作機5之循環流體之溫 =的機台冷卻裝置7,及一與該機台冷卻裝置7作溫 u周即的冷康裝置8。該機台冷卻裝置7包括一冷卻 =環單元71與-泵浦72。該冷;東裝置8是由一蒸發 益8卜一壓縮機82、一冷凝器83、—膨脹閥μ、一 開關閥85組成-冷煤迴路,且包括—溫控總成9。上 述冷卻循環單元71包括内部裝承有卫作流體的一箱體 ’及一供工作流體流通的…12。在本實施例中該 _體為油711,該工作流體為油;此外,該箱體亦 1269631 可為一水箱(圖未示),係採用水當作工作流體。該管 路712穿經該工作機5、該蒸發器81並與該泵浦μ 组成-密閉迴路,藉由該泵浦72之動作可使油依逆時 針方向依序流過該工作機5與蒸發器81以進行溫度調 郎。因該機台冷卻裝置7之冷卻循環單元71、該冷凍 裝置8之冷煤迴路之細部組成與動作原理皆為習:技 術,故在此不再詳細說明。本發明之特徵在於·The brake circuit assembly can receive the temperature information of the temperature sensor 36 to control the operation of the on-off valve 35. "Operation day, by the operation of the Lipu 22, the normal temperature oil in the tank 21 can flow through the working machine 4 through the pipeline 212, and exchange heat with the heat source (such as the main shaft) of the working stack 4. Then, the heat exchanged high temperature oil flows through the evaporator 31, exchanges heat with the cold coal unit located in the evaporation to 31, returns the temperature to the normal temperature oil, and finally flows into the oil tank 211. Thereby, a machine cooling cooling ring is formed. The evaporator 3 1 of the freezing device 3, the compressor 3 2, the cold/cylinder 3 3, the expansion valve 34, and the cold coal unit 37 are formed. The cold coal circuit mainly uses the compressor 32 to suck the normal temperature and low pressure vaporous cold coal in the evaporator 31, and compresses it into a high temperature and high pressure vaporous cold coal, and then sends it to the condenser 33 to make the high temperature and high pressure. The vaporous cold coal is condensed into a liquid cold coal of normal temperature and high pressure, and then passed through the expansion valve 34 to depressurize the normal temperature and high pressure liquid cold coal into a low temperature and low pressure liquid cold coal. At this time, the low temperature in the evaporator 31 Low-pressure liquid cold coal, the high-temperature oil sent from the pipeline 212 Exchange, and return to the normal temperature and low pressure of the vaporous cold coal, thereby forming a refrigeration cycle. 1269631 In practice, the conventional cooling system 2 uses the temperature control assembly 6 to determine the kf operating point temperature (ie, the working machine 4 Whether the temperature of a circulating fluid reaches a preset temperature. When the temperature is lower than the preset temperature, the temperature sensor 361 of the temperature control assembly 36 transmits a temperature message to the control circuit assembly to open the switch _35. Letting the high temperature and high pressure vaporous cold coal that the compressor 32 reaches directly into the evaporator crucible, causing the temperature in the evaporator 31 to rise 'when the temperature rises above the pre-ρ degree' will cause the on-off valve 35 to close. The evaporator 31 is opened:: cold. The cooling circulation unit 21 for the cooling unit 2 of the machine can exchange heat with the low temperature and low pressure liquid cold coal in the device, and indirectly enter the circulating fluid of the working machine 4. However, in practice, the conventional cooling system i still has an urgent need to be solved: The temperature control assembly 36 of the cooling system 1 mainly uses a single sensor 361 to monitor whether the circulating fluid of the working machine 4 is: Temperature 'and thus control the switching valve 3 5 The movement of the seven soils - , ... action, the evaporator 31 to generate refrigeration or stop cooling ' However, in the monitoring process through the tank 2n (as shown in Figure 1) can determine the loop fluid; whether the preset temperature, relative The judgment reaction delay is h-shaped, so that the control accuracy of beans and witch is only ±1°c (as shown in Figure 2 + degree 2), indicating that the cooling system is used in a working machine and the test load is used.冼, QW, 谙,, w itching is 28 ° C, the set temperature is 24t: and other conditions, Dan, 丨 兄 brother, try to try), I am afraid that the working machine 4 can produce high quinces, 2 babies / Therefore, it is an object of the present invention to provide a cooling system capable of stably maintaining the temperature of a circulating fluid in an electrical device. Another object of the present invention is to provide a cooling system having a temperature control accuracy of ± 0.2 °C. Accordingly, the cooling system of the electrical apparatus of the present invention includes a machine cooling device for adjusting the temperature of the circulating fluid of the electrical device, and a freezing device for temperature adjustment with the machine cooling device. The • machine cooling unit includes a cooling cycle unit and a pump. The refrigerating device is composed of an evaporator, a compressor, a condenser, an expansion valve and an on-off valve, and comprises a temperature control assembly. The • cooling cycle unit includes a tank containing the working fluid inside, and a line for the working fluid to circulate. The pipeline passes through the electrical device, the evaporator and forms a closed circuit with the pump, and the pump can sequentially flow the working fluid through the electrical device and the evaporator for temperature adjustment, wherein: The temperature control assembly includes a first temperature sensor disposed between the box and the working machine, a second temperature sensor disposed between the box and the evaporator, and an electric Connecting the first and second temperature sensors, the compressor, the switching valve, and the pumped control circuit assembly. The control circuit assembly has a processor unit, and two conversion units electrically connected to the first temperature sensor and the second temperature sensor, respectively. The temperature signals detected by the first temperature sensor and the second temperature sensor can be transmitted to the processor unit through the conversion units. The processor unit calculus obtains an immediate response control value, and compares the temperature value detected by the first temperature sensor at 14 °H, thereby controlling the operation of the on-off valve to effectively adjust the ring of the electrical device. The temperature of the fluid. The above and other technical contents, features and effects of the present invention will become apparent from the following detailed description of the preferred embodiments of the invention. Before the detailed description is made, it is noted that in the following description, like elements are denoted by the same reference numerals. / Figure 3, 4 shows a cooling system of the electrical device of the present invention - a preferred embodiment, the electrical device in this embodiment is a work: machine 5, can also be -CNC wire cutting machine, - Laser processing machine, one-piece CB drilling machine, one injection molding machine, printing machine, a semiconductor: manufacturing equipment, a medical equipment or other suitable industrial machinery. The cold: system 6 includes a machine cooling device 7 for adjusting the temperature of the circulating fluid of the working machine 5, and a cooling device 8 for warming the machine cooling device 7. The machine cooling unit 7 includes a cooling = ring unit 71 and a pump 72. The cold device; the east device 8 is composed of an evaporation device, a condenser 83, an expansion valve μ, and an on-off valve 85 - a cold coal circuit, and includes a temperature control assembly 9. The above-described cooling cycle unit 71 includes a casing ” internally housed with a working fluid and a ... 12 for circulating a working fluid. In this embodiment, the body is oil 711, and the working fluid is oil; in addition, the tank 1266631 can be a water tank (not shown), and water is used as a working fluid. The pipeline 712 passes through the working machine 5, the evaporator 81 and forms a closed circuit with the pump μ. By the action of the pump 72, the oil flows through the working machine 5 in a counterclockwise direction. The evaporator 81 is used to perform temperature adjustment. Since the composition and operation principle of the cooling cycle unit 71 of the cooling device 7 of the machine and the cold coal circuit of the refrigeration device 8 are both technical and technical, they will not be described in detail herein. The invention is characterized in that

