JP2009198050A - Precision air conditioner - Google Patents

Precision air conditioner Download PDF

Info

Publication number
JP2009198050A
JP2009198050A JP2008038560A JP2008038560A JP2009198050A JP 2009198050 A JP2009198050 A JP 2009198050A JP 2008038560 A JP2008038560 A JP 2008038560A JP 2008038560 A JP2008038560 A JP 2008038560A JP 2009198050 A JP2009198050 A JP 2009198050A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
refrigerant
compressor
lower limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008038560A
Other languages
Japanese (ja)
Inventor
Katsuhiko Mochizuki
克彦 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APISUTE KK
Apiste Corp
Original Assignee
APISUTE KK
Apiste Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APISUTE KK, Apiste Corp filed Critical APISUTE KK
Priority to JP2008038560A priority Critical patent/JP2009198050A/en
Publication of JP2009198050A publication Critical patent/JP2009198050A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance a dehumidifying capacity, without freezing an evaporator, in a precision air conditioner for blowing a specific air volume in a specific temperature and humidity. <P>SOLUTION: In the precision air conditioner, a hot gas bypass HGB is provided, a refrigerant not passing through a condenser 1 is guided to the evaporator 3, and a control is made so that the temperature of the evaporator 3 does not become lower than a first lower limit value L1, and that the inlet temperature of the evaporator 3 becomes the first target temperature T1. Thus, freezing of the evaporator 3 is prevented. A refrigerant in a third conduit 13 of returning the refrigerant to a compressor 4 from the evaporator 3, is raised in the temperature by the refrigerant in the hot gas bypass HGB. Thus, there is no risk of causing a liquid explosion in the compressor 4. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、主として工業用に用いられる精密空調機に関するものである。   The present invention relates to a precision air conditioner mainly used for industrial use.

従来より、冷凍サイクルのみで除湿を行う空調機が知られている(特許文献1)。
特開平5−99514号
Conventionally, an air conditioner that performs dehumidification only by a refrigeration cycle is known (Patent Document 1).
JP-A-5-99514

この種の空調機の場合、除湿能力を高くするために蒸発器の設定温度を下げると、蒸発器が凍結し、除湿能力が著しく低下するので、蒸発器の温度を下げることができず、それ故、除湿能力を今一つ高めることができない。   In the case of this type of air conditioner, if the preset temperature of the evaporator is lowered to increase the dehumidifying capacity, the evaporator will freeze and the dehumidifying capacity will be significantly reduced, so the temperature of the evaporator cannot be lowered. Therefore, the dehumidifying capacity cannot be increased one more time.

一方、工業用の空調機においては、家庭用のものと異なり、常に一定の風量が要求されるので、ファンの回転数を高めて蒸発器の凍結防止を図るなどの方法は採用できない。つまり、工業用の精密空調機では冷凍サイクルのみで除湿する必要がある。   On the other hand, an industrial air conditioner, unlike a household air conditioner, always requires a constant air volume, and therefore cannot adopt a method such as increasing the number of rotations of the fan to prevent the evaporator from freezing. In other words, industrial precision air conditioners need to be dehumidified only by the refrigeration cycle.

したがって、本発明の目的は、一定の温度および湿度で一定の風量を送風する精密空調機において、蒸発器が凍結することなく除湿能力を高めることである。   Accordingly, an object of the present invention is to increase the dehumidifying capacity of a precision air conditioner that blows a constant air volume at a constant temperature and humidity without freezing the evaporator.

