TWI266659B - Warm rolling method - Google Patents

Warm rolling method Download PDF

Info

Publication number
TWI266659B
TWI266659B TW093114215A TW93114215A TWI266659B TW I266659 B TWI266659 B TW I266659B TW 093114215 A TW093114215 A TW 093114215A TW 93114215 A TW93114215 A TW 93114215A TW I266659 B TWI266659 B TW I266659B
Authority
TW
Taiwan
Prior art keywords
rolling
calendering
warm
shape
section
Prior art date
Application number
TW093114215A
Other languages
Chinese (zh)
Other versions
TW200510084A (en
Inventor
Shiro Torizuka
Eijiro Muramatsu
Tadanobu Inoue
Kotobu Nagai
Original Assignee
Nat Inst For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Inst For Materials Science filed Critical Nat Inst For Materials Science
Publication of TW200510084A publication Critical patent/TW200510084A/en
Application granted granted Critical
Publication of TWI266659B publication Critical patent/TWI266659B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/18Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a continuous process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0231Warm rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Metal Rolling (AREA)

Abstract

A warm rolling method for making ultra-fine grain steel with an ultra-fine crystal grain structure having an average particle size under 3 mum, wherein the rolling process by an oval-shaped caliber and a caliber with other shape is performed at least once while conducting 2 or more passes of rolling upon steel under a rolling temperature range of 350 to 800 DEG C. As a result, a novel warm multi-directional rolling method that can introduce huge distortion into the material with relatively less reduction of area or the number of pass is provided by a simpler means and a steel that has an ultra-fine crystal grain structure thereby can be made with excellent strength and ductility.

Description

1266659 九、發明說明: [發明所屬之技術領域] 本申請案的發明乃關於用於製造出具備粒徑在 以下的超微細結晶粒組織,並具有優異的強度及延展 超微細粒鋼材的新的溫熱壓延方法。 1 ^ [先前技術] 超微細粒鋼在未添加合金元素的情況下,可挺 升=度並同時降低延展性.脆性轉變溫度,因此本申^ ::發二者乃為了達到於工業上可實現超微細粒鋼;探 时,因而發明了溫埶多次乎盍f 丁才木 (文獻2)的方法。袞軋(文獻υ方法及多方向加工 當然’若溫熱多方向加工屢延極為容易的話,則 廣泛的使用超微細粒鋼,然而,在本發明者 中發現’溫熱多方向加工壓延並不容易進行。°、k-虽 如此說明是因為,就技術上的困難度之 -定以上的應變導入於材料當中。例如, =輕 至2. 3,較理想為大約3,作 ’丨心义”、、.5丨 1-疋在應變為3的情況下,齡二 收縮率相當於95%,因而必須進 下断面 相而π d 士 肩運订大型的變形加工。若县 :、要付到直徑10mm的圓棒來做為最終製品的 須從直徑45mm來進行溫埶加 、J必 靡度區域當中導入該較大的應變,必須使的 此外’亦存在著必須增加滚乾次數的問題。’、 因此’若是可以在較少的斷面收 將較大的應變導人於材料中 A Μ㈣-人數之下 柯科中,則愈可容易獲得超微細組 5 315818(修正版) 1266659 織,就工業用途來看,乃具提升塵延效率 1 =請案的發明者們當中,關於多方向=到目 二獻2如藉由鐵站來進行從多方向來屋縮的方、、Γ (文獻2),及2方向壓下壓延技術。铁 法 然是導入較大應變的有效率的方法 °二雖 進行加工者,就技術上有1的困難度。 方向來 文獻1:日本特開2000_3〇9δ5〇 文獻2 :日本特開2〇〇1_24〇912 因此,本申請案的發日Μ 曰:,發明她據到目前為止的探討所得到的=力= ^展’:猎由更簡便的方法,亦即提供了一種可在二 = 及通:次數之下將較大的應變導入於材料中之 “^、、、^方向壓延方法’並提供具1^依據此方法的超後 ^曰曰粒組織之具有優良的強度及延展性的鋼材的製造方 [發明内容] -接ί申請案的發明乃用於解決上述課題者,第卜提供 走”“皿熱壓延方法,乃用於製造具有平均粒徑3μιη以下的 晶粒組織的超微細粒鋼材,特徵為於壓延温度範 溫度區域之間’對鋼材進行2次以上 他=之際,進行至少i次以上的物的孔模壓延及其 孔模壓延,其中,包含於扁摘孔模當中,使壓延 ^材料的最大短軸長為扁橢壓延前的原料對邊長的75 〇以下的壓延製程,第2,提供—種溫熱壓延方法,特徵為 315818(修正版) 6 l266659 於進行扁橢形的孔模壓延之後, 壓延。 镬者進订其他形狀的孔模 此外,關於上述方法,第3,妲糾仏、 特徵f其他形狀的孔模為方形、圓形的一形:熱塵延方法’ 第4 ’提供上述第1或第2之、、设 於全卹从、存土 之/皿熱堡延方法,特徵為 、王口Ρ的滾軋次數Ν當中,Ν> 降· 壓延的次數為2- 欠以上,田士达 進仃扁橢形的孔模 述第Η ί : 她以下,第5,提供上 4乐1或弟2之溫熱壓延方法,转 第乃次知欲為連績進行2次滚軋, 罘6獒供一種溫熱壓延方法, ψ η ^ 知欲為於孔核形狀為扁橢 $及方形的2次滾軋當中,從眉 的I w古 攸原枓開始至方形孔模壓延後 為職上’第7,提供-種溫熱厂堅延方法, 於^ ㈣為扁卿及方形的2次滾乾的、组合中, 軋::2次滾乳之斷面收縮率為4〇%以上,於組合3次滾 軋之畊面收縮率為6〇%以上。 此:’關於本申請案的發明’第8,提供上述第ι或 弟Z之溫熱Μ延方法,特料炎杜7* , 0/λα 、 知政為使至少於材料内部的50體積▲ X的區域中引進塑性變形^ 5 ^ i -種溫熱壓延方法,特徵為#$/|、’ #供"^任何 、、、吏至夕於材料内部的90體積% 的區域中引進塑性應變2以上,篦 、 上弟1 〇,棱供一種溫熱壓延 方法,特徵為下列第(式餅主_ ^广 式所表不的壓延條件參數2為n 1上(壓延前的組織為肥粒鐵(Ferrite)、變軔鐵 (Baimte)、麻田散鐵(Martensite)、波來鐵(pe 仙1266659 IX. EMBODIMENT OF THE INVENTION [Technical Field of the Invention] The invention of the present application relates to a new method for producing an ultrafine crystal grain structure having an ultrafine grain size and having excellent strength and elongation. Warm calendering method. 1 ^ [Prior Art] Ultrafine grain steel can be lifted = degree while reducing the ductility and brittle transition temperature without adding alloying elements. Therefore, the two are intended to be industrially Realizing ultra-fine grain steel; when exploring time, it invented the method of Wenyu many times 丁f Ding Caimu (Document 2). Rolling (documentation method and multi-directional processing of course) If the multi-directional processing is extremely easy, the ultrafine grain steel is widely used. However, in the present inventors, it has been found that 'warm multi-directional processing and rolling is not It is easy to carry out. °, k- is explained because it is technically difficult to set the above strain into the material. For example, = light to 2.3, more ideally about 3, as '丨心义",, .5丨1-疋 In the case of a strain of 3, the age two shrinkage rate is equivalent to 95%, so it is necessary to enter the lower section phase and π d shoulder to transport a large deformation processing. If the county: To the round bar with a diameter of 10mm as the final product, it is necessary to introduce the large strain from the diameter of 45mm, and the larger strain must be introduced into the J-receiving area, and there must be a problem that the number of drying must be increased. ', Therefore' If it is possible to introduce a larger strain in a smaller section and lead the material in the material A Μ (4) - the number of under the Keke, the easier to obtain the ultra-fine group 5 315818 (revised edition) 1266659 weaving As far as industrial use is concerned, it is to enhance the dust delay Efficiency 1 = Among the inventors of the case, the multi-directional = to the second two, such as the iron station to carry out the contraction from multiple directions, Γ (Document 2), and the 2-direction rolling calendering technology Iron method is an efficient method to introduce large strains. Although the processor is processed, there is a technical difficulty. Directions Document 1: Japan Special Open 2000_3〇9δ5〇 Document 2: Japan Special 2 1_24〇912 Therefore, the issue of this application 曰 ,:, invented her according to the discussion so far = force = ^ exhibition': hunting by a simpler method, that is, providing a kind of Pass: The "^,,, ^ direction rolling method" that introduces a large strain into the material under the number of times and provides excellent strength and ductility of the super-after-grain structure according to this method. Manufacture of steel materials [Summary of the Invention] - The invention of the application of the application of the invention is for solving the above problems, and the method of the "hot-rolling method" is used for the production of a grain structure having an average particle diameter of 3 μm or less. Ultrafine grained steel, characterized by a 'steel' between the rolling temperature range When performing more than 2 times, the hole mold rolling and the hole die rolling of the material are performed at least i times or more, and are included in the flat hole hole mold, so that the maximum short axis length of the rolled material is flat elliptic before rolling The raw material is rolled to a side length of 75 〇 or less, and the second is provided with a warm calendering method, characterized by 315818 (revision) 6 l266659, after calendering of the flat ellipsoid, calendering. Other shapes of the hole die Further, with respect to the above method, the third, 妲 仏, 特征 f other shapes of the hole die are square, circular one shape: hot dust extension method '4' provides the above first or second , set in the whole-sales, save the soil / dish hot fortification method, characterized by, the number of rolling of Wangkou Ν Ν, Ν > drop · calendering times 2 - owe above, Tian Shida into the flat oval The hole model Η ί : She follows, the fifth, provides the warm rolling method of the 4 music 1 or 2, the second is the second time rolling for the second consecutive performance, 罘 6 獒 for a warm rolling method , ψ η ^ knowing the shape of the hole nucleus into a flat ellipse $ and a square of 2 rolling, from the eyebrow I w 攸 攸 枓 至 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形The reduction ratio of the cross-sectional area of the second rolling is 4% or more, and the shrinkage ratio of the cultivating surface of the combined three-rolling is 6〇% or more. This: 'About the invention of the present application', the above method provides the warming method of the first or the third Z, the special inflammation 4*, 0/λα, and the knowledge is to make at least 50 volumes inside the material ▲ Plastic deformation is introduced in the region of X ^ 5 ^ i - a kind of warm calendering method, characterized by #$/|, '# for "^ any,, and 吏 to the plasticity of 90% by volume inside the material Strain 2 or more, 篦, 上弟1 〇, ribs for a warm calendering method, characterized by the following (former cake _ ^ wide formula of the calendering condition parameter 2 is n 1 (the tissue before calendering is fertilizer) Ferrite, Baimte, Martensite, Bora (pe xian)

Fe的結晶構造為bcc的愔況、七曰9n 、 的^况)或疋20以上(壓延前的組織 為沃相鐵(AUSteni te)之卜的結晶構造為icc的情況), 315818(修正版) 7 1266659 Z = log •ext j3l(T + 2The crystal structure of Fe is bcc, 7曰9n, or 疋20 or more (when the microstructure before calendering is the crystal structure of the AUSteni te), 315818 (revision) ) 7 1266659 Z = log •ext j3l(T + 2

(1) ε :變形 t ··從壓延閧始至結束為止的時間(s) :;平=观,多滾乾的情況下為各個滚崎 Q:壓延前的組織以肥粒鐵、_、麻田散鐵、波直 母相的情況下為254_’以沃斯田鐵為母相的情、兄下:為 300, 〇〇〇 7厂月况下為 第11,提供一種溫熱壓延方法,特徵為初 =延後的斷面收縮率為90%以下,第12,提供二種溫: i延方法’特徵為製造C剖面或是L剖面的平均,士…、 以下的超微細粒鋼,第13,提供—種溫^日曰方= =⑽造c剖面或是L剖面的平均結晶粒捏為:下 的超微細粒鋼。 ^ ^下 具備如上所述特徵的本申請案的發明,栌 所得到的新的見解所完成者。亦即,二= 的衣造方法’-般乃採用具備孔模的溝紋的軋輥來進,: m縫aallber)壓延,而孔模的形狀大致可 、二(正方形、菱形),扁橢形,圓形。於溫熱溫度區者; 軋輕型縫(溝紋軋輕)歧,並藉由多次滾軋ς 的主體組織(文獻υ。並發現採用扁橢丨 挨者對於棒鋼w剖面(與棒鋼的長邊 肥粒鐵粒形狀的等減極為有效。 七了的w面) 315818(修正版) 8 1266659 根據發明者的精心研究的結果發現,藉由在適當的π 度區當中,進行扁棉孔模與方形、圓形等其他孔模的組合 之軋報型缝壓延,可在相對較小的斷面收縮率,將較大的 應變導入於材料中,而確立了此技術。 [實施方式] 本中明*的發日月乃具備如上所述的特徵者 明其實施型態。 兄 如上所速般,本申請案的發明的溫熱壓延方法,可夢 由扁橢形的孔模墨延及其他形狀的孔模壓延的組合,來^ 造出具有平均粒徑3_以下的超微細結晶粒組織的鋼材: 於此情況下所採用的溝紋軋輥,乃具備扁橢孔模及其他種 類的孔模。 ^ 在此關於扁橢孔模的溝紋乳輥,由上模及下模所形成 =孔狀,並非圓形(圓柱形),而是所言胃的具備扁平形狀的 二因柱形·· round type)。而做為與此扁橢孔模加以組 、:的其他種類的孔模,可為方形、菱形、圓柱形,或是與 這些开> 狀類似的各種形狀。 於本申請案的發明當中’做為用於製造具有平均粒徑 μ m以下的超微細結晶粒組織的超微細粒鋼材之溫熱壓延 :法n延溫度範圍於·。以8⑽。c的溫度區域之間, f鋼材進行2次以上的滾軋之際,進行至少i次以上的扁 榀形2孔模壓延及其他形狀的孔模壓延。 、丁'上車乂理想的型態為’於進行爲橢形的孔模壓延 之後’接著進行其他形狀的孔模麗延,以及於全部的滾軋 3158】8(修正版) 9 1266659 久數IV當中,+ π 際,進行扁橢形的孔楔犀延Μ ,,最大次數為Ν/2以下,=延的次數為 #。 您,進仃2次滾軋 例如,於扁橢孔模盥 全部的滾軋當甲包含2: 广的情況下’可考慮於 的組合的壓延,此外,孔模形狀為扁擴形〜方形 形一士 π Λ 次疋如扁擴形—方形一方开彡〜曰 ^方形般,於扁橢形〜方形的組人者 ^扁橢 或是扁橢形一方形—扁 β 口田中加入方形壓延, y 局橢形~方形的4 、、吞去丨 方形一扁橢形一方形〜扁 —α軋、扁橢形〜 然,於此情況下,方4=形的6次滾”。當' 万开少了為圓柱形、菱形等。 於本申請案發明的壓延 π 較大的應變而使產生較忾…:中以〉皿熱加工來導入 := 源’於加工中或是加工後當中所產生的二. :二=㈣成超微細粒組織。然而,當溫度較低: …因此殘留了換位密度較高的加工組織。另 溫度太高的話’則由於不連續再結晶,或是— 二、:、長而使得結晶粒變大’而無法獲得3"m以下的超 仏、田;&、、且織。因此,壓延溫度乃限定於3阶至副。。。 传盘此外,於本申請案的發明當中,雖然藉由溫熱加工來 、,平匕的加工粒來形成超微細結晶粒,但伴隨著應變的 ,加亦使超微細結晶粒增加,因此為了獲得幾乎全部為超 微細結:粒構成的組織,至少須導入1.5以上的應變。 更具體而言,藉由至少於材料内部的5〇體積%的區域 315818(修正版) 10 1266659 田中導入1. 5以上或是2以上的塑性應變,而可於 當中形成超微細粒。更為理想為,藉由於材料内部的 :或 體積%以上的區域當中導入2以上的塑性應變,而可於該 區域當中形成超微細粒區域。 、 即1斤!:的應變愈大,微細粒之間的方位差角愈大。亦 P ’大角度的粒界較多。若導人應變3㈣,則大 粒界對微細粒的粒界的比例變得足夠。因此 二 區域的全剖面為戰上,較理想為_以上 具備優良的力學特性的棒鋼。 、_ 此外’除了主要的下壓方向的加工 向約呈90。的角度的其他方向的下單之葬::屋方 少從2方向的加工應變,來 /之、、且δ ’猎由賦予至 可增加大角度粒界的比例。刀放超微細結晶粒的方位,而 藉由發明者們的至目前為止 加工所形成的超微細粒的平’研九’可仔知以溫熱強 應變速度。結晶粒徑乃伴 函數之上述第⑴式的壓 數,皿度及應^度的« 化。為了獲得平均粒徑^以下^數Ζ的增加而變得微細 件參數ζ達到某個臨界值以上下的組織’有必要使壓延條 過大型應變壓縮加工的實驗,士果就採用小型試料的1次通 造的鐵(肥粒鐵、變軔鐵、、麻寻知該臨界錄bcc構 大約為H,於fee構造的鐵(=f、波來鐵等)的情況下, 2〇(第17圖)。 / ,、斤田鐵)的情況下,大約為 第(1)式中的應變(ε )可 々&業上較為簡便的應變之 315818(修正版) 11 1266659 真實應變。例如,戈括_μ . ς 右知鋼的初期面積為心,壓延後的c Ης二、_ 縮率^下列第⑵式來表示 R-(S〇-S)/ So ⑵ 如此,真實應變e以下式來表示 £ ==~'Ln(l-R) 此外’除了真實雇蠻 Ρίτ^ hh Ait r ^ 卜,亦可採用由有限元素法 所计异的值(例如,春海佳二 I在 φ 母彳土—郎、其他,「有限元素法入門l (^、立出版(株式會社):iqq^ 」(1) ε : deformation t · · time from the start of the rolling to the end (s) :; flat = view, in the case of multiple drying, each rolling Q: the structure before rolling is ferrite iron, _, In the case of Ma Tian's loose iron and wave straight mother phase, it is 254_'When the Worthfield iron is the mother phase, the brother is: 300, and the 〇〇〇7 factory is the 11th under the condition of the month, providing a warm rolling method. The feature is that the initial shrinkage reduction is 90% or less, and the second is to provide two kinds of temperatures: i. The method of 'expanding the average of the C profile or the L profile, the ultrafine grain steel below,... No. 13, providing - the temperature of the day = = (10) the average crystal grain of the c-profile or the L-section is: ultrafine-grained steel under: ^ ^ The invention of the present application having the features described above, and the completion of the new insights obtained. That is, the second method of making a garment is generally made by a roll having a groove pattern of a hole mold, and: m slit aallber is rolled, and the shape of the hole die is roughly two (square, diamond), flat oval , round. In the warm temperature zone; rolling light seams (ditch rolling light), and by rolling the main body of the crucible several times (reported υ. and found that the use of oblate ellipses for the bar steel w profile (long with the bar steel The equal reduction of the shape of the ferrite grain is extremely effective. The w-face of the seven) 315818 (revised edition) 8 1266659 According to the inventor's meticulous research, it was found that the flat cotton hole mold was carried out by the appropriate π degree zone. The rolling seam rolling which is combined with other hole molds such as a square shape and a circular shape can establish a technique by introducing a large strain into a material with a relatively small reduction in area. [Embodiment] The date and time of the release of Zhongming* is the characteristic of the above-mentioned characteristics. The brothers are as fast as the above, the warm rolling method of the invention of the present application can dream of the ink diffusion of the flat ellipsoid a combination of other shapes of hole die rolling to produce a steel material having an ultrafine crystal grain structure having an average particle diameter of 3 Å or less: The fluted roll used in this case has a flat ellipsoidal die and other types. Hole die. ^ Here is the grooved milk roll for the flat elliptical die, from the upper die = Lower mold formed hole shape is not circular (cylindrical), said stomach but includes two flat shape due to the cylindrical ·· round type). Other types of hole molds which are grouped with this flat elliptical hole mold may be square, diamond, cylindrical, or various shapes similar to those of the open type. In the invention of the present application, 'there is a warm rolling for producing an ultrafine grain steel having an ultrafine crystal grain structure having an average particle diameter of μ m or less. Take 8 (10). Between the temperature regions of c, when the f steel material is rolled twice or more, at least one or more times of the flat-shaped two-hole die rolling and the other type of hole die rolling are performed. , Ding 'on the car 乂 ideal type is 'after the embossing of the hole mold is carried out' followed by other shapes of the hole mold ling, and all rolling 3158] 8 (revised version) 9 1266659 long number IV , + π, the flat elliptical hole wedge rhinoceros, the maximum number of times Ν / 2 or less, = the number of delays is #. You, for example, rolling 2 times, for example, in the flat elliptical hole mold, all rolling, when the nail contains 2: wide, the combination can be considered for calendering, in addition, the shape of the hole mold is flat expansion ~ square shape One π Λ Λ 疋 扁 扁 扁 — — — — — 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形 方形y ellipsoidal ~ square 4, swallowed 丨 square, a flat ellipsoid, a square ~ flat - alpha rolled, flat ellipsoid ~, in this case, square 4 = shape of the 6th roll". The cylindrical shape, the rhombus shape, etc. are reduced. In the invention of the present application, the strain of π is large, so that the occurrence of 忾... is in the middle of the heat treatment of the dish: = source is in the process or after processing The resulting two: : two = (four) into ultrafine grain structure. However, when the temperature is lower: ... therefore, the processing organization with higher transposition density remains. If the temperature is too high, 'because of discontinuous recrystallization, or - Second, the length of the crystal grain becomes larger, and it is impossible to obtain the super-salt and the field below 3"m;& Therefore, the calendering temperature is limited to the third order to the sub-.... In addition, in the invention of the present application, although the ultrafine crystal grains are formed by the processing of the granules by the warm processing, The addition of strain also increases the ultrafine crystal grains. Therefore, in order to obtain a structure composed of almost all ultrafine knots: particles, at least 1.5 or more strains must be introduced. More specifically, at least 5 volumes inside the material. % area 315818 (revised edition) 10 1266659 Tanaka introduces plastic strain of 1.5 or more or more, and can form ultrafine particles therein. More preferably, it is due to the inside of the material: or more than vol% When a plastic strain of 2 or more is introduced, an ultrafine particle region can be formed in the region. That is, the larger the strain of 1 kg!: the larger the azimuth difference angle between the fine particles. The P' large angle grain boundary If the strain is 3 (four), the ratio of the large grain boundary to the grain boundary of the fine particles becomes sufficient. Therefore, the full profile of the two regions is on the war, and it is preferable to have a bar with excellent mechanical properties. In addition to the processing of the main direction of the lower pressing direction, the order of the other direction is about 90. The burial of the order in the other direction: the house side is less than the processing strain in the 2 direction, and the δ 'hunting is given to The ratio of the large-angle grain boundary is increased. The orientation of the ultrafine crystal grain is set by the knife, and the ultra-fine grained flat-shaped ninth formed by the inventors so far can be known to have a warm strain rate. The crystal grain size is accompanied by the number of pressures in the above formula (1), the degree of the dish and the degree of the degree. In order to obtain an average particle diameter, the number of the fine particles is increased to a certain critical value. Under the organization, it is necessary to make the calendering strip through the experiment of large-scale strain compression processing, and the fruit of the small-scale sample is made of iron (fertilizer iron, bismuth iron, and hemp.) H, in the case of iron (=f, Bora, etc.) of the fee structure, 2〇 (Fig. 17). In the case of /, jintiantie), the strain (ε) in the equation (1) is 可 & the relatively simple strain in the industry 315818 (revision) 11 1266659 true strain. For example, Gou _μ. 初期 The initial area of the right steel is the heart, the c Ης after the rolling, the _ shrinkage ^ The following formula (2) to represent R-(S〇-S) / So (2) So, the true strain e The following formula is used to represent £ ==~'Ln(lR). In addition to the true employment Ρίτ^ hh Ait r ^ Bu, the value calculated by the finite element method can also be used (for example, Chunhai Jia II I in φ mother 彳土—郎, others, “Introduction to the finite element method l (^, Li Publication (株式会社): iqq^ ”

Jiyyu年3月15日))。更呈靜而+ 塑性應變的計算可以下列筮1 * 更/、妝而s ’ 开j以下列罘1表的流程來計算。 着 ΜΛΛ. 塑性應變的計算流程 1取得對應材料的加工温度的應力應靖 · 2為了有限元素法計算的準備 · (1)於被加工物上製作網目 ⑵決定接觸條件料絲= 0.3庫倫條件 (3)決定應力應變曲線,材料物性值 3以⑴至(3)的條件為根據,以一 钃 ABAQUS來計算。朔w雍找 有P兀素法馬例如 t ! 生應變ε以下式來表示,各個 乃藉由一般有限元素法碼來計算。 應Ά里 — d ε p d ε y ’ d ε z = x ’ y ’ z 的應變增量 dr xy ' d T yz ’ d T zX :切變應變增量 315818(修正版) 12 1266659 於本申明案的發明的溫熱壓延方法當中 知,較理想者為設定屋延條件 或是20以上(fcc構造)。 2為11以上(bcc構造) 、请案的發明當中,較理想的型態為可舉 '歹1 ’亦即包含’於原料的扁橢孔模壓延及方形孔 :塗延的2次滾軋當中’以孔模形狀為扁橢形及方形的2 二;袞軋,使斷面收縮率為2G%以上,以及於孔模形狀為扁 及方形的2次滾軋的組合2次的壓延當中,斷面收縮 :為40 /以上,於組合3次的壓延當中斷面收縮率為 /6以上,以及於扁橢孔模當中壓延後的材料的最大短軸 長,為扁橢壓延前的原料對邊長的70%以下的壓延製程。 關於本申睛案的發明的溫熱壓延方法所可適用的鋼材 白勺会且赤' 4 、、’因為完全不利用依據相變態的高強度化的機制, 茜’』、、加用於提南強度的合金元素,因此鋼的組成並不 义限制’而可廣泛的採用例如肥粒鐵單相鋼、沃斯田鐵單 相鋼等不存在相變態的鋼種類等。具體而言,例如重量% 組成為, C : 〇· 001%以上1· 2%以下 Si ·· 〇· 1%以上2%以下 Mn : 〇· 1%以上3%以下 p : 〇· 2%以下 s : 〇· 2%以下 A1 : 1 · 0 % 以下 N : 〇· 02% 以下 13 315818(修正版) I266659Jiyyu year March 15)). The calculation of the more static and + plastic strain can be calculated by the following 筮 1 * more /, makeup and s 开 open j in the following 罘 1 table flow. ΜΛΛ 计算 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性 塑性3) Determine the stress-strain curve, and the material property value 3 is calculated based on the conditions of (1) to (3), and one ABAQUS.朔 雍 雍 有 有 有 有 有 有 有 有 有 有 有 有 有 例如 例如 例如 例如 例如 例如 生 生 生 生 生 生 生 生 生 生 生 生 生The strain increment dr xy ' d T yz ' d T zX : shear strain increment 315818 (revision) 12 1266659 in this case In the warm rolling method of the invention, it is preferable to set the room temperature condition or 20 or more (fcc structure). 2 is 11 or more (bcc structure). In the invention of the case, the preferred type is "歹1", that is, the flat elliptical die rolling and the square hole: the second rolling of the coating. Among them, the shape of the hole is a flat ellipse and a square shape; the rolling is reduced to a thickness of 2 G% or more, and the combination of the second rolling of the shape of the hole and the square is two times of rolling. , section shrinkage: 40 / more, the reduction of the section ratio of /6 or more in the combination of three times of rolling, and the maximum short axis length of the material after rolling in the oblate ellipsoidal mold, which is the raw material before the flat ellipsoidal rolling A rolling process of less than 70% of the side length. Regarding the warm rolling method of the invention of the present invention, the steel can be applied to the steel, and the mechanism of the high-strength based on the phase transition state is not used at all, and is used for lifting. The alloying elements of the south strength, and therefore the composition of the steel are not limited, and a wide variety of steel types such as ferrite-iron single-phase steel, Vostian iron single-phase steel, and the like, which do not have a phase transformation state, can be widely used. Specifically, for example, the composition of % by weight is C: 〇· 001% or more and 1. 2% or less Si ·· 〇 · 1% or more and 2% or less Mn : 〇 · 1% or more and 3% or less p : 〇 · 2% or less s : 〇 · 2% or less A1 : 1 · 0 % or less N : 〇 · 02% or less 13 315818 (revision) I266659

Cr、Mo、Cu、Ni合計為30%以下 Nb、Τι、V合計為〇· 5%以下 Β : 〇 · 01 % 以下 剩餘為Fe及不可避免的雜質 口而可舉出不添加合金元素之組成例。當然,上述 M〇 Cu、Nl、Nb、Ti、V、B等合金元素,可因應必要 孓‘加超過上述範圍,或是完全不包含。 ^在此舉出貝轭例來更詳細說明。當然,本發明並不限 疋於以下的例子。 (實施例) 接下來的第2表為,顯示用於實施例的試驗 孥組成(剩餘為Fe)。 』- ----— Si _! 15 ΓΟ 0. 11 0· 3 Μη P Al l. 5 i〇l~] 0. 03 U. 5 ' —---—— — 0. 02 〇. 005 0. 03 〈第1實施例〉 鐵+波'=,的組成的平均肥粒鐵粒徑 鐵十疫來鐵組織之24_的古游士至a ◦C來進杆笛二棒鋼’以麗延溫度520至450 來進仃乐1圖所示的採用孔模的 延。第1圖中的》丨握士 ^ 軋季比型縫壓 示。. 純大小(_)的概要,乃為下列第3表所 315818(修正版) 14 1266659 第3表 次滾軋·扁橢形 長軸 每軸 曲率丰輕 54 12 64 次滾軋·扁橢形 41 9 49 次滾軋·扁橢形 次滾軋·圓形 19 10 直徑:12 12 也第2圖係顯示,壓延的各個通過下的剖面形狀變化及 :面收、%率。原料為24x 24mm的方形棒,於第1次滚軋的 橢孔板的壓延之際,斷面收縮率為37%,f 2次滾軋的 形孔模的壓延之際,斷面收縮率為21% 第3次滾軋的 第4次滾軋的 第5次滾軋的 第6次滾軋的 此外,從原料 扁橢孔模的壓延之際,斷面收縮率為15% 方形孔模的壓延之際,斷面收縮率為24% 扁橢孔模的壓延之際,斷面收縮率為13% 圓形孔模的壓延之際,斷面收縮率為12% =始Λ1、2次通過之對17_的方形棒的斷面收縮竿為44 0仗原料開始的第4吹涌仍夕斜〗q 縮率A 710/… 人通過之對13_的方形棒的斷面收 棒的斷〇 ’ k原料開始的第6次通過之對12.5mm的圓The total amount of Cr, Mo, Cu, and Ni is 30% or less, Nb, Τι, and V are 〇·5% or less. Β: 〇· 01% The remainder is Fe and the unavoidable impurity port, and the composition without alloying elements is mentioned. example. Of course, the above-mentioned alloying elements such as M 〇 Cu, Nl, Nb, Ti, V, and B may be added to the above range or may not be included at all. ^ Here is a more detailed description of the yoke example. Of course, the present invention is not limited to the following examples. (Example) The next second table shows the test composition (residually Fe) used in the examples. 』- ----— Si _! 15 ΓΟ 0. 11 0· 3 Μη P Al l. 5 i〇l~] 0. 03 U. 5 ' —---—— — 0. 02 〇. 005 0 03 <First Embodiment> Iron + wave '=, the composition of the average fat iron particle size iron ten plague iron organization 24_ ancient traveler to a ◦C to enter the rod flute two steel 'to Li Yan The temperature is 520 to 450 to enter the extension of the hole die shown in Figure 1. In the first picture, the 丨 丨 ^ ^ rolling season is more than the seam pressure. The summary of the pure size (_) is the following table 3, 315,818 (revised edition) 14 1266659 The third table is rolled, the flat ellipse, the long axis, the curvature of each axis is 54 124 64 times, the flat ellipse 41 9 49 times rolling, flat ellipsoidal rolling, round 19 10 diameter: 12 12 Also, the second figure shows the change in the cross-sectional shape of each of the rolling passes: the surface acceptance and the % ratio. The raw material is a 24x24mm square rod, and the reduction ratio of the section is 37% at the time of rolling of the elliptical plate of the first rolling, and the reduction ratio of the section is the rolling of the shape of the f-rolled hole die. 21% of the sixth rolling of the fifth rolling of the fourth rolling of the third rolling, in addition to the rolling of the raw flat elliptical die, the reduction ratio of the section is 15%. At the time of calendering, the reduction ratio of the section is 24%. When the flat elliptical mold is rolled, the reduction ratio of the section is 13%. When the circular orifice mold is rolled, the reduction ratio of the section is 12% = 1 time, 2 passes The section of the square bar of 17_ shrinks to 44 44 仗 仗 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 〇'k raw material started the sixth pass to the 12.5mm circle

知的畊面收縮率為80%。 U 内二9圖係顯示,以有限元素法來計算之材料 内:的塑性應變的分佈。從第5圖當 〜方形的2二女涪軔a &amp; %届衡形 應變15的α二,已於材料内部當中存在超過塑性 扁擴形―:开扁;積率為娜。如第6圖所示般,於 方开厂扁橢形的3次滾乾之後,存在塑性應變超 3158〗8(修正版) 15 1266659 過:〇的區域占全體的92%,再者,於第7圖所示 ㈣方形的4次滾軋之後,存在塑崎 赵匕3. G的區域占全體的95%。再者,—旦再進行 的扁橢形一圓形的壓延的話,則 圖 超過3.0的區域。 舰域為塑性應變 雖然2次通過後的斷面收縮率約為鄕(若單純的以 斷面收縮率r來計算真實應變的話,則由 瞻)’得e侧,4次通過後的斷面收縮率為 %(右早純的以斷面收縮率R來計算真實應變的話,則 e=1.23),6次通過後的斷面收縮率為8〇%(若單純的以斷 面收縮率R來計算真實應變的話,則e=l61),但可得知 於材料内部產生極大的塑性應變。這是因為,藉由扁擴孔 模及㈣孔模壓延的組合壓延,而產生較單純的從剖面減 夕'所计异出的應變還要大的應變之故。 第10圖、第11圖係顯示組織的SEM照片。於對應於 第5圖的第10圖①、②的部位上產生1//m以下的微細的 肥粒鐵粒,於③的部位上未產生微細粒。根據對應於第7 圖的第11圖的組織照片,可得知幾乎所有區域是由 以下的超微細的肥粒鐵粒之超微細組織所構成。 第4表係顯示4次滾軋後的13mra見方的材料的力學特 性。此外,亦顯示壓延前的24mm見方的棒鋼來加以比較。 以2倍的屈服強度、液態氮的溫度下,並未受到脆性破壞, 並具備J的吸收能。 315818(修正版) 16 1266659 第4表 弟1實施ί列 第4實施[列 第2比較例 肥哲鐵粒 徑 (//m) 屈服強度 (MPa) 強度 (MPa) 碰佩性轉 吸魏 (J) -120°C 維办更 度㈠ 0.5 840 850 -1—96〉 118 290 0.6 800 810 -196&gt; 80 270-310 5 460 580 -40 0 〈第2至第4實施例〉 對具備第2表a的組成的平均肥粒鐵粒徑5 的肥粒 鐵+波來鐵組織之24mm見方的棒鋼,以壓延溫度4〇〇。〇、籲 600C、700°C來進行第丨圖所示的採用(1)、(2)的孔模的 2次通過軋輥型縫壓延。第12圖^)、(b)、(〇係顯示, 杯鋼中〜邛(相當於弟1 〇圖的①部分)的Sem組織照片,由 此得知可獲得平均粒徑為 鐵粒徑。 〈第5實施例〉 對具備第2表b的組成的平均肥粒鐵粒捏別㈣的肥 粒鐵+波來鐵組織之直徑15_的棒鋼,以壓延溫度45〇至 550 C來進行帛13圖所示的採用孔模的乳輕型縫遷延,並 進打使直徑成為8mm為止的6次滚軋。第5表係顯示乳輕 型縫的大小的概要。第!4圖係顯示,壓延的各個通過下的 剖面形狀變化及斷面收縮率。此外,第 滚札後的組織的㈣照片,_斷面收縮率為 是由微細的肥粒鐵粒組織所構成。關於力學特性,如第15 圖的照片下方亦加以記载般’以27〇纟31。的抗拉強度來 315818(修正版) 17 1266659 拉引,而可獲得維氏硬度為800MPa以上的優良特性 第5表 長軸 短軸 鱼產半徑 1次滾章L ·扁形 31 6· 8 38 3次滾軋·扁橢形 27 5. 3 35. 9 5次滾軋·扁橢形 15 6· 5 10· 7 6次滾軋·圓形 直徑:8 〈第1比較例〉 、對具備第2表a的組成的平均肥粒鐵粒徑5&quot;的肥相 鐵+波來鐵組織之24mm見方的棒鋼,以壓延溫度來 進行第1圖所示的採用孔模,並進行使成為13mm見方的方 I且斷面收縮率為職應變U)為止之?次 ㈣上㈣成微細粒。 至表'的組成的直徑115_的棒鋼,於加熱 870 ^ 85〇〇C 5 ^ 3 延“士果為延。在此並未包含扁擴孔模的壓 5_表所不般,屈服強度、抗拉強度各為彻、 315818(修正版) 18 1266659 (產業上的可利用性) 如以上所詳細說明般,根據本申过安 一種可以更為簡便的手段,在較,丨、J 乃提供 數之下將較大的應變導入於材料 、、人 太汰計中之新的溫熱多方向壓延 方法,亚可提供出具備依據此方 呈右楫自万去的超微細結晶粒組織之 /、有毹良的強度及延展性的鋼材的製造方法。 [圖式簡單說明] / 第1圖(1)至(6)係顯示,第1资 # 币1只轭例中之孔模的圖式 :2圖係顯示,壓延後的棒鋼的c剖面的圖式。 第3圖係顯示,原料的網目的圖式。 第4圖係顯示, 1次滚軋·扁橢型之後的塑性應變的 圖式。 第5圖係顯示, 2次滾軋·方孔模之後的塑性應變的 圖式。 第6圖係顯示, 3次滾軋·扁橢型之後的塑性應變的 圖式。 第7圖係顯示, 4次滾軋·方孔模之後的塑性應變的 圖式。 第8圖係顯示, 5次滾軋·扁橢型之後的塑性應變的 圖式。 第9圖係顯示, 6次滾軋·圓孔模之後的塑性應變的 圖式。 第10圖係顯示,2次滾軋·方孔模之後的組織的 SEM(Scanning Electron Microscope,掃描式電子顯微鏡) 315818(修正版) 19 1266659 照片。 第11圖係顯示,4次滾軋·方孔模之後的組織的SEM 照片。 第12圖係顯示,第2至第4實施例的組織的sem照片。 第13圖(1)至(6)係顯示孔模的圖式。 第14圖係顯示,壓延後的棒鋼的c剖面的圖式。 第15圖係顯示,組織的SEM照片。 第16圖係顯示’第1比較例的組織的SEM照片。 第17圖係顯示,參數Z與平均粒徑的關係的圖式。 315818(修正版) 20The known tillage shrinkage rate is 80%. U 2:9 shows the distribution of plastic strain in the material calculated by the finite element method. From Fig. 5 when ~ square 2 2 niece a &amp; % sigmoid strain 15 α 2, has more than plastic flat expansion in the interior of the material -: open flat; the rate is Na. As shown in Fig. 6, after the three-time drying of the square ellipsoid of the square-opening plant, there is a plastic strain exceeding 3158 〗 8 (revision) 15 1266659: The area of 〇 accounts for 92% of the total, and again, Figure 4 shows the area after the four rounds of the square. Furthermore, if the flat ellipsoidal-circular rolling is performed again, the figure exceeds the area of 3.0. The ship's plastic strain is the same as that of the plastic strain. After two passes, the area shrinkage is about 鄕 (if the true strain is calculated by the area shrinkage rate r), then the e-side, the section after 4 passes The shrinkage rate is % (the right early pure is calculated by the reduction of the section R, then e = 1.23), and the reduction ratio of the section after 6 passes is 8〇% (if the reduction ratio is simply R To calculate the true strain, then e = l61), but it can be known that a large plastic strain is generated inside the material. This is because, by the combined calendering of the flat reaming die and the (four) hole die rolling, a strain larger than the strain which is measured by the profile reduction is generated. Fig. 10 and Fig. 11 show SEM photographs of the tissues. Fine ferrite particles of 1//m or less were produced at the portions corresponding to Figs. 10 and 2 of Fig. 5, and fine particles were not produced at the portions of 3. According to the photograph of the tissue corresponding to Fig. 11 of Fig. 7, it is understood that almost all of the regions are composed of the ultrafine structure of the ultrafine ferrite particles below. The fourth table shows the mechanical properties of the 13 mra square material after 4 rollings. In addition, 24 mm square bars before rolling were also compared for comparison. Under the temperature of 2 times the yield strength and liquid nitrogen, it is not subjected to brittle failure and has the absorption energy of J. 315818 (revised edition) 16 1266659 4th cousin 1 implementation ί 第 4th implementation [column 2 comparative example fat iron particle size (/ / m) yield strength (MPa) strength (MPa) touch transgender Wei ( J) -120 °C Maintenance (1) 0.5 840 850 -1—96> 118 290 0.6 800 810 -196&gt; 80 270-310 5 460 580 -40 0 <2nd to 4th Embodiments> 2nd The composition of Table a is the average ferrite iron particle size of 5 ferrite iron + the ferrite structure of 24 mm square bar steel, with a rolling temperature of 4 〇〇. 〇, 600C, 700 °C to perform the second pass through the roll profile rolling using the hole molds (1) and (2) shown in the figure. Fig. 12()), (b), (〇 shows a photograph of the Sem structure in the cup steel ~ 邛 (corresponding to the first part of the brother 1 ) diagram), and it is found that the average particle diameter can be obtained as the iron particle diameter. <Fifth Embodiment> A bar steel having a diameter of 15_ of ferrite iron + a ferrite structure of the average ferrite iron pellets (four) having the composition of the second table b is subjected to a rolling temperature of 45 〇 to 550 C. In the figure 13, the light-weight slit of the hole mold is used to carry out the 6-roll rolling until the diameter is 8 mm. The fifth table shows the outline of the size of the light-weight joint. The figure 4 shows the calendering. The lower cross-sectional shape change and the reduction ratio of the cross-section. In addition, the (four) photograph of the tissue after the second rolling, the _-sectional shrinkage rate is composed of fine ferrite iron grain structure. Regarding the mechanical properties, as shown in Fig. 15. The photograph below also records the tensile strength of 27〇纟31. 315818 (revised edition) 17 1266659 pull, and the excellent characteristics of Vickers hardness of 800MPa or more can be obtained. Production radius 1 rolling chapter L · Flat 31 6· 8 38 3 rolling · Flat oval 27 5. 3 35. 9 5 rolling ·Embedded ellipse 15 6· 5 10· 7 6 rollings ·Circular diameter: 8 <First comparative example> Fertilizer phase iron + for the average ferrite iron particle size 5&quot; of the composition of the second table a The 24 mm square bar of the Borne iron structure is subjected to the use of a hole die as shown in Fig. 1 at a rolling temperature, and is made to have a square I of 13 mm square and a section shrinkage ratio of the service strain U). (4) On (4) into fine particles. To the table 'the composition of the 115_ diameter bar steel, after heating 870 ^ 85 〇〇 C 5 ^ 3 extension "small fruit is extended. Here does not include the flat reaming die pressure 5_ table does not, the yield strength , tensile strength is each, 315,818 (revised edition) 18 1266659 (industrial availability) As detailed above, according to this application, a more simple means can be used, in comparison, 丨, J Providing a new multi-directional calendering method that introduces a large strain into the material and is too much in the process of manpower, and Ya can provide ultrafine crystal grain structure with the right side according to this side. /, The method of manufacturing steel with good strength and ductility. [Simple description of the drawing] / Fig. 1 (1) to (6) shows that the first 资# coin 1 yoke in the stencil Fig. 2 shows the pattern of the c-section of the rolled steel bar. Figure 3 shows the mesh pattern of the raw material. Figure 4 shows the plastic strain after one rolling and flat ellipse. Fig. 5 is a diagram showing the plastic strain after two rolling and square hole molds. Fig. 6 shows that three times of rolling Fig. 7 is a diagram showing the plastic strain after 4 rolling and square hole modes. Fig. 8 is a diagram showing the plastic strain after 5 rolling and oblate ellipsoids. Fig. 9 is a diagram showing the plastic strain after 6 rolling and round hole modes. Fig. 10 shows the SEM (Scanning Electron Microscope) of the structure after 2 rolling and square hole modes. 315818 (revised edition) 19 1266659 photograph. Fig. 11 shows an SEM photograph of the tissue after 4 rolling and square hole molds. Fig. 12 shows a sem photograph of the tissues of the second to fourth embodiments. Figures (1) to (6) show the pattern of the hole mold. Fig. 14 shows the pattern of the c-section of the rolled steel bar. Figure 15 shows the SEM photograph of the structure. Figure 16 shows the ' SEM photograph of the structure of the first comparative example. Fig. 17 is a diagram showing the relationship between the parameter Z and the average particle diameter. 315818 (revision) 20

Claims (1)

1266659 十、申請專利範圍: L —種溫熱壓延方法’乃用於製造具有平均教徑以 下的超微細結晶粒組織的超微細粒鋼材,其特徵為·、 壓延溫度範圍於35(TC至80(rc的溫度區域之間/對·= 材進行2次以上的滾軋之際,進行至少卜欠以上的· 形的孔模壓延及其他形狀的孔模壓延,其中,包含於/ 橢孔模中,使壓延後的材料的最大短軸長為扁橢^延^ 的原料對邊長的75%以下的壓延製程。 2·如申請專利範圍第丨項之溫熱壓延方法,其中,於進疒 扁橢形的孔模壓延之後,接著進行其他形狀的孔模仃 延。 土 3·如申凊專利範圍第1項或第2項之溫熱壓延方法,其 中,其他形狀的孔模為方形、圓形的形狀。 4·如申凊專利範圍第i項或第2項之溫熱壓延方法,其 H=部的滾軋次數N #中,N &gt; 2之際,進行扁擴 的,壓延的次數為2次以上,最大次數為N/2以下。 •如申睛專利範圍帛i項或第2項之溫熱壓延方法,直 中’連續進行2次滾軋。 /、 6. 範圍第5項之溫熱壓延方法,其中,於孔模 形形及!形的2次滾軋當中’從原料開始至方 y权1延後的斷面收縮率為20%以上。 7·如申請專利範圍第1項或第2項之溫熱壓延方法,其 中,於孔模形狀為扁橢形及方形的2次滾乾的組合;, 於組合2 _欠滾軋之斷面收縮率為鄕以上,於組合3 315818(修正版) 21 1266659 次滾軋之斷面收縮率為60%以上。 8·如申請專利範圍第1項或第2項之溫熱壓延方法,其 中,使至少於材料内部的50體積%的區域產生塑性變 形1. 5以上。 9·如申請專利範圍第8項之溫熱壓延方法,其中,使材料 内部的90體積%以上的區域產生塑性應變2以上。 1 〇.如申請專利範圍第丨項之溫熱壓延方法,其中,下列第 (1)式所表示的壓延條件參數z為u以上(壓延前的組 織為肥粒鐵(Ferrite)、變軔鐵(Bainite)、麻田散鐵 (Martensite)、波來鐵(PerHte)# Fe的結晶構造為 bcc的情況)或是2〇以上(壓延前的組織為沃斯田鐵 (Austenite)之Fe的結晶構造為fcc的情況), 2 = log 三 expi——-rl (I) (8.31(:T + 273)J」 w ε :變形 ΐ ·從壓延開始至結束為止的時間(s) τ·壓延溫度’多次滾軋的情況下為各個滾軋的 溫度的平均值) Q .壓延w的組織以肥粒鐵、變軔鐵、麻田散鐵、波來 鐵為母相的情況下為254,000,以沃斯田鐵為 的 況下為 300,000 〇 7r&quot; u.如申:青專利範圍第i項之溫熱壓延方法,其中,初期原 料與最終壓延後的斷面收縮率為90%以下。 '、 12.如申請專利範圍第!項之溫熱壓延方法,其中,係製造 315818(修正版) 22 3/zm以下的超微細 ,其中,係製造 m以下的超微細 1266659 C剖面或是L剖面的平均結晶粒徑為 粒鋼。 13.如申請專利範圍第丨項之溫熱壓延方法 C剖面或是l剖面的平均結晶粒徑為】# 粒鋼。 315818(修正版)1266659 X. Patent application scope: L—The type of warm calendering method is used to produce ultrafine grained steel with ultrafine crystal grain structure below the average diameter, characterized by ·, and the calendering temperature range is 35 (TC to 80) (When the temperature of the rc is in the range of 2 or more times, the material is rolled at least in the shape of the die and the die is rolled in another shape, which is included in the / ellipsoid mode. In the calendering process, the maximum short axis length of the material after rolling is less than 75% of the side length of the material of the flat ellipse. 2) The method of warm rolling according to the scope of the patent application, wherein After the flattened ellipsoidal die is rolled, the hole die of other shapes is subsequently carried out. Soil 3, such as the warm rolling method of claim 1 or 2, wherein the other shapes of the die are square 4. The shape of a circle. 4. For the warm rolling method of item i or item 2 of the patent scope of the application, the number of rolling of the H = part N #, N &gt; 2, when the flat expansion is performed, The number of calendering is 2 or more, and the maximum number is less than N/2.温i or item 2 of the warm calendering method, straight in the 'continuous rolling 2 times. /, 6. Range 5th of the hot calendering method, in which the hole shape and shape of the shape 2 times In the rolling process, the reduction ratio of the section from the start of the raw material to the delay of the square y1 is 20% or more. 7. The warm rolling method according to the first or second aspect of the patent application, wherein the shape of the hole die is a combination of flat elliptical and square 2 rolls; in section 2 _ under rolling, the area shrinkage is above 鄕, in combination 3 315818 (revision) 21 1266659 roll reduction is 60 5以上以上。 8. The above-mentioned patent range of the first or the second part of the method of warming calendering, wherein at least 50% by volume of the interior of the material is plastically deformed 1.5 or more. In the warm rolling method of the eighth aspect, the plastic strain is generated in a region of 90% by volume or more of the inside of the material. 1 〇. The warm rolling method according to the scope of the patent application, wherein the following formula (1) The rolling condition parameter z indicated is u or more (the structure before rolling is ferrite iron (Ferrite) Bainite, Martensite, PerHte #Fe has a crystal structure of bcc or 2〇 or more (the structure before calendering is Fe of Austenite) The crystal structure is fcc), 2 = log three expi ---rl (I) (8.31(:T + 273)J" w ε : deformation ΐ · time from the start to the end of calendering (s) τ· The calendering temperature is the average value of the temperature of each rolling in the case of multiple rolling.) Q. The structure of the rolling w is 254,000 in the case of ferrite iron, ferritic iron, 麻田散铁, and ferritic iron. In the case of Vostian Iron, 300,000 〇7r&quot; u. For example, the warm rolling method of the i-th patent range of the patent, wherein the initial material and the final calendered reduction ratio are 90% or less. ', 12. If you apply for a patent range! In the method of warm rolling, the 315818 (corrected version) 22 3/zm or less is manufactured, and the ultrafine 1266659 C section or the L section has an average crystal grain size of granular steel. 13. The warm calendering method according to the scope of the patent application section C The average crystal grain size of the C section or the l section is: #粒钢. 315818 (revision) 23 1266659 七、指定代表圖: (一) 本案指定代表圖為:第(1 )圖。 (二) 本代表圖之元件符號簡單說明: 無元件符號說明 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案無代表化學式 315818(修正版)23 1266659 VII. Designated representative map: (1) The representative representative of the case is: (1). (2) Brief description of the symbol of the representative figure: No description of the symbol of the component VIII. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: This case is not represented by the chemical formula 315818 (revision)
TW093114215A 2003-05-20 2004-05-20 Warm rolling method TWI266659B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003180290A JP4221497B2 (en) 2003-05-20 2003-05-20 Warm rolling method for ultra-fine grain steel

Publications (2)

Publication Number Publication Date
TW200510084A TW200510084A (en) 2005-03-16
TWI266659B true TWI266659B (en) 2006-11-21

Family

ID=33475458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093114215A TWI266659B (en) 2003-05-20 2004-05-20 Warm rolling method

Country Status (7)

Country Link
US (1) US20060191613A1 (en)
EP (1) EP1642988B1 (en)
JP (1) JP4221497B2 (en)
KR (1) KR100749381B1 (en)
CN (1) CN100366761C (en)
TW (1) TWI266659B (en)
WO (1) WO2004104235A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4992064B2 (en) * 2008-01-09 2012-08-08 タマティーエルオー株式会社 Strong processing apparatus and strong processing method
JP5843127B2 (en) * 2011-02-28 2016-01-13 国立研究開発法人物質・材料研究機構 Manufacturing method of high strength nonmagnetic austenitic stainless steel
JP5733857B2 (en) * 2011-02-28 2015-06-10 国立研究開発法人物質・材料研究機構 Non-magnetic high-strength molded article and its manufacturing method
CN102284488B (en) * 2011-07-22 2013-01-30 四川三洲特种钢管有限公司 Symmetric hole-shaped curve cycle roll
KR101355464B1 (en) * 2011-12-20 2014-01-28 주식회사 포스코 Rolling method of carbon steels
CN102825097A (en) * 2012-09-07 2012-12-19 白银有色集团股份有限公司 Production method of alloy HMn60-3-1-0.75 large section bar
RU2515781C1 (en) * 2012-12-28 2014-05-20 Анатолий Васильевич Алдунин Method to produce metal rhombic profiles
JP5988065B2 (en) * 2015-05-14 2016-09-07 国立研究開発法人物質・材料研究機構 High strength nonmagnetic austenitic stainless steel
CN109127730B (en) * 2018-08-28 2019-10-01 成都蜀虹装备制造股份有限公司 A kind of 5356 aluminium alloy rod continuous casting and rolling production systems
CN111360080A (en) * 2020-03-10 2020-07-03 宝鸡市天罡钛业有限责任公司 Pass system and rolling method for rolling titanium and titanium alloy profiles with hexagonal sections

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816704A (en) * 1981-07-21 1983-01-31 Sumitomo Metal Ind Ltd Caliber rolling method
CA1262226C (en) * 1984-12-28 1989-10-10 Method for producing steel bars having improved low temperature toughness and steel bars produced thereby
CA2066475C (en) * 1991-05-06 1997-06-03 Terence M. Shore Method and apparatus for continuously hot rolling of ferrous long products
EP1010476A3 (en) * 1998-12-14 2003-09-03 SMS Demag AG Roll stand arrangement for the rolling of wire
JP3904351B2 (en) 1999-02-26 2007-04-11 独立行政法人物質・材料研究機構 High-strength and high-toughness rod and its manufacturing method
JP2000301204A (en) * 1999-04-15 2000-10-31 Daido Steel Co Ltd Method and device for rolling multisize wire and steel bar
JP2000309823A (en) * 1999-04-23 2000-11-07 Nippon Steel Corp Production of hot rolled silicon steel sheet uniform in magnetic property
JP3796536B2 (en) 2000-02-29 2006-07-12 独立行政法人物質・材料研究機構 Large strain uniform introduction processing method
US6546777B2 (en) * 2000-09-08 2003-04-15 Morgan Construction Company Method and apparatus for reducing and sizing hot rolled ferrous products
JP2002137002A (en) * 2000-10-30 2002-05-14 Daido Steel Co Ltd Guideless rolling method for hot rolling
JP2002192201A (en) * 2000-12-26 2002-07-10 National Institute For Materials Science Metalworking process for introducing large amount of strain into metal due to combined line of forging and rolling
JP3983065B2 (en) * 2002-02-28 2007-09-26 独立行政法人物質・材料研究機構 Manufacturing method of thick steel plate having ultrafine grain structure and thick steel plate
CN1705763A (en) * 2002-10-17 2005-12-07 独立行政法人物质·材料研究机构 Formed product and method for production thereof

Also Published As

Publication number Publication date
KR20060035603A (en) 2006-04-26
CN1791688A (en) 2006-06-21
US20060191613A1 (en) 2006-08-31
EP1642988A1 (en) 2006-04-05
KR100749381B1 (en) 2007-08-14
TW200510084A (en) 2005-03-16
JP2004346420A (en) 2004-12-09
EP1642988B1 (en) 2011-07-20
WO2004104235A1 (en) 2004-12-02
CN100366761C (en) 2008-02-06
EP1642988A4 (en) 2006-11-15
JP4221497B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
TWI266659B (en) Warm rolling method
Kent et al. Strength enhancement of a biomedical titanium alloy through a modified accumulative roll bonding technique
Behjati et al. Effect of annealing temperature on nano/ultrafine grain of Ni-free austenitic stainless steel
CN104471092B (en) The small ferrite austenite two-phase stainless steel plate of intra-face anisotropy and its manufacture method
Ko et al. Mechanical and electrical responses of nanostructured Cu–3 wt% Ag alloy fabricated by ECAP and cold rolling
CN103938137B (en) A kind of method changing titanium alloy large size bar homogeneity of structure
CN104451082B (en) A kind of preparation method of the average grain size 304 austenitic stainless steels less than 100nm
CN102277539A (en) High-strength steel with low yield ratio, high plasticity and ultrafine grain and preparation method thereof
Ozerov et al. Brittle-to-ductile transition in a Ti–TiB metal-matrix composite
Kim et al. Characterization of the microstructures and the shape memory properties of the Fe-Mn-Si-Cr-Ni-C shape memory alloy after severe plastic deformation by differential speed rolling and subsequent annealing
CN105695870A (en) thick hot rolled sheet steel with 450MPa grade yield strength and manufacturing method thereof
CN105917016B (en) Ferrite-group stainless steel and its manufacturing method
CN106636914A (en) IF steel and preparing method thereof
CN110408757A (en) A kind of preparation method of high-strength plasticity matching 316L stainless steel materials
Kim et al. Large strain hardening in Ti–V carbon steel processed by equal channel angular pressing
CN115404382A (en) High-strength and high-plasticity titanium alloy and preparation method thereof
Tomus et al. Fabrication of shape memory TiNi foils via Ti/Ni ultrafine laminates
CN106917041A (en) A kind of cold rolling hot-dip aluminizing zincium steel plate of think gauge and its manufacture method
CN106350739B (en) Low-alloy superplasticity steel and preparation method in low-carbon in high strain rate
CN108531779B (en) A kind of wide transformation hysteresis NiTiV marmem of V nano wire enhancing
JPWO2018030231A1 (en) Method of manufacturing pure titanium metal sheet and method of manufacturing speaker diaphragm
JP2003253332A (en) Method for manufacturing thick steel plate having hyperfine grain structure, an thick steel plate
CN113862542B (en) Nano-scale silicide and Laves phase reinforced refractory high-entropy alloy material and preparation method thereof
JP3937998B2 (en) Manufacturing method of steel pipe with excellent buckling resistance
Kim et al. Crack growth pattern and threshold stress intensity factor, KIH, of Zr–2.5 Nb alloy with the notch direction