TWI222063B - Method for modifying switching field characteristics of magnetic tunnel junctions - Google Patents

Method for modifying switching field characteristics of magnetic tunnel junctions Download PDF

Info

Publication number
TWI222063B
TWI222063B TW091119863A TW91119863A TWI222063B TW I222063 B TWI222063 B TW I222063B TW 091119863 A TW091119863 A TW 091119863A TW 91119863 A TW91119863 A TW 91119863A TW I222063 B TWI222063 B TW I222063B
Authority
TW
Taiwan
Prior art keywords
layer
magnetic
reset
patent application
scope
Prior art date
Application number
TW091119863A
Other languages
English (en)
Inventor
Thomas Anthony
Lung Tran
Manish Sharma
Original Assignee
Hewlett Packard Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Co filed Critical Hewlett Packard Co
Application granted granted Critical
Publication of TWI222063B publication Critical patent/TWI222063B/zh

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/902FET with metal source region

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Semiconductor Memories (AREA)

Description

1222063 A7 B7 五、發明説明(1 ) 背景 (請先閱讀背面之注意事項再填寫本頁) 本發明是有關於資訊儲存裝置。更特別地,本發明是 有關包括有磁性隧道接面之記憶體裝置。 一種典型的磁性隨機存取記憶體(Magnetic Random Access Memory,“MRAM”)裝置包括有一陣列的記憶體細 胞,字元線沿著該等記憶體細胞的列延伸,及位元線沿著 該等記憶體細胞的行延伸。每一記憶體細胞位在一字元線 及一位元線之一交叉點。 該磁性隨機存取記憶體的記憶體細胞可以基於磁性隧 道接面·,像是旋轉相依隧道(spin dependent tunneling,’’SDT”)接面。一種典型的SDT接面包括有一定 向(pinned)層,一感測層及夾層於該定向層及感測層之間的 一隔離隧道障礙層。該定向層具有一磁性向量,該磁性向 量被固定使其不會在施加所要的一被使用的磁場時產生旋 轉。該感測層具有一磁性向量,該磁性向量可以被導引於 二個方向中的任一方向:與該定向層磁性向量相同的方向 或與該定向層磁性向量相反的方向。如果該定向及感測層 的磁性向量是在相同方向,則該SDT接面之方向被稱為” 平行”。如果該定向及感測層的磁性向量是在相反方向,則 該SDT接面之方向被稱為”抗平行(anti-parallel)”。 此二穩態的方向,平行及抗平行,代表邏輯值”0” 及”1”。該磁性方向緊接著影響該SDT接面的電阻。該SDT 接面的的電阻在當該磁性方向是平行時為第一數值,及當 該磁性方向是抗平行時為第二數值。該SDT接面的磁性方 4¼紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -4 - 1222063 A7 B7 五、發明説明(2 向及因此其邏輯值可以藉由感測它們的電阻狀態來被加以 讀取。 (請先閲讀背面之注意事項再填寫本頁) 該記憶體矩陣可以藉由沉澱一疊的磁性記憶體元件 層,及佈圖該疊層成為記憶體元件來被加以製造。該等記 憶體元件理想的尺寸,形狀及厚度是一致的。 .、?τ— 然而,實際上該厚度,尺寸及形狀並不是一致。尺寸, 形狀及層厚度的改變產生在該磁性隨機存取記憶體矩陣中 的記憶體元件的磁性特性上的變化。特別地,此等參數的 變化可以在晶圓之中發生,但它們也可以發生在壓模與壓 模(die-to-die)及陣列至陣列之間。此等改變可以強低資料 寫入的整合性及可能也會有未被選擇的位元消除的不想要 的負面作用。當記憶體位元在尺寸上被降低時,此等變化 及它們不需要的效應變得更明顯,特別是在出現在切換該 荨感應層的矯頑磁力(coercivity)時更為明顯。 然而,記憶體製造上的一個目標是要降低該等記憶體 元件的尺寸。降低尺寸會增加儲存密度,接著可以降低儲 存成本。降低尺寸也降低電源消耗,其是有利於行動產品 的製造。 摘要 根據本發明之一特徵,一磁性隧道接面藉由形成定向 及感/則層來被加以製造;及重新設定至少一層的磁向量。 本务明之其他特彳玫及優點將由以下詳細的描述,及一併來 考的相關圖式,藉由舉例說明本發明之原理而被加以瞭解。 圖式之簡要描沭
1222063 A7 B7 五、發明説明( 第1圖是一包括一陣列的SDT接面之MRAM裝置之說 明圖。 (請先閲讀背面之注意事項再填寫本頁) 第2圖是一 SDT接面的基本結構之說明圖。 第3圖是製造一 SDT接面之一方法的說明圖。 第4a,4b,及4c圖是該SDT接面之範例感測層磁向量 之說明圖。 第5a,5b,及5c圖是不同SDT接面切換曲線的說明圖。 第6aa,6ab,6ac,0b及6c圖是該SDT接面的其他範例 感測層磁向量的說明圖。 詳細說明 、可| 現請參考第1圖,其說明一磁性隨機存取記憶體 (‘MRAM’)裝置1〇包括有電阻交叉點陣列12的旋轉相依隧 道(SDT )接面14。該SDT接面14被以行列的方式配置,該 等列沿著X方向延伸及該等行沿著7方向延伸。只有相當小 數目的SDT接面I4被顯示來簡化說明該mraM裝置1〇。實 際上,任何規格的陣列都可以被使用。 追縱功能像是字元線16沿著在該陣列12之一侧上的平 面的X方向延伸。追蹤功能像是位元線18沿著在該陣列12 之一相鄰侧上的平面的y方向延伸。其可能在該陣列12的每 一列有一字元線16及在該陣列12的每一行有一位元線16。 每一 SDT接面14是位在一字元線16與一位元線丨8的交叉點 上。该MRAM裝置1〇包括有一讀取/寫入電路(圖中未示), 其在讀取操作期間感測被選取8〇丁接面14之電阻狀態,及 在寫入操作期間提供寫入電流至被選擇的字元及位元線16
1222063 • A7 B7 五、發明説明(4 ) 及18。 (請先閲讀背面之注意事項再填寫本頁) 現請參考第2圖,其更詳細地顯示一 SDT接面14。該 SDT接面14包括有一定向鐵磁(ferromagnetic : FM)層52, 在該定向FM層上的一隔離隧道阻隔層56,及在該隧道阻隔 層56上的一感測鐵磁(FM)層54。該定向FM層52具有一磁性 向量M0,·其是指向該定向層52之平面的方向。該定向FM 層52可以是由FM材質所製成,像是鎳化鐵(NiFe),氧化鐵 (Fe304),二氧化鉻(Cr02),鈷,或鈷合金(例如,CoFe, NiFeCo)。 該定向層5 2的磁性相量可以一結構來被固定,該結構 包括有第一及第二種子層46及48,及一抗鐵磁 (anti-ferromagnetic : AF)定向層50。該第一種子層46允許 該第二層48由一(111)結晶結構方向來被成長,及該第二種 子層48建立一(111)結晶結構方向給該AF定向層50。該AF 定向層50提供一大交換磁場,其保持該定向FM層52的磁性 向量M0於一方向上,即使一施加電場出現在所要的範圍之 内。此使得該定向FM層54成為一”硬性” FM層,其很難被 加以轉動。該第一種子層46可以是由鈦(Ti)或鈕(Ta)製成, 及該第二種子層48可以是由鎳化鐵(NiFe)或NiFeCo所製 成。其他的種子層材料包括有Ru,TaN,TiN,Al2〇3,Si02。 該AF定向層50可以由合成FM材質(例如,CoFe/Ru/CoFe多 重層)或一·抗FM材質(例如,IrMn,FeMn,PtMn)所製成。 該感應層5 4具有一未被定向的磁性向量Μ1。反之,該 感應層磁性向量Ml可以被導向於一被施加電場於所需範 34¼紙張尺度適用中國國家標準(CNS) Μ規格(210X297公釐) 1222063 A7 . B7 五、發明説明(5 ) (請先閲讀背面之注意事項再填寫本頁) 圍時出現的其中的一方向。此使得該感應層54層為一 ’’軟 式’’FM層。該SDT接面54的磁性方向在當該感測層磁性方 向Ml是被指向於與該定向層磁性向量M0相同方向時是平 行的,及在當該感測層磁性方向Ml是被指向於與該定向層 磁性向量M0相反方向時,其是為抗平行的。感測FM層材 質包括有但不受限於NiFe,NiFeCo,及CoFe。 該隔離隧道阻隔層56允許量子機械性隧道形成產生在 該等定向及感測層52及54之間。此隧道形成現像是因電子 旋轉而發生的,使該SDT接面14之電阻成為該等定向及感 測層52及54之磁性為相對方相對方向函數。例如,如果該 SDT接面14的磁性方向是平行的,則該SDT接面14的電阻 是第一數值(R),如果該磁性方向是抗平行的,則為第二數 值(R +△ R)。該隔離隨道阻隔層56可比是由氧化铭 (Al2〇3),二氧化矽(Si02),氧化钽(Ta205)或氮化矽(SiN4) 所製成。其他的介電質及特定半導體材質也可以被使用在 該隔離隧道阻隔層56。 磁場(Hx,Hy)可以藉由提供電流(Ix,Iy)至與該SDT接 面14接觸的該字元及位元線16及18來被施加在該SDT接面 14。如果該等字元線及位元線16及18是垂直的,該被施加 的磁場(Hx,Hy)將也是垂直的。 尼耳(Neel) “剝橘子(orange-peel)”||合(HN)也被稱為 FM耦合被認為是因為在該定向與感測52及54之間的界面 粗糙所引起的。該FM耦合的量值是 紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1222063 A7 B7 五、發明説明(6
Hn ^—Mse~2^u (請先閲讀背面之注意事項再填寫本頁) 其中h及λ疋该界面粗彳造的波幅及波長’ M s是該感應 層54的保合磁場。該等項次tF及ts分別是該感測層54及該隔 離隧道阻隔層56的厚度。 靜磁耦合(Hd)也被稱為抗FM(AF)耦合結被認為是因 為在該定尚層52與該第二種子層48之邊緣上的未補償磁性 電洞所引起。該平均AF耦合是 wa
L Ηλ.= 其中W及L是該接面寬度及長度,A是常數,及α是該 SDT接面14之維度的相依變數。在當該定向及感測層52及 54之間的間隔是遠大於它們的寬度時,α的數值應該接近 1。在當該定向及感測層5 2及5 4之間的間隔是遠小於它們的 寬度時,α的數值應該接近0。 該FM耦合在通過該SDT接面14之區域是維持一定,及 其與該SDT接面14的尺寸無關。相對地,該AF連結在通過 該SDT接面之區域及在該SDT接面14之體積内是相當的不 平均的。該AF連結也依據接面尺寸及形狀:其在當接面維 度接近於次微米時變得非常強固。 該FM耦合傾向於將該感測層54之磁性向量Ml平行對 齊於該定向層5 2的磁性向量M0。因而,在製造期間,該感 測層磁性尚量Ml將對齊於FM耦合及AF耦合的淨結果。該 感應層54的結晶各向異性(anisotropy)及磁致伸縮 j本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 1222063 A7 B7 五、發明説明(7 ) (magnetostriction)也將影響該感測層磁性向量Ml的方向及 旋轉。 (請先閲讀背面之注意事項再填寫本頁) 現請參考第3圖,其顯示製造一 SDT接面14的一種方 法。字元線被形成在一晶圓(200)上及第一及第二種子層是 置放在該字元線(202)上。一 AF定向層被設置在該第二種子 層(204)上,及一定向FM層被設置在該AF定向層(206)上。 該等FM層通常是在一被施加磁場出現時被設置以建立一 同軸磁各向異性(anisotropy)。 一隔離隧道阻隔層被設置在該定向FM層(208)的上 面。選擇界面層等可以夾置該隔離隧道阻隔層。 一感測FM層被設置在該隔離隧道阻隔層(210)之頂 端,該等層被佈圖至一陣列的SDT接面(212),及位元線被 形成在該SDT接面(214)之上。該感測層的硬轴及軟軸分別 以HA及EA來加以定義。在此製造步驟中,該感測層磁性 向量Μ1與該軟軸E A對齊,該軟軸E A則與該感測層5 4之X-軸一致(參考第4b)圖。該感測層磁性向量Ml的夾角(0 〇是 0 1 =〇度。再者,該定向及感測層磁性向量M0及Μ1的夾角 (0 〇及0 1)並不需要是相同的。特別地,該定向層5 2的磁性 可以藉由在位元佈圖時曝露在相當高溫度來被加以改變。 該定向FM層是在此點(組塊216)上被後退火。該定向 FM層是以高於它的隔離溫度(ΤΒ)被加熱,及該定向層磁向 量相對於該定向層52之X-軸的一所需夾角(0 〇)(參考第4a 圖)可以藉由在一段時間内施加一磁場來被設定。例如,該 定向層(52)的磁性向量角(0 〇)可以視材質而定藉由施加平 ¥本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) _ 10 - 1222063 A7 ___B7 ___ 五、發明説明(8 ) (請先閲讀背面之注意事項再填寫本頁) 行於該磁向量M0之所需角度(0 G)的一 2000厄斯特的電場 及以180°C〜300°C的溫度對該SDT接面加溫15分鐘到數小 時。該SDT接面而以該磁場出現的溫度來被加以冷卻,以 固定該定向層磁場於所需要的角度在該AF層及該定 向層之間磁交換耦合保持該磁向量M0於固定的方向。 該等SDT接面被測試來決定AF耦合是否大於FM耦 合,或者反之亦然(218)。此可以藉由測量該Sdt接面的切 換特性來加以完成。材質缺陷及尺寸與形狀上的改變可以 導致不同的SDT接面會有不同的切換曲線。測試可以在許 多接面上執行以獲得在適當磁向量角度(6>。及0 〇時後退 火的統計方法。 改變也可以只在該感測層磁向量角,只在該定向層磁 向里角,或者该感測層及該定向層磁向量角二者(220)。該 感測層是依軟軸轉動在超過臨界溫度下被加熱(但是低於 該定向層的隔離溫度),及一磁場以對於該軟軸所需要的角 度被加以施加。該再退火不換改變該SFM層的磁角,但它 可以重新設定該感測層軟軸沿著該外部施加磁場。例如, 一鎳化鐵(NiFe)感測FM層的磁角可以藉由對該SDT接面在 180°C〜250°C下予以退火15〜30分鐘來被加以改變,在此同 時施加1000厄斯特的一外部磁場。該真正的溫度,持續時 @及磁場^依據材質及層級結構而定的。其結果,該感測 層磁角被改變成為一新的角度,如第4cK[所示。 在只有該定向層的磁向量角(〜)時可以被加以改變 如後。該SDT接面以該定向層材制阻隔溫㈣高於該阻 紙張尺度適用中國國家標準(CNS) ⑵0X297公爱) ------~-_ 1222063 A7 B7 五、發明説明(· 9 ) (請先閱讀背面之注意事項再填寫本頁) 隔溫度來被加以退火。該溫度視材質而定通常是在200〜 280°C的範圍知内。在該退火的加熱或冷卻階段,該SDT 接面疋曝露在一磁場中’該磁場設定該磁向量的方向。該 磁感測層的磁向量將也被設定在與該定向層的磁向量的相 同方向上。因此,一緊接的低溫退火步驟被執行來回復該 感測層的磁向量。 現請參考第5 a圖,其顯示相應於X及y軸之第一,第二, 及第三對SDT接面切換曲線110a及110b,112a及112b,及 114a及114b。在此特別的範例中,該AF連結相對於鐵磁(FM) 耦合是小的,因為該資料由一大的裝置被收集。如果該定 向及感測層磁向量(M0及Ml)都是指向沿著該X軸時,該第 一對切換曲線110a及110b可以在退火之前即被產生,藉此 在該感測及定向層磁向量(M0及Ml)之間的角度是0度或者 180度(如第6aa圖所示)。 為了由一低電阻狀態切換到高電阻狀態,該組合磁場 +Hx及+Hy(或一Hy)被施加在該接面上。該+Hy及一Hy使該 感測層磁向量(Μ 1)移離它的軟軸EA,但來自該定向層的該 FM連結場將會拉引該感測層磁向量(Ml)去與該定向層磁 向量(M0)對齊,使得在該等向量(M0及Ml)之間的角度分開 只是緩慢地改變。因為在該感測磁向量(Ml)及該+Hx之間 的低力矩角,一較大量的+Hx磁場被需求用於該SDT接面 來切換狀態(如曲線ll〇b所示者)。在另一方面,為了由高 電阻狀態切換至低電組狀態,該FM連結磁場協助該一 Hx 磁場,使得一較小的一Hx被需要(如曲線110a所示)。因此, 紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -12 - Ϊ222063 A7 '________________Β7 五、發明説明(10 ) ^ 一較高的.組合磁場被需求來寫人-邏輯,Γ,而不是邏 輯,〇,(如向量A,B,C1D之相對量所示)。 該FM耗合的影響可以藉由對該接面再退火將該定向 磁向量(M0)設定於與該x.軸具有_爽角(例如,〜=+2〇度) 來被降低(參考第6ab圖)。該感應層磁向量(議)的方向沒有 被改灸其結果,當一 +Hy磁場被施加時,該感測層磁場 向量(Ml)被更推遠離該定向磁場。該結果是該 曲線112b的 上右半部。該曲線的下右是—Hy磁場的結果,其推著該感 測層磁向量Μ1向著該定向層磁向量M〇。因此該FM連結是 較強的且它變得更不容易轉動。該曲線i 12a的左手側不會 有像上述如此大的改變。因為該二磁向量大體上是相互反 平行的’該FM耦合對於該感測層54的轉動具有較小的影 響。 該等切換曲線112a及112b的上半部的對稱允許該SDT 接面的操作。一個+Hy磁場可與一個+Hx磁場組合使用來產 生一磁場向量A’,其將該SDT接面由邏輯,0,切換至,1,。類 似地,一個+Hy磁場可以與一個一 Hx磁場組合使用產生一 磁保持向量B,其將該SDT接面由邏輯,1,切換至,〇,。因為 此對稱,該等向量A,及B大約是相同的量級,及其等量級 小於向量A的量級。因此,該退火步驟幫助降低該寫入磁 場的量級及因此降低需要用來產生該寫入磁場的電流。 如果一相反角度(例如,0G=-2O度)被重新設定時,一 較小的曲線114產生(請參考第6ac圖)。該曲線114的下半部 是沿著y-軸對稱的。該SDT接面是被製造來操作在該切換 Λ Λ ---—-—------------- 一本紙張尺度適用中國國家標準(CNS) Α4規格(2〗0X297公釐) -13 - (請先閲讀背面之注意事項再填寫本頁) .、?· -# 1222063 A7 ____—_B7_ 五、發明説明(11 ) 曲線的下半部。 現請參考第5b圖所示,其顯示相對應於該X及y軸的第 一及第二SDT接面切換曲線210及212a/b/c/d。在此特別的 範例中’该接面尺寸是一微米或更小。因此該af|馬合磁場 疋相當大的’及該感測層的矯頑磁力(C〇erCiVity)HC也明顯 的增加。該切換曲線210產生是因為該接面被退火而對齊於 該緩軸EA及沿著該X-軸的該感射測層磁向量M1。一較大量 級的Hx及Hy磁場在寫入邏輯,1,及邏輯,〇,是被需要的。該 組合磁場Hx及Hy是以向量E及F來代表。 該AF耦合的影響可以藉由退或該SDT接面來被降 低’像是定向及感測層磁向量二者在相對於X-軸是為相同 角度(例如,0 〇= 0 i =+20度)。該定向層磁向量M0被固定在 一角度;該感測層磁向量(Ml)可以是大體上平行或抗平行 於該定向層磁向量(M0)。該FM耦合磁場及該AF耦合磁場 也沿著此新的EA指向及它們是相互相反方向的。該切換曲 線212具有四截段212a,212b,212c,及212d,每一個截段 相應於在該X及y軸上的一個象限。該截段212a是在該第一 象限,其具有推動該感測層磁向量(Μ 1)向著該X軸的磁場 +Hy,因此變得更對齊於該+Hx磁場。此使得該感測層磁向 量由平行至抗平行的切換由於低力矩效應而變得對該被施 加的+Hx磁場較不敏感。在當該一 Hy及+Hy磁場被施加至 該SDT接面時,在該第四象限中的該截段212b相應於將該 感測層向量(Ml)由平行切換至抗平行狀態。在此範例中, 該一 Hy磁場推動該感應層磁向量(Ml)更遠離於該水平的 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) -14 - i (請先閲讀背面之注意事項再填寫本頁) -、τ· 1222063 A7 __ B7_ 五、發明説明(12 ) X-軸’因此’ g亥力矩角對較大量級的一 Hy是較大的,及該 感測層磁向量(Ml)對於該+Hx磁場是更敏感的。 類似的結果發生在為於X_y軸之第三及第四象限中的 該切換曲線截段212c及212d。該+Hy磁場推著該感測層磁 向量更遠離於X-軸,及一Hx推動該感測層磁向量由抗平行 至平行狀態。因此該感測層磁向量(M1)之切換對該—^乂磁 場是敏感的。另一方面,該一 Hy磁場推動該感測層磁向量 (Ml)向該X-軸推進,及該一 HX磁場切換該感測層磁向量 (Ml)由抗平行至平行。其結果,該感測層磁向量的切換對 於5玄一Hx磁%是較不敏感的。其產生,在該等曲線 212&/212(:及21213/212(1之間相對於乂5平面空間的中心是相 當好的對稱。向量E,及F,代表將該SDT接面由抗平行切換 到平行(亦即,在寫入一邏輯’〇’時)及由平行切換到抗平行 (亦極,在寫入一邏輯,丨,時)的該組合臨界磁場。該等向量 E及F的里級疋小於該等向量e及F的量級。 現請參考第5c圖,其顯示退火期間,在當一負角度(例 如,产20度)被設定時,該切換曲線的四個截段 2Ha,2Mb,21物,及以牦(也請參考第6(:圖)。該等四截 段214a,g 14b,214c,及214d是為鏡影式映對著該等四截 段212a,212b,212c,及 212d如第 5b 圖所示。 如果該SDT接面是被製造在一晶圓上,一陣列的sdt 接面的角度可以被同時改變。該磁向量角度的重置降低了 通過該晶圓的界面之特性的改變,特別是對於具有相同尺 寸及形狀的SDT接面。因此較佳的程序控制是在製造時被 。r 1 丨丨 ** ^本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) …彳……:釋…- (請先閲讀背面之注意事項再填窝本頁) -、可| 15 1222063 A7 B7 五、發明説明(13 ) 達成的。 不同的角度可以藉由在再退火期間來被重新設定。該 等角度將依據所需要的切換特性而定。此彈性使得該記憶 體製造商可以彌補製造時的變化。 再者,臨界切換磁場被降低及變得更對稱。改善該等 切換磁場的對稱將低了控制電路的複雜度及改善了半選擇 差度(half-select margin)。降低該切換磁場也就是降低了電 源損耗,此對於攜帶型裝置特別重要。 重新設定該磁向量角改善寫入效能及降低了因為半選 擇所產生的錯誤率,其可以具有較佳的良率,及具有較低 的成本。 根據本發明的該MRAM裝置可以使用在廣泛多樣的應 用上。例如,其可以取代在電腦中的DRAM,SDRAM,快 閃記憶體,及其他快速,短時間使用的記憶體。像這樣的 裝置提供了優於硬碟及其他傳統長時間使用的資料儲存裝 置的許多優點(例如,快速,小體積)。根據本發明的MRAM 可以被使用在數位相機中作為數位影像的長時間儲存存。 該SDT接面並不受限於方形或矩形幾何。例如,該SDT 接免可以具有橢圓形幾何。 該MRAM裝置並不受限於SDT接面。其他型式的磁性 通道接面,像是超大磁控電阻性(colossal magnetoresistive :CMR) 或巨大磁控電阻性 (giant magneto-resistive ·· GMR)接面也可以被使用。 本發明更不受限於包括有電阻交點陣列的MRAM裝 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) 16 ---------- (請先閲讀背面之注意事項再填寫本頁)
、可I 1222063 A7 B7 五、發明説明(l4 置:其也可以被應用在任何記憶體裝置,包括有磁性記憶 體元件,其需要將它們的磁方向固^在特定方向上^ 本發明並不受限於以上所描述及說明的特定實施 例。然而’本發明是根據後述的中請專利範圍所構成。 元件標號對照 10…磁性隨機存取記憶體 (MRAM) 12…電