前記目的を達成するために、本発明の精密空調機は、図1に示すように、冷媒を冷却するための凝縮器1と、冷媒に流れ抵抗を与えるための膨張弁2と、冷媒で周囲の空気を冷却するための蒸発器3と、前記蒸発器3から凝縮器1および膨張弁2を通って再び蒸発器3に冷媒が循環するように蒸発器3からの冷媒を凝縮器1に圧送する圧縮機4と、前記蒸発器3で除湿すると共に冷却した空気Aを送風するファン5と、前記空気Aを加熱して所定の温度まで昇温させるヒータ6とを備えた精密空調機において、前記圧縮機4から凝縮器1に冷媒を導く第1導管11と、前記凝縮器1から前記蒸発器3に冷媒を導く第2導管12とを連ねて前記圧縮機4で圧縮された冷媒を前記蒸発器3に導くホットガスバイパスHGBと、前記ホットガスバイパスHGBの流量を制御する制御弁7と、前記ホットガスバイパスHGBを流れる冷媒の熱で前記蒸発器3から前記圧縮機4に戻る冷媒を昇温させる熱交換器8と、前記膨張弁2の出口から前記蒸発器3の入口までにおける任意の部位における冷媒の温度を測定する第1温度センサ21と、前記熱交換器8の出口から前記圧縮機4の入口までの任意の部位における冷媒の温度を測定する第2温度センサ22と、前記蒸発器3の入口温度である第1目標温度T1と、前記蒸発器3の入口温度の第1下限値L1と、前記圧縮機4の入口温度である第2目標温度T2と、前記圧縮機4の入口温度の第2下限値L2とを記憶する制御手段9とを備え、前記第1および第2目標温度T1、T2が氷点下に設定され、かつ、前記第1および第2下限値L1、L2が前記第1および第2目標温度T1、T2よりも低い温度に設定され、前記第1温度センサ21により第1測定温度S1が前記第1下限値L1よりも低くなると当該第1測定温度S1が前記第1目標温度T1に近づくように、前記制御弁7の開度を制御してホットガスバイパスHGBの流量が大きくなるように、かつ、前記第2温度センサ22による第2測定温度S2が前記第2下限値L2よりも低くなると当該第2測定温度S2が前記第2目標温度T2に近づくように、前記制御弁7の開度を制御してホットガスバイパスHGBの流量が大きくなるように前記制御手段9が制御弁の開度を制御する。   In order to achieve the above object, the precision air conditioner of the present invention includes a condenser 1 for cooling the refrigerant, an expansion valve 2 for giving flow resistance to the refrigerant, and surroundings with the refrigerant as shown in FIG. The evaporator 3 for cooling the air, and the refrigerant from the evaporator 3 is pumped to the condenser 1 so that the refrigerant circulates again from the evaporator 3 through the condenser 1 and the expansion valve 2 to the evaporator 3. In a precision air conditioner including a compressor 4 that performs the above operation, a fan 5 that blows air A that has been dehumidified and cooled by the evaporator 3, and a heater 6 that heats the air A and raises the temperature to a predetermined temperature. The refrigerant compressed by the compressor 4 is connected to the first conduit 11 that guides the refrigerant from the compressor 4 to the condenser 1 and the second conduit 12 that guides the refrigerant from the condenser 1 to the evaporator 3. A hot gas bypass HGB leading to the evaporator 3, and the hot gas bypass A control valve 7 for controlling the flow rate of the gas HGB, a heat exchanger 8 for raising the temperature of the refrigerant returning from the evaporator 3 to the compressor 4 by the heat of the refrigerant flowing through the hot gas bypass HGB, A first temperature sensor 21 that measures the temperature of the refrigerant at an arbitrary position from the outlet to the inlet of the evaporator 3, and the temperature of the refrigerant at an arbitrary position from the outlet of the heat exchanger 8 to the inlet of the compressor 4 A first target temperature T1 that is the inlet temperature of the evaporator 3, a first lower limit value L1 of the inlet temperature of the evaporator 3, and an inlet temperature of the compressor 4. Control means 9 for storing a second target temperature T2 and a second lower limit value L2 of the inlet temperature of the compressor 4, wherein the first and second target temperatures T1, T2 are set below freezing point, and The first and second lower limit values L1 When L2 is set to a temperature lower than the first and second target temperatures T1 and T2, and the first measured temperature S1 becomes lower than the first lower limit L1 by the first temperature sensor 21, the first measured temperature S1 is set. So that the flow rate of the hot gas bypass HGB is increased by controlling the opening degree of the control valve 7 so that the second measured temperature S2 by the second temperature sensor 22 is close to the first target temperature T1. When the temperature falls below the second lower limit L2, the opening of the control valve 7 is controlled so that the flow rate of the hot gas bypass HGB is increased so that the second measured temperature S2 approaches the second target temperature T2. The control means 9 controls the opening degree of the control valve.

図1において、圧縮機4は、蒸発器3において気体となった冷媒を、第1導管11を介して凝縮器1に圧送し、さらに、凝縮器1から第2導管12を介して膨張弁2に圧送して循環させる。この際、冷媒は凝縮器1および膨張弁2において、徐々に液化する。冷媒は、膨張弁2から出て、蒸発器3内の比較的太い管内で低圧となって、再び気化することにより、蒸発器3の周囲の熱を奪い、周囲温度を低下させる。一方、ファン5により送風された空気Aは蒸発器3によって冷やされた後、ヒータ6により所定の温度まで加熱されると共に湿度の低い空気となって吹出口30から所定のエリアに供給される。   In FIG. 1, the compressor 4 pumps the refrigerant that has become gas in the evaporator 3 to the condenser 1 via the first conduit 11, and further expands the expansion valve 2 from the condenser 1 via the second conduit 12. Circulate by pressure. At this time, the refrigerant gradually liquefies in the condenser 1 and the expansion valve 2. The refrigerant exits from the expansion valve 2, becomes a low pressure in a relatively thick pipe in the evaporator 3, and vaporizes again, thereby taking away the heat around the evaporator 3 and lowering the ambient temperature. On the other hand, after the air A blown by the fan 5 is cooled by the evaporator 3, the air A is heated to a predetermined temperature by the heater 6 and is supplied to a predetermined area from the outlet 30 as air having low humidity.