該溫控總成9包括一設置在該油箱711之一出油 :7111與該工作機5之間的第一溫度感測器91、二 設置在該油箱711之一進油口 7112與該蒸發器8ι之 間的第二溫度感測器92,及一電連接該第一、第二溫 度感測器91、92、該壓縮機82、該開關閥85與該系 浦72的控制電路組合體93。該第―、第二溫度感測 器9卜92為熱電偶溫度感測器;亦可為熱敏電阻溫度 感測器、* ΡΤ100Ω温度感測器,或其他適用之溫: 感測器。 1 該控制電路組合體93具有一處理器單元931、二 分別電連接該第一溫度感測器、91輿第二溫度感測器 9\的轉換單元932、電連接該處理器單元931的-輪 元9 3 3 冷卻糸統監測單元9 3 4、一驅動電路單 兀935及一顯示單元936。該轉換單元、32可將第一 、第二溫度感測器91、92偵測到之溫度訊號轉換為處 =器單元931可讀取之資料格式。該輪入單元933可 供使用者輸入溫度控制訊號與設定參數(詳見後述)。 10 I26963l 该冷卻糸統監控單元⑽4用 叫4用以監控該壓縮機82、誃 浦72、該開關閥85之動作情形。該驅動電路單元: 具有一壓縮機驅動電路咖、-泵浦驅動電路9352 —開關閥驅動電路9353及-警示器驅動電路9356, 分別用以電連接該壓縮機82、 ^ 忑泵浦72、該開關閥 85,及一警示器86。該逖矛哭μ叮达 ^ ㊂不态86可為一發出聲響 聲光以產生告警效果的藝示哭 句 ^ 士 曰不為或一可輸出—訊號給The temperature control assembly 9 includes a first temperature sensor 91 disposed between one of the oil tanks 711 and a working device 5, and two oil inlets 7112 disposed in the oil tank 711 and the evaporation. a second temperature sensor 92 between the devices 8i, and a control circuit assembly electrically connecting the first and second temperature sensors 91, 92, the compressor 82, the switching valve 85 and the system 72 93. The first and second temperature sensors 9 are 92 thermocouple temperature sensors; they can also be thermistor temperature sensors, * ΡΤ 100 Ω temperature sensors, or other suitable temperature: sensors. 1 The control circuit assembly 93 has a processor unit 931, two conversion units 932 electrically connected to the first temperature sensor, 91舆 second temperature sensor 9\, and electrically connected to the processor unit 931. The wheel unit 9 3 3 cools the monitoring unit 9 3 4, a driving circuit unit 935 and a display unit 936. The conversion unit 32 converts the temperature signals detected by the first and second temperature sensors 91, 92 into a data format readable by the unit 931. The wheeling unit 933 can be used by the user to input temperature control signals and setting parameters (described later). 10 I26963l The cooling system monitoring unit (10) 4 is used to monitor the operation of the compressor 82, the pump 72, and the switching valve 85. The driving circuit unit has a compressor driving circuit, a pump driving circuit 9352, an opening and closing valve driving circuit 9353, and an alarm driving circuit 9356 for respectively electrically connecting the compressor 82, the ? pump 72, The on-off valve 85, and an alarm 86. The 逖 spears crying 叮 ^ ^ Three states 86 can be an audible sound and light to produce an alarm effect of the art crying ^ Shi 曰 not or one can output - signal to

