JP6062172B2 - Environmental test equipment - Google Patents

Environmental test equipment Download PDF

Info

Publication number
JP6062172B2
JP6062172B2 JP2012160624A JP2012160624A JP6062172B2 JP 6062172 B2 JP6062172 B2 JP 6062172B2 JP 2012160624 A JP2012160624 A JP 2012160624A JP 2012160624 A JP2012160624 A JP 2012160624A JP 6062172 B2 JP6062172 B2 JP 6062172B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
temperature
hot gas
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012160624A
Other languages
Japanese (ja)
Other versions
JP2014020688A (en
Inventor
博伸 倉良
博伸 倉良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2012160624A priority Critical patent/JP6062172B2/en
Publication of JP2014020688A publication Critical patent/JP2014020688A/en
Application granted granted Critical
Publication of JP6062172B2 publication Critical patent/JP6062172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Description

本発明は環境試験装置に関するものである。   The present invention relates to an environmental test apparatus.

環境試験装置は、装置内に設けられた所定の空間(以下、物品配置室という場合がある)に、所望の気温と相対湿度の環境を作るものである。環境試験装置は、一般に、加熱器と、加湿器と、冷却装置(除湿装置の機能を兼ねる)とを備えている。加熱器は、電気ヒータで構成されるものであり、物品配置室を昇温する。加湿器は、電気ヒータと蒸発皿の組み合わせで構成されるものであり、蒸発皿から水を蒸発させることで、物品配置室を加湿する。冷却装置(除湿装置)は、冷凍サイクルで構成されるものであり、気体状の冷媒を凝縮し、さらに蒸発器内で断熱膨張させることで、物品配置室の冷却・除湿を行うものである。   The environmental test apparatus creates an environment of desired air temperature and relative humidity in a predetermined space (hereinafter sometimes referred to as an article placement chamber) provided in the apparatus. The environmental test apparatus generally includes a heater, a humidifier, and a cooling device (also serving as a dehumidifying device). The heater is composed of an electric heater and raises the temperature of the article placement chamber. The humidifier is composed of a combination of an electric heater and an evaporating dish, and humidifies the article arrangement chamber by evaporating water from the evaporating dish. The cooling device (dehumidifying device) is constituted by a refrigeration cycle, and cools and dehumidifies the article placement chamber by condensing a gaseous refrigerant and further adiabatically expanding it in the evaporator.

図8は、環境試験装置の代表的な冷却装置(除湿装置の機能を兼ねる。以下単に冷却装置と称する。)100を示している。冷却装置100は、本明細書で定義するところの「通常冷却運転」のみを行うものである。
図8に示す冷却装置100は、圧縮機10と、凝縮器11と、膨張弁12及び蒸発器13を有し、これらが主冷媒配管20によって環状に接続されたものである。そして主冷媒配管20内に相変化する冷媒が内蔵されている。
冷却装置100では、気体状の冷媒が、圧縮機10に導入され、圧縮機10で圧縮されて高圧の気体となり、これが凝縮器11内で熱を奪われて液化する。
そして液状の冷媒は、膨張弁12を経て蒸発器13内に入り、減圧されて気化し熱を吸収する。即ち蒸発器13の表面温度を低下させる。そして熱を奪った冷媒は蒸発器13内で完全に気化して再度圧縮機10に導入される。
FIG. 8 shows a typical cooling device (also functioning as a dehumidifying device, hereinafter simply referred to as a cooling device) 100 of the environmental test apparatus. The cooling device 100 performs only “normal cooling operation” as defined in this specification.
A cooling device 100 shown in FIG. 8 has a compressor 10, a condenser 11, an expansion valve 12 and an evaporator 13, which are connected in a ring shape by a main refrigerant pipe 20. In the main refrigerant pipe 20, a phase changing refrigerant is incorporated.
In the cooling device 100, gaseous refrigerant is introduced into the compressor 10 and is compressed by the compressor 10 to become a high-pressure gas, which is deprived of heat in the condenser 11 and liquefied.
Then, the liquid refrigerant enters the evaporator 13 through the expansion valve 12, is reduced in pressure, vaporizes, and absorbs heat. That is, the surface temperature of the evaporator 13 is lowered. Then, the refrigerant that has deprived of heat is completely vaporized in the evaporator 13 and introduced into the compressor 10 again.

図9は、冷却装置100内の冷媒の状態をモリエル線図上に表したものである。即ち圧縮機10に導入される直前の冷媒の状態は、点A(h5,P1)であり、圧力は低圧であり、比エンタルピは高く、相は気体(気相)である。
これを圧縮機10で圧縮し、圧縮機10から吐出された冷媒の状態は、点B(h7,P3)であり、圧力は高圧であり、比エンタルピは高く、相は気体である。
FIG. 9 shows the state of the refrigerant in the cooling device 100 on the Mollier diagram. That is, the state of the refrigerant immediately before being introduced into the compressor 10 is the point A (h5, P1), the pressure is low, the specific enthalpy is high, and the phase is gas (gas phase).
The state of the refrigerant compressed by the compressor 10 and discharged from the compressor 10 is point B (h7, P3), the pressure is high, the specific enthalpy is high, and the phase is gas.

さらに凝縮器11内で熱を奪われた後の冷媒の状態は、点C(h1,P3)であり、圧力は高圧であり、比エンタルピは低い状態であって、相は液体(液相)である。
さらに膨張弁12を通過し、膨張弁12から吐出された冷媒の状態は、点D(h1,P1)であり、圧力は低圧であり、比エンタルピは低い状態であって、相は気液混合状態(湿り蒸気)である。
蒸発器13に入った冷媒は、圧力が低下しており、一部が気化するので、蒸発器13の表面温度が、低下する。表面温度は、例えば摂氏マイナス30度といった低温となるが、冷媒が完全に気化した後は、蒸発器13の表面温度は、一様ではなく変化する。
Further, the state of the refrigerant after the heat is deprived in the condenser 11 is a point C (h1, P3), the pressure is high, the specific enthalpy is low, and the phase is liquid (liquid phase). It is.
Furthermore, the state of the refrigerant passing through the expansion valve 12 and discharged from the expansion valve 12 is a point D (h1, P1), the pressure is low, the specific enthalpy is low, and the phase is gas-liquid mixed. State (wet steam).
The refrigerant that has entered the evaporator 13 has a reduced pressure and is partially vaporized, so that the surface temperature of the evaporator 13 is lowered. The surface temperature is as low as, for example, minus 30 degrees Celsius, but after the refrigerant is completely vaporized, the surface temperature of the evaporator 13 is not uniform and changes.

そして冷媒は、蒸発器13で熱交換し、比エンタルピが次第に上昇してゆき、遂には点A(h5,P1)に戻る。即ち蒸発器13から吐出された冷媒は、圧力が低圧であり、比エンタルピは高く、気体である。   Then, the refrigerant exchanges heat with the evaporator 13, and the specific enthalpy gradually increases, and finally returns to the point A (h5, P1). That is, the refrigerant discharged from the evaporator 13 has a low pressure, a high specific enthalpy, and is a gas.

図8に示す冷却装置100は、物品配置室内に摂氏マイナス20度という様な低温環境を作ったり、物品配置室内の気温を急激に低下させたい場合に好適である。   The cooling device 100 shown in FIG. 8 is suitable for creating a low-temperature environment such as minus 20 degrees Celsius in the article arrangement room or for rapidly reducing the temperature in the article arrangement room.

しかしながら図8に示す冷却装置100は、蒸発器13に着霜する場合が多く、環境試験が除霜作業のために中断してしまう場合がある。   However, the cooling device 100 shown in FIG. 8 often frosts the evaporator 13, and the environmental test may be interrupted due to the defrosting operation.

そこでこの問題を解決するために、蒸発器13の表面温度を制御し、着霜を防止する機能を備えた冷却装置が提案されている。
図10に示す冷却装置200は、蒸発器13の表面温度を制御する機能を備えた冷却装置であり、本明細書で定義するところの「冷媒圧力制御運転」のみを行うものである。
Therefore, in order to solve this problem, a cooling device having a function of controlling the surface temperature of the evaporator 13 and preventing frost formation has been proposed.
The cooling device 200 shown in FIG. 10 is a cooling device having a function of controlling the surface temperature of the evaporator 13, and performs only the “refrigerant pressure control operation” as defined in this specification.

冷却装置200では、蒸発器13と、圧縮器10の間に、第2膨張弁(下流側絞り手段)15が設けられている。なお以下の説明では、混乱を避けるために、蒸発器13の上流側の膨張弁12を第1膨張弁12と称し、蒸発器13の下流側の膨張弁15を第2膨張弁15と称する。
冷却装置200では、蒸発器13の下流側に第2膨張弁15(下流側絞り手段)を設けることにより、蒸発器13内における冷媒の蒸発圧力を制御している。
即ち冷媒が気液混合状態(湿り蒸気)にある場合、冷媒の温度は、冷媒の蒸発圧力によって一義的に決まる。そのため第2膨張弁15(下流側絞り手段)の開度を調整して蒸発器13内における冷媒の蒸発圧力を制御することによって、蒸発器13の表面温度を制御することができる。
例えば、蒸発器13の表面温度を氷点以上に制御すれば、蒸発器13に着霜することはない。
In the cooling device 200, a second expansion valve (downstream throttle means) 15 is provided between the evaporator 13 and the compressor 10. In the following description, in order to avoid confusion, the expansion valve 12 on the upstream side of the evaporator 13 is referred to as a first expansion valve 12, and the expansion valve 15 on the downstream side of the evaporator 13 is referred to as a second expansion valve 15.
In the cooling device 200, the evaporation pressure of the refrigerant in the evaporator 13 is controlled by providing the second expansion valve 15 (downstream throttle means) on the downstream side of the evaporator 13.
That is, when the refrigerant is in a gas-liquid mixed state (wet steam), the temperature of the refrigerant is uniquely determined by the evaporation pressure of the refrigerant. Therefore, the surface temperature of the evaporator 13 can be controlled by adjusting the opening degree of the second expansion valve 15 (downstream throttle means) and controlling the evaporation pressure of the refrigerant in the evaporator 13.
For example, if the surface temperature of the evaporator 13 is controlled to be above the freezing point, the evaporator 13 is not frosted.

図11は、冷却装置200内の冷媒の状態をモリエル線図上に表したものである。即ち圧縮機10に導入される直前の冷媒の状態は、点A(h5,P1)であり、圧力は低圧であり、比エンタルピは高く、相は気体(気相)である。
これを圧縮機10で圧縮し、圧縮機10から吐出された冷媒の状態は、点B(h7,P3)であり、圧力は高圧であり、比エンタルピは高く気体である。
FIG. 11 shows the state of the refrigerant in the cooling device 200 on the Mollier diagram. That is, the state of the refrigerant immediately before being introduced into the compressor 10 is the point A (h5, P1), the pressure is low, the specific enthalpy is high, and the phase is gas (gas phase).
The state of the refrigerant compressed by the compressor 10 and discharged from the compressor 10 is a point B (h7, P3), the pressure is high, the specific enthalpy is high, and the gas.

さらに凝縮器11内で熱を奪われた後の冷媒の状態は、点C(h1,P3)であり、圧力は高圧であり、比エンタルピは低い状態であって液体である。
さらに第1膨張弁12を通過すると、冷媒の圧力は低下するが、冷却装置200では、蒸発器13の下流側に第2膨張弁15(下流側絞り手段)が設けられているから、冷媒の圧力はP1までは低下せず、例えばP2で安定する。即ち冷媒の状態は、点E(h1,P2)であり、圧力は中程度となる。
そのため、蒸発器13の表面温度は例えば摂氏2度といった温度で安定する。
Further, the state of the refrigerant after the heat is deprived in the condenser 11 is a point C (h1, P3), the pressure is high, the specific enthalpy is low, and the liquid is liquid.
When the refrigerant further passes through the first expansion valve 12, the pressure of the refrigerant decreases. However, in the cooling device 200, the second expansion valve 15 (downstream throttle means) is provided on the downstream side of the evaporator 13. The pressure does not decrease up to P1, but stabilizes at P2, for example. That is, the state of the refrigerant is point E (h1, P2), and the pressure is medium.
Therefore, the surface temperature of the evaporator 13 is stabilized at a temperature of, for example, 2 degrees Celsius.

そして蒸発器13で熱交換する。冷媒は、蒸発器13を出て第2膨張弁15(下流側絞り手段)に入り、圧力が低下する。即ち蒸発器13を出た直後の冷媒の状態は、点F(h3,P2)であり、圧力は中圧であり、比エンタルピは中程度であって気液混合状態である。
冷媒は、第2膨張弁15(下流側絞り手段)に入って圧力を下げ、状態は、点G(h3,P1)に到る。しかしながら、第2膨張弁15(下流側絞り手段)は蒸発器13の下流側に設けられているから、蒸発器13の内部にある状態においては、冷媒の圧力は、制御圧たるP2に保たれている。
Then, heat exchange is performed in the evaporator 13. The refrigerant exits the evaporator 13 and enters the second expansion valve 15 (downstream throttle means), and the pressure decreases. That is, the state of the refrigerant immediately after leaving the evaporator 13 is the point F (h3, P2), the pressure is medium pressure, the specific enthalpy is medium, and the gas-liquid mixed state.
The refrigerant enters the second expansion valve 15 (downstream throttle means) to reduce the pressure, and the state reaches point G (h3, P1). However, since the second expansion valve 15 (downstream throttle means) is provided on the downstream side of the evaporator 13, the refrigerant pressure is maintained at P2 which is the control pressure in the state inside the evaporator 13. ing.

第2膨張弁15(下流側絞り手段)から開放された冷媒は、圧力がP1まで低下する。即ち蒸発器13から吐出された冷媒の状態は、点F(h3,P2)であり、圧力は中圧であり、比エンタルピは中程度であって気液混合状態である。また第2膨張弁15(下流側絞り手段)から開放された直後の冷媒は、点G(h3,P1)であり、圧力は低圧であり、比エンタルピは中程度であって気液混合状態である。そして冷媒は、その後に熱を得て気化し、点A(h5,P1)に戻る。   The refrigerant released from the second expansion valve 15 (downstream side throttle means) is reduced in pressure to P1. That is, the state of the refrigerant discharged from the evaporator 13 is point F (h3, P2), the pressure is medium pressure, the specific enthalpy is medium, and the gas-liquid mixture state. The refrigerant immediately after being opened from the second expansion valve 15 (downstream throttle means) is point G (h3, P1), the pressure is low, the specific enthalpy is medium, and the gas-liquid mixed state is present. is there. The refrigerant then gains heat and vaporizes, and returns to point A (h5, P1).

