JP3796536B2 - Large strain uniform introduction processing method - Google Patents

Large strain uniform introduction processing method Download PDF

Info

Publication number
JP3796536B2
JP3796536B2 JP2000055035A JP2000055035A JP3796536B2 JP 3796536 B2 JP3796536 B2 JP 3796536B2 JP 2000055035 A JP2000055035 A JP 2000055035A JP 2000055035 A JP2000055035 A JP 2000055035A JP 3796536 B2 JP3796536 B2 JP 3796536B2
Authority
JP
Japan
Prior art keywords
strain
compression
metal material
large strain
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000055035A
Other languages
Japanese (ja)
Other versions
JP2001240912A (en
Inventor
忠信 井上
史郎 鳥塚
寿 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2000055035A priority Critical patent/JP3796536B2/en
Publication of JP2001240912A publication Critical patent/JP2001240912A/en
Application granted granted Critical
Publication of JP3796536B2 publication Critical patent/JP3796536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J1/00Preparing metal stock or similar ancillary operations prior, during or post forging, e.g. heating or cooling
    • B21J1/02Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough
    • B21J1/025Preliminary treatment of metal stock without particular shaping, e.g. salvaging segregated zones, forging or pressing in the rough affecting grain orientation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、大ひずみの均一導入加工方法に関するものである。さらに詳しくは、この出願の発明は、板厚を確保しつつ金属材料内に大ひずみを広範囲に均一に分布させることのできる大ひずみの均一導入加工方法に関するものである。
【0002】
【従来の技術とその課題】
従来より、金属材料組織の微細化や緻密化などにより、金属材料の耐熱性や耐久性が向上することは、周知の通りであり、現在まで、そのための方法に多くの工夫がなされてきた。その金属組織微細化のひとつの方法として、最近注目を集めている方法に、70%以上の減面率(1.2以上のひずみに相当)の大ひずみを、材料内に導入する方法がある。
【0003】
これまで報告されている金属組織微細化とそのための大ひずみの導入方法としては、例えば、大圧下での急冷法(CAMP−ISU−Vol.11(1998)、P1017)をはじめ、繰り返し重ね接合圧延による方法(CAMP−ISU−Vol.11(1998)、P560)、温間圧延・再結晶による方法(CAMP−ISU−Vol.11(1998)、P1031)、温間加工溝ロール圧延(CAMP−ISU−Vol.12(1999)、P385)などが提案されている。これらについての各報文では、組織微細化技術の一方策として、材料内に如何にして大ひずみを導入するかが検討されている。
【0004】
しかしながら、上記いずれの方法でも、大ひずみをを得るために、大きな圧力下において1パスで加工、あるいは通常の圧力下において多パスで加工する方法が採用されているため、累積圧下率と共に材料の板厚が薄くなってしまい、さらに、大圧下加工を行えば行うほど、材料内部にひずみの不均一性が生じてしまうという問題がある。たとえば図1(a)に例示したように、z方向(紙面に垂直な方向)に変形しない平面ひずみの状態の下で、長さ1の矩形の材料を考え、この材料内に大ひずみ2を得るためには、従来方法では1方向だけの圧縮であるので、圧縮量約82%の加工が必要となり、結果として、板厚が0.177と極めて薄くなってしまうのである。図中の数字5.64は、当初の辺の長さ1のものが加工後に5.64になったことを示している。
【0005】
その他、大ひずみを金属材料内に導入する方法として、ECAP法(Mater. Sci. Eng−Vol.A168(1993)、P141)が存在するが、金型を用いなければならず、その製造コストの増大は免れない。
【0006】
この出願の発明は、以上の通りの事情に鑑みてなされたものであり、金型を用いることなく、簡便な手段によって、板厚を確保しつつ金属材料内に大ひずみを広範囲に均一に分布させることを可能とする大ひずみの均一導入加工方法を提供することを課題としている。
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして、加工硬化能を有する金属材料に対し少なくとも1回以上の圧縮変形を行い、変形された金属材料の内部に平均塑性ひずみ0.1以上の状態を形成し、この圧縮方向から少なくとも20度異なる方向から少なくとも1回以上圧縮変形を行い、金属材料の断面の70%以上が塑性ひずみ2.0以上の状態を形成することを特徴とする大ひずみの均一導入加工方法。
【0010】
【発明の実施の形態】
この出願の発明は、上記のとおりの特徴をもつものであるが、以下にその実施の形態について説明する。
【0011】
まず、この出願の発明が均一に導入することのできる「大ひずみ」については次のように規定される。すなわち、従来の方法では、「ひずみ」そのものは、70%減面でひずみ1.2程度までであったが、この出願の発明では、このような従来のレベルをはるかに超える大きなひずみ量を与えるものとされている。この発明での「大ひずみ」は、塑性ひずみとして2.0以上であることを意味している。しかもこの出願の発明は、このような「大ひずみ」を金属材料に対して均一に与えているのである。
【0012】
以上のことを実現するために、この出願の発明は、従来方法の一方向からの圧縮加工ではなく、多方向からの圧縮加工を非同時に行うことによって、板厚を確保しつつ材料内に大ひずみを広範囲に均一に分布させることに大きな特徴がある。
【0013】
塑性ひずみは、塑性域における材料の応力−ひずみ関係を考慮し、材料の塑性変形の指標となる方向によらず、かつ加工履歴に依存した量であり、以下の式によって表される。
【0014】
【数1】
【0015】
この出願の発明の方法では、たとえば図1(b)に例示したように、z方向(紙面に垂直な方向)に変形しない平面ひずみ状態の下で、長さ1の矩形の金属材料を考え、この材料内に大ひずみ2を得るためには、まずy方向から圧縮量58%の加工を行い、次にx方向から圧縮量58%加工を行うことにより、材料の初期形状を維持したまま大ひずみ2を実現できる。一方、前記図1(a)で示した従来方法では、圧縮量約82%の加工が必要となり、板厚が0.177と極めて薄くなってしまう。
【0016】
実際には、金属材料内に導入されるひずみは、工具形状と材料の幾何学的関係や工具と材料の摩擦特性に依存し、材料内に不均一なひずみをもたらすが、その場合には均一変形よりもさらに顕著に多方向圧縮加工の方が、大ひずみを導入することができる。