ここで、蒸発器3の第1目標温度T1は氷点下に設定されているので、空気Aの冷却能力が高まり、そのため、除湿能力も高まる。   Here, since the first target temperature T1 of the evaporator 3 is set below the freezing point, the cooling capacity of the air A is increased, and therefore the dehumidifying capacity is also increased.

一方、蒸発器3の第1目標温度T1は−0℃よりも低いので、蒸発器3の温度が低くなりすぎると蒸発器3の凍結の問題が生じる。これに対し、本精密空調機では、ホットガスバイパスHGBを設け、凝縮器1を通らない冷媒を蒸発器3に導入し、蒸発器3の温度が第1下限値L1よりも低くならないように制御すると共に、蒸発器3の入口温度が第1目標温度T1となるように制御する。したがって、蒸発器3の凍結を防止し得る。   On the other hand, since the first target temperature T1 of the evaporator 3 is lower than −0 ° C., if the temperature of the evaporator 3 becomes too low, a problem of freezing of the evaporator 3 occurs. On the other hand, in this precision air conditioner, a hot gas bypass HGB is provided, and a refrigerant that does not pass through the condenser 1 is introduced into the evaporator 3 so that the temperature of the evaporator 3 does not become lower than the first lower limit value L1. At the same time, the inlet temperature of the evaporator 3 is controlled to be the first target temperature T1. Therefore, freezing of the evaporator 3 can be prevented.

なお、第1目標温度T1および第1下限値L1は、ファン5による風量、空気Aの供給時の温度などにより蒸発器3が凍結しない、かつ、できるだけ低い温度に設定する。   The first target temperature T1 and the first lower limit value L1 are set as low as possible without causing the evaporator 3 to freeze due to the air volume by the fan 5, the temperature when the air A is supplied, and the like.

一方、圧縮機4に戻ってくる冷媒の温度が低すぎて流体のまま圧縮機4に戻ってくると、圧縮機4において液バックと呼ばれる不具合が発生する。これに対し、本精密空調機は蒸発器3から圧縮機4に戻る第3導管13内の冷媒をホットガスバイパスHGB内の冷媒で昇温させる。そのため、圧縮機4において液バックの生じるおそれもない。   On the other hand, if the temperature of the refrigerant returning to the compressor 4 is too low and returns to the compressor 4 while being fluid, a problem called a liquid back occurs in the compressor 4. In contrast, the precision air conditioner raises the temperature of the refrigerant in the third conduit 13 that returns from the evaporator 3 to the compressor 4 with the refrigerant in the hot gas bypass HGB. Therefore, there is no possibility of liquid back in the compressor 4.

このように本精密空調機は、精密に温度・湿度を制御できる上、複数の蒸発器を設けたり、あるいは、圧縮機4をインバータ制御する必要がないなど設備コストが安い上、熱交換器8により冷媒の過冷却を防止するので、省エネにも役立つ。   As described above, this precision air conditioner can precisely control the temperature and humidity, and has a low equipment cost such as providing a plurality of evaporators or controlling the compressor 4 with an inverter, and the heat exchanger 8. Prevents overcooling of the refrigerant, which is also useful for energy saving.

本発明の好ましい実施例では、圧縮機4の入口の第2目標温度T2が蒸発器3の入口の第1目標温度T1と同じ値か、または、第1目標温度T1よりも低い温度に設定される。
この場合、第1下限値L1が第2下限値L2よりも高い温度に設定されているのが更に好ましい。蒸発器3の凍結防止を確実に図るためである。
In a preferred embodiment of the present invention, the second target temperature T2 at the inlet of the compressor 4 is set to the same value as the first target temperature T1 at the inlet of the evaporator 3 or lower than the first target temperature T1. The
In this case, it is more preferable that the first lower limit value L1 is set to a temperature higher than the second lower limit value L2. This is for surely preventing the evaporator 3 from freezing.

本発明の別の好ましい実施例では、第1測定温度S1が第1下限値L1よりも低く、かつ、第2測定温度S2が第2下限値L2よりも低い場合には、第1測定温度S1が目標温度T1に近づくように制御弁7の開度を制御する。
この場合、優先的に蒸発器3の凍結防止が図られる。
In another preferred embodiment of the present invention, when the first measurement temperature S1 is lower than the first lower limit value L1 and the second measurement temperature S2 is lower than the second lower limit value L2, the first measurement temperature S1 Controls the opening of the control valve 7 so as to approach the target temperature T1.
In this case, the evaporator 3 is preferentially prevented from freezing.

本発明の好ましい実施例においては、前記ホットガスバイパスHGBが前記膨張弁2の下流端から蒸発器3の入口までの部位において前記第2導管12に接続されている。
この場合、ホットガスバイパスHGBからの冷媒が膨張弁2を通ることなく、蒸発器3に流入するので、温度制御の応答が早くなるなど、より効果的である。
In a preferred embodiment of the present invention, the hot gas bypass HGB is connected to the second conduit 12 at a site from the downstream end of the expansion valve 2 to the inlet of the evaporator 3.
In this case, since the refrigerant from the hot gas bypass HGB flows into the evaporator 3 without passing through the expansion valve 2, it is more effective such as quick response of temperature control.