特開2003−269809号公報JP 2003-269809 A 特公昭61−536号公報Japanese Patent Publication No.61-536

図8に示す様な通常冷却運転を行う冷却装置100は、極低温環境を作る場合や、環境温度を急激に変化させる用途に適している。
一方、図10に示す様な冷媒圧力制御運転を行う冷却装置200は、着霜しない運転が可能となる。
そこで本発明者らは、用途に応じて使い分けができる様、図8に示す回路と、図10に示す回路を切り換えることができる冷却装置300を検討した。即ち通常冷却運転と、冷媒圧力制御運転を切り換えることができる冷却装置300の設計に着手した。
図12は、本発明者らが検討した冷却装置300である。
冷却装置300は、図10に示す冷媒圧力制御運転を行う冷却装置200をベースとするものであり、蒸発器13の下流側に第2膨張弁15(下流側絞り手段)が設けられている。そして冷却装置300では、第2膨張弁15(下流側絞り手段)を迂回する膨張弁バイパス流路17が設けられ、膨張弁バイパス流路17に開閉弁16が設けられている。
The cooling device 100 that performs the normal cooling operation as shown in FIG. 8 is suitable for a case where an extremely low temperature environment is created or an application in which the environmental temperature is rapidly changed.
On the other hand, the cooling device 200 that performs the refrigerant pressure control operation as shown in FIG. 10 can be operated without frost formation.
Therefore, the present inventors examined a cooling device 300 that can switch between the circuit shown in FIG. 8 and the circuit shown in FIG. 10 so that the circuit can be properly used depending on the application. That is, the design of the cooling device 300 capable of switching between the normal cooling operation and the refrigerant pressure control operation was started.
FIG. 12 shows a cooling device 300 studied by the present inventors.
The cooling device 300 is based on the cooling device 200 that performs the refrigerant pressure control operation shown in FIG. 10, and a second expansion valve 15 (downstream side throttle means) is provided on the downstream side of the evaporator 13. In the cooling device 300, an expansion valve bypass passage 17 that bypasses the second expansion valve 15 (downstream side throttle means) is provided, and an opening / closing valve 16 is provided in the expansion valve bypass passage 17.

本発明者らが検討した冷却装置300は、膨張弁バイパス流路17の開閉弁16を閉じることにより、実質的に図10に示す様な冷媒圧力制御運転を行う冷却装置200と同様の冷媒圧力制御運転用の回路が形成される。
即ち膨張弁バイパス流路17の開閉弁16を閉じると、冷媒は、圧縮機10、凝縮器11、第1膨張弁12、蒸発器13及び第2膨張弁15(下流側絞り手段)によって形成される閉回路を循環することとなり、蒸発器13内における冷媒の蒸発圧力が制御されて蒸発器13の表面温度が制御される。即ち膨張弁バイパス流路17の開閉弁16を閉じることによって、冷媒圧力制御運転が行われる。
The cooling device 300 examined by the present inventors closes the on-off valve 16 of the expansion valve bypass flow path 17 to substantially perform the same refrigerant pressure as the cooling device 200 that performs the refrigerant pressure control operation as shown in FIG. A circuit for control operation is formed.
That is, when the on-off valve 16 of the expansion valve bypass passage 17 is closed, the refrigerant is formed by the compressor 10, the condenser 11, the first expansion valve 12, the evaporator 13 and the second expansion valve 15 (downstream side throttle means). Thus, the refrigerant evaporating pressure in the evaporator 13 is controlled, and the surface temperature of the evaporator 13 is controlled. That is, the refrigerant pressure control operation is performed by closing the on-off valve 16 of the expansion valve bypass passage 17.

これに対して膨張弁バイパス流路17の開閉弁16を開くと、冷媒は、流路抵抗が小さい膨張弁バイパス流路17側を流れ、蒸発器13内の圧力がP1まで低下し、通常冷却運転が実行される。   On the other hand, when the on-off valve 16 of the expansion valve bypass flow path 17 is opened, the refrigerant flows through the expansion valve bypass flow path 17 side where the flow path resistance is small, the pressure in the evaporator 13 decreases to P1, and normal cooling is performed. Operation is performed.

冷却装置300は、理論的に無理の無いものであるが、実際に冷却装置300を試作するに際して新たな問題が生じた。
即ち冷却装置300を実現するのに際し、蒸発器13の選定に窮した。
以下、具体的に説明する。
Although the cooling device 300 is theoretically reasonable, a new problem has occurred when actually making the cooling device 300 as a prototype.
That is, in realizing the cooling device 300, the selection of the evaporator 13 was made.
This will be specifically described below.

蒸発器13を選定する際に留意すべき点として、外形形状が環境試験装置の筐体に収まり得るかという点(以下、大きさの制約)と、冷媒が通過する際の流路抵抗が小さいという点(以下、流路抵抗上の制約)および、冷媒の流速を確保する必要がある点(以下、流速上の制約)がある。   The points to be noted when selecting the evaporator 13 are that the outer shape can be accommodated in the casing of the environmental test apparatus (hereinafter, size restrictions) and the flow resistance when the refrigerant passes is small. (Hereinafter, restrictions on flow path resistance) and a point (hereinafter, restrictions on flow speed) where it is necessary to ensure the flow speed of the refrigerant.

ここで大きさの制約という観点からは、全体の大きさが小さい方が望ましい。
また冷媒が通過する際の流路抵抗は小さい方が望ましい。即ち蒸発器13の流路抵抗が大きいと、蒸発器13の圧力損失が大きくなり、蒸発器13の入口側と出口側で冷媒の蒸発圧力が変わってしまい、熱交換媒体との平均温度差が小さくなり、熱交換量が少なくなるという問題がある。
流路抵抗上の制約という観点からは、冷媒が流れる流路の断面積が大きい方が望ましい。即ち流路抵抗による圧力損失は、流速の2乗に比例するから、冷媒が流れる流路の断面積を大きく設計して、冷媒の流速を下げることが望ましい。
Here, from the viewpoint of size restriction, it is desirable that the overall size is small.
Further, it is desirable that the flow path resistance when the refrigerant passes is small. That is, if the flow path resistance of the evaporator 13 is large, the pressure loss of the evaporator 13 increases, the evaporation pressure of the refrigerant changes on the inlet side and the outlet side of the evaporator 13, and the average temperature difference with the heat exchange medium is There is a problem that the amount of heat exchange becomes smaller.
From the viewpoint of restriction on flow path resistance, it is desirable that the cross-sectional area of the flow path through which the refrigerant flows is larger. That is, the pressure loss due to the flow path resistance is proportional to the square of the flow velocity, so it is desirable to design the cross-sectional area of the flow channel through which the refrigerant flows to reduce the flow velocity of the refrigerant.

流速上の制約は、潤滑のためのオイルを冷媒と共に循環させる構成を採用する点に起因する制約である。即ち冷却装置では一般的に、潤滑のためのオイルを冷媒に混合し、冷媒と共に主冷媒配管20を循環させて圧縮機10や膨張弁12,15等を潤滑する。
そのため冷媒の流速が過度に遅いと蒸発器13内に循環オイルが滞留してしまう。
冷媒の流速を早めるという観点からは、冷媒が流れる流路の断面積が小さい方が望ましい。
The restriction on the flow velocity is a restriction caused by adopting a configuration in which oil for lubrication is circulated together with the refrigerant. That is, in the cooling device, generally, oil for lubrication is mixed with the refrigerant, and the main refrigerant pipe 20 is circulated together with the refrigerant to lubricate the compressor 10, the expansion valves 12, 15 and the like.
For this reason, when the flow rate of the refrigerant is excessively slow, the circulating oil stays in the evaporator 13.
From the viewpoint of increasing the flow rate of the refrigerant, it is desirable that the cross-sectional area of the flow path through which the refrigerant flows is small.

この様に、流路抵抗上の制約という観点からは、冷媒が流れる流路の断面積が大きい方が望ましい。一方、流速上の制約という観点からは、冷媒が流れる流路の断面積は小さい方が望ましい。
そのため通常では、両者の観点を満足しえる範囲の流路断面積を持つ蒸発器13が選定される。
ところが本発明者らが検討した冷却装置300は、通常冷却運転時と、冷媒圧力制御運転時で、想定される冷媒の体積流量が大幅に相違し、適切な蒸発器13が存在しないという問題に直面した。
即ち、通常冷却運転は、容量制御を行うため、膨張弁(第1膨張弁)12の開度を変化させ、冷媒の重量流量を変化させても運転圧力が変化し、蒸発器13内の圧力も変化するため、体積流量はあまり変化しない。したがって蒸発器13内の冷媒流速も変化しない。
As described above, from the viewpoint of restriction on flow path resistance, it is desirable that the cross-sectional area of the flow path through which the refrigerant flows is larger. On the other hand, from the viewpoint of restriction on flow velocity, it is desirable that the cross-sectional area of the flow path through which the refrigerant flows is small.
Therefore, normally, the evaporator 13 having a flow path cross-sectional area in a range that can satisfy both viewpoints is selected.
However, the cooling device 300 investigated by the present inventors has a problem that the volume flow rate of the refrigerant is greatly different between the normal cooling operation and the refrigerant pressure control operation, and the appropriate evaporator 13 does not exist. Faced.
That is, in the normal cooling operation, since the capacity is controlled, the operating pressure changes even when the opening of the expansion valve (first expansion valve) 12 is changed and the weight flow rate of the refrigerant is changed. The volume flow rate does not change much. Therefore, the refrigerant flow rate in the evaporator 13 does not change.

一方、冷媒圧力制御運転では、蒸発器13の下流側が、第2膨張弁15(下流側絞り手段)で絞られているから、蒸発器13内の冷媒の圧力が高く且つ一定である。従って、容量制御を行うため、第1膨張弁12を変化させ、冷媒の重量流量が減少する方向に変化させた場合、第2膨張弁15(下流側絞り手段)が蒸発圧力を一定に保とうとするから、第2膨張弁15(下流側絞り手段)は絞る方向に動作することとなり、P1とP2との差異が大きくなり、蒸発器13内の体積流量が少なくなり、冷媒流量も小さくなる。
より具体的な値を示すと、最も流量が少ない場合、即ち膨張弁12の開度を絞り、容量制御した場合、通常冷却運転では、冷媒の蒸発圧力(又は冷媒圧力制御運転の吸い込み圧力)P1を0.1MPa程度、冷媒圧力制御運転時の冷媒の蒸発圧力P2を0.3MPaから0.5MPa程度に想定している。
On the other hand, in the refrigerant pressure control operation, since the downstream side of the evaporator 13 is throttled by the second expansion valve 15 (downstream side throttle means), the pressure of the refrigerant in the evaporator 13 is high and constant. Therefore, when the first expansion valve 12 is changed to change the weight flow rate of the refrigerant in order to control the capacity, the second expansion valve 15 (downstream side throttle means) tries to keep the evaporation pressure constant. Therefore, the second expansion valve 15 (downstream side throttle means) operates in the throttle direction, the difference between P1 and P2 increases, the volume flow rate in the evaporator 13 decreases, and the refrigerant flow rate also decreases.
More specifically, when the flow rate is the smallest, that is, when the opening of the expansion valve 12 is throttled and the capacity is controlled, the evaporation pressure of the refrigerant (or the suction pressure of the refrigerant pressure control operation) P1 in the normal cooling operation. Is about 0.1 MPa, and the refrigerant evaporation pressure P2 during the refrigerant pressure control operation is assumed to be about 0.3 MPa to about 0.5 MPa.

そのためボイル・シャルルの法則に従って、冷媒圧力制御運転時における蒸発器13内の冷媒は、通常冷却運転に比べて体積が5分の1程度に圧縮されている。従って、必要な冷熱量が例え同じであったと仮定しても、冷媒圧力制御運転時における蒸発器13内の冷媒の流速は、通常冷却運転に比べて5分の1に過ぎないものとなる。   Therefore, according to Boyle-Charles' law, the refrigerant in the evaporator 13 during the refrigerant pressure control operation is compressed to about one-fifth the volume as compared with the normal cooling operation. Therefore, even if it is assumed that the required amount of cold heat is the same, the flow rate of the refrigerant in the evaporator 13 during the refrigerant pressure control operation is only one fifth that of the normal cooling operation.

そのため通常冷却運転を基準として蒸発器13を選定すると、冷媒圧力制御運転時に適切にオイル循環をさせることが困難となり、冷媒圧力制御運転を基準として蒸発器13を選定すると、通常冷却運転時に大きな圧力損失が現れて、冷媒温度と被冷却物との平均温度差が小さくなり、熱交換量が少なくなるという不具合が懸念された。   Therefore, if the evaporator 13 is selected based on the normal cooling operation, it is difficult to properly circulate the oil during the refrigerant pressure control operation. If the evaporator 13 is selected based on the refrigerant pressure control operation, a large pressure is generated during the normal cooling operation. There was a concern that a loss would appear, the average temperature difference between the refrigerant temperature and the object to be cooled would be small, and the amount of heat exchange would be small.

例えば、通常冷却運転における最高出力の際に、十分な冷却能力を発揮させるべく蒸発器13を選定すると、冷媒圧力制御運転時に蒸発器13内の冷媒の流速が極端に低下し、潤滑オイルが蒸発器13内に滞留してしまう。
適正な流速で冷媒圧力制御運転を行おうとすると、容量制御量が大きく制限され、省エネルギーに反する結果となる。
For example, if the evaporator 13 is selected to exhibit sufficient cooling capacity at the maximum output in the normal cooling operation, the flow rate of the refrigerant in the evaporator 13 is extremely reduced during the refrigerant pressure control operation, and the lubricating oil evaporates. It stays in the vessel 13.
If the refrigerant pressure control operation is performed at an appropriate flow rate, the capacity control amount is greatly limited, resulting in a result that is contrary to energy saving.

そこで本発明は、従来技術の上記した問題点に注目し、通常冷却運転と、冷媒圧力制御運転を切り換えることができ、且つ両者を円滑に運転することが可能な環境制御装置を開発することを課題とするものである。特に、冷媒圧力制御運転を実施する際の冷却・除湿能力の下限が低い環境制御装置を開発することを課題とするものである。   Accordingly, the present invention focuses on the above-mentioned problems of the prior art, and develops an environmental control device that can switch between normal cooling operation and refrigerant pressure control operation and that can smoothly operate both. It is to be an issue. In particular, an object of the present invention is to develop an environmental control device having a low lower limit of the cooling / dehumidifying capacity when the refrigerant pressure control operation is performed.

上記した課題を解決する手段として、本発明者らは蒸発器13に導入される冷媒に、ホットガスを混入することを考えた。
即ち蒸発器13に導入される冷媒にホットガスを混入すれば、冷媒の量が増加する事より、蒸発器13を流れる冷媒の流速が上昇する。加えて、蒸発器13に導入される冷媒の比エンタルピが増加するから、発生する冷熱量が低下し、冷却・除湿能力の下限を押し下げることができる。
しかしながらこの方策についても、新たな問題が発生した。即ち蒸発器13に導入される冷媒にホットガスを混入すれば、蒸発器13に導入される冷媒の比エンタルビーが増加するが、ホットガスの混入量が多すぎると、蒸発器13内で気液混合状態を維持することが困難となる。
即ち冷媒圧力制御運転においても、除湿、冷却を行う必要があるため、蒸発器13内の冷媒は、気液混合状態を維持している必要がある。
そこで本発明者らは、冷媒状態監視手段を採用し、蒸発器内に導入される冷媒が気液混合状態であることを監視することとし、蒸発器内に導入される冷媒が気液混合状態を維持する様に膨張手段を流れる冷媒の量又はホットガスバイパス回路を流れる冷媒の量の少なくともいずれかが制限されることとした。
As means for solving the above-mentioned problems, the present inventors considered mixing hot gas into the refrigerant introduced into the evaporator 13.
That is, if hot gas is mixed into the refrigerant introduced into the evaporator 13, the flow rate of the refrigerant flowing through the evaporator 13 increases due to an increase in the amount of refrigerant. In addition, since the specific enthalpy of the refrigerant introduced into the evaporator 13 is increased, the amount of generated heat is reduced, and the lower limit of the cooling / dehumidifying ability can be pushed down.
However, there were new problems with this measure. That is, if hot gas is mixed into the refrigerant introduced into the evaporator 13, the specific enthalby of the refrigerant introduced into the evaporator 13 increases. However, if there is too much hot gas mixed, It becomes difficult to maintain the liquid mixed state.
That is, since it is necessary to perform dehumidification and cooling in the refrigerant pressure control operation, the refrigerant in the evaporator 13 needs to maintain a gas-liquid mixed state.
Therefore, the present inventors adopt refrigerant state monitoring means to monitor that the refrigerant introduced into the evaporator is in a gas-liquid mixed state, and the refrigerant introduced into the evaporator is in a gas-liquid mixed state. Therefore, at least one of the amount of refrigerant flowing through the expansion means and the amount of refrigerant flowing through the hot gas bypass circuit is limited so as to maintain the above.