使用端的警示器。該顯示單% 936可顯示冷卻系統6 之動作狀態。因該驅動電路單元935丨習知技術,故 在此不再詳細說明。 操作時,使用者先透過輸入單元933輸入溫度控 制訊號(在本實施例中是設定溫度為2rc)與設定參 數(詳見下述),接著,該第一溫度感測器91、該第二 溫度感測器92所偵測到之溫度訊號將透過該等轉換單 元932傳送給該處理器單元931,並藉由該處理器單 兀93 1透過下述演算式取得一即時反應控制值(Q ) ·· Q = SQ + (SPxSQ)-(SPxTHl) 該演异式中之ΤΗ 1是第一溫度感測器91偵測到 的、溫度值。該SP參數是Q對應ΤΗ 1變化時的反應值 ;其作用是,當油箱711尺寸改變時,將增加或減少 油相711内之承油空間(圖未示),致使位於油箱7 π 内之常溫油與自入油口 7112流入之油混合,進行熱交 換的效果產生差異;藉此,當熱交換效果不佳而使降 溫速度變慢時,可調整SP參數而改變其降溫的反應 11 1269631 速度。該SQ = SV+SM,該SV參數是溫度控制目的點 之设疋溫度值(在本實施例中之設定溫度值為它) ,該SM參數是溫度控制目的點之偏差微調值。該 芩數之作用為,當TH1與溫度控制目的點之設定溫度 值(SV)恆產生落差時,可藉由改變溫度控制目的點 之偏差微調值(SM ),而獲得改善。Use the end of the alert. The display unit % 936 can display the operating state of the cooling system 6. Since the drive circuit unit 935 is a conventional technique, it will not be described in detail herein. During operation, the user first inputs a temperature control signal (in the present embodiment, the set temperature is 2rc) and a setting parameter (see below) through the input unit 933, and then, the first temperature sensor 91, the second The temperature signal detected by the temperature sensor 92 is transmitted to the processor unit 931 through the conversion unit 932, and an immediate reaction control value is obtained by the processor unit 93 1 through the following calculation formula (Q). ··· Q = SQ + (SPxSQ)-(SPxTHl) The ΤΗ 1 in the expression is the temperature value detected by the first temperature sensor 91. The SP parameter is a reaction value when Q corresponds to the change of ΤΗ 1; the function is that when the size of the oil tank 711 is changed, the oil bearing space in the oil phase 711 (not shown) is increased or decreased, so that it is located in the fuel tank 7 π. The normal temperature oil is mixed with the oil flowing in from the oil inlet 7112, and the effect of heat exchange is different; thereby, when the heat exchange effect is not good and the cooling rate is slowed down, the SP parameter can be adjusted to change the reaction of the temperature drop 11 1269631 speed. The SQ = SV + SM, the SV parameter is a set temperature value of the temperature control destination point (the set temperature value in this embodiment is the value), and the SM parameter is a deviation trimming value of the temperature control destination point. The effect of the number of turns is that when TH1 and the set temperature value (SV) of the temperature control destination point are constantly generated, the deviation can be improved by changing the deviation trimming value (SM) of the temperature control target point.

搭配參閱圖5所示,藉由上述演算式取得之即時 反應栓制值(Q )將與該第二溫度感測器偵測到之 溫度值(簡稱TH2)作一比較。# q小於TH2時,該 開關閥85將關閉使該蒸發器81產生製冷動作,終: 該機台冷卻裝置7仍可持續對該工作機5進行降溫動 作。當Q大於TH2日夺,該開關閥85將開啟使該^發 器81停止製冷動作,終使該機台冷卻褒s 了對該工作 機5暫停降溫動作。 本發明之冷卻系統6之溫控總成9主要是利用第 一、第二溫度感測器91、92,搭配前述運算式 Q = sq+(SPxSq)_(SPxTH1)作為監控該工作機5之猶環流體 之溫度是否達到預設溫度,不同於傳統冷卻系統!之 溫控總成36是利用單—溫度感測器361之監控方式。 另搭配圖6所示,說明本發明冷卻系統6使用於二工 作機5,且採用測試負载為2KW、環境溫度為28t愈 設定_ 等條件的溫度測視圖,其可獲得溫度 控制精度為土0.2t,其溫度控制精準度遠高於圖"斤 示之傳統冷卻^ 1之溫度㈣精度l+lt的結果, 12 1269631 相對本發明之冷卻系統6可供應該工 ^ 卜调;5 —穩定的 工作環彡兄,以製造出高精度、高品質的加工產口 參閱圖7,是本發明之第二較佳實施例的:度測 試圖(測試環境與結果,詳見後述),同樣可達到本發 明之溫度控制精度為±〇.2V的效果 * 不同於第一 :佳實施例的地方在於:該處理器單元係透過下述演 异式取得一即時反應控制值(Q) ·· Q = 2SV-TH1Referring to Figure 5, the instantaneous response pin value (Q) obtained by the above formula is compared with the temperature value detected by the second temperature sensor (TH2). When #q is less than TH2, the on-off valve 85 will be closed to cause the evaporator 81 to generate a cooling operation, and finally: the machine cooling device 7 can continue to perform the cooling operation of the working machine 5. When Q is greater than TH2, the on-off valve 85 will be turned on to stop the cooling operation of the actuator 81, and finally the machine is cooled 褒s to suspend the cooling operation of the working machine 5. The temperature control assembly 9 of the cooling system 6 of the present invention mainly utilizes the first and second temperature sensors 91, 92, together with the aforementioned operation formula Q = sq+(SPxSq)_(SPxTH1) as the monitor for the working machine 5 Whether the temperature of the ring fluid reaches the preset temperature is different from the traditional cooling system! The temperature control assembly 36 is monitored by a single-temperature sensor 361. In addition, as shown in FIG. 6, the cooling system 6 of the present invention is used in the second working machine 5, and the temperature measurement view is performed under the conditions of a test load of 2 KW, an ambient temperature of 28 t, and the like, and the temperature control accuracy is obtained as soil 0.2. t, the temperature control accuracy is much higher than the result of the temperature of the traditional cooling ^ 1 of the figure (4) precision l + lt, 12 1269631 relative to the cooling system 6 of the present invention is available for work; 5 - stable Referring to Figure 7, which is a second preferred embodiment of the present invention: the test chart (test environment and results, as described later), the same can be done. The effect of achieving the temperature control accuracy of the present invention is ±〇.2V* is different from the first one: the preferred embodiment is that the processor unit obtains an immediate reaction control value (Q) by the following variant: Q = 2SV-TH1