以下、本発明の一実施例を図面にしたがって説明する。
凝縮器1は、図示しない冷却装置の冷却水により冷却される。膨張弁2としてはキャピラリを用いるが電子膨張弁を用いることもできる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The condenser 1 is cooled by cooling water from a cooling device (not shown). A capillary is used as the expansion valve 2, but an electronic expansion valve can also be used.

ヒータ6は、空気Aを加熱するものであるが、空気Aの温度を測定する第3温度センサ(図示せず)の測定値と設定温度との差に応じて、出力が制御手段により制御される。これにより、吹出口30から吹出す空気の温度が所定温度となるように制御される。   The heater 6 heats the air A. The output is controlled by the control means according to the difference between the measured value of a third temperature sensor (not shown) that measures the temperature of the air A and the set temperature. The Thereby, the temperature of the air which blows off from the blower outlet 30 is controlled so that it may become predetermined temperature.

制御弁7はホットガスバイパスHGBに設けているが、第1導管11に設けることも可能である。   Although the control valve 7 is provided in the hot gas bypass HGB, it can also be provided in the first conduit 11.

本発明においては、蒸発器3および圧縮機4に流入する冷媒の温度が低下しすぎるのを防止するものであるのに対し、熱交換器8は、ホットガスバイパスHGBから蒸発器3に流入する冷媒を冷却し、一方、圧縮機4に戻る冷媒を昇温させる。そのため、熱交換器8の容量を適切な値に設定する必要がある。熱交換器8の容量は、系に挿入する熱交換器8を順次追加ないし交換し試行錯誤により求める。   In the present invention, the temperature of the refrigerant flowing into the evaporator 3 and the compressor 4 is prevented from excessively decreasing, whereas the heat exchanger 8 flows into the evaporator 3 from the hot gas bypass HGB. The refrigerant is cooled, while the refrigerant returning to the compressor 4 is heated. Therefore, it is necessary to set the capacity of the heat exchanger 8 to an appropriate value. The capacity of the heat exchanger 8 is obtained by trial and error by sequentially adding or replacing the heat exchanger 8 to be inserted into the system.

筐体41は区画壁42によって、第1チャンバ43と第2チャンバ44とに区画されている。前記第1チャンバ43には、前記蒸発器3およびファン5が収容されている。一方、第2チャンバ44には、前記圧縮機4、凝縮器1および水冷式の冷却装置などが収容されている。   The housing 41 is partitioned into a first chamber 43 and a second chamber 44 by a partition wall 42. The first chamber 43 accommodates the evaporator 3 and the fan 5. On the other hand, the second chamber 44 accommodates the compressor 4, the condenser 1, and a water-cooled cooling device.

したがって、ファン5により、外気が、取込孔から第1チャンバ43内に取り込まれ、蒸発器3を通ると、前記外気が蒸発器3で除湿されると共に冷却される。除湿および冷却された空気は、前記ファン5により筐体41の吹出口30から送出される。一方、第2チャンバ44内に設けた凝縮器1においては、冷媒が圧縮されて高温になるのに対し、冷却水により、凝縮器1を冷やすことで放熱を促して、冷媒の温度を低下させている。   Therefore, when the outside air is taken into the first chamber 43 from the taking-in hole by the fan 5 and passes through the evaporator 3, the outside air is dehumidified and cooled by the evaporator 3. The dehumidified and cooled air is sent out from the outlet 30 of the housing 41 by the fan 5. On the other hand, in the condenser 1 provided in the second chamber 44, the refrigerant is compressed and becomes high temperature, whereas cooling the condenser 1 with cooling water promotes heat radiation and lowers the temperature of the refrigerant. ing.

前記ファン5により送出される空気の流路には、湿度センサ(図示せず)およびヒータ6が設けられている。前記湿度センサは、前記蒸発器3により除湿された空気の湿度を検出する。前記ヒータ6は、前記蒸発器3により冷却された空気を所定の温度に昇温する。前記湿度センサおよびヒータ6を通過した空気は、吹出口30を通って所定の領域Sに排出される。   A humidity sensor (not shown) and a heater 6 are provided in the flow path of the air sent out by the fan 5. The humidity sensor detects the humidity of the air dehumidified by the evaporator 3. The heater 6 raises the temperature of the air cooled by the evaporator 3 to a predetermined temperature. The air that has passed through the humidity sensor and the heater 6 is exhausted to a predetermined region S through the air outlet 30.