以上の知見に基づいて完成された請求項1に記載の発明は、物品配置室、冷却装置、加熱装置、及び室内温度検知手段を備え、室内温度検知手段によって物品配置室の温度を監視し、冷却装置及び加熱装置を制御することで、物品配置室内を目標温に制御することが可能な環境試験装置において、前記冷却装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とが環状に接続され、冷却装置の内部に相変化する冷媒が充填されていて一連の冷凍サイクルを実現するものであり、前記冷却装置には、圧縮機から吐出された冷媒ガスを膨張手段の下流側に導入するホットガスバイパス回路と、蒸発器と圧縮機の間に設けられ開度を変更可能な下流側絞り手段と、蒸発器内に導入される冷媒が気液混合状態であることを監視する冷媒状態監視手段を備え、冷媒状態監視手段は冷媒温度検知手段を有し、前記冷却装置は、下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御して蒸発器の温度を制御する冷媒圧力制御運転と、下流側絞り手段の開度調整によらずに運転する通常冷却運転とを行うことが可能であり、一定条件下で冷媒圧力制御運転を実行する際にホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスを膨張手段から吐出された冷媒に混合して蒸発器に導入するホットガス導入運転が行われ、ホットガス導入運転に際しては、通常の冷媒圧力制御運転と同様に下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御しつつ前記冷媒状態監視手段によって冷媒温度を監視し、蒸発器内における冷媒の蒸発圧力が制御されている条件下において気液混合状態であれば冷媒の蒸発圧力によって一義的に決まる冷媒温度があり、冷媒の温度が気相又はこれに近い状態の温度であることを前記冷媒状態監視手段が検知すると、蒸発器内に導入される冷媒が蒸発器内で気液混合状態を維持する様に膨張手段の開度を開き、蒸発器内に導入される冷媒を蒸発器内で気液混合状態に維持しつつ安定してホットガス導入運転を実施することができることを特徴とする環境試験装置である。 The invention according to claim 1 completed based on the above knowledge comprises an article placement chamber, a cooling device, a heating device, and an indoor temperature detection means, and monitors the temperature of the article placement chamber by the indoor temperature detection means, by controlling the cooling device and the heating device in an environment testing apparatus capable of controlling an article placement chamber to the target chamber temperature, the cooling device includes a compressor, a condenser, an expansion means, an evaporator Are connected in an annular shape, and a cooling medium is filled with a phase-change refrigerant to realize a series of refrigeration cycles. In the cooling device, the refrigerant gas discharged from the compressor is supplied downstream of the expansion means. The hot gas bypass circuit to be introduced to the side, the downstream throttle means provided between the evaporator and the compressor, the degree of opening of which can be changed, and the refrigerant introduced into the evaporator being monitored for gas-liquid mixing Refrigerant status monitoring means For example, refrigerant state monitoring means includes a coolant temperature detecting means, wherein the cooling device controls the temperature of the control to the evaporator evaporation pressure of the refrigerant in the downstream throttle means opening the control to evaporator It is possible to perform a refrigerant pressure control operation and a normal cooling operation that operates without adjusting the opening degree of the downstream throttle means, and when performing the refrigerant pressure control operation under a certain condition, a hot gas bypass circuit is provided. A hot gas introduction operation is performed in which the refrigerant gas discharged from the compressor is mixed with the refrigerant discharged from the expansion means and introduced into the evaporator, and during the hot gas introduction operation, a normal refrigerant pressure control operation is performed. Similarly, the refrigerant temperature is monitored by the refrigerant state monitoring means while controlling the evaporation pressure of the refrigerant in the evaporator by controlling the opening of the downstream throttle means, and the evaporation pressure of the refrigerant in the evaporator is controlled. Article There is refrigerant temperature uniquely determined by the evaporation pressure of the refrigerant as long as the gas-liquid mixed state in the lower, the the refrigerant state monitoring means detects that the temperature of the coolant is at a temperature in the gas phase or a state close thereto, evaporation The opening of the expansion means is opened so that the refrigerant introduced into the evaporator maintains the gas-liquid mixed state in the evaporator, and the refrigerant introduced into the evaporator is maintained in the gas-liquid mixed state in the evaporator. It is an environmental test apparatus characterized in that hot gas introduction operation can be carried out stably.

請求項2に記載の発明は、物品配置室、冷却装置、加熱装置、及び室内温度検知手段を備え、室内温度検知手段によって物品配置室の温度を監視し、冷却装置及び加熱装置を制御することで、物品配置室内を目標室温に制御することが可能な環境試験装置において、前記冷却装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とが環状に接続され、冷却装置の内部に相変化する冷媒が充填されていて一連の冷凍サイクルを実現するものであり、前記冷却装置には、圧縮機から吐出された冷媒ガスを膨張手段の下流側に導入するホットガスバイパス回路と、蒸発器と圧縮機の間に設けられ開度を変更可能な下流側絞り手段と、蒸発器内に導入される冷媒が気液混合状態であることを監視する冷媒状態監視手段を備え、冷媒状態監視手段は冷媒温度検知手段を有し、前記冷却装置は、下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御して蒸発器の温度を制御する冷媒圧力制御運転と、下流側絞り手段の開度調整によらずに運転する通常冷却運転とを行うことが可能であり、一定条件下で冷媒圧力制御運転を実行する際にホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスを膨張手段から吐出された冷媒に混合して蒸発器に導入するホットガス導入運転が行われ、ホットガス導入運転に際しては、通常の冷媒圧力制御運転と同様に下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御しつつ前記冷媒状態監視手段によって冷媒温度を監視し、蒸発器内における冷媒の蒸発圧力が制御されている条件下において気液混合状態であれば冷媒の蒸発圧力によって一義的に決まる冷媒温度があり、冷媒の温度が気相又はこれに近い状態の温度であることを前記冷媒状態監視手段が検知すると、蒸発器内に導入される冷媒が蒸発器内で気液混合状態を維持する様に膨張手段の開度を制御し、蒸発器内に導入される冷媒を蒸発器内で気液混合状態に維持しつつ安定してホットガス導入運転を実施することができることを特徴とする環境試験装置である。The invention according to claim 2 includes an article placement chamber, a cooling device, a heating device, and an indoor temperature detection means, and monitors the temperature of the article placement chamber by the indoor temperature detection means and controls the cooling device and the heating device. In the environmental test apparatus capable of controlling the article placement chamber to the target room temperature, the cooling device includes a compressor, a condenser, an expansion means, and an evaporator connected in an annular shape, and the interior of the cooling device. A phase change refrigerant is charged to realize a series of refrigeration cycles, and the cooling device includes a hot gas bypass circuit that introduces refrigerant gas discharged from the compressor to the downstream side of the expansion means, A downstream throttle unit provided between the evaporator and the compressor, the opening degree of which can be changed, and a refrigerant state monitoring unit for monitoring that the refrigerant introduced into the evaporator is in a gas-liquid mixed state. The monitoring means is the refrigerant temperature The cooling device includes a refrigerant pressure control operation in which the opening of the downstream throttle means is controlled to control the evaporation pressure of the refrigerant in the evaporator to control the temperature of the evaporator, and the downstream throttle It is possible to perform a normal cooling operation that operates without adjusting the opening degree of the means, and when the refrigerant pressure control operation is performed under a certain condition, it is discharged from the compressor via the hot gas bypass circuit A hot gas introduction operation is performed in which the refrigerant gas is mixed with the refrigerant discharged from the expansion means and introduced into the evaporator. During the hot gas introduction operation, the opening degree of the downstream throttle means is the same as in the normal refrigerant pressure control operation. The refrigerant temperature is monitored by the refrigerant state monitoring means while controlling the evaporation pressure of the refrigerant in the evaporator, and the gas-liquid mixed state can be obtained under the condition that the evaporation pressure of the refrigerant in the evaporator is controlled. When the refrigerant state monitoring means detects that there is a refrigerant temperature that is uniquely determined by the evaporation pressure of the refrigerant and that the refrigerant temperature is at or near the gas phase, the refrigerant introduced into the evaporator evaporates. The opening of the expansion means is controlled so that the gas-liquid mixed state is maintained in the evaporator, and the hot gas introduction operation is stably performed while maintaining the refrigerant introduced into the evaporator in the gas-liquid mixed state in the evaporator. It is an environmental test apparatus characterized by being able to implement.

また請求項3に記載の発明は、物品配置室、冷却装置、加熱装置、及び室内温度検知手段を備え、室内温度検知手段によって物品配置室の温度を監視し、冷却装置及び加熱装置を制御することで、物品配置室内を目標室温に制御することが可能な環境試験装置において、前記冷却装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とが環状に接続され、冷却装置の内部に相変化する冷媒が充填されていて一連の冷凍サイクルを実現するものであり、前記冷却装置には、圧縮機から吐出された冷媒ガスを膨張手段の下流側に導入するホットガスバイパス回路と、蒸発器と圧縮機の間に設けられ開度を変更可能な下流側絞り手段と、蒸発器内に導入される冷媒が気液混合状態であることを監視する冷媒状態監視手段を備え、冷媒状態監視手段は冷媒温度検知手段を有し、前記冷却装置は、下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御して蒸発器の温度を制御する冷媒圧力制御運転と、下流側絞り手段の開度調整によらずに運転する通常冷却運転とを行うことが可能であり、一定条件下で冷媒圧力制御運転を実行する際にホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスを膨張手段から吐出された冷媒に混合して蒸発器に導入するホットガス導入運転が行われ、ホットガス導入運転に際しては、通常の冷媒圧力制御運転と同様に下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御しつつ前記冷媒状態監視手段によって冷媒温度を監視し、蒸発器内における冷媒の蒸発圧力が制御されている条件下において気液混合状態であれば冷媒の蒸発圧力によって一義的に決まる冷媒温度があり、冷媒の温度が気相又はこれに近い状態の温度であることを前記冷媒状態監視手段が検知すると、蒸発器内に導入される冷媒が蒸発器内で気液混合状態を維持する様にホットガスバイパス回路を流れる冷媒の量を制限し、蒸発器内に導入される冷媒を蒸発器内で気液混合状態に維持しつつ安定してホットガス導入運転を実施することができることを特徴とする環境試験装置である。According to a third aspect of the present invention, an article arrangement chamber, a cooling device, a heating device, and an indoor temperature detection means are provided, and the temperature of the article arrangement chamber is monitored by the indoor temperature detection means to control the cooling device and the heating device. Thus, in the environmental test apparatus capable of controlling the article placement chamber to the target room temperature, the cooling device includes a compressor, a condenser, an expansion means, and an evaporator connected in an annular shape, A refrigerant that changes phase is filled therein to realize a series of refrigeration cycles, and the cooling device includes a hot gas bypass circuit that introduces refrigerant gas discharged from the compressor to the downstream side of the expansion means, and A downstream throttle means that is provided between the evaporator and the compressor and can change the opening; and a refrigerant state monitoring means that monitors that the refrigerant introduced into the evaporator is in a gas-liquid mixed state. Condition monitoring means is cold A refrigerant pressure control operation for controlling a temperature of the evaporator by controlling an opening pressure of the downstream throttle means to control an evaporation pressure of the refrigerant in the evaporator, and a downstream side It is possible to perform a normal cooling operation that operates without adjusting the opening of the throttle means, and when the refrigerant pressure control operation is performed under a certain condition, the refrigerant is discharged from the compressor via the hot gas bypass circuit. The refrigerant gas discharged from the expansion means is mixed with the refrigerant discharged from the expansion means and introduced into the evaporator, and the hot gas introduction operation is performed in the same manner as in the normal refrigerant pressure control operation. The refrigerant temperature is monitored by the refrigerant state monitoring means while controlling the evaporation pressure of the refrigerant in the evaporator, and in the gas-liquid mixed state under the condition where the evaporation pressure of the refrigerant in the evaporator is controlled. If there is a refrigerant temperature that is uniquely determined by the evaporation pressure of the refrigerant, and the refrigerant state monitoring means detects that the refrigerant temperature is in the gas phase or a state close thereto, the refrigerant introduced into the evaporator The amount of refrigerant flowing through the hot gas bypass circuit is limited so that the gas-liquid mixed state is maintained in the evaporator, and the refrigerant introduced into the evaporator is stabilized while maintaining the gas-liquid mixed state in the evaporator. This is an environmental test apparatus characterized in that a hot gas introduction operation can be performed.

ここで、「下流側絞り手段の開度調整によらずに運転する」とは、下流側絞り手段の開度を調整することによって冷媒の流量や蒸発器の温度を制御する方式のものを除外する意味である。「下流側絞り手段の開度調整によらずに運転する」方策としては、下流側絞り手段を迂回する流路を設け、迂回路に冷媒を流す構成が考えられる。この構成は、下流側絞り手段を介さずに冷媒を下流側に流すものである。
また「下流側絞り手段の開度調整によらずに運転する」方策の一つとして、下流側絞り手段の開度を固定状態とする構成が考えられる。この場合は、冷媒は、下流側絞り手段を通過するが、下流側絞り手段を可変絞りとして機能させていないので、「下流側絞り手段の開度調整によらずに運転する」こととなる。
Here, “operating without adjusting the opening degree of the downstream throttle means” excludes a system that controls the flow rate of the refrigerant and the temperature of the evaporator by adjusting the opening degree of the downstream throttle means. That means As a measure for “operating without adjusting the opening degree of the downstream throttle means”, a configuration in which a flow path that bypasses the downstream throttle means is provided and the refrigerant flows through the bypass circuit is conceivable. In this configuration, the refrigerant is allowed to flow downstream without using the downstream throttle means.
Further, as one of measures for “operating without adjusting the opening degree of the downstream throttle means”, a configuration in which the opening degree of the downstream throttle means is fixed can be considered. In this case, the refrigerant passes through the downstream throttle means, but the downstream throttle means is not functioning as a variable throttle, and thus “operates without adjusting the opening degree of the downstream throttle means”.

また請求項に記載の発明は、冷媒状態監視手段はホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスと、膨張手段から吐出された冷媒との混合冷媒の温度を検知するものであり、冷媒温度検知手段の検知温度が前記冷媒の蒸発圧力によって一義的に決まる冷媒温度を超えない様に膨張手段を流れる冷媒の量又はホットガスバイパス回路を流れる冷媒の量の少なくともいずれかを増減することを特徴とする請求項1乃至3のいずれかに記載の環境試験装置である。 The invention described in claim 4, the refrigerant condition monitoring means detects a refrigerant gas discharged from the compressor via the hot gas bypass circuit, the temperature of the mixed refrigerant of the refrigerant discharged from the expansion means At least one of the amount of refrigerant flowing through the expansion means and the amount of refrigerant flowing through the hot gas bypass circuit so that the detected temperature of the refrigerant temperature detecting means does not exceed the refrigerant temperature uniquely determined by the evaporation pressure of the refrigerant increasing or decreasing the an environmental test apparatus according to any one of claims 1 to 3, wherein.

請求項5に記載の発明は、物品配置室、冷却装置、加熱装置、及び室内温度検知手段を備え、室内温度検知手段によって物品配置室の温度を監視し、冷却装置及び加熱装置を制御することで、物品配置室内を目標室温に制御することが可能な環境試験装置において、前記冷却装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とが環状に接続され、冷却装置の内部に相変化する冷媒が充填されていて一連の冷凍サイクルを実現するものであり、前記冷却装置には、圧縮機から吐出された冷媒ガスを膨張手段の下流側に導入するホットガスバイパス回路と、蒸発器と圧縮機の間に設けられ開度を変更可能な下流側絞り手段と、蒸発器内に導入される冷媒が気液混合状態であることを監視する冷媒状態監視手段を備え、冷媒状態監視手段は蒸発器の下流側に設けられた冷媒温度検知手段を有し、前記冷却装置は、下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御して蒸発器の温度を制御する冷媒圧力制御運転と、下流側絞り手段の開度調整によらずに運転する通常冷却運転とを行うことが可能であり、一定条件下で冷媒圧力制御運転を実行する際にホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスを膨張手段から吐出された冷媒に混合して蒸発器に導入するホットガス導入運転が行われ、ホットガス導入運転に際しては、通常の冷媒圧力制御運転と同様に下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御しつつ前記冷媒状態監視手段によって冷媒温度を監視し、蒸発器内における冷媒の蒸発圧力が制御されている条件下において気液混合状態であれば冷媒の蒸発圧力によって一義的に決まる冷媒温度があり、冷媒の温度が気相又はこれに近い状態の温度であることを前記冷媒状態監視手段が検知すると、蒸発器内に導入される冷媒が蒸発器内で気液混合状態を維持する様に膨張手段の開度を制御し、又はホットガスバイパス回路を流れる冷媒の量を制限し、蒸発器内に導入される冷媒を蒸発器内で気液混合状態に維持しつつ安定してホットガス導入運転を実施することができることを特徴とする環境試験装置である。The invention according to claim 5 includes an article arrangement chamber, a cooling device, a heating device, and an indoor temperature detection means, and monitors the temperature of the article arrangement chamber by the indoor temperature detection means and controls the cooling device and the heating device. In the environmental test apparatus capable of controlling the article placement chamber to the target room temperature, the cooling device includes a compressor, a condenser, an expansion means, and an evaporator connected in an annular shape, and the interior of the cooling device. A phase change refrigerant is charged to realize a series of refrigeration cycles, and the cooling device includes a hot gas bypass circuit that introduces refrigerant gas discharged from the compressor to the downstream side of the expansion means, A downstream throttle unit provided between the evaporator and the compressor, the opening degree of which can be changed, and a refrigerant state monitoring unit for monitoring that the refrigerant introduced into the evaporator is in a gas-liquid mixed state. Monitoring means is an evaporator Refrigerant temperature detecting means provided on the downstream side, wherein the cooling device controls the temperature of the evaporator by controlling the opening degree of the downstream throttle means to control the evaporation pressure of the refrigerant in the evaporator. It is possible to perform a pressure control operation and a normal cooling operation that operates without adjusting the opening degree of the downstream throttle means, and when performing a refrigerant pressure control operation under a certain condition, it passes through a hot gas bypass circuit Then, a hot gas introduction operation is performed in which the refrigerant gas discharged from the compressor is mixed with the refrigerant discharged from the expansion means and introduced into the evaporator, and the hot gas introduction operation is the same as a normal refrigerant pressure control operation. The condition in which the refrigerant temperature in the evaporator is controlled by controlling the opening of the downstream throttle means to control the evaporation pressure of the refrigerant in the evaporator while monitoring the refrigerant temperature by the refrigerant state monitoring means. under In the gas-liquid mixed state, there is a refrigerant temperature that is uniquely determined by the evaporation pressure of the refrigerant, and when the refrigerant state monitoring means detects that the temperature of the refrigerant is a gas phase or a temperature close thereto, the evaporation The opening of the expansion means is controlled so that the refrigerant introduced into the evaporator maintains a gas-liquid mixed state in the evaporator, or the amount of refrigerant flowing through the hot gas bypass circuit is limited and introduced into the evaporator. The environmental test apparatus is characterized in that the hot gas introduction operation can be stably performed while maintaining the refrigerant in a vapor-liquid mixed state in the evaporator.

請求項に記載の発明は、必要な冷熱量が少ない状況で冷媒圧力制御運転を行う場合にホットガス導入運転がなされ、必要な冷熱量が多い場合にはホットガス導入運転はなされないことを特徴とする請求項1乃至5のいずれかに記載の環境試験装置である。 According to the sixth aspect of the present invention, the hot gas introduction operation is performed when the refrigerant pressure control operation is performed in a state where the required amount of cold heat is small, and the hot gas introduction operation is not performed when the necessary amount of cold heat is large. 6. The environmental test apparatus according to claim 1 , wherein the environmental test apparatus is characterized in that:

請求項に記載の発明は、ホットガス導入運転を行わずに冷媒圧力制御運転を行っている状況からホットガス導入運転を実施する際、膨張手段を流れる冷媒の量が変更されることを特徴とする請求項1乃至のいずれかに記載の環境試験装置である。 The invention according to claim 7 is characterized in that when the hot gas introduction operation is performed from the situation where the refrigerant pressure control operation is performed without performing the hot gas introduction operation, the amount of the refrigerant flowing through the expansion means is changed. An environmental test apparatus according to any one of claims 1 to 6 .

本発明の環境制御装置は、冷却装置を通常冷却運転することができ、且つ冷媒圧力制御運転に切り換えることもできる。また本発明の環境制御装置は、通常冷却運転と冷媒圧力制御運転を円滑にすることができる。さらに冷媒圧力制御運転を実施する際の冷却・除湿能力の下限が低く、実用的である。   The environmental control device of the present invention can perform the normal cooling operation of the cooling device and can also switch to the refrigerant pressure control operation. In addition, the environmental control device of the present invention can smoothly perform the normal cooling operation and the refrigerant pressure control operation. Furthermore, the lower limit of the cooling / dehumidifying capacity when carrying out the refrigerant pressure control operation is low and practical.

本発明の実施形態の環境制御装置を搭載した環境試験装置の概念図であり、図中の記号は、ホットガス導入運転時の比エンタルピ及び圧力を示す。It is a conceptual diagram of the environmental test apparatus carrying the environmental control apparatus of embodiment of this invention, and the symbol in a figure shows the specific enthalpy and pressure at the time of hot gas introduction operation. 図1の環境試験装置で採用する環境制御装置の冷却装置内の冷媒の状態をモリエル線図上に表したグラフである。It is the graph which represented on the Mollier diagram the state of the refrigerant | coolant in the cooling device of the environmental control apparatus employ | adopted with the environmental test apparatus of FIG. 図2のグラフの中から、主冷媒配管を流れる冷媒の状態を抜き出して表現したグラフである。It is the graph which extracted and expressed the state of the refrigerant | coolant which flows through the main refrigerant | coolant piping from the graph of FIG. 図2のグラフの中からホットガスバイパス回路を流れる冷媒の状態を抜き出して表現したグラフである。It is the graph which extracted and represented the state of the refrigerant | coolant which flows through a hot gas bypass circuit from the graph of FIG. 図2のグラフを、主冷媒配管を流れる冷媒を中心に書き改めたグラフである。It is the graph which rewrote the graph of FIG. 2 focusing on the refrigerant | coolant which flows through main refrigerant | coolant piping. ホットガスバイパス回路を流れる冷媒が過多である場合に懸念される問題を示したグラフである。It is the graph which showed the problem concerned when the refrigerant | coolant which flows through a hot gas bypass circuit is excessive. 図1に示す冷却装置の性能を示すグラフである。It is a graph which shows the performance of the cooling device shown in FIG. 環境試験装置の代表的な冷却装置を示す配管系統図であり、冷却装置は、通常冷却運転のみを行うものである。It is a piping system diagram showing a typical cooling device of an environmental test device, and the cooling device performs only a normal cooling operation. 図8に示す冷却装置内の冷媒の状態をモリエル線図上に表したグラフである。It is the graph which represented on the Mollier diagram the state of the refrigerant | coolant in the cooling device shown in FIG. 蒸発器13の表面温度を制御する機能を備えた冷却装置の配管系統図であり、冷却装置は、冷媒圧力制御運転のみを行うものである。It is a piping system diagram of the cooling device provided with the function which controls the surface temperature of evaporator 13, and a cooling device performs only refrigerant pressure control operation. 図10に示す冷却装置内の冷媒の状態をモリエル線図上に表したグラフである。It is the graph which represented on the Mollier diagram the state of the refrigerant | coolant in the cooling device shown in FIG. 本発明者らが検討した冷却装置の配管系統図であり、冷却装置は、通常冷却運転と冷媒圧力制御運転の切替えを行うことができるものである。It is a piping system diagram of a cooling device examined by the present inventors, and the cooling device can perform switching between a normal cooling operation and a refrigerant pressure control operation.

本発明の実施形態の環境制御装置の構成について、図面を参照しながら説明する。
図1に示す環境試験装置1(環境制御装置)は、断熱材3で周囲を囲まれた筺体2を有している。筺体2は恒温恒湿槽5を成すものであり、内部は間仕切板4で物品配置室6と空調用通路7とに区切られている。なお、恒温恒湿槽5内の上部側と下部側には、物品配置室6と空調用通路7とが連通する開口9,19が設けられている。
The configuration of the environmental control apparatus according to the embodiment of the present invention will be described with reference to the drawings.
An environmental test apparatus 1 (environment control apparatus) shown in FIG. 1 has a housing 2 surrounded by a heat insulating material 3. The housing 2 constitutes a constant temperature and humidity chamber 5, and the interior is divided into an article placement chamber 6 and an air conditioning passage 7 by a partition plate 4. In addition, openings 9 and 19 through which the article placement chamber 6 and the air conditioning passage 7 communicate are provided on the upper side and the lower side in the constant temperature and humidity chamber 5.

物品配置室6は、環境試験の際に、試料となる機器や部品等を配置する空間で、当該空間の温度(気温)を検知する室内温度検知手段23と、当該室内の相対湿度を検知する室内湿度検知手段24が設けられている。室内温度検知手段23は、例えば、従来公知の熱電対や測温抵抗体等の温度センサである。一方、室内湿度検知手段24は、例えば、湿球温度計である。   In the environmental test, the article placement chamber 6 is a space in which equipment, parts, and the like serving as samples are placed, and detects an indoor temperature detection means 23 that detects the temperature (air temperature) of the space and the relative humidity in the room. Indoor humidity detection means 24 is provided. The room temperature detection means 23 is, for example, a conventionally known temperature sensor such as a thermocouple or a resistance temperature detector. On the other hand, the indoor humidity detection means 24 is, for example, a wet bulb thermometer.

空調用通路7には、下部側から順番に、蒸発器13、加熱器27、ファン26が配されている。
加熱器27は、従来公知の電気ヒータであり、空調用通路7を通過する空気を加熱するものである。
蒸発器13は、後述する冷却装置30の一部であり、内部に相変化する冷媒が流通するものであり、冷却能力と表面温度を変化させることができるものである。
ファン26は、従来公知の送風機であり、空気を送り出すものである。
空調用通路7には、さらに図示しない加湿装置が設けられている。
In the air conditioning passage 7, an evaporator 13, a heater 27, and a fan 26 are arranged in order from the lower side.
The heater 27 is a conventionally known electric heater, and heats air passing through the air conditioning passage 7.
The evaporator 13 is a part of a cooling device 30 to be described later, in which a phase-change refrigerant flows, and can change the cooling capacity and the surface temperature.
The fan 26 is a conventionally known blower and sends out air.
The air conditioning passage 7 is further provided with a humidifier (not shown).

本実施形態の環境試験装置1では、ファン26によって恒温恒湿槽5内の空気を循環して、物品配置室6内に所望の環境が作られる。即ち、恒温恒湿槽5内の空気は、ファン26によって間仕切板4の下部側の開口19から空調用通路7側に吸入され、空調用通路7を鉛直上方に向けて通過して、間仕切板4の上部側の開口9から物品配置室6側に吐出される。   In the environmental test apparatus 1 of the present embodiment, the air in the constant temperature and humidity chamber 5 is circulated by the fan 26 to create a desired environment in the article placement chamber 6. That is, the air in the constant temperature and humidity chamber 5 is sucked by the fan 26 from the opening 19 on the lower side of the partition plate 4 to the air conditioning passage 7 side, passes through the air conditioning passage 7 vertically upward, and the partition plate 4 is discharged from the upper opening 9 to the article placement chamber 6 side.

より詳細に説明すると、ファン26が起動されると、空調用通路7内の空気がファン26に吸い込まれて、間仕切板4の上部側の開口9から送り出される。これにより、物品配置室6内の壁面に沿うように空気の流れが形成される。そして、間仕切板4の下部側の開口19に到達した空気が、再び空調用通路7内に導入される。
なお、環境試験装置1は、室内温度検知手段23と室内湿度検知手段24によって、物品配置室6内の現状の温度(現状気温)と現状の相対湿度(現状相対湿度)が監視され、図示しない制御装置で制御される。
More specifically, when the fan 26 is started, the air in the air conditioning passage 7 is sucked into the fan 26 and sent out from the opening 9 on the upper side of the partition plate 4. As a result, an air flow is formed along the wall surface in the article placement chamber 6. Then, the air that has reached the opening 19 on the lower side of the partition plate 4 is again introduced into the air conditioning passage 7.
The environmental test apparatus 1 monitors the current temperature (current temperature) and the current relative humidity (current relative humidity) in the article placement chamber 6 by the indoor temperature detection means 23 and the indoor humidity detection means 24, and is not illustrated. It is controlled by the control device.

次に、本実施形態で採用する冷却装置30について説明する。   Next, the cooling device 30 employed in the present embodiment will be described.

冷却装置30は、前述した図12に示す冷却装置300をベースとして改良されたものであり、冷却装置300の構成を全て備えている。即ち圧縮機10と、凝縮器11と、第1膨張弁12及び蒸発器13を有し、これらが主冷媒配管20によって環状に接続されたものである。圧縮機10は、図示しないモータによって駆動され、モータの回転数を制御することにより、圧縮機10の稼働量を変化させることができる。
主冷媒配管20内には、相変化する冷媒が内蔵されている。また蒸発器13の下流側に第2膨張弁15(下流側絞り手段)が設けられている。第1膨張弁12並びに第2膨張弁15(下流側絞り手段)は、それぞれ開度を調整可能なものである。さらに詳細には、第1膨張弁12並びに第2膨張弁15は信号電圧に応じて開度が変わるものである。
また第2膨張弁15(下流側絞り手段)を迂回する膨張弁バイパス流路17が設けられ、膨張弁バイパス流路17に開閉弁16が設けられている。開閉弁16は具体的には電磁弁であって開度調節はできない。
The cooling device 30 is improved on the basis of the cooling device 300 shown in FIG. 12 described above, and includes all the configurations of the cooling device 300. That is, the compressor 10, the condenser 11, the first expansion valve 12, and the evaporator 13 are connected in a ring shape by the main refrigerant pipe 20. The compressor 10 is driven by a motor (not shown), and the amount of operation of the compressor 10 can be changed by controlling the rotation speed of the motor.
In the main refrigerant pipe 20, a phase changing refrigerant is incorporated. A second expansion valve 15 (downstream throttle means) is provided on the downstream side of the evaporator 13. The first expansion valve 12 and the second expansion valve 15 (downstream throttle means) can each be adjusted in opening. More specifically, the opening degrees of the first expansion valve 12 and the second expansion valve 15 change according to the signal voltage.
An expansion valve bypass passage 17 that bypasses the second expansion valve 15 (downstream side throttle means) is provided, and an opening / closing valve 16 is provided in the expansion valve bypass passage 17. The on-off valve 16 is specifically an electromagnetic valve, and the opening degree cannot be adjusted.

冷却装置30は、前記した冷却装置300の構成に加えて、ホットガスバイパス回路31が設けられている。
ホットガスバイパス回路31は、圧縮機10から吐出された冷媒ガスを第1膨張弁12の下流側に導入するものである。
より具体的には、ホットガスバイパス回路31は、主冷媒配管20の圧縮機10と凝縮器11の間が分岐され、当該分岐点32を始点とし、第1膨張弁12と蒸発器13の間の分岐点33を終端とする流路である。
The cooling device 30 is provided with a hot gas bypass circuit 31 in addition to the configuration of the cooling device 300 described above.
The hot gas bypass circuit 31 introduces the refrigerant gas discharged from the compressor 10 to the downstream side of the first expansion valve 12.
More specifically, the hot gas bypass circuit 31 branches between the compressor 10 and the condenser 11 of the main refrigerant pipe 20, starts from the branch point 32, and is between the first expansion valve 12 and the evaporator 13. This is a flow path having a branch point 33 as an end.

ホットガスバイパス回路31には、図1の様に開閉弁35と、絞り37がこの順に設けられている。本実施形態で採用する絞り37は、固定式であり、開度の調節はできない。絞り37は、ホットガスバイパス回路31における膨張手段として機能する。   As shown in FIG. 1, the hot gas bypass circuit 31 is provided with an on-off valve 35 and a throttle 37 in this order. The diaphragm 37 employed in the present embodiment is a fixed type, and the opening degree cannot be adjusted. The throttle 37 functions as expansion means in the hot gas bypass circuit 31.

また、蒸発器13の上流側には、第1冷媒温度検知手段(冷媒状態監視手段)40が設けられている。第1冷媒温度検知手段40は、例えば、従来公知の熱電対や温度センサである。第1冷媒温度検知手段40は、蒸発器13に流れ込む冷媒の温度を検知できる。
一方、蒸発器13の下流側には、第2冷媒温度検知手段43と、冷媒圧力検知手段45が設けられている。第2冷媒温度検知手段43は、第1冷媒温度検知手段40と同じく、従来公知の熱電対や温度センサである。第2冷媒温度検知手段43は、蒸発器13を通過した後の冷媒ガスの温度を検知できる。つまり、蒸発器13の蒸発温度を検知できる。
冷媒圧力検知手段45は、蒸発器13内の冷媒の圧力を検知するものであり、冷媒の蒸発圧力を知るための手段である。
冷媒圧力検知手段45は、例えば、従来公知の圧力センサである。
A first refrigerant temperature detecting means (refrigerant state monitoring means) 40 is provided on the upstream side of the evaporator 13. The first refrigerant temperature detection means 40 is, for example, a conventionally known thermocouple or temperature sensor. The first refrigerant temperature detection means 40 can detect the temperature of the refrigerant flowing into the evaporator 13.
On the other hand, a second refrigerant temperature detection means 43 and a refrigerant pressure detection means 45 are provided on the downstream side of the evaporator 13. Similar to the first refrigerant temperature detection means 40, the second refrigerant temperature detection means 43 is a conventionally known thermocouple or temperature sensor. The second refrigerant temperature detection means 43 can detect the temperature of the refrigerant gas after passing through the evaporator 13. That is, the evaporation temperature of the evaporator 13 can be detected.
The refrigerant pressure detection means 45 detects the pressure of the refrigerant in the evaporator 13 and is a means for knowing the evaporation pressure of the refrigerant.
The refrigerant pressure detection means 45 is, for example, a conventionally known pressure sensor.

次に、本実施形態で採用する冷却装置30の作動原理について説明する。
本実施形態で採用する冷却装置30は、通常冷却運転と、冷媒圧力制御運転を切り換えることができる。また冷媒圧力制御運転において、必要冷熱量が少ない場合には、ホットガスバイパス回路31を開いてホットガス導入運転が行われる。言い換えると、要求される冷却・除湿能力が小さい場合にホットガス導入運転が行われる。
冷媒圧力制御運転において、必要冷熱量が多い場合には、ホットガス導入運転は行われない。言い換えると要求される冷却・除湿能力が大きい場合にホットガス導入運転は行わない。
Next, the operation principle of the cooling device 30 employed in the present embodiment will be described.
The cooling device 30 employed in the present embodiment can switch between a normal cooling operation and a refrigerant pressure control operation. Further, in the refrigerant pressure control operation, when the required amount of cold heat is small, the hot gas bypass circuit 31 is opened and the hot gas introduction operation is performed. In other words, the hot gas introduction operation is performed when the required cooling / dehumidifying capacity is small.
In the refrigerant pressure control operation, the hot gas introduction operation is not performed when the required amount of cold heat is large. In other words, the hot gas introduction operation is not performed when the required cooling / dehumidifying capacity is large.

本実施形態では、環境試験装置1の立ち上げ時や、試験環境における目標温度が低い場合の様な、冷却装置30に比較的多くの冷却・除湿能力が要求される場合には、通常冷却運転が行われる。即ち膨張弁バイパス流路17の開閉弁16を開いて、蒸発器13から吐出される冷媒を膨張弁バイパス流路17に流し、圧縮機10に戻す。
その結果、図9に示すグラフの様に、蒸発器13内の圧力がP1まで低下し、通常冷却運転が実行される。冷却装置30を流れる冷媒の状態は、前記した冷却装置100と同一であり、モリエル線図上に図示すると図9の通りとなる。
In this embodiment, when the environmental test apparatus 1 is started up or when a relatively large amount of cooling / dehumidifying capacity is required for the cooling apparatus 30 such as when the target temperature in the test environment is low, the normal cooling operation is performed. Is done. That is, the opening / closing valve 16 of the expansion valve bypass flow path 17 is opened, and the refrigerant discharged from the evaporator 13 is caused to flow through the expansion valve bypass flow path 17 and returned to the compressor 10.
As a result, as in the graph shown in FIG. 9, the pressure in the evaporator 13 decreases to P1, and the normal cooling operation is executed. The state of the refrigerant flowing through the cooling device 30 is the same as that of the cooling device 100 described above, and is as shown in FIG. 9 when illustrated on the Mollier diagram.

通常冷却運転においては、冷却能力は、圧縮機10の回転数調整と、第1膨張弁12の開度調整によって行われる。
即ち高い冷却・除湿能力が要求される場合には、圧縮機10の回転数を増加させて冷媒の循環量を増加させると共に、第1膨張弁12の開度を大きくする。その結果、蒸発器13に流れ込む冷媒が増加し、冷却能力が上昇する。
In the normal cooling operation, the cooling capacity is performed by adjusting the rotation speed of the compressor 10 and adjusting the opening of the first expansion valve 12.
That is, when a high cooling / dehumidifying capacity is required, the rotational speed of the compressor 10 is increased to increase the circulation amount of the refrigerant, and the opening degree of the first expansion valve 12 is increased. As a result, the refrigerant flowing into the evaporator 13 increases and the cooling capacity increases.

逆に小さい冷却・除湿能力が要求される場合には、圧縮機10の回転数を低下させて冷媒の循環量を減少させると共に、第1膨張弁12の開度を絞る。その結果、蒸発器13に流れ込む冷媒が減少し、冷却能力が降下する。   Conversely, when a small cooling / dehumidifying capacity is required, the rotational speed of the compressor 10 is reduced to reduce the circulation amount of the refrigerant, and the opening of the first expansion valve 12 is reduced. As a result, the refrigerant flowing into the evaporator 13 is reduced and the cooling capacity is lowered.

また本実施形態では、物品配置室6内の試験環境の温度が高い場合には、冷媒圧力制御運転を行う。
ここで、要求される冷却・除湿能力が比較的高い場合には、ホットガス導入運転は行われない。
即ちホットガスバイパス回路31の開閉弁35を閉じ、ホットガスバイパス回路31を閉鎖する。
一方、主冷媒配管20の膨張弁バイパス流路17の開閉弁16を閉じて、実質的に図10に示す冷却装置200と同様の冷媒圧力制御運転用の回路を形成させる。
即ち膨張弁バイパス流路17の開閉弁16を閉じると、冷媒は、圧縮機10、凝縮器11、第1膨張弁12、蒸発器13及び第2膨張弁15(下流側絞り手段)によって形成される閉回路を循環することとなり、蒸発器13内における冷媒の蒸発圧力が制御されて蒸発器13の表面温度が制御される。即ち膨張弁バイパス流路17の開閉弁16を閉じることによって、冷媒圧力制御運転が行われる。
In the present embodiment, when the temperature of the test environment in the article placement chamber 6 is high, the refrigerant pressure control operation is performed.
Here, when the required cooling / dehumidifying capacity is relatively high, the hot gas introduction operation is not performed.
That is, the on-off valve 35 of the hot gas bypass circuit 31 is closed and the hot gas bypass circuit 31 is closed.
On the other hand, the on-off valve 16 of the expansion valve bypass passage 17 of the main refrigerant pipe 20 is closed to form a refrigerant pressure control operation circuit substantially similar to the cooling device 200 shown in FIG.
That is, when the on-off valve 16 of the expansion valve bypass passage 17 is closed, the refrigerant is formed by the compressor 10, the condenser 11, the first expansion valve 12, the evaporator 13 and the second expansion valve 15 (downstream side throttle means). Thus, the refrigerant evaporating pressure in the evaporator 13 is controlled, and the surface temperature of the evaporator 13 is controlled. That is, the refrigerant pressure control operation is performed by closing the on-off valve 16 of the expansion valve bypass passage 17.

冷媒圧力制御運転においても、冷却・除湿能力は、圧縮機10の回転数調整と、第1膨張弁12の開度調整によって調整される。
冷媒圧力制御運転においては、冷却・除湿能力に応じて必要な冷媒流量が自動演算され、これに合致する様に圧縮機10の回転数調整と、第1膨張弁12の開度調整が行われる。
また下流側絞り手段15は、前記の通り、蒸発器13の下流側に位置するものであるから、下流側絞り手段15の開度を調整することで、蒸発器13の出口が絞られる。そして蒸発器13に冷媒が注入され続けた状態で下流側絞り手段15の開度を絞ると、蒸発器13内における冷媒の蒸発圧力が上昇し、蒸発器13の表面の温度が上昇する。
Also in the refrigerant pressure control operation, the cooling / dehumidifying capacity is adjusted by adjusting the rotation speed of the compressor 10 and adjusting the opening of the first expansion valve 12.
In the refrigerant pressure control operation, the necessary refrigerant flow rate is automatically calculated according to the cooling / dehumidification capability, and the rotation speed adjustment of the compressor 10 and the opening degree adjustment of the first expansion valve 12 are performed so as to match with this. .
Further, as described above, the downstream side throttle means 15 is located on the downstream side of the evaporator 13, and therefore the outlet of the evaporator 13 is throttled by adjusting the opening degree of the downstream side throttle means 15. And if the opening degree of the downstream side throttling means 15 is throttled while the refrigerant continues to be injected into the evaporator 13, the evaporation pressure of the refrigerant in the evaporator 13 rises and the surface temperature of the evaporator 13 rises.

逆に下流側絞り手段15の開度を開くと、蒸発器13内における冷媒の蒸発圧力が低下し、蒸発器13の表面の温度が低下する。
従って下流側絞り手段15の開度を調節すると、蒸発器13内における冷媒の蒸発圧力が変化し、結果的に蒸発器13の表面温度を変化させることができる。
Conversely, when the opening degree of the downstream side throttling means 15 is opened, the evaporation pressure of the refrigerant in the evaporator 13 decreases, and the surface temperature of the evaporator 13 decreases.
Therefore, when the opening degree of the downstream throttle means 15 is adjusted, the evaporation pressure of the refrigerant in the evaporator 13 changes, and as a result, the surface temperature of the evaporator 13 can be changed.

また本実施形態では、図示しない制御装置によって、冷媒圧力検知手段45からの検知信号によって、蒸発器13の表面温度を演算する機能を備えている。即ち冷媒が蒸発する際の圧力と、蒸発器13の表面温度との間には相関関係があるから、蒸発器13内の圧力を検知することによって蒸発器13の表面温度を演算で求めることができる。
あるいは蒸発器13内における冷媒の蒸発圧力と、蒸発器13の表面温度の関係を予め実験によって求め、この実験データに照らして蒸発器13の表面温度を演算してもよい。
Moreover, in this embodiment, it has the function which calculates the surface temperature of the evaporator 13 with the detection signal from the refrigerant | coolant pressure detection means 45 by the control apparatus which is not shown in figure. That is, since there is a correlation between the pressure at which the refrigerant evaporates and the surface temperature of the evaporator 13, the surface temperature of the evaporator 13 can be calculated by detecting the pressure in the evaporator 13. it can.
Alternatively, the relationship between the evaporation pressure of the refrigerant in the evaporator 13 and the surface temperature of the evaporator 13 may be obtained in advance by experiments, and the surface temperature of the evaporator 13 may be calculated in light of the experimental data.

本実施形態の冷却装置30では、下流側絞り手段15の開度を調節することによって
図11に示すグラフの様に、蒸発器13内の圧力がP2を維持し、蒸発器13の表面温度が一定温度に保たれる。冷却装置30を流れる冷媒の状態は、前記した冷却装置200と同一であり、モリエル線図上に図示すると図11の通りとなる。
In the cooling device 30 of the present embodiment, the pressure in the evaporator 13 is maintained at P2 and the surface temperature of the evaporator 13 is adjusted as shown in the graph of FIG. It is kept at a constant temperature. The state of the refrigerant flowing through the cooling device 30 is the same as that of the cooling device 200 described above, and is as shown in FIG. 11 when illustrated on the Mollier diagram.

物品配置室6内の試験環境の温度が高い場合であって、且つ要求される冷却・除湿能力が比較的小さい場合には、ホットガス導入運転を伴う冷媒圧力制御運転が行われる。
ホットガス導入運転を伴う冷媒圧力制御運転においては、主冷媒配管20上における機器の動作は、前記した冷媒圧力制御運転の場合と同一である。
一方、ホットガスバイパス回路31上の機器については、開閉弁35を開き、ホットガスバイパス回路31を開放する。
その結果、第1膨張弁12の下流側に、ホットガスが流入し、主冷媒配管20上を流れ第1膨張弁12から吐出された冷媒と混合されて蒸発器13に導入される。
When the temperature of the test environment in the article placement chamber 6 is high and the required cooling / dehumidifying capacity is relatively small, a refrigerant pressure control operation involving a hot gas introduction operation is performed.
In the refrigerant pressure control operation involving the hot gas introduction operation, the operation of the equipment on the main refrigerant pipe 20 is the same as that in the above-described refrigerant pressure control operation.
On the other hand, for the devices on the hot gas bypass circuit 31, the on-off valve 35 is opened and the hot gas bypass circuit 31 is opened.
As a result, hot gas flows into the downstream side of the first expansion valve 12, flows on the main refrigerant pipe 20, is mixed with the refrigerant discharged from the first expansion valve 12, and is introduced into the evaporator 13.

そのため第1膨張弁12から吐出される冷媒が少なくとも、ホットガスバイパス回路31から導入される冷媒によって蒸発器13に導入される冷媒が嵩上げされ、蒸発器13内における冷媒は、所定の流速を維持して流れる。
例えば、第1膨張弁12から吐出される冷媒の量をGmとし、ホットガスバイパス回路31から導入される冷媒の量をGpとすると、蒸発器13に導入される冷媒の量Gtは、次の通りである。
Therefore, at least the refrigerant discharged from the first expansion valve 12 is raised by the refrigerant introduced from the hot gas bypass circuit 31, and the refrigerant in the evaporator 13 maintains a predetermined flow rate. Then flow.
For example, if the amount of refrigerant discharged from the first expansion valve 12 is Gm and the amount of refrigerant introduced from the hot gas bypass circuit 31 is Gp, the amount of refrigerant Gt introduced into the evaporator 13 is Street.

Gt=Gm+Gp   Gt = Gm + Gp

前記した様に、冷媒圧力制御運転では、冷却能力は、圧縮機10の回転数調整と、第1膨張弁12の開度調整によって行われる。
具体的には、冷媒圧力制御運転においては、必要な冷媒流量が自動演算され、これに合致する様に圧縮機10の回転数調整と、第1膨張弁12の開度調整が行われる。
そのため要求される冷却・除湿能力が小さい場合には、圧縮機10の回転数が下限に近く、且つ第1膨張弁12の開度も絞られた状態となるため、第1膨張弁12から吐出される冷媒の量は僅かであり、これだけでは、蒸発器13内において、最低限の流速を確保することができない。
しかしながら、本実施形態の冷却装置30では、ホットガスバイパス回路31から導入される冷媒によって蒸発器13に導入される冷媒が嵩上げされるので、蒸発器13内における冷媒は、所定の流速を維持して流れる。そのため潤滑オイルが蒸発器13内で滞留することはない。
As described above, in the refrigerant pressure control operation, the cooling capacity is performed by adjusting the rotation speed of the compressor 10 and adjusting the opening of the first expansion valve 12.
Specifically, in the refrigerant pressure control operation, a necessary refrigerant flow rate is automatically calculated, and the rotational speed adjustment of the compressor 10 and the opening degree adjustment of the first expansion valve 12 are performed so as to match with this.
Therefore, when the required cooling / dehumidifying capacity is small, the rotation speed of the compressor 10 is close to the lower limit, and the opening of the first expansion valve 12 is also throttled. The amount of refrigerant to be applied is very small, and with this alone, the minimum flow rate cannot be secured in the evaporator 13.
However, in the cooling device 30 of the present embodiment, the refrigerant introduced into the evaporator 13 is raised by the refrigerant introduced from the hot gas bypass circuit 31, so that the refrigerant in the evaporator 13 maintains a predetermined flow rate. Flowing. Therefore, the lubricating oil does not stay in the evaporator 13.

またさらに第1膨張弁12から吐出される冷媒が減少すると、蒸発器13内の冷媒が気液混合状態を維持できなくなるが、本実施形態では、第1冷媒温度検知手段(冷媒状態監視手段)40で混合後の冷媒温度を監視することによってこの懸念を払拭している。
以下、この問題点について、図2を参照しつつ説明する。
ホットガス導入運転を伴う冷媒圧力制御運転を行っている際の、冷却装置30内の冷媒の状態をモリエル線図上に表すと、図2の様である。
図2のグラフは、主冷媒配管20を流れる冷媒の状態と、ホットガスバイパス回路31を流れる冷媒の状態を同一の図上に記載したものである。図2は、やや見にくいので、主冷媒配管20を流れる冷媒の状態と、ホットガスバイパス回路31を流れる冷媒の状態を分けて記載すると、図3、図4の通りとなる。
If the refrigerant discharged from the first expansion valve 12 further decreases, the refrigerant in the evaporator 13 cannot maintain the gas-liquid mixed state, but in the present embodiment, the first refrigerant temperature detection means (refrigerant state monitoring means). This concern is eliminated by monitoring the refrigerant temperature after mixing at 40.
Hereinafter, this problem will be described with reference to FIG.
The state of the refrigerant in the cooling device 30 during the refrigerant pressure control operation involving the hot gas introduction operation is represented on the Mollier diagram as shown in FIG.
The graph of FIG. 2 describes the state of the refrigerant flowing through the main refrigerant pipe 20 and the state of the refrigerant flowing through the hot gas bypass circuit 31 on the same diagram. 2 is somewhat difficult to see, and the state of the refrigerant flowing through the main refrigerant pipe 20 and the state of the refrigerant flowing through the hot gas bypass circuit 31 are described separately as shown in FIGS.

主冷媒配管20を流れる冷媒は、圧縮機10から第1膨張弁12の出口までの間については、前記した冷却装置200の場合と同一である。
即ち図3で示す通り、圧縮機10に導入される直前の冷媒の状態は、点A(h5,P1)であり、圧力は低圧であり、比エンタルピは高く、気体である。
これを圧縮機10で圧縮し、圧縮機10から吐出された冷媒の状態は、点B(h7,P3)であり、圧力は高圧であり、比エンタルピはやや高い状態であって気体である。
The refrigerant flowing through the main refrigerant pipe 20 is the same as that of the cooling device 200 described above from the compressor 10 to the outlet of the first expansion valve 12.
That is, as shown in FIG. 3, the state of the refrigerant immediately before being introduced into the compressor 10 is point A (h5, P1), the pressure is low, the specific enthalpy is high, and the gas is gaseous.
The state of the refrigerant compressed by the compressor 10 and discharged from the compressor 10 is point B (h7, P3), the pressure is high, the specific enthalpy is slightly high, and it is a gas.

さらに凝縮器11内で熱を奪われた後の冷媒の状態は、点C(h1,P3)であり、圧力は高圧であり、比エンタルピは低い状態であって液体である。
さらに第1膨張弁12を通過すると、冷媒の圧力は低下するが、冷却装置200では、蒸発器13の下流側に第2膨張弁15(下流側絞り手段)が設けられているから、冷媒の圧力はP1までは低下せず、例えばP2で安定する。即ち冷媒の状態は、点E(h1,P2)であり、圧力は中程度となる。
Further, the state of the refrigerant after the heat is deprived in the condenser 11 is a point C (h1, P3), the pressure is high, the specific enthalpy is low, and the liquid is liquid.
When the refrigerant further passes through the first expansion valve 12, the pressure of the refrigerant decreases. However, in the cooling device 200, the second expansion valve 15 (downstream throttle means) is provided on the downstream side of the evaporator 13. The pressure does not decrease up to P1, but stabilizes at P2, for example. That is, the state of the refrigerant is point E (h1, P2), and the pressure is medium.

一方、ホットガスバイパス回路31を流れる冷媒の状態は、図4の通りである。
即ち圧縮機10に導入される直前の冷媒の状態は、点A(h5,P1)であり、圧力は低圧であり、比エンタルピは高く、気体である。
これを圧縮機10で圧縮し、圧縮機10から吐出された冷媒の状態は、点B(h7,P3)であり、圧力は高圧であり、比エンタルピはやや高い状態であって気体である。
ここで冷媒は、主冷媒配管20から分岐されてホットガスバイパス回路31に流れ込む。冷媒は、ホットガスバイパス回路31で自然放熱され、比エンタルピがやや下がる。しかしながら、ホットガスバイパス回路31は熱交換器を持たないから、比エンタルピの低下は僅かであり、冷媒の状態は、点H(h6,P3)であり、圧力は高圧を維持し、比エンタルピも高い。
On the other hand, the state of the refrigerant flowing through the hot gas bypass circuit 31 is as shown in FIG.
That is, the state of the refrigerant immediately before being introduced into the compressor 10 is point A (h5, P1), the pressure is low, the specific enthalpy is high, and the gas is gaseous.
The state of the refrigerant compressed by the compressor 10 and discharged from the compressor 10 is point B (h7, P3), the pressure is high, the specific enthalpy is slightly high, and it is a gas.
Here, the refrigerant branches from the main refrigerant pipe 20 and flows into the hot gas bypass circuit 31. The refrigerant is naturally radiated by the hot gas bypass circuit 31, and the specific enthalpy is slightly lowered. However, since the hot gas bypass circuit 31 does not have a heat exchanger, the specific enthalpy is slightly reduced, the refrigerant state is the point H (h6, P3), the pressure is kept high, and the specific enthalpy is also low. high.

またホットガスバイパス回路31には、図1の様に絞り37が設けられているから、絞り37から開放された冷媒は、減圧される。絞り37から開放された冷媒の状態は、点I(h6,P2)であり、圧力は中程度であって、比エンタルピは高い状態を維持しており、気体である。   Since the hot gas bypass circuit 31 is provided with a throttle 37 as shown in FIG. 1, the refrigerant released from the throttle 37 is decompressed. The state of the refrigerant released from the throttle 37 is point I (h6, P2), the pressure is medium, the specific enthalpy is kept high, and it is a gas.

図3を参照しつつ主冷媒配管20を流れる冷媒の状態を説明し、図4を参照しつつホットガスバイパス回路31を流れる冷媒の状態を説明したが、実際には、この流れは、同時平行的に行われ、主冷媒配管20を流れる冷媒に、ホットガスバイパス回路31を流れる冷媒が混合される。
簡単に説明すると、図3に示す主冷媒配管20を流れる点E(h1,P2)の冷媒(圧力は中程度であって、比エンタルピが小さい)に、図4に示すホットガスバイパス回路31を流れる点I(h6,P2)の冷媒(圧力が同一であって、比エンタルピが高い)が混合される。
その結果、図5の様に、冷媒の比エンタルピは、強制的に増加し、状態は、点J(h2,P2)に変化する。即ちモリエル線図上において、冷媒の状態を示す点が、比エンタルピが高い側に移動する。
従って、冷媒が保有する冷熱が減少し、冷却能力が下がる。ホットガス導入運転を行った場合の冷却能力Qは次の式で表される。
Although the state of the refrigerant flowing through the main refrigerant pipe 20 has been described with reference to FIG. 3 and the state of the refrigerant flowing through the hot gas bypass circuit 31 has been described with reference to FIG. The refrigerant flowing through the main refrigerant pipe 20 is mixed with the refrigerant flowing through the hot gas bypass circuit 31.
Briefly, the hot gas bypass circuit 31 shown in FIG. 4 is connected to the refrigerant at the point E (h1, P2) flowing through the main refrigerant pipe 20 shown in FIG. 3 (the pressure is medium and the specific enthalpy is small). The refrigerant at the flowing point I (h6, P2) (the pressure is the same and the specific enthalpy is high) is mixed.
As a result, as shown in FIG. 5, the specific enthalpy of the refrigerant is forcibly increased, and the state changes to a point J (h2, P2). That is, on the Mollier diagram, the point indicating the state of the refrigerant moves to the higher specific enthalpy side.
Therefore, the cooling heat possessed by the refrigerant is reduced and the cooling capacity is lowered. The cooling capacity Q when the hot gas introduction operation is performed is expressed by the following equation.

Q=(Gm+Gp)・(h3−h2) Q = (Gm + Gp). (H3-h2)

この様に、ホットガス導入運転を伴う冷媒圧力制御運転では、冷媒が保有する冷熱が減少して冷却能力が下がる作用と、前述したホットガスバイパス回路31から導入される冷媒によって蒸発器13に導入される冷媒が嵩上げされて蒸発器13内における冷媒の流速が増加する作用が相まって、冷却能力が低い状態でも安定して運転することができる。
そのため、本実施形態を採用すると、冷却能力の下限を押し下げることができる。
As described above, in the refrigerant pressure control operation accompanied by the hot gas introduction operation, the cooling heat held by the refrigerant is reduced and the cooling capacity is lowered, and the refrigerant introduced from the hot gas bypass circuit 31 is introduced into the evaporator 13. Combined with the action of increasing the flow rate of the refrigerant to increase the flow rate of the refrigerant in the evaporator 13, it is possible to operate stably even when the cooling capacity is low.
Therefore, when this embodiment is adopted, the lower limit of the cooling capacity can be pushed down.

しかしながら、ホットガスバイパス回路31から導入される冷媒が過度に多い場合や、第1膨張弁12を過度に絞る場合、冷媒の比エンタルピが過度に増大し、図6の様に、冷媒が気相となるエリアに突入したり、それに近い領域に至ってしまう懸念がある。
ここで、冷媒圧力制御運転は、冷媒の蒸発圧力を制御することによって蒸発器13の表面温度を安定化させる運転手段であるから、ホットガスバイパス回路31から導入される冷媒を混合した結果、冷媒が気相となってしまったり、それに近い領域に至ってしまうこととなれば、蒸発器13の表面温度をコントロールすることが不能となってしまう。
However, when the refrigerant introduced from the hot gas bypass circuit 31 is excessively large or when the first expansion valve 12 is excessively throttled, the specific enthalpy of the refrigerant excessively increases, and the refrigerant is in the gas phase as shown in FIG. There is a concern that it will rush into the area where it will be, or it will reach an area close to it.
Here, since the refrigerant pressure control operation is an operation means for stabilizing the surface temperature of the evaporator 13 by controlling the evaporation pressure of the refrigerant, the refrigerant introduced from the hot gas bypass circuit 31 is mixed as a result. If the gas becomes a gas phase or reaches a region close to it, it becomes impossible to control the surface temperature of the evaporator 13.

そこで本実施形態では、この懸念を払拭するために、前記した様に、第1冷媒温度検知手段(冷媒状態監視手段)40で冷媒温度を監視している。
即ち、第1冷媒温度検知手段(冷媒状態監視手段)40で、混合された後の冷媒の温度を測定している。そしてこの温度が一定の温度以上であるならば、冷媒の比エンタルピが高いので、冷媒は気相あるいはこれに近い状態である。そこで、本実施形態では、第1冷媒温度検知手段(冷媒状態監視手段)40で冷媒温度を監視し、蒸発器13内に導入される冷媒が気液混合状態を維持する様に第1膨張弁12の開度の下限が制限されている。
より具体的には、第1冷媒温度検知手段(冷媒状態監視手段)40で冷媒温度を監視し、この検知温度が一定温度以上となるならば、第1膨張弁12の開度を強制的に開く。あるいは、第1膨張弁12の開度を次第に閉じて行く動作を行わしめ、第1冷媒温度検知手段(冷媒状態監視手段)40の検知温度が次第に上昇して一定温度に至ったら、第1膨張弁12の開度を固定してそれ以上、閉じない様に制御する。
Therefore, in this embodiment, in order to eliminate this concern, the refrigerant temperature is monitored by the first refrigerant temperature detection means (refrigerant state monitoring means) 40 as described above.
That is, the first refrigerant temperature detecting means (refrigerant state monitoring means) 40 measures the temperature of the mixed refrigerant. If this temperature is equal to or higher than a certain temperature, the specific enthalpy of the refrigerant is high, so that the refrigerant is in a gas phase or a state close thereto. Therefore, in the present embodiment, the first expansion valve is used so that the refrigerant temperature is monitored by the first refrigerant temperature detecting means (refrigerant state monitoring means) 40 and the refrigerant introduced into the evaporator 13 is maintained in the gas-liquid mixed state. The lower limit of 12 is limited.
More specifically, the refrigerant temperature is monitored by the first refrigerant temperature detecting means (refrigerant state monitoring means) 40, and if the detected temperature exceeds a certain temperature, the opening degree of the first expansion valve 12 is forcibly set. open. Alternatively, when the operation of gradually closing the opening degree of the first expansion valve 12 is performed and the detected temperature of the first refrigerant temperature detecting means (refrigerant state monitoring means) 40 gradually increases and reaches a certain temperature, the first expansion is performed. The opening of the valve 12 is fixed and controlled so as not to close any further.

以上説明した実施形態では、ホットガスバイパス回路31に設けた絞り37として固定式のものを採用したが、開度を変更できるものを採用してもよい。開度を変更できるものを採用する場合には、第1冷媒温度検知手段(冷媒状態監視手段)40で冷媒温度を監視し、この検知温度が一定温度以上となるならば、ホットガスバイパス回路31に設けた絞り37を絞ってホットガスバイパス回路31を流れる冷媒量を制限する構成を採用することもできる。   In the embodiment described above, a fixed type is used as the throttle 37 provided in the hot gas bypass circuit 31. However, a throttle whose degree of opening can be changed may be used. In the case of adopting a device whose opening degree can be changed, the refrigerant temperature is monitored by the first refrigerant temperature detecting means (refrigerant state monitoring means) 40, and if this detected temperature becomes a predetermined temperature or higher, the hot gas bypass circuit 31 is used. It is also possible to employ a configuration in which the amount of refrigerant flowing through the hot gas bypass circuit 31 is limited by restricting the restriction 37 provided in the above.

また上記した実施形態では、主冷媒配管20に、第2膨張弁15(下流側絞り手段)を迂回する膨張弁バイパス流路17を設け、膨張弁バイパス流路17に設けた開閉弁16を開閉することによって通常冷却運転と、冷媒圧力制御運転を切り換える構成を採用した。しかしながら本発明は、この構成に限定されるものではなく、例えば、主冷媒配管20に、第2膨張弁15(下流側絞り手段)だけを設け、この第2膨張弁15(下流側絞り手段)を全開にすることによって通常冷却運転を実施してもよい。   In the above-described embodiment, the main refrigerant pipe 20 is provided with the expansion valve bypass flow path 17 that bypasses the second expansion valve 15 (downstream throttle means), and the open / close valve 16 provided in the expansion valve bypass flow path 17 is opened and closed. By adopting this configuration, a configuration for switching between the normal cooling operation and the refrigerant pressure control operation was adopted. However, the present invention is not limited to this configuration. For example, only the second expansion valve 15 (downstream throttle means) is provided in the main refrigerant pipe 20, and the second expansion valve 15 (downstream throttle means) is provided. The normal cooling operation may be performed by fully opening the.

また上記した実施形態では、第1冷媒温度検知手段40を冷媒状態監視手段としたが、第2冷媒温度検知手段43や、冷媒圧力検知手段45に冷媒状態監視手段の機能を持たせたり、これらを併用して冷媒の状態を監視してもよい。
さらにまた上記した実施形態では、第1冷媒温度検知手段(冷媒状態監視手段)40によって蒸発器13に導入される冷媒の温度を検知し、蒸発器13に導入される冷媒が気液混合相となる様に第1膨張弁12の開度を制限している。即ち単に蒸発器13に導入される冷媒の相を監視しているに過ぎない。
しかしながら本発明は、この構成に限定されるものではなく、蒸発器13の出口に到るまでの間、冷媒が気液混合状態である様に第1膨張弁12等の開度を制御することも推奨される。
例えば、第2冷媒温度検知手段43の検知温度や、冷媒圧力検知手段45の検知圧力を監視することにより、蒸発器13の出口に到るまでの間、冷媒が気液混合状態を維持する様に第1膨張弁12等の開度を制御するものであってもよい。
In the above-described embodiment, the first refrigerant temperature detection means 40 is the refrigerant state monitoring means. However, the second refrigerant temperature detection means 43 and the refrigerant pressure detection means 45 may be provided with the function of the refrigerant state monitoring means. May be used in combination to monitor the state of the refrigerant.
Furthermore, in the above-described embodiment, the temperature of the refrigerant introduced into the evaporator 13 is detected by the first refrigerant temperature detecting means (refrigerant state monitoring means) 40, and the refrigerant introduced into the evaporator 13 is the gas-liquid mixed phase. Thus, the opening degree of the first expansion valve 12 is limited. That is, it merely monitors the phase of the refrigerant introduced into the evaporator 13.
However, the present invention is not limited to this configuration, and the opening degree of the first expansion valve 12 and the like is controlled so that the refrigerant is in a gas-liquid mixed state until reaching the outlet of the evaporator 13. Is also recommended.
For example, by monitoring the detection temperature of the second refrigerant temperature detection means 43 and the detection pressure of the refrigerant pressure detection means 45, the refrigerant is maintained in the gas-liquid mixed state until reaching the outlet of the evaporator 13. Alternatively, the opening degree of the first expansion valve 12 or the like may be controlled.

本発明は、前記した様に蒸発器13の表面温度を制御し、着霜を防止する機能を備えた冷却装置を改良することを目的として開発されたものであるが、本発明は、蒸発器13への結露を少なくする機能を備えた環境制御装置にも応用することができる。
即ち蒸発器13の表面温度を露点近傍に制御して蒸発器13への結露を最小限に抑える構成の環境制御装置が知られており、この構成を備えた環境制御装置に本発明の構成を採用することもできる。
The present invention has been developed for the purpose of improving a cooling device having a function of controlling the surface temperature of the evaporator 13 and preventing frost formation as described above. 13 can also be applied to an environmental control device having a function of reducing the condensation on 13.
That is, there is known an environmental control device configured to control the surface temperature of the evaporator 13 near the dew point to minimize condensation on the evaporator 13, and the configuration of the present invention is applied to the environmental control device having this configuration. It can also be adopted.

次に、本発明の効果を確認するために行った実験について説明する。
図7は、図1に示す環境試験装置1の、蒸発器13内の冷媒の流速と、冷却能力との関係を調査したグラフである。
図7に示した環境試験装置1では、ホットガスバイパス回路31に設けた絞り37として固定式のものを採用した。また絞り37の断面積は、物品配置室6内の目標温度を摂氏20度とし、第1膨張弁12の開度を次第に閉じて行く動作を行わしめ、第1冷媒温度検知手段(冷媒状態監視手段)40の検知温度が次第に上昇して一定温度に至り、第1膨張弁12の開度を固定した場合に、最低限の流速(毎秒3m)を確保することができるものとした。
その結果、ホットガスバイパス回路31を閉じた状態で、冷媒圧力制御運転を行うと、冷却能力の下限が、3569Wであったのに対し、ホットガス導入運転を行った場合には、下限が1130Wとなり、最低能力の下限を大きく引き下げることができた。
Next, an experiment conducted for confirming the effect of the present invention will be described.
FIG. 7 is a graph in which the relationship between the flow rate of the refrigerant in the evaporator 13 and the cooling capacity of the environmental test apparatus 1 shown in FIG. 1 is investigated.
In the environmental test apparatus 1 shown in FIG. 7, a fixed type is adopted as the diaphragm 37 provided in the hot gas bypass circuit 31. The cross-sectional area of the throttle 37 is such that the target temperature in the article placement chamber 6 is set to 20 degrees Celsius, and the opening of the first expansion valve 12 is gradually closed to perform first refrigerant temperature detection means (refrigerant state monitoring). Means) When the detected temperature of 40 gradually rises to a constant temperature and the opening of the first expansion valve 12 is fixed, a minimum flow rate (3 m / sec) can be secured.
As a result, when the refrigerant pressure control operation is performed with the hot gas bypass circuit 31 closed, the lower limit of the cooling capacity is 3569 W, whereas when the hot gas introduction operation is performed, the lower limit is 1130 W. It was possible to greatly lower the lower limit of the minimum ability.

上記した実施形態では、運転方法として、通常冷却運転と、ホットガス導入運転を伴う冷媒圧力制御運転と、ホットガス導入運転を伴わない冷媒圧力制御運転の3種類が実施可能である。
三者の使い分けは、予め運転方式を決定しておいて固定し、環境試験の最中には変更しないこととしてもよいが、状況に応じて自動的に切り替わる構成を採用することも可能である。
In the embodiment described above, three types of operation methods can be implemented: normal cooling operation, refrigerant pressure control operation with hot gas introduction operation, and refrigerant pressure control operation without hot gas introduction operation.
For the proper use of the three parties, it is possible to determine and fix the driving method in advance and not to change it during the environmental test, but it is also possible to adopt a configuration that automatically switches according to the situation. .

ここでホットガス導入運転を伴わない冷媒圧力制御運転からホットガス導入運転を伴う冷媒圧力制御運転に切り換える場合や、その逆の場合には、発生冷熱量の急激な変化を避けるために、一旦、第1膨張弁の開度を変化させておくことが望ましい。   Here, when switching from the refrigerant pressure control operation without the hot gas introduction operation to the refrigerant pressure control operation with the hot gas introduction operation, or vice versa, in order to avoid a sudden change in the amount of generated heat, It is desirable to change the opening of the first expansion valve.

1 環境試験装置(環境制御装置)
6 物品配置室
10 圧縮機
11 凝縮器
12 第1膨張弁
13 蒸発器
15 第2膨張弁(下流側絞り手段)
16 開閉弁
17 膨張弁バイパス流路
20 主冷媒配管
30 冷却装置
31 ホットガスバイパス回路
35 開閉弁
37 絞り
40 第1冷媒温度検知手段(冷媒状態監視手段)
43 第2冷媒温度検知手段
45 冷媒圧力検知手段
1 Environmental test equipment (environment control equipment)
6 article placement chamber 10 compressor 11 condenser 12 first expansion valve 13 evaporator 15 second expansion valve (downstream side throttle means)
16 On-off valve 17 Expansion valve bypass flow path 20 Main refrigerant pipe 30 Cooling device 31 Hot gas bypass circuit 35 On-off valve 37 Restriction 40 First refrigerant temperature detection means (refrigerant state monitoring means)
43 Second refrigerant temperature detecting means 45 Refrigerant pressure detecting means

Claims (7)

物品配置室、冷却装置、加熱装置、及び室内温度検知手段を備え、室内温度検知手段によって物品配置室の温度を監視し、冷却装置及び加熱装置を制御することで、物品配置室内を目標温に制御することが可能な環境試験装置において、
前記冷却装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とが環状に接続され、冷却装置の内部に相変化する冷媒が充填されていて一連の冷凍サイクルを実現するものであり、
前記冷却装置には、圧縮機から吐出された冷媒ガスを膨張手段の下流側に導入するホットガスバイパス回路と、蒸発器と圧縮機の間に設けられ開度を変更可能な下流側絞り手段と、蒸発器内に導入される冷媒が気液混合状態であることを監視する冷媒状態監視手段を備え、冷媒状態監視手段は冷媒温度検知手段を有し、
前記冷却装置は、下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御して蒸発器の温度を制御する冷媒圧力制御運転と、下流側絞り手段の開度調整によらずに運転する通常冷却運転とを行うことが可能であり、
一定条件下で冷媒圧力制御運転を実行する際にホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスを膨張手段から吐出された冷媒に混合して蒸発器に導入するホットガス導入運転が行われ、
ホットガス導入運転に際しては、通常の冷媒圧力制御運転と同様に下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御しつつ前記冷媒状態監視手段によって冷媒温度を監視し、
蒸発器内における冷媒の蒸発圧力が制御されている条件下において気液混合状態であれば冷媒の蒸発圧力によって一義的に決まる冷媒温度があり、
冷媒の温度が気相又はこれに近い状態の温度であることを前記冷媒状態監視手段が検知すると、
蒸発器内に導入される冷媒が蒸発器内で気液混合状態を維持する様に膨張手段の開度を開き、蒸発器内に導入される冷媒を蒸発器内で気液混合状態に維持しつつ安定してホットガス導入運転を実施することができることを特徴とする環境試験装置。
Article placement chamber, a cooling device, a heating device, and having an indoor temperature detector, the temperature of the article disposed chamber is monitored by the indoor temperature detecting means, by controlling the cooling and heating apparatus, the target chamber temperature of the article placement chamber In an environmental test apparatus that can be controlled to
In the cooling device, a compressor, a condenser, an expansion means, and an evaporator are connected in an annular shape, and a phase-change refrigerant is filled inside the cooling device to realize a series of refrigeration cycles. ,
The cooling device includes a hot gas bypass circuit that introduces refrigerant gas discharged from the compressor to the downstream side of the expansion means, and a downstream throttle means that is provided between the evaporator and the compressor and that can change the opening degree. The refrigerant state monitoring means for monitoring that the refrigerant introduced into the evaporator is in a gas-liquid mixed state, the refrigerant state monitoring means has a refrigerant temperature detection means,
The cooling device controls the opening of the downstream throttle means to control the refrigerant pressure in the evaporator to control the temperature of the evaporator by controlling the refrigerant evaporation pressure in the evaporator, and to adjust the opening of the downstream throttle means. It is possible to perform normal cooling operation that operates without depending on,
Hot gas introduction operation in which refrigerant gas discharged from the compressor via the hot gas bypass circuit is mixed with refrigerant discharged from the expansion means and introduced into the evaporator when performing refrigerant pressure control operation under a certain condition Is done,
During the hot gas introduction operation, the refrigerant temperature monitoring means monitors the refrigerant temperature while controlling the opening of the downstream throttle means to control the evaporation pressure of the refrigerant in the evaporator as in the normal refrigerant pressure control operation. ,
There is a refrigerant temperature that is uniquely determined by the evaporation pressure of the refrigerant if it is in a gas-liquid mixed state under the condition where the evaporation pressure of the refrigerant in the evaporator is controlled,
When the refrigerant state monitoring means detects that the temperature of the refrigerant is a temperature in a gas phase or a state close thereto,
The opening of the expansion means is opened so that the refrigerant introduced into the evaporator maintains the gas-liquid mixed state in the evaporator, and the refrigerant introduced into the evaporator is maintained in the gas-liquid mixed state in the evaporator. An environmental test apparatus characterized by being capable of carrying out hot gas introduction operation stably.
物品配置室、冷却装置、加熱装置、及び室内温度検知手段を備え、室内温度検知手段によって物品配置室の温度を監視し、冷却装置及び加熱装置を制御することで、物品配置室内を目標室温に制御することが可能な環境試験装置において、An article placement chamber, a cooling device, a heating device, and an indoor temperature detection means are provided. The temperature of the article placement chamber is monitored by the indoor temperature detection means, and the cooling device and the heating device are controlled to bring the article placement chamber to the target room temperature. In environmental test equipment that can be controlled,
前記冷却装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とが環状に接続され、冷却装置の内部に相変化する冷媒が充填されていて一連の冷凍サイクルを実現するものであり、In the cooling device, a compressor, a condenser, an expansion means, and an evaporator are connected in an annular shape, and a phase-change refrigerant is filled inside the cooling device to realize a series of refrigeration cycles. ,
前記冷却装置には、圧縮機から吐出された冷媒ガスを膨張手段の下流側に導入するホットガスバイパス回路と、蒸発器と圧縮機の間に設けられ開度を変更可能な下流側絞り手段と、蒸発器内に導入される冷媒が気液混合状態であることを監視する冷媒状態監視手段を備え、冷媒状態監視手段は冷媒温度検知手段を有し、The cooling device includes a hot gas bypass circuit that introduces refrigerant gas discharged from the compressor to the downstream side of the expansion means, and a downstream throttle means that is provided between the evaporator and the compressor and that can change the opening degree. The refrigerant state monitoring means for monitoring that the refrigerant introduced into the evaporator is in a gas-liquid mixed state, the refrigerant state monitoring means has a refrigerant temperature detection means,
前記冷却装置は、下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御して蒸発器の温度を制御する冷媒圧力制御運転と、下流側絞り手段の開度調整によらずに運転する通常冷却運転とを行うことが可能であり、The cooling device controls the opening of the downstream throttle means to control the refrigerant pressure in the evaporator to control the temperature of the evaporator by controlling the refrigerant evaporation pressure in the evaporator, and to adjust the opening of the downstream throttle means. It is possible to perform normal cooling operation that operates without depending on,
一定条件下で冷媒圧力制御運転を実行する際にホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスを膨張手段から吐出された冷媒に混合して蒸発器に導入するホットガス導入運転が行われ、Hot gas introduction operation in which refrigerant gas discharged from the compressor via the hot gas bypass circuit is mixed with refrigerant discharged from the expansion means and introduced into the evaporator when performing refrigerant pressure control operation under a certain condition Is done,
ホットガス導入運転に際しては、通常の冷媒圧力制御運転と同様に下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御しつつ前記冷媒状態監視手段によって冷媒温度を監視し、During the hot gas introduction operation, the refrigerant temperature monitoring means monitors the refrigerant temperature while controlling the opening of the downstream throttle means to control the evaporation pressure of the refrigerant in the evaporator as in the normal refrigerant pressure control operation. ,
蒸発器内における冷媒の蒸発圧力が制御されている条件下において気液混合状態であれば冷媒の蒸発圧力によって一義的に決まる冷媒温度があり、There is a refrigerant temperature that is uniquely determined by the evaporation pressure of the refrigerant if it is in a gas-liquid mixed state under the condition where the evaporation pressure of the refrigerant in the evaporator is controlled,
冷媒の温度が気相又はこれに近い状態の温度であることを前記冷媒状態監視手段が検知すると、When the refrigerant state monitoring means detects that the temperature of the refrigerant is a temperature in a gas phase or a state close thereto,
蒸発器内に導入される冷媒が蒸発器内で気液混合状態を維持する様に膨張手段の開度を制御し、蒸発器内に導入される冷媒を蒸発器内で気液混合状態に維持しつつ安定してホットガス導入運転を実施することができることを特徴とする環境試験装置。The opening of the expansion means is controlled so that the refrigerant introduced into the evaporator maintains the gas-liquid mixed state in the evaporator, and the refrigerant introduced into the evaporator is maintained in the gas-liquid mixed state in the evaporator. An environmental test apparatus characterized in that the hot gas introduction operation can be carried out stably.
物品配置室、冷却装置、加熱装置、及び室内温度検知手段を備え、室内温度検知手段によって物品配置室の温度を監視し、冷却装置及び加熱装置を制御することで、物品配置室内を目標室温に制御することが可能な環境試験装置において、An article placement chamber, a cooling device, a heating device, and an indoor temperature detection means are provided. The temperature of the article placement chamber is monitored by the indoor temperature detection means, and the cooling device and the heating device are controlled to bring the article placement chamber to the target room temperature. In environmental test equipment that can be controlled,
前記冷却装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とが環状に接続され、冷却装置の内部に相変化する冷媒が充填されていて一連の冷凍サイクルを実現するものであり、In the cooling device, a compressor, a condenser, an expansion means, and an evaporator are connected in an annular shape, and a phase-change refrigerant is filled inside the cooling device to realize a series of refrigeration cycles. ,
前記冷却装置には、圧縮機から吐出された冷媒ガスを膨張手段の下流側に導入するホットガスバイパス回路と、蒸発器と圧縮機の間に設けられ開度を変更可能な下流側絞り手段と、蒸発器内に導入される冷媒が気液混合状態であることを監視する冷媒状態監視手段を備え、冷媒状態監視手段は冷媒温度検知手段を有し、The cooling device includes a hot gas bypass circuit that introduces refrigerant gas discharged from the compressor to the downstream side of the expansion means, and a downstream throttle means that is provided between the evaporator and the compressor and that can change the opening degree. The refrigerant state monitoring means for monitoring that the refrigerant introduced into the evaporator is in a gas-liquid mixed state, the refrigerant state monitoring means has a refrigerant temperature detection means,
前記冷却装置は、下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御して蒸発器の温度を制御する冷媒圧力制御運転と、下流側絞り手段の開度調整によらずに運転する通常冷却運転とを行うことが可能であり、The cooling device controls the opening of the downstream throttle means to control the refrigerant pressure in the evaporator to control the temperature of the evaporator by controlling the refrigerant evaporation pressure in the evaporator, and to adjust the opening of the downstream throttle means. It is possible to perform normal cooling operation that operates without depending on,
一定条件下で冷媒圧力制御運転を実行する際にホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスを膨張手段から吐出された冷媒に混合して蒸発器に導入するホットガス導入運転が行われ、Hot gas introduction operation in which refrigerant gas discharged from the compressor via the hot gas bypass circuit is mixed with refrigerant discharged from the expansion means and introduced into the evaporator when performing refrigerant pressure control operation under a certain condition Is done,
ホットガス導入運転に際しては、通常の冷媒圧力制御運転と同様に下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御しつつ前記冷媒状態監視手段によって冷媒温度を監視し、During the hot gas introduction operation, the refrigerant temperature monitoring means monitors the refrigerant temperature while controlling the opening of the downstream throttle means to control the evaporation pressure of the refrigerant in the evaporator as in the normal refrigerant pressure control operation. ,
蒸発器内における冷媒の蒸発圧力が制御されている条件下において気液混合状態であれば冷媒の蒸発圧力によって一義的に決まる冷媒温度があり、There is a refrigerant temperature that is uniquely determined by the evaporation pressure of the refrigerant if it is in a gas-liquid mixed state under the condition where the evaporation pressure of the refrigerant in the evaporator is controlled,
冷媒の温度が気相又はこれに近い状態の温度であることを前記冷媒状態監視手段が検知すると、When the refrigerant state monitoring means detects that the temperature of the refrigerant is a temperature in a gas phase or a state close thereto,
蒸発器内に導入される冷媒が蒸発器内で気液混合状態を維持する様にホットガスバイパス回路を流れる冷媒の量を制限し、蒸発器内に導入される冷媒を蒸発器内で気液混合状態に維持しつつ安定してホットガス導入運転を実施することができることを特徴とする環境試験装置。The amount of refrigerant flowing through the hot gas bypass circuit is limited so that the refrigerant introduced into the evaporator maintains a gas-liquid mixed state in the evaporator, and the refrigerant introduced into the evaporator is An environmental test apparatus characterized in that a hot gas introduction operation can be stably performed while maintaining a mixed state.
冷媒状態監視手段はホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスと、膨張手段から吐出された冷媒との混合冷媒の温度を検知するものであり、冷媒温度検知手段の検知温度が前記冷媒の蒸発圧力によって一義的に決まる冷媒温度を超えない様に膨張手段を流れる冷媒の量又はホットガスバイパス回路を流れる冷媒の量の少なくともいずれかを増減すること特徴とする請求項1乃至3のいずれかに記載の環境試験装置。 Refrigerant state monitoring means serves to detect the refrigerant gas discharged from the compressor via the hot gas bypass circuit, the temperature of the mixed refrigerant of the refrigerant discharged from the expansion unit, the detection of the refrigerant temperature detecting means claims temperature characterized by increasing or decreasing at least one of the amount of the refrigerant flowing amount or hot gas bypass circuit of the refrigerant flowing through the expansion means so as not to exceed the refrigerant temperature uniquely determined by the evaporation pressure of the refrigerant The environmental test apparatus according to any one of 1 to 3 . 物品配置室、冷却装置、加熱装置、及び室内温度検知手段を備え、室内温度検知手段によって物品配置室の温度を監視し、冷却装置及び加熱装置を制御することで、物品配置室内を目標室温に制御することが可能な環境試験装置において、An article placement chamber, a cooling device, a heating device, and a room temperature detection means are provided. In environmental test equipment that can be controlled,
前記冷却装置は、圧縮機と、凝縮器と、膨張手段と、蒸発器とが環状に接続され、冷却装置の内部に相変化する冷媒が充填されていて一連の冷凍サイクルを実現するものであり、In the cooling device, a compressor, a condenser, an expansion means, and an evaporator are connected in an annular shape, and a phase-change refrigerant is filled inside the cooling device to realize a series of refrigeration cycles. ,
前記冷却装置には、圧縮機から吐出された冷媒ガスを膨張手段の下流側に導入するホットガスバイパス回路と、蒸発器と圧縮機の間に設けられ開度を変更可能な下流側絞り手段と、蒸発器内に導入される冷媒が気液混合状態であることを監視する冷媒状態監視手段を備え、冷媒状態監視手段は蒸発器の下流側に設けられた冷媒温度検知手段を有し、The cooling device includes a hot gas bypass circuit that introduces refrigerant gas discharged from the compressor to the downstream side of the expansion means, and a downstream throttle means that is provided between the evaporator and the compressor and that can change the opening degree. The refrigerant state monitoring means for monitoring that the refrigerant introduced into the evaporator is in a gas-liquid mixed state, the refrigerant state monitoring means has a refrigerant temperature detection means provided on the downstream side of the evaporator,
前記冷却装置は、下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御して蒸発器の温度を制御する冷媒圧力制御運転と、下流側絞り手段の開度調整によらずに運転する通常冷却運転とを行うことが可能であり、The cooling device controls the opening of the downstream throttle means to control the refrigerant pressure in the evaporator to control the temperature of the evaporator by controlling the refrigerant evaporation pressure in the evaporator, and to adjust the opening of the downstream throttle means. It is possible to perform normal cooling operation that operates without depending on,
一定条件下で冷媒圧力制御運転を実行する際にホットガスバイパス回路を経由して圧縮機から吐出された冷媒ガスを膨張手段から吐出された冷媒に混合して蒸発器に導入するホットガス導入運転が行われ、Hot gas introduction operation in which refrigerant gas discharged from the compressor via the hot gas bypass circuit is mixed with refrigerant discharged from the expansion means and introduced into the evaporator when performing refrigerant pressure control operation under a certain condition Is done,
ホットガス導入運転に際しては、通常の冷媒圧力制御運転と同様に下流側絞り手段の開度を制御して蒸発器内における冷媒の蒸発圧力を制御しつつ前記冷媒状態監視手段によって冷媒温度を監視し、During the hot gas introduction operation, the refrigerant temperature monitoring means monitors the refrigerant temperature while controlling the opening of the downstream throttle means to control the evaporation pressure of the refrigerant in the evaporator as in the normal refrigerant pressure control operation. ,
蒸発器内における冷媒の蒸発圧力が制御されている条件下において気液混合状態であれば冷媒の蒸発圧力によって一義的に決まる冷媒温度があり、There is a refrigerant temperature that is uniquely determined by the evaporation pressure of the refrigerant if it is in a gas-liquid mixed state under the condition where the evaporation pressure of the refrigerant in the evaporator is controlled,
冷媒の温度が気相又はこれに近い状態の温度であることを前記冷媒状態監視手段が検知すると、When the refrigerant state monitoring means detects that the temperature of the refrigerant is a temperature in a gas phase or a state close thereto,
蒸発器内に導入される冷媒が蒸発器内で気液混合状態を維持する様に膨張手段の開度を制御し、又はホットガスバイパス回路を流れる冷媒の量を制限し、蒸発器内に導入される冷媒を蒸発器内で気液混合状態に維持しつつ安定してホットガス導入運転を実施することができることを特徴とする環境試験装置。The opening of the expansion means is controlled so that the refrigerant introduced into the evaporator maintains a gas-liquid mixed state in the evaporator, or the amount of refrigerant flowing through the hot gas bypass circuit is limited and introduced into the evaporator. An environmental test apparatus characterized in that a hot gas introduction operation can be stably performed while maintaining the refrigerant to be mixed in a gas-liquid mixed state in the evaporator.
必要な冷熱量が少ない状況で冷媒圧力制御運転を行う場合にホットガス導入運転がなされ、必要な冷熱量が多い場合にはホットガス導入運転はなされないことを特徴とする請求項1乃至5のいずれかに記載の環境試験装置。 6. The hot gas introduction operation is performed when the refrigerant pressure control operation is performed in a state where the necessary amount of cold heat is small, and the hot gas introduction operation is not performed when the necessary amount of cold heat is large . The environmental test apparatus in any one . ホットガス導入運転を行わずに冷媒圧力制御運転を行っている状況からホットガス導入運転を実施する際、膨張手段を流れる冷媒の量が変更されることを特徴とする請求項1乃至のいずれかに記載の環境試験装置。 In practicing the hot gas introduced into operation from the situation that is performed refrigerant pressure controlled operation without the hot gas introducing operation, any of claims 1 to 6, characterized in that the amount of the refrigerant flowing through the expansion means is changed The environmental test apparatus according to the above.
JP2012160624A 2012-07-19 2012-07-19 Environmental test equipment Active JP6062172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012160624A JP6062172B2 (en) 2012-07-19 2012-07-19 Environmental test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012160624A JP6062172B2 (en) 2012-07-19 2012-07-19 Environmental test equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016132731A Division JP6258416B2 (en) 2016-07-04 2016-07-04 Environmental test equipment

Publications (2)

Publication Number Publication Date
JP2014020688A JP2014020688A (en) 2014-02-03
JP6062172B2 true JP6062172B2 (en) 2017-01-18

Family

ID=50195778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012160624A Active JP6062172B2 (en) 2012-07-19 2012-07-19 Environmental test equipment

Country Status (1)

Country Link
JP (1) JP6062172B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188755A (en) * 2016-07-04 2016-11-04 エスペック株式会社 Environment control device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721875B1 (en) 2014-02-24 2015-05-20 伸和コントロールズ株式会社 Chiller device
JP6359440B2 (en) * 2014-12-15 2018-07-18 富士医科産業株式会社 Artificial environment control room for sports science
JP6536061B2 (en) * 2015-02-09 2019-07-03 富士電機株式会社 Cooling system
CN109162967B (en) * 2018-11-06 2024-01-02 珠海格力电器股份有限公司 Bearing cooling device, compressor, and bearing cooling control method
JP6762624B1 (en) * 2019-03-14 2020-09-30 株式会社光商事 Heat pump for refrigeration equipment, liquid quick freezing device using this
WO2020183443A1 (en) * 2019-03-14 2020-09-17 株式会社マッシュアップ Heat pump for refrigeration equipment, rapid liquid freezing device, pressure regulation and bypass control unit, and refrigeration system
JP2020063905A (en) * 2020-02-03 2020-04-23 伸和コントロールズ株式会社 Temperature control device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231174A (en) * 1987-03-20 1988-09-27 日本軽金属株式会社 Constant-temperature cooling device
JP2651328B2 (en) * 1992-09-16 1997-09-10 タバイエスペック株式会社 Method and apparatus for controlling hot gas bypass circuit of refrigeration circuit
JP3046744B2 (en) * 1995-04-04 2000-05-29 タバイエスペック株式会社 Safe frost-free refrigeration system
JPH11182946A (en) * 1997-12-18 1999-07-06 Topre Corp Refrigerating device
JP3576866B2 (en) * 1999-05-10 2004-10-13 株式会社テージーケー Refrigeration cycle with bypass line for vehicles
US6711906B2 (en) * 2001-04-20 2004-03-30 Hankison International Variable evaporator control for a gas dryer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016188755A (en) * 2016-07-04 2016-11-04 エスペック株式会社 Environment control device

Also Published As

Publication number Publication date
JP2014020688A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
JP6062172B2 (en) Environmental test equipment
WO2015093235A1 (en) Sublimation defrost system for refrigeration devices and sublimation defrost method
JP5514787B2 (en) Environmental test equipment
KR101942526B1 (en) Refrigerator
US20100023166A1 (en) Free-cooling limitation control for air conditioning systems
US10107537B2 (en) Air-conditioning apparatus
JP4795709B2 (en) Constant temperature and humidity device
WO2005052467A1 (en) Freezer and air contitioner
JP2016136082A (en) Cooling system
JP2007139244A (en) Refrigeration device
JP2008121982A (en) Refrigerating cycle device
CN107490090A (en) Air conditioner
CN105716161A (en) Phase change energy storage tank used in air-conditioner and air-conditioner control system and method
KR20130116360A (en) Binary refrigeration cycle device
JP2007232265A (en) Refrigeration unit
WO2018158886A1 (en) Refrigeration cycle device
JP2018077167A (en) Environmental test device and air conditioner
JP6258416B2 (en) Environmental test equipment
JP2009198050A (en) Precision air conditioner
JP2008096072A (en) Refrigerating cycle device
JP5629366B2 (en) Air conditioner, operation control method of air conditioner, and cooling system
JP5504211B2 (en) ENVIRONMENT CONTROL DEVICE AND ENVIRONMENT CONTROL METHOD
JP2016188755A5 (en)
WO2019008742A1 (en) Refrigeration cycle device
JP3661014B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150615

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6062172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250