該演算式主要係將該sp參數(即Q對應TH1變化 時的反應值)刪除’且將第一較佳實施例之SQ=SV+SM 式子,刪除該SM參數(即偏差微調值)而僅保留該sv 麥數(即溫度控制目的點之設定溫度值)。 A其使用流程與第一較佳實施例雷同,故簡述如後 ,田Q J於TH2日守,该開關閥將關閉使該蒸發器產生 衣冷動作。當q大於TH2時,該開關閥將開啟使該蒸 發器停止製冷動作。 如圖7所示,是本發明冷卻系統之第二較佳實施 例使用於工作機,且採用測試負载為、環境溫度 為28 C、起始溫度為30°C等測試環境與設定SV參數 為24 C後’取得的溫度測視圖。透過演算式 1 2SV TH1 ’邊起始溫度3〇〇c降溫到設定溫度之反應 。、’為406移’且溫度穩定後將取得設定溫度為24.3 C、溫度控制精度為±〇.2°C的測試結果,亦即,最後 取得之溫度值為24.3t±〇 2t。 13 1269631 字本毛明之第-較佳實施例使用於工作機,且 採用:7所示之測試環境與sv參數(設定2代),將 可取仔如目8所示之溫度測視圖。參閱圖8,該起始 服度30 C降溫到設定溫度之反應時間為柳秒,且溫 度穩定後將取得設定溫度為批、溫度控制精度為士 〇.2C的測試結果,亦即’最後取得之溫度值為⑽土 0.2〇C。The calculation formula mainly deletes the sp parameter (that is, the reaction value when Q corresponds to the change of TH1) and removes the SM parameter (ie, the deviation trimming value) from the SQ=SV+SM expression of the first preferred embodiment. Only the sv mic (ie the set temperature value of the temperature control destination) is retained. A use flow is the same as that of the first preferred embodiment, so the description is as follows, Tian Q J is on the TH2 day, and the on-off valve will be closed to cause the evaporator to produce a garment cold action. When q is greater than TH2, the on-off valve will open to cause the evaporator to stop cooling. As shown in FIG. 7, the second preferred embodiment of the cooling system of the present invention is used in a working machine, and uses a test load, an ambient temperature of 28 C, an initial temperature of 30 ° C, and the like, and the set SV parameter is After 24 C's obtained temperature measurement view. The temperature is reduced to the set temperature by the calculation of the 1 2SV TH1 ′ starting temperature of 3〇〇c. After the temperature is stabilized, the test result of the set temperature is 24.3 C and the temperature control accuracy is ±〇.2 °C, that is, the last obtained temperature value is 24.3 t ± 〇 2 t. 13 1269631 The text of the first embodiment - the preferred embodiment is used in the working machine, and with the test environment shown in 7 and the sv parameter (set 2 generations), the temperature measurement view shown in Fig. 8 can be taken. Referring to Fig. 8, the reaction time of the initial service degree 30 C to the set temperature is about a second, and after the temperature is stabilized, the test result of the set temperature is batch and the temperature control precision is ±2C, that is, the final result is obtained. The temperature value is (10) soil 0.2 〇C.

比較圖7與圖8可知,第二較佳實施例之降溫反 應時間將會增加(傷秒,秒),且溫度穩定後將存 ^ 一平衡溫差G.3t的情形。惟,於實務上,第二較佳 實施例刪除了第-較佳實施例之SP參數與SM參數後 ’同樣可達到本發明之溫度控制精度士 〇 2。。的效果, 故仍具有產業利用價值。 參閲圖9,是本發明之第三較佳實施例的溫度測 試圖(測試環境與結果,詳見後述),同樣可達到本發 明之溫度控制精度為±〇.rc的效果,惟,不同於第一 較佳實施例的地方在於:該處理器單元係透過下述演 异式取得一即時反應控制值(Q):Comparing Fig. 7 with Fig. 8, it can be seen that the temperature reduction reaction time of the second preferred embodiment will increase (injury seconds, seconds), and a temperature difference of G.3t will be stored after the temperature is stabilized. However, in practice, the second preferred embodiment deletes the SP parameter and the SM parameter of the first preferred embodiment to achieve the temperature control accuracy of the present invention. . The effect is still of industrial use value. Referring to FIG. 9, a temperature test chart (test environment and results, which will be described later) of the third preferred embodiment of the present invention can also achieve the effect of the temperature control accuracy of the present invention being ±〇.rc, but different. The first preferred embodiment is that the processor unit obtains an immediate response control value (Q) through the following variant:

Q = SV 其使用流程與第一較佳實施例雷同,故不再贅述 如圖9所示 例使兩於工作機, 參數(設定24。〇, ,是本發明冷卻系統之第三較佳實施 且採用如圖7所示之測試環境與sv 將可取得如圖9所示之溫度測視圖 14 1269631 。透過演算式Q = SV,該起始溫度30°C降溫到設定溫度 之反應時間為566秒,且溫度穩定後將取得設定溫度 為24.4°C、溫度控制精度為±〇.2°C的測試結果。 比較圖8與圖9可知,第三較佳實施例之降溫反 應時間將會增加(566秒-400秒),且存有平衡溫差0.4 °C的情形。惟,於實務上,第三較佳實施例同樣可達 到本發明之溫度控制精度±〇.2°C的效果,故仍·具有產 業利用價值。 Φ 此外,參閱圖10、11所示,是本發明之電氣設備 的冷卻系統之第四較佳實施例,不同於第一較佳實施 例的地方在於:該溫控總成9更包括一設置在該工作 機5之周圍,且透過一轉換單元932而電連接該處理 器單元931的第三溫度感測器94,用以偵測該工作機 5之環境溫度,藉以使該冷卻系統6 ’可為一溫差式冷 卻系統。 操作時,先透過輸入單元933輸入溫度控制訊號 9 (在本實施例中,設定溫度為第三溫度感測器93偵測 到之環境溫度-2°C )與設定參數,接著,該第一溫度 感測器91、該第二溫度感測器92、第三溫度感測器 94所偵測到之溫度訊號將透過該等轉換單元932傳送 給該處理器單元931,並藉由該處理器單元931透過 演算式Q = SQ + (SPxSQ)-(SPxTHl)演算處理而可得到一溫度 控制精度為it 0.2 C的溫差式冷卻糸統。該 SQ = SV+SM+TH3 ;該TH3是第三溫度感測器94偵測 15 1269631 到的溫度值。而該SV與SM參數與第一較佳實施例 之演算式定義相同,亦即,該SV參數是溫度控制目 的點之設定溫度值,該SM參數是溫度控制目的點之 偏差微調值。 使用時,搭配參閱圖12所示,說明該冷卻系統 6’使用於該工作機5時,採用測試負載為2KW、環境 溫度為27〜3 1°C,與設定溫度為環境溫度-2°C等條件 的溫度測視圖。參閱圖12,一環境溫度曲線101與一 φ 設定溫度曲線102之差值是藉由一溫差曲線103來表 示。當該環境溫度曲線101在第9分鐘與第24分鐘左 右分別有一溫度突升與溫度突降之情形,該設定溫度 曲線102對應形成有一溫度上升反應段1021與一溫度 下降反應段1022。 惟以上所述者,僅為本發明之四較佳實施例而已 ,當不能以此限定本發明實施之範圍,即大凡依本發 明申請專利範圍及發明說明書内容所作之簡單的等效 • 變化與修飾,皆應仍屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一傳統電氣設備之冷卻系統的一方塊圖; 圖2是該傳統電氣設備之冷卻系統的溫度測試圖 ,說明該冷卻系統使用於一工作機,且採用測試負載 為2KW、環境溫度為28°C、設定溫度為25°C、設定 精度為±1°C等條件而量測取得的溫度測試圖; 圖3是本發明之電氣設備之冷卻系統的一第一較 16 1269631 佳貫施例的一方塊圖,說明該冷卻系統包含一冷凍裝 置與一機台冷卻裝置; 圖4是該第一較佳實施例之另一方塊圖,· 圖5是該第一較佳實施例之一流程圖; 圖6是該第一較佳實施例之一溫度測試圖,說明 該2卻系統使用於一工作機,且採用測試負載為2kw 、裱境溫度為28。(:與設定溫度為24°C等條件的溫度測 視圖’其可獲得溫度控制精度為±0.21 ; # / 7是本發明之第二較佳實施例之-溫度測試圖 。兄明該冷卻系統(演算式Q = 2SV-TH1 )使用於一工作 機,且採用測試負载為2KW、環境溫度為28<t、起始 輒度為30°C等測試環境與設定sv參數為24它後,測 試取得的溫度測視圖; 固8疋Μ同圖7之、温度測試圖,說明本發明之第 —較佳實施例(演算式Q = SQ + (SPxSQ) —(spxTm))使用於 % 工作機,且採用測試負載為2KW、環境溫度為28〇c 起始酿度為3〇°C等測試環境與設定sv參數為24。〇 後,測试取得的溫度測視圖; 圖9疋本發明之第三較佳實施例之一溫度測試圖 ’說明該冷卻系統(演算式Q = sv)使用於—工作機, 足採用測5式負載為2KW、環境溫度為28°C、起始溫度 為30C等測試環境與設定sv參數為241後,測試取 得的溫度測視圖; ° 疋本發明之電氣設備之冷卻系統的一第四較 17 1269631 佳實施例的一方塊圖,說明該溫控總成更包括一設置 在該工作機之周圍,且透過一轉換單元而電連接該處 理器單元的第三溫度感測器;Q = SV The flow of use is the same as that of the first preferred embodiment, so the description of the second embodiment of the cooling system of the present invention is not repeated. Using the test environment and sv shown in Figure 7, the temperature measurement view shown in Figure 9 can be obtained 14 1269631. Through the calculation formula Q = SV, the reaction temperature of the initial temperature 30 ° C to the set temperature is 566 seconds. After the temperature is stabilized, the test result of the set temperature of 24.4 ° C and the temperature control accuracy of ± 〇. 2 ° C will be obtained. Comparing Fig. 8 with Fig. 9, it can be seen that the temperature reduction reaction time of the third preferred embodiment will increase ( 566 sec - 400 sec), and there is a case where the equilibrium temperature difference is 0.4 ° C. However, in practice, the third preferred embodiment can also achieve the effect of the temperature control accuracy of the present invention ± 〇. 2 ° C, so Having an industrial utilization value. Φ Further, referring to Figs. 10 and 11, a fourth preferred embodiment of the cooling system for the electrical equipment of the present invention is different from the first preferred embodiment in that the temperature control is always 9 further includes a setting around the working machine 5, and A conversion unit 932 is electrically connected to the third temperature sensor 94 of the processor unit 931 for detecting the ambient temperature of the working machine 5, so that the cooling system 6' can be a temperature difference cooling system. First, the temperature control signal 9 (in the present embodiment, the set temperature is the ambient temperature detected by the third temperature sensor 93 - 2 ° C) and the setting parameter are input through the input unit 933, and then the first temperature sense The temperature signals detected by the detector 91, the second temperature sensor 92, and the third temperature sensor 94 are transmitted to the processor unit 931 through the conversion unit 932, and the processor unit 931 is provided by the processor unit 931. Through the calculation of the formula Q = SQ + (SPxSQ) - (SPxTHl), a temperature difference cooling system with temperature control accuracy of it 0.2 C can be obtained. The SQ = SV + SM + TH3; TH3 is the third temperature sense The detector 94 detects a temperature value of 15 1269631. The SV and SM parameters are the same as the calculation formula of the first preferred embodiment, that is, the SV parameter is a set temperature value of a temperature control destination point, and the SM parameter It is the deviation trimming value of the temperature control target point. Referring to FIG. 12, the cooling system 6' is used in the working machine 5, and the test load is 2KW, the ambient temperature is 27~3 1 °C, and the set temperature is the ambient temperature -2 °C. Referring to Fig. 12, the difference between an ambient temperature curve 101 and a φ set temperature curve 102 is represented by a temperature difference curve 103. When the ambient temperature curve 101 has a temperature of about 9 minutes and 24 minutes, respectively. In the case of a sudden rise in temperature and a sudden drop in temperature, the set temperature profile 102 corresponds to a temperature rise reaction section 1021 and a temperature drop reaction section 1022. However, the above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto, that is, the simple equivalents and changes made in accordance with the scope of the present invention and the contents of the description of the invention are Modifications are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of a cooling system of a conventional electrical device; FIG. 2 is a temperature test diagram of a cooling system of the conventional electrical device, illustrating that the cooling system is used in a working machine and uses a test load A temperature test chart obtained by measuring conditions such as 2 KW, an ambient temperature of 28 ° C, a set temperature of 25 ° C, and a setting accuracy of ± 1 ° C; FIG. 3 is a first example of the cooling system of the electrical equipment of the present invention. A block diagram of a preferred embodiment of the cooling system includes a freezing device and a machine cooling device; FIG. 4 is another block diagram of the first preferred embodiment, and FIG. 5 is the first FIG. 6 is a temperature test diagram of the first preferred embodiment, illustrating that the system is used in a working machine with a test load of 2 kw and an ambient temperature of 28. (: Temperature measurement view with conditions such as a set temperature of 24 ° C, which can obtain a temperature control accuracy of ± 0.21; # / 7 is a temperature test chart of the second preferred embodiment of the present invention. (calculus type Q = 2SV-TH1) is used in a working machine, and the test environment is 2KW, the ambient temperature is 28<t, the initial temperature is 30°C, and the test environment is set. After the sv parameter is 24, the test is performed. The obtained temperature measurement view; the same as the temperature test chart of Fig. 7, illustrating that the first preferred embodiment of the present invention (calculation formula Q = SQ + (SPxSQ) - (spxTm)) is used in the % working machine, And the test environment is 2KW, the ambient temperature is 28〇c, the initial brewing degree is 3〇°C, and the test environment and the setting sv parameter is 24. After that, the temperature measurement view obtained by the test; The temperature test chart of one of the three preferred embodiments illustrates that the cooling system (calculation type Q = sv) is used for the working machine, and the load of the type 5 load is 2 KW, the ambient temperature is 28 ° C, and the starting temperature is 30 C. After testing the environment and setting the sv parameter to 241, test the obtained temperature measurement view; ° 电气Electricity of the present invention A block diagram of a preferred embodiment of the cooling system of the apparatus, wherein the temperature control assembly further includes a first portion disposed around the working machine and electrically connected to the processor unit through a conversion unit Three temperature sensor;