前記領域Sには、当該領域Sの温度Tsを検出するための第3温度センサが設けられている。前記第3温度センサは、検出した温度Tsを温度調節回路(図示せず)に出力する。前記温度調節回路は、前記第3温度センサの検出値Tsに基づいて、前記領域Sの温度Tsが設定値となるように、前記ヒータ6の発熱量を制御する。すなわち、前記領域Sの温度Tsが設定値よりも高い場合には、前記ヒータ6の発熱量を小さくし、一方、前記領域Sの温度Tsが設定値よりも低い場合には、前記ヒータ6の発熱量を大きくする。   In the area S, a third temperature sensor for detecting the temperature Ts of the area S is provided. The third temperature sensor outputs the detected temperature Ts to a temperature adjustment circuit (not shown). The temperature adjusting circuit controls the amount of heat generated by the heater 6 based on the detection value Ts of the third temperature sensor so that the temperature Ts of the region S becomes a set value. That is, when the temperature Ts of the region S is higher than a set value, the amount of heat generated by the heater 6 is reduced. On the other hand, when the temperature Ts of the region S is lower than the set value, the heater 6 Increase calorific value.

前記第1温度センサ21は、第2導管12の膨張弁2よりも下流であってホットガスバイパスHGBとの合流点Oから蒸発器3の入口部分までの間に設けられ、例えば蒸発器3の入口近傍に設けられる。前記蒸発器3の入口温度としては、たとえば、第1目標温度T1が−1℃に設定され、第1下限値L1が−2℃に設定される。   The first temperature sensor 21 is provided downstream from the expansion valve 2 of the second conduit 12 and between the junction O with the hot gas bypass HGB and the inlet portion of the evaporator 3. Provided near the entrance. As the inlet temperature of the evaporator 3, for example, the first target temperature T1 is set to -1 ° C, and the first lower limit L1 is set to -2 ° C.

前記第2温度センサ22は例えば圧縮機4の吸入口近傍に設けられる。前記圧縮機4の吸入口温度としては、たとえば、第2目標温度T2が−1℃に設定され第2下限値L2が−3℃に設定される。   The second temperature sensor 22 is provided, for example, in the vicinity of the suction port of the compressor 4. As the inlet temperature of the compressor 4, for example, the second target temperature T2 is set to -1 ° C, and the second lower limit L2 is set to -3 ° C.

つぎに、本精密空調機の運転について説明する。
本精密空調機の運転を開始すると、図2のように、冷媒の温度が徐々に下る。運転当初は、第1測定温度S1が−2℃以上で、かつ、第2測定温度S2が−3℃以上であり、この場合、ホットガスバイパスHGBの制御弁7は湿度制御のために機能する。
蒸発器3の第1測定温度S1が第1目標温度T1(−1℃)以上で、かつ、圧縮機4の第2測定温度S2が第2目標温度T2(−3℃)以上である場合、湿度制御をホットガスバイパスHGBを用いて行う。
すなわち、吹出口30の近傍に設けた湿度センサ(図示せず)の測定値S10が湿度設定値T10に比べ高い場合には、制御弁7を閉じて蒸発器3の温度を下げると共に吹出口30の空気Aの湿度を下げる。
一方、前記湿度センサ(図示せず)の測定値S10が湿度設定値T10に比べ低い場合には、制御弁7を開いて蒸発器3の温度を上げると共に吹出口30の空気Aの湿度を上げる。 なお、蒸発器3の第1測定温度S1が第1目標温度T1(−1℃)よりも低い場合や、圧縮機4の第2測定温度S2が第2目標温度T2(−3℃)よりも低い場合には、前記湿度制御を行わない。
Next, the operation of this precision air conditioner will be described.
When the operation of the precision air conditioner is started, the temperature of the refrigerant gradually decreases as shown in FIG. At the beginning of operation, the first measurement temperature S1 is −2 ° C. or more and the second measurement temperature S2 is −3 ° C. or more. In this case, the control valve 7 of the hot gas bypass HGB functions for humidity control. .
When the first measured temperature S1 of the evaporator 3 is equal to or higher than the first target temperature T1 (−1 ° C.) and the second measured temperature S2 of the compressor 4 is equal to or higher than the second target temperature T2 (−3 ° C.), Humidity control is performed using a hot gas bypass HGB.
That is, when the measured value S10 of a humidity sensor (not shown) provided in the vicinity of the blower outlet 30 is higher than the humidity set value T10, the control valve 7 is closed to lower the temperature of the evaporator 3 and the blower outlet 30. Reduce the humidity of air A.
On the other hand, when the measured value S10 of the humidity sensor (not shown) is lower than the humidity set value T10, the control valve 7 is opened to raise the temperature of the evaporator 3 and raise the humidity of the air A at the outlet 30. . In addition, when the 1st measured temperature S1 of the evaporator 3 is lower than 1st target temperature T1 (-1 degreeC), or the 2nd measured temperature S2 of the compressor 4 is 2nd target temperature T2 (-3 degreeC). When it is low, the humidity control is not performed.

図2に示すように、やがて、第1測定温度S1が−2℃(第1下限値L1)になると、制御手段9が制御弁7を開弁し、第1測定温度S1が第1目標温度T1(−1℃)となるように制御弁7の開度を制御する。
この場合の制御方法としては、例えば、第1目標温度T1と第1測定温度S1との温度差ΔTに前記制御弁7の開度を比例させる比例制御を採用することができる。
As shown in FIG. 2, when the first measured temperature S1 eventually reaches −2 ° C. (first lower limit L1), the control means 9 opens the control valve 7, and the first measured temperature S1 becomes the first target temperature. The opening degree of the control valve 7 is controlled to be T1 (−1 ° C.).
As a control method in this case, for example, proportional control in which the opening degree of the control valve 7 is proportional to the temperature difference ΔT between the first target temperature T1 and the first measured temperature S1 can be employed.

一方、第2測定温度S2が−3℃(第2下限値L2)以下になった場合も、制御手段9が制御弁7を開弁し、第2測定温度S2が第2目標温度T2(−1℃)となるように制御弁7の開度を制御する。   On the other hand, also when the second measured temperature S2 becomes −3 ° C. (second lower limit L2) or less, the control means 9 opens the control valve 7, and the second measured temperature S2 becomes the second target temperature T2 (− The opening degree of the control valve 7 is controlled to be 1 ° C.

前記第1測定温度S1が−2℃(第1下限値L1)以下で、かつ、前記第2測定温度S2が−3℃(第2下限値L2)以下である場合には、第2測定温度S2を無視し、第1測定温度S1が第1目標温度T1(−1℃)となるように制御弁7の開度を制御する。   When the first measurement temperature S1 is −2 ° C. (first lower limit L1) or lower and the second measurement temperature S2 is −3 ° C. (second lower limit L2) or lower, the second measurement temperature S2 is ignored and the opening degree of the control valve 7 is controlled so that the first measured temperature S1 becomes the first target temperature T1 (−1 ° C.).

なお、本発明の精密空調機において、ヒータ6の下部にはドレンパンを設置し、水漏れを防止してもよい。
また、本発明の精密空調機の底面のパネルを全面にわたってドレンパンとし、水漏れを防止してもよい。
さらに、冷却水の水温流量計を設置し、凝縮器1に流入する水温および水量を操作表示パネルに表示してもよい。
In the precision air conditioner of the present invention, a drain pan may be installed under the heater 6 to prevent water leakage.
In addition, the bottom panel of the precision air conditioner of the present invention may be a drain pan over the entire surface to prevent water leakage.
Furthermore, a water temperature flow meter for cooling water may be installed, and the temperature and amount of water flowing into the condenser 1 may be displayed on the operation display panel.

図3は他の例を示す。
この図に示すように、ホットガスバイパスHGBを膨張弁2の上流の点Oに接続し、前記ホットガスバイパスHGBの冷媒を膨張弁2を介して蒸発器3に導入してもよい。
また、図1において、ホットガスバイパスHGBの熱交換器8の下流に別の膨張弁を設けた場合も本発明の範囲に含まれる。
FIG. 3 shows another example.
As shown in this figure, the hot gas bypass HGB may be connected to a point O upstream of the expansion valve 2, and the refrigerant of the hot gas bypass HGB may be introduced into the evaporator 3 via the expansion valve 2.
Moreover, in FIG. 1, the case where another expansion valve is provided downstream of the heat exchanger 8 of the hot gas bypass HGB is also included in the scope of the present invention.

本発明は工業用の精密空調機に利用することができる。   The present invention can be used for industrial precision air conditioners.

本発明の精密空調機の一実施例を示す概略構成図である。It is a schematic block diagram which shows one Example of the precision air conditioner of this invention. 制御方法を示す特性図である。It is a characteristic view which shows a control method. 他の例を示す精密空調機の概略構成図である。It is a schematic block diagram of the precision air conditioning machine which shows another example.

符号の説明Explanation of symbols

1:凝縮器
2:膨張弁
3:蒸発器
4:圧縮機
5:ファン
6:ヒータ
7:制御弁
8:熱交換器
9:制御手段
11:第1導管
12:第2導管
21:第1温度センサ
22:第2温度センサ
HGB:ホットガスバイパス
1: Condenser 2: Expansion valve 3: Evaporator 4: Compressor 5: Fan 6: Heater 7: Control valve 8: Heat exchanger 9: Control means 11: First conduit 12: Second conduit 21: First temperature Sensor 22: Second temperature sensor HGB: Hot gas bypass

Claims (5)

冷媒を冷却するための凝縮器1と、冷媒に流れ抵抗を与えるための膨張弁2と、冷媒で周囲の空気を冷却するための蒸発器3と、前記蒸発器3から凝縮器1および膨張弁2を通って再び蒸発器3に冷媒が循環するように蒸発器3からの冷媒を凝縮器1に圧送する圧縮機4と、前記蒸発器3で除湿すると共に冷却した空気Aを送風するファン5と、前記空気Aを加熱して所定の温度まで昇温させるヒータ6とを備えた精密空調機において、
前記圧縮機4から凝縮器1に冷媒を導く第1導管11と、前記凝縮器1から前記蒸発器3に冷媒を導く第2導管12とを連ねて前記圧縮機4で圧縮された冷媒を前記蒸発器3に導くホットガスバイパスHGBと、
前記ホットガスバイパスHGBの流量を制御する制御弁7と、
前記ホットガスバイパスHGBを流れる冷媒の熱で前記蒸発器3から前記圧縮機4に戻る冷媒を昇温させる熱交換器8と、
前記膨張弁2の出口から前記蒸発器3の入口までにおける任意の部位における冷媒の温度を測定する第1温度センサ21と、
前記熱交換器8の出口から前記圧縮機4の入口までの任意の部位における冷媒の温度を測定する第2温度センサ22と、
前記蒸発器3の入口温度である第1目標温度T1と、前記蒸発器3の入口温度の第1下限値L1と、前記圧縮機4の入口温度である第2目標温度T2と、前記圧縮機4の入口温度の第2下限値L2とを記憶する制御手段9とを備え、
前記第1および第2目標温度T1、T2が氷点下に設定され、かつ、前記第1および第2下限値L1、L2が前記第1および第2目標温度T1、T2よりも低い温度に設定され、
前記第1温度センサ21により第1測定温度S1が前記第1下限値L1よりも低くなると当該第1測定温度S1が前記第1目標温度T1に近づくように、前記制御弁7の開度を制御してホットガスバイパスHGBの流量が大きくなるように、
かつ、前記第2温度センサ22による第2測定温度S2が前記第2下限値L2よりも低くなると当該第2測定温度S2が前記第2目標温度T2に近づくように、前記制御弁7の開度を制御してホットガスバイパスHGBの流量が大きくなるように前記制御手段9が制御弁7の開度を制御する精密空調機。
A condenser 1 for cooling the refrigerant, an expansion valve 2 for imparting flow resistance to the refrigerant, an evaporator 3 for cooling the surrounding air with the refrigerant, the condenser 1 and the expansion valve from the evaporator 3 2, the compressor 4 that pumps the refrigerant from the evaporator 3 to the condenser 1 so that the refrigerant circulates again to the evaporator 3, and the fan 5 that dehumidifies the evaporator 3 and blows the cooled air A And a precision air conditioner provided with a heater 6 that heats the air A and raises the temperature to a predetermined temperature.
The refrigerant compressed by the compressor 4 is connected to the first conduit 11 that guides the refrigerant from the compressor 4 to the condenser 1 and the second conduit 12 that guides the refrigerant from the condenser 1 to the evaporator 3. A hot gas bypass HGB leading to the evaporator 3;
A control valve 7 for controlling the flow rate of the hot gas bypass HGB;
A heat exchanger 8 that raises the temperature of the refrigerant returning from the evaporator 3 to the compressor 4 by the heat of the refrigerant flowing through the hot gas bypass HGB;
A first temperature sensor 21 that measures the temperature of the refrigerant at an arbitrary position from the outlet of the expansion valve 2 to the inlet of the evaporator 3;
A second temperature sensor 22 that measures the temperature of the refrigerant at any part from the outlet of the heat exchanger 8 to the inlet of the compressor 4;
The first target temperature T1 that is the inlet temperature of the evaporator 3, the first lower limit value L1 of the inlet temperature of the evaporator 3, the second target temperature T2 that is the inlet temperature of the compressor 4, and the compressor Control means 9 for storing the second lower limit value L2 of the inlet temperature of 4,
The first and second target temperatures T1, T2 are set below freezing point, and the first and second lower limit values L1, L2 are set to temperatures lower than the first and second target temperatures T1, T2.
When the first measured temperature S1 becomes lower than the first lower limit L1 by the first temperature sensor 21, the opening degree of the control valve 7 is controlled so that the first measured temperature S1 approaches the first target temperature T1. So that the flow rate of the hot gas bypass HGB is increased.
In addition, when the second measured temperature S2 by the second temperature sensor 22 becomes lower than the second lower limit value L2, the opening of the control valve 7 is adjusted so that the second measured temperature S2 approaches the second target temperature T2. The precision air conditioner in which the control means 9 controls the opening degree of the control valve 7 so that the flow rate of the hot gas bypass HGB is increased by controlling the flow rate.
請求項1において、前記第2目標温度T2が第1目標温度T1と同じ値か、または、第1目標温度T1よりも低い温度に設定されている精密空調機。   The precision air conditioner according to claim 1, wherein the second target temperature T2 is set to the same value as the first target temperature T1 or a temperature lower than the first target temperature T1. 請求項1もしくは2において、前記第1下限値L1が前記第2下限値L2よりも高い温度に設定されている精密空調機。   The precision air conditioner according to claim 1 or 2, wherein the first lower limit value L1 is set to a temperature higher than the second lower limit value L2. 請求項1、2もしくは3において、前記第1測定温度S1が第1下限値L1よりも低く、かつ、前記第2測定温度S2が第2下限値L2よりも低い場合には、前記第1測定温度S1が前記目標温度T1に近づくように前記制御弁7の開度を制御することを特徴とする精密空調機。   In Claim 1, 2, or 3, when said 1st measurement temperature S1 is lower than 1st lower limit L1, and said 2nd measurement temperature S2 is lower than 2nd lower limit L2, said 1st measurement A precision air conditioner that controls the opening degree of the control valve 7 so that the temperature S1 approaches the target temperature T1. 請求項1〜4のいずれか1項において、前記ホットガスバイパスHGBが前記膨張弁2の下流端から蒸発器3の入口までの部位において前記第2導管12に接続されている精密空調機。   The precision air conditioner according to any one of claims 1 to 4, wherein the hot gas bypass HGB is connected to the second conduit 12 at a portion from a downstream end of the expansion valve 2 to an inlet of the evaporator 3.
JP2008038560A 2008-02-20 2008-02-20 Precision air conditioner Pending JP2009198050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038560A JP2009198050A (en) 2008-02-20 2008-02-20 Precision air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038560A JP2009198050A (en) 2008-02-20 2008-02-20 Precision air conditioner

Publications (1)

Publication Number Publication Date
JP2009198050A true JP2009198050A (en) 2009-09-03

Family

ID=41141740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038560A Pending JP2009198050A (en) 2008-02-20 2008-02-20 Precision air conditioner

Country Status (1)

Country Link
JP (1) JP2009198050A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107401864A (en) * 2017-09-08 2017-11-28 珠海格力电器股份有限公司 Anti-freezing cooling system and anti-freezing cooling control method
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
CN109974325A (en) * 2019-03-07 2019-07-05 海信家电集团股份有限公司 Air conditioning system, control method and device thereof and air conditioner
CN110793159A (en) * 2019-11-19 2020-02-14 宁波奥克斯电气股份有限公司 Air conditioner refrigeration anti-freezing protection control method and device and air conditioner
CN115751677A (en) * 2022-12-07 2023-03-07 珠海格力电器股份有限公司 Dehumidification control method and device and dehumidifier

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10006646B2 (en) 2015-04-30 2018-06-26 Samsung Electronics Co., Ltd. Outdoor unit of air conditioner and control device for the outdoor unit
CN107401864A (en) * 2017-09-08 2017-11-28 珠海格力电器股份有限公司 Anti-freezing cooling system and anti-freezing cooling control method
CN107401864B (en) * 2017-09-08 2023-09-19 珠海格力电器股份有限公司 Anti-freezing cooling system and anti-freezing cooling control method
CN109974325A (en) * 2019-03-07 2019-07-05 海信家电集团股份有限公司 Air conditioning system, control method and device thereof and air conditioner
CN110793159A (en) * 2019-11-19 2020-02-14 宁波奥克斯电气股份有限公司 Air conditioner refrigeration anti-freezing protection control method and device and air conditioner
CN110793159B (en) * 2019-11-19 2021-10-26 宁波奥克斯电气股份有限公司 Air conditioner refrigeration anti-freezing protection control method and device and air conditioner
CN115751677A (en) * 2022-12-07 2023-03-07 珠海格力电器股份有限公司 Dehumidification control method and device and dehumidifier

Similar Documents

Publication Publication Date Title
JP4975164B2 (en) Indoor unit and air conditioner equipped with the same
JP6570746B2 (en) Heat medium circulation system
JP5996119B2 (en) Air conditioning system and controller
KR101942526B1 (en) Refrigerator
WO2018110185A1 (en) Refrigerant circuit system and method for controlling refrigerant circuit system
JP6062172B2 (en) Environmental test equipment
CN106382777A (en) Air conditioning system and reflux control method of reflux refrigerant of subcooler
EP2881685B1 (en) Container refrigeration device and control method thereof
KR20150005460A (en) Constant temperature liquid circulating device and operation method thereof
JP2007139244A (en) Refrigeration device
JPWO2016067567A1 (en) Air conditioning control device, vehicle air conditioning device, and electromagnetic valve failure determination method for air conditioning control device
JP2009198050A (en) Precision air conditioner
KR101316022B1 (en) Refrigerating system and control method thereof
JP2009216332A (en) Precision air conditioner
CN106288032A (en) A kind of method utilizing double back air compressor to reduce frequency conversion board chip temperature rise and air-conditioning
JP2009014321A (en) Air conditioner
JP2016020784A (en) Air conditioning device
KR101589807B1 (en) Heat pump cooling system
JP2021055931A (en) Heat pump cycle device
JP3160443U (en) Precision air conditioner for server
US11585578B2 (en) Refrigeration cycle apparatus
US9939180B2 (en) Heat-recovery-type refrigeration apparatus
JP2009222345A (en) Temperature control device
JP6210665B2 (en) Refrigeration apparatus and constant temperature and humidity apparatus equipped with the same
JP4012892B2 (en) Air conditioner