【0017】
また、この発明における非同時に多方向から圧縮加工する最大の利点は、金属材料の加工硬化特性を利用することであり、超微細組織鋼の厚板化における圧延の負荷を軽減するものである。一般的に多くの金属材料では、塑性変形の進行と共に塑性すべりに対する抵抗が増大する(加工硬化)。これにより一度目の加工によって大きなひずみが導入された領域は、他の領域に比べて相対的に硬くなっており、2度目の加工を行うことにより、変形は軟らかい領域に集中する。これにより、大ひずみを材料内に均一に導入することができる。
【0018】
この出願の発明の発明においては、1方向からの圧縮変形により導入される塑性ひずみは0.1以上であることが望ましい。この値が0.1未満では、異なる方向からの圧縮変形に大きな影響を及ぼさず、最終的に大きな塑性ひずみは得られない。
【0019】
そして、この発明においては、たとえば図2に示した装置によって加工することができる。すなわち、金属材料のX方向の両端に試験片チャックを取り付けて、金属材料を固定し、上下2本のアンビルを用いて、金属材料を加工する。そして、その試験片チャック自体を回転させることにより、金属材料の多方向からの加工を実現することができる。
【0020】
なお、この発明の方法が対象とする金属材料としては鋼、チタンそしてアルミニウムとその合金等の各種のものが考慮されるが、鋼については、以下の化学成分系のものを目安とすることができる。
【0021】
すなわち、重量%で、C:0.01〜0.3%、Si:0.02〜1.0%、Mn:0.2〜2.0%、Al:0.001〜0.1%、N:0.001〜0.01%、P<0.2%、S<0.01%である。これら組成の鋼のフェライト粒微細化にこの発明の方法は有効である。
【0022】
また、重量%で、Cr:0.01〜0.5%、Ni:0.01〜3.0%、Mo:0.01〜0.5%、Cu:0.01〜1.5%、Ti:0.003〜0.1%、Nb:0.003〜0.05%、V:0.005〜0.2%が含まれている鋼もこの発明の対象として考慮される。
【0023】
以下実施例を示し、さらにこの発明について詳しく説明する。
【0024】
【実施例】
成分が重量%表示として、0.15C−0.3Si−1.5Mn−0.02P−0.005S−0.003Al−残部Feで、大きさが15×15×100mmのSM490鋼を用いて、この出願の発明の方法を実施し、これにより得られた材料のひずみ分布を検討した。
【0025】
供試材は、前記図2に示した装置を用い、幅15mmの上下2本のアンビルを用いて加工した。すなわち、供試材をAc3点以上の1200℃に60秒保持してオーステナイト化し、その後800℃まで冷却し、外形変化でA%の圧縮変形を施し(図2y方向)、直ちに試験片を90度回転させ、0.5秒後に外形変化でB%の圧縮変形を施した(図2z方向)。変形のひずみ速度1/s、加工後直ちに10K/sで冷却した。
【0026】
加工によって供試材に導入された塑性ひずみは汎用有限要素コードABAQUS/Explicitを用いて計算した。ここでは、実測に基づいた温度とひずみ速度に依存した応力−ひずみ関係を用いた三次元動的解析を適用した。アンビルと供試材の接触条件は、実験結果と比較し摩擦係数μ=0.15の Coulomb条件を採用した。なお、アンビルは剛体とした。
【0027】
1パス目y方向の圧縮率と2パス目z方向の圧縮率とを変化させて、解析を行った。各実施例とその圧縮率は次の通りとした。
【0028】
参考例1 1パス目y方向圧縮率35%+2パス目z方向圧縮率35%
参考例2 1パス目y方向圧縮率50%+2パス目z方向圧縮率50%
実施例 1パス目y方向圧縮率50%+2パス目z方向圧縮率75%
参考例3 1パス目y方向圧縮率10%+2パス目z方向圧縮率75%
一方、比較例として、上記の図2z方向の圧縮変形(B%)を加えない従来方法を行った。供試材、加工条件および解析条件は前記の場合と同様であり、ひずみ速度1/Sで外形変化A%の圧縮変形を施し(図2y方向)、直ちに10K/sで冷却した。
【0029】
1パス目y方向の圧縮率のみを変化させて、解析を行った。各比較例とその圧縮率は次の通りとした。
【0030】
比較例1 1パス目y方向圧縮率35%
比較例2 1パス目y方向圧縮率50%
比較例3 1パス目y方向圧縮率75%
図3と4は、実施例2(仕上がり板厚7.5mm、表1参照)と比較例3(仕上がり板厚3.75mm)における各断面上におけるひずみの分布を示したものであり、(A)はx−y断面、(B)はy−z断面、および、(C)はz−y断面を示したものである。
【0031】
参考例2では、図3に示すように中心部廻りの広範囲に2以上の大ひずみが導入されているのが確認できる。また、2以上の大ひずみ領域の体積は加工された領域の体積の26%に導入されているのが確認された。
【0032】
しかしながら、比較例3では、図4に示すように中心部の極わずかな領域だけにしか2以上の大ひずみが導入されていないのが確認できた。2以上の大ひずみ領域の体積は加工された領域の体積の0.3%の極わずかな領域にしか導入されていないのが確認された。
【0033】
これらのことから、参考例2は仕上がり板厚が比較例3の2倍にあるにもかかわらず、大塑性ひずみを広範に導入されているのが確認された。
【0034】
表1は、最大塑性ひずみと導入されたあるひずみ以上の体積を示したものである。この結果から、この出願の発明の多方向加工が、仕上がり板厚が厚いにもかかわらず、大塑性ひずみの広範な導入を可能にしていることが確認できる。
【0035】
【表1】
【0036】
図5と図6は、参考例、実施例と比較例のz−y断面における0.8以上の塑性ひずみの領域を示したものであり、各々の図における(A)は参考例1と比較例1、(B)は参考例2と比較例2、および、(C)は実施例と比較例3を示している。これらの結果からも、この出願の発明の多方向加工は板厚が厚いにもかかわらず、塑性ひずみが広範な領域に導入されているのがわかる。なお、ひずみ0.8とは外形変化55%圧縮率に相当する値である。
【0037】
次に、SEM顕微鏡を用いて、参考例2と比較例3のミクロ組織を観察した。図7はその結果であり、(a)は比較例3のミクロ組織、および、(b)は参考例2のミクロ組織である。この図から、この出願の発明の多方向加工では、仕上がり板厚が2倍であるにもかからず、1方向加工の組織に比べ、微細領域が広範囲に拡大していることが確認できる。
【0038】
【発明の効果】
以上詳しく説明したように、この発明により、板厚を確保しつつ材料内に大ひずみを広範囲に、かつ均一に分布させることが可能となる。
【図面の簡単な説明】
【図1】 この出願の発明の特徴を従来法との比較として示した概略図である。
【図2】 この出願の発明の加工方法と装置を例示した概略図である。
【図3】 参考例2の結果である金属断面のひずみ分布を示した概略図である。
【図4】 比較例3の結果である金属断面のひずみ分布を示した概略図である。
【図5】 参考例1(A)、2(B)並びに実施例1(C)の結果である金属断面のひずみ領域を示した概略図である。
【図6】 比較例1〜3の結果である金属断面のひずみ領域を示した概略図である。
【図7】 (a)(b)は、金属断面の組織を比較例示した図である。
【符号の説明】
1 アンビル
2 金属材料
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for uniformly introducing large strain. More specifically, the invention of this application relates to a large strain uniform introduction processing method capable of uniformly distributing a large strain over a wide range in a metal material while ensuring a plate thickness.
[0002]
[Prior art and its problems]
Conventionally, it is well known that the heat resistance and durability of a metal material are improved by the refinement and densification of the metal material structure. To date, many methods have been devised. As one of the methods for refining the metal structure, a method that has recently attracted attention is a method in which a large strain having a surface reduction ratio of 70% or more (corresponding to a strain of 1.2 or more) is introduced into the material. .
[0003]
As a method for introducing a finer metal structure and a large strain therefor reported so far, for example, a rapid cooling method under a large pressure (CAMP-ISU-Vol.11 (1998), P1017), repeated lap joint rolling Method (CAMP-ISU-Vol.11 (1998), P560), warm rolling and recrystallization method (CAMP-ISU-Vol.11 (1998), P1031), warm work groove roll rolling (CAMP-ISU) -Vol.12 (1999), p. 385) has been proposed. In each of these reports, as one measure of the structure refinement technique, how to introduce a large strain in the material is examined.
[0004]
However, in any of the above methods, in order to obtain a large strain, a method of processing in one pass under a large pressure or a method of processing in multiple passes under a normal pressure is adopted. There is a problem that the plate thickness becomes thinner, and further, the larger the rolling process is performed, the more uneven the strain is generated inside the material. For example, as illustrated in FIG. 1A, a rectangular material having a length of 1 is considered under the state of plane strain that does not deform in the z direction (direction perpendicular to the paper surface), and a large strain 2 is applied in this material. In order to obtain this, the conventional method requires compression in only one direction, so that processing of about 82% of the compression amount is required. As a result, the plate thickness becomes extremely thin as 0.177. The number 5.64 in the figure indicates that the original one with side length 1 has become 5.64 after processing.
[0005]
In addition, there is an ECAP method (Mater. Sci. Eng-Vol. A168 (1993), P141) as a method for introducing a large strain into a metal material. The increase is inevitable.
[0006]
The invention of this application was made in view of the circumstances as described above, and a large strain is uniformly distributed over a wide range in a metal material while securing a plate thickness by a simple means without using a mold. It is an object of the present invention to provide a large strain uniform introduction processing method that can be applied.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application performs at least one compression deformation on a metal material having work hardening ability, and has an average plastic strain of 0.1 or more inside the deformed metal material. A state is formed, and compression deformation is performed at least once from a direction different from this compression direction by at least 20 degrees, and 70% or more of the cross section of the metal material forms a state having a plastic strain of 2.0 or more. Processing method for uniform introduction of strain.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above, and an embodiment thereof will be described below.
[0011]
First, “large strain” that can be uniformly introduced by the invention of this application is defined as follows. That is, in the conventional method, the “strain” itself is 70% reduction in area and up to about 1.2, but the invention of this application gives such a large amount of strain far exceeding the conventional level. that has been the stuff. "Large strain" in this invention, which means that it is 2.0 or more as a plastic strain. In addition, the invention of this application uniformly applies such “large strain” to the metal material.
[0012]
In order to achieve the above, the invention of this application is not a compression process from one direction of the conventional method, but non-simultaneously performs a compression process from multiple directions, thereby ensuring a large thickness in the material. A major feature is that the strain is uniformly distributed over a wide range.
[0013]
The plastic strain is an amount that depends on the processing history and takes into consideration the stress-strain relationship of the material in the plastic region, regardless of the direction of the plastic deformation of the material, and is expressed by the following equation.
[0014]
[Expression 1]
[0015]
In the method of the invention of this application, for example, as illustrated in FIG. 1B, a rectangular metal material having a length of 1 is considered under a plane strain state that does not deform in the z direction (direction perpendicular to the paper surface). In order to obtain a large strain 2 in this material, processing is first performed with a compression amount of 58% from the y direction, and then processing is performed with a compression amount of 58% from the x direction, thereby maintaining a large initial shape of the material. Strain 2 can be realized. On the other hand, in the conventional method shown in FIG. 1 (a), processing with a compression amount of about 82% is required, and the plate thickness becomes extremely thin at 0.177.
[0016]
In practice, the strain introduced into the metal material depends on the geometric relationship between the tool shape and the material and the friction characteristics between the tool and the material, and causes non-uniform strain in the material. Large strain can be introduced more significantly in the multi-directional compression process than in the deformation.
[0017]
In addition, the greatest advantage of non-simultaneously compressing from multiple directions in the present invention is to utilize the work-hardening characteristics of the metal material, and to reduce the rolling load in making the ultrafine structure steel thick. In general, in many metal materials, resistance to plastic slip increases with progress of plastic deformation (work hardening). Thereby, the region where a large strain is introduced by the first machining is relatively harder than the other regions, and the deformation is concentrated in the soft region by performing the second machining. Thereby, a large strain can be uniformly introduced into the material.
[0018]
In the invention of this application, the plastic strain introduced by compressive deformation from one direction is preferably 0.1 or more. If this value is less than 0.1, it does not have a great influence on the compressive deformation from different directions, and finally a large plastic strain cannot be obtained.
[0019]
And in this invention, it can process, for example with the apparatus shown in FIG. That is, a test piece chuck is attached to both ends in the X direction of the metal material, the metal material is fixed, and the metal material is processed using two upper and lower anvils. Then, by rotating the test piece chuck itself, processing of the metal material from multiple directions can be realized.
[0020]
Various metal materials such as steel, titanium and aluminum and their alloys are considered as the metal materials targeted by the method of the present invention. it can.
[0021]
That is, by weight, C: 0.01 to 0.3%, Si: 0.02 to 1.0%, Mn: 0.2 to 2.0%, Al: 0.001 to 0.1%, N: 0.001 to 0.01%, P <0.2%, S <0.01%. The method of the present invention is effective for refining ferrite grains in steels having these compositions.
[0022]
Also, by weight, Cr: 0.01-0.5%, Ni: 0.01-3.0%, Mo: 0.01-0.5%, Cu: 0.01-1.5%, Steels containing Ti: 0.003-0.1%, Nb: 0.003-0.05%, V: 0.005-0.2% are also considered as objects of this invention.
[0023]
Hereinafter, the present invention will be described in detail with reference to examples.
[0024]
【Example】
Using SM490 steel with a component of 15% by weight of 0.15C-0.3Si-1.5Mn-0.02P-0.005S-0.003Al-remaining Fe and a size of 15 × 15 × 100 mm, The method of the invention of this application was carried out, and the strain distribution of the material obtained thereby was examined.
[0025]
The test material was processed using the upper and lower two anvils having a width of 15 mm using the apparatus shown in FIG. That is, the specimen was austenitized by holding at 1200 ° C. for 3 seconds or more at Ac3 point, then cooled to 800 ° C., subjected to A% compressive deformation by changing the outer shape (direction in FIG. 2 y), and immediately the specimen was 90 ° After 0.5 seconds, B% compression deformation was applied by changing the external shape after 0.5 seconds (direction z in FIG. 2). The deformation was cooled at a strain rate of 1 / s and immediately after processing at 10 K / s.
[0026]
The plastic strain introduced into the specimen by processing was calculated using the general-purpose finite element code ABAQUS / Explicit. Here, a three-dimensional dynamic analysis using a stress-strain relationship depending on temperature and strain rate based on actual measurement was applied. As a contact condition between the anvil and the test material, a Coulomb condition with a friction coefficient μ = 0.15 was adopted as compared with the experimental result. The anvil was a rigid body.
[0027]
The analysis was performed by changing the compression rate in the first pass y direction and the compression rate in the second pass z direction. Each example and its compression ratio were as follows.
[0028]
Reference Example 1 First pass y-direction compression ratio 35% + second pass z-direction compression ratio 35%
Reference Example 2 First pass y-direction compression ratio 50% + second pass z-direction compression ratio 50%
Example 1 First pass y-direction compression ratio 50% + second pass z-direction compression ratio 75%
Reference Example 3 First pass y-direction compression ratio 10% + second pass z-direction compression ratio 75%
On the other hand, as a comparative example, a conventional method in which the compression deformation (B%) in the direction of FIG. The specimens, processing conditions, and analysis conditions were the same as those described above. The specimen was subjected to compression deformation with an outer shape change of A% at a strain rate of 1 / S (in the y direction in FIG. 2), and immediately cooled at 10 K / s.
[0029]
The analysis was performed by changing only the compression rate in the y direction in the first pass. Each comparative example and its compression rate were as follows.
[0030]
Comparative Example 1 First pass y-direction compression ratio 35%
Comparative Example 2 First pass y-direction compression ratio 50%
Comparative Example 3 First pass y-direction compression ratio 75%
3 and 4 show the strain distribution on each cross section in Example 2 (finished plate thickness 7.5 mm, see Table 1) and Comparative Example 3 (finished plate thickness 3.75 mm). ) Shows an xy section, (B) shows a yz section, and (C) shows a yz section.
[0031]
In Reference Example 2, it can be confirmed that two or more large strains are introduced in a wide range around the center as shown in FIG. It was also confirmed that the volume of the two or more large strain regions was introduced into 26% of the volume of the processed region.
[0032]
However, in Comparative Example 3, it was confirmed that a large strain of 2 or more was introduced only in a very small region at the center as shown in FIG. It was confirmed that the volume of the large strain region of 2 or more was introduced only in a very small region of 0.3% of the volume of the processed region.
[0033]
From these facts, it was confirmed that Reference Example 2 introduced a large plastic strain extensively even though the finished plate thickness was twice that of Comparative Example 3.
[0034]
Table 1 shows the maximum plastic strain and the volume above a certain strain introduced. From this result, it can be confirmed that the multi-directional machining of the invention of this application enables a wide introduction of large plastic strain despite the thick finished plate thickness.
[0035]
[Table 1]
[0036]
5 and 6 show the plastic strain region of 0.8 or more in the yz section of the reference example, the example and the comparative example, and (A) in each figure is a comparison with the reference example 1. FIG. Examples 1 and (B) show Reference Example 2 and Comparative Example 2, and (C) shows Example 1 and Comparative Example 3. From these results, it can be seen that the plastic strain is introduced in a wide range in the multi-directional machining of the invention of this application, although the plate thickness is thick. Note that the strain 0.8 is a value corresponding to a 55% compression ratio of the outer shape change.
[0037]
Next, the microstructures of Reference Example 2 and Comparative Example 3 were observed using an SEM microscope. FIG. 7 shows the results. (A) shows the microstructure of Comparative Example 3, and (b) shows the microstructure of Reference Example 2. From this figure, the multi-directional machining of the invention of this application, despite the finished thickness is doubled, compared to the one direction processing tissue, it can be confirmed that the fine region is enlarged extensively .
[0038]
【The invention's effect】
As described above in detail, according to the present invention, it is possible to uniformly distribute a large strain in a material in a wide range while ensuring a plate thickness.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing the features of the invention of this application as a comparison with a conventional method.
FIG. 2 is a schematic view illustrating the processing method and apparatus of the invention of this application.
3 is a schematic view showing a strain distribution of a metal cross section as a result of Reference Example 2. FIG.
4 is a schematic view showing a strain distribution of a metal cross section as a result of Comparative Example 3. FIG.
FIG. 5 is a schematic view showing a strain region of a metal cross section as a result of Reference Examples 1 (A), 2 (B) and Example 1 (C) .
6 is a schematic view showing a strain region of a metal cross section as a result of Comparative Examples 1 to 3. FIG.
7 (a) (b) is a diagram showing comparative example structure of the metal section.
[Explanation of symbols]
1 Anvil 2 Metal material

Claims (1)

加工硬化能を有する金属材料に対し少なくとも1回以上の圧縮変形を行い、変形された金属材料の内部に平均塑性ひずみ0.1以上の状態を形成し、この圧縮方向から少なくとも20度異なる方向から少なくとも1回以上圧縮変形を行い、金属材料の断面の70%以上が塑性ひずみ2.0以上の状態を形成することを特徴とする大ひずみの均一導入加工方法。The metal material having work hardening ability is subjected to compression deformation at least once, and a state having an average plastic strain of 0.1 or more is formed inside the deformed metal material, from a direction different from this compression direction by at least 20 degrees. A method for uniformly introducing large strain, wherein at least one compression deformation is performed at least once to form a state where 70% or more of the cross section of the metal material has a plastic strain of 2.0 or more.
JP2000055035A 2000-02-29 2000-02-29 Large strain uniform introduction processing method Expired - Lifetime JP3796536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055035A JP3796536B2 (en) 2000-02-29 2000-02-29 Large strain uniform introduction processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055035A JP3796536B2 (en) 2000-02-29 2000-02-29 Large strain uniform introduction processing method

Publications (2)

Publication Number Publication Date
JP2001240912A JP2001240912A (en) 2001-09-04
JP3796536B2 true JP3796536B2 (en) 2006-07-12

Family

ID=18576221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055035A Expired - Lifetime JP3796536B2 (en) 2000-02-29 2000-02-29 Large strain uniform introduction processing method

Country Status (1)

Country Link
JP (1) JP3796536B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221497B2 (en) 2003-05-20 2009-02-12 独立行政法人物質・材料研究機構 Warm rolling method for ultra-fine grain steel
JP3944579B2 (en) * 2003-05-20 2007-07-11 独立行政法人物質・材料研究機構 Multipass warm controlled rolling process using square and oval perforated rolls.

Also Published As

Publication number Publication date
JP2001240912A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
Kim et al. Fatigue strength of ultrafine-grained pure Ti after severe plastic deformation
Qu et al. Tensile and compressive properties of AISI 304L stainless steel subjected to equal channel angular pressing
Shin et al. Constrained groove pressing and its application to grain refinement of aluminum
Sakai et al. Grain refinement and superplasticity in an aluminum alloy processed by high-pressure torsion
Xing et al. Structure and properties of AA3003 alloy produced by accumulative roll bonding process
EP1980635B1 (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
KR20100019443A (en) Low density steel with good stamping capability
TW201350232A (en) Material with high wear resistance
KR20190028481A (en) High yield strength steel plate
CN102356174A (en) Micro-alloyed carbon steel as texture-rolled steel strip, in particular for spring elements
Takizawa et al. Incremental feeding high-pressure sliding (IF-HPS) process for upscaling highly strained areas in metallic materials with enhanced mechanical properties
JP3796536B2 (en) Large strain uniform introduction processing method
JPWO2016031958A1 (en) Metal material and processing method
JP4959245B2 (en) Method for producing high-strength metal member
CN100366761C (en) Warm rolling method
JPWO2018030231A1 (en) Method of manufacturing pure titanium metal sheet and method of manufacturing speaker diaphragm
Kim et al. Evolution of the microstructure and mechanical properties of interstitial-free steel during multi-axial diagonal forging
Derakhshandeh et al. Microstructure and mechanical properties of ultrafine-grained titanium processed by multi-pass ECAP at room temperature using core–sheath method
JP2010222632A (en) HIGH STRENGTH Fe-Ni-Co-Ti BASED ALLOY AND METHOD FOR PRODUCING THE SAME
JP7249730B2 (en) Steel plates, tubular moldings, and stampings
Gao et al. Analysis of the deep drawing behavior of 2507 super duplex stainless steel based on texture and microstructure evolutions
Carsí et al. Processing, microstructure, strength, and ductility relationships in ultrahigh carbon steel assessed by high strain rate torsion testing
JPH10216884A (en) Method for repeated lateral forging and forming of metallic material
JP6893371B2 (en) Steel material with high toughness, its manufacturing method, structural steel sheet using this steel material
CN111615563A (en) Alloy and method of forming yield strength distribution during forming of metal parts

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3796536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term