圖11是該第四較佳實施例之另一方塊圖;及 圖12是該第四較佳實施例之一溫度測試圖,說明 該冷卻系統使用於一工作機,且採用測試負載為2KW 、環境溫度為27〜3 1°C,與設定溫度為環境溫度-2°C 等條件的溫度測視圖,其可獲得溫度控制精度為±0.2 °C。11 is another block diagram of the fourth preferred embodiment; and FIG. 12 is a temperature test diagram of the fourth preferred embodiment, illustrating that the cooling system is used in a working machine and has a test load of 2 KW. The ambient temperature is 27~3 1 °C, and the temperature is measured at a temperature of -2 °C. The temperature control accuracy is ±0.2 °C.

18 126963118 1269631

主要元件符號說明】 5 工作機 6 冷卻系統 6, 冷卻系統 7 機台冷卻裝置 71 冷卻循環單元 711 油箱 7111 出油口 7112 進油口 712 管路 72 泵浦 8 冷柬裝置 81 蒸發器 82 壓縮機 83 冷凝器 84 ' 膨脹閥 85 開關閥 86 警示器 9 溫控總成 91 第一溢度感測器 92 第二溫度感測器 93 控制電路組合體 931 處理器單元 932 轉換單元 933 輸入單元 934 冷卻系統監測單元 935 驅動電路單元 935 1 壓縮機驅動電路 9352 泵浦驅動電路 9353 開關閥驅動電路 9354 警示器驅動電路 936 顯示單元 94 第三溫度感測器 101 環境溫度曲線 102 設定溫度曲線 1021 溫度上升反應段 1022 溫度下降反應段 103 溫差曲線 19Main component symbol description] 5 Working machine 6 Cooling system 6, Cooling system 7 Machine cooling device 71 Cooling cycle unit 711 Fuel tank 7111 Oil outlet 7112 Oil inlet 712 Line 72 Pump 8 Cold-rolling device 81 Evaporator 82 Compressor 83 Condenser 84 'Expansion valve 85 Switch valve 86 Alarm 9 Temperature control assembly 91 First overflow sensor 92 Second temperature sensor 93 Control circuit assembly 931 Processor unit 932 Conversion unit 933 Input unit 934 Cooling System monitoring unit 935 Drive circuit unit 935 1 Compressor drive circuit 9352 Pump drive circuit 9353 Switch valve drive circuit 9354 Alerter drive circuit 936 Display unit 94 Third temperature sensor 101 Ambient temperature curve 102 Set temperature curve 1021 Temperature rise response Section 1022 temperature drop reaction section 103 temperature difference curve 19

Claims (1)

1269631 十、申請專利範圍: 1. 一種電氣設備的冷卻系統,包含一用以調節該電氣設備 之循環流體之溫度的機台冷卻裝置,及一與該機台冷卻 裝置作溫度調節的冷凍裝置,該機台冷卻裝置包括一冷 卻循環單元與一泵浦,該冷珠裝置是由一蒸發器、一壓 ,縮機、一冷凝器、一膨脹閥、一開關閥組成一冷煤迴路 ,且包括一溫控總成,該冷卻循環單元包括内部裝承有 工作流體的一箱體,及一供工作流體流通的管路,該管 • 路穿經該電氣設備、該蒸發器並與該泵浦組成一密閉迴 路,藉由該泵浦可使工作流體依序流過該電氣設備與蒸 發器以進行溫度調節,其特徵在於·· 該溫控總成包括一設置在該箱體與該工作機之間的 第一溫度感測器、一設置在該箱體與該蒸發器之間的第 二溫度感測器,及一電連接該第一、第二溫度感測器、 該壓縮機、該開關閥與該泵浦的控制電路組合體,該控 制電路組合體具有一處理器單元,及二分別電連接該第 ® 一溫度感測器與第二溫度感測器的轉換單元,該第一溫 度感測器、該第二溫度感測器所偵測到之溫度訊號可透 過該等轉換單元傳送給該處理器單元,並藉由該處理器 單元演算得到一即時反應控制值,用以與該第二溫度感 測器偵測到之溫度值作一比較,進而控制該開關閥之運 作,以有效調節該電氣設備之循環流體的溫度。 2.依據申請專利範圍第1項所述之電氣設備的冷卻系統, 其中,該處理器單元是經由下述演算式 20 1269631 (Q ),該 Q^SQMSPxsQkpxTm)取得一即時反應控制值 演算式中《TH1是第—溫度感測器偵測到的溫度值, 該SP是Q對應TH1變化時的反應值,豸叫是溫度控 制目的點之設定溫度值,與溫度控制目的點之偏差微調 值的總和’當Tm與溫度控制目的點之設定溫度值恒 產生落㈣,可改變溫度控制目的點之偏差微調值,作 為改善。1269631 X. Patent application scope: 1. A cooling system for an electrical device, comprising a machine cooling device for adjusting the temperature of the circulating fluid of the electrical device, and a freezing device for temperature regulation with the cooling device of the machine, The cooling device of the machine comprises a cooling circulation unit and a pump. The cold ball device is composed of an evaporator, a pressure, a reducer, a condenser, an expansion valve and an on-off valve, and comprises a cold coal circuit, and comprises a temperature control assembly, the cooling cycle unit includes a tank internally loaded with a working fluid, and a conduit for circulating a working fluid, the tube passing through the electrical device, the evaporator, and the pump Forming a closed circuit, by which the working fluid can be sequentially flowed through the electrical device and the evaporator for temperature adjustment, wherein the temperature control assembly comprises a casing and the working machine a first temperature sensor between the first temperature sensor disposed between the case and the evaporator, and an electrical connection between the first and second temperature sensors, the compressor, the Switch valve The pumped control circuit assembly has a processor unit, and two conversion units electrically connected to the first temperature sensor and the second temperature sensor, respectively, the first temperature sensing The temperature signal detected by the second temperature sensor can be transmitted to the processor unit through the conversion unit, and an instantaneous reaction control value is calculated by the processor unit for use with the second A comparison of the temperature values detected by the temperature sensor controls the operation of the switching valve to effectively regulate the temperature of the circulating fluid of the electrical device. 2. The cooling system for an electrical device according to claim 1, wherein the processor unit obtains an instantaneous reaction control value calculation formula via the following formula 20 1269631 (Q), the Q^SQMSPxsQkpxTm) "TH1 is the temperature value detected by the first temperature sensor. The SP is the reaction value when Q corresponds to the change of TH1. The squeak is the set temperature value of the temperature control target point, and the deviation from the temperature control target point is fine-tuned. The sum 'When the set temperature value of the Tm and the temperature control target point is constant (4), the deviation trimming value of the temperature control target point can be changed as an improvement. •依據申請專利範圍第丨項或第2韻述之電氣設備的冷 P系統’其中’當该第二溫度感測器所债測到之溫度值 大於即%反應控制值時,該開關閥將關閉使該蒸發器產 生衣冷動作,當該第二溫度感測器所偵測到之溫度值小 ;Ρ τ反應控制值%,該開關閥將開啟使該蒸發器止 製冷動作。 依據申凊專利|&圍第i項所述之電氣設備的冷卻系統, = :、,該溫控總成更包含一設置在該電氣設備之周圍的 呆-溫度感測器,用以㈣該電氣設備之環境溫度。 ^據申巧專利範圍第i項所述之電氣設備的冷卻系統, 、中’邊溫控總成之控制電路組合體更包括電連接該處 Γ器單f的—輪人單元、-冷卻系統監測單元及-顯示 t兀忒輪入早兀可供使用者輸入溫度控制訊號與設定 :數4冷部系、統監控單元用以監控該壓縮機、該泵浦 / m閥之動作情形’該顯示單元可顯示冷卻系統之 動作狀態。 6·依據申請專利範圍第 項所述之電氣設備的冷卻系統, 21 1269631 其中,該電氣設備為一工作機。 7. 依據申請專利範圍第1項所述之電氣設備的冷卻系統, 其中,該處理器單元是經由下述演算式Q二2SV-TH1取得 一即時反應控制值(Q ),該演算式中之TH1是第一溫 度感測器偵測到的溫度值,該SV是溫度控制目的點之 設定溫度值。 8. 依據申請專利範圍第1項所述之電氣設備的冷卻系統, 其中,該處理器單元是經由下述演算式Q = SV取得一即 • 時反應控制值(Q ),該SV是溫度控制目的點之設定溫 度值。• According to the cold P system of the electrical equipment of the patent application scope or the second rhyme, where the temperature value measured by the second temperature sensor is greater than the % reaction control value, the on-off valve will The closing causes the evaporator to produce a garment cold action. When the temperature value detected by the second temperature sensor is small; the τ τ reaction control value is %, the switching valve will be turned on to stop the evaporator from cooling. According to the cooling system of the electrical device described in the application of the patent, the temperature control assembly further includes a temperature-sensing sensor disposed around the electrical device for (4) The ambient temperature of the electrical equipment. According to the cooling system of the electrical equipment described in the item i of the patent scope, the control circuit assembly of the middle-side temperature control assembly further includes a wheel unit, which is electrically connected to the single unit f, and a cooling system. The monitoring unit and the display t兀忒 wheel input early can be used by the user to input the temperature control signal and setting: the number 4 cold department system and the monitoring unit are used to monitor the operation of the compressor and the pump/m valve. The display unit can display the operating status of the cooling system. 6. The cooling system for an electrical device according to the scope of the patent application, 21 1269631 wherein the electrical device is a working machine. 7. The cooling system for an electrical device according to claim 1, wherein the processor unit obtains an immediate reaction control value (Q) via the following calculation formula Q 2SV-TH1, wherein the calculation formula TH1 is the temperature value detected by the first temperature sensor, and the SV is the set temperature value of the temperature control destination point. 8. The cooling system for an electrical device according to claim 1, wherein the processor unit obtains a time response control value (Q) via a calculation formula Q = SV, wherein the SV is temperature control The set temperature value of the destination point. 22twenty two
TW94143897A 2005-12-12 2005-12-12 Cooling system of electric equipment TWI269631B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94143897A TWI269631B (en) 2005-12-12 2005-12-12 Cooling system of electric equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94143897A TWI269631B (en) 2005-12-12 2005-12-12 Cooling system of electric equipment

Publications (2)

Publication Number Publication Date
TWI269631B true TWI269631B (en) 2006-12-21
TW200724019A TW200724019A (en) 2007-06-16

Family

ID=38291633

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94143897A TWI269631B (en) 2005-12-12 2005-12-12 Cooling system of electric equipment

Country Status (1)

Country Link
TW (1) TWI269631B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354641B2 (en) * 2015-04-06 2018-07-11 株式会社デンソー Electronic equipment

Also Published As

Publication number Publication date
TW200724019A (en) 2007-06-16

Similar Documents

Publication Publication Date Title
JP5197004B2 (en) Thermal control method and system
CN104662379B (en) For example it is used for cold cooling unit and the sub-cooled method of magnetic resonance imaging system
TW200809450A (en) Temperature control apparatus
JP6768266B2 (en) Systems and methods of operating the cooling system
JP2008501927A5 (en)
JP6062172B2 (en) Environmental test equipment
WO2005098331A1 (en) A method of operating a water chiller
TWI269631B (en) Cooling system of electric equipment
JP6127099B2 (en) Temperature control system
JP2015114052A (en) Air conditioning system
JP4648877B2 (en) Liquid discharge method and liquid discharge device in temperature control device
JP2019132452A (en) Cryogenic cooling system
JP2015129598A (en) Temperature control device
CN108106037B (en) Superconducting magnet device
JP2009198050A (en) Precision air conditioner
JP2004125243A (en) Control method of temperature testing device and its device
JP2005205876A (en) Heating and cooling apparatus
JP2014101754A (en) Power supply device for vacuum pump
JP5843642B2 (en) Heat pump type liquid heating device
JPWO2014083810A1 (en) Refrigerant cooling apparatus and method
JP2017161156A (en) Cold storage device and method for displaying information showing state of cold storage body
JP2018085444A (en) Superconducting magnet device
JP2012251716A (en) Environmental control apparatus and environmental control method
JP5840062B2 (en) Heat pump type liquid heating device and heat pump type water heater
JP5253863B2 (en) Automatic ice machine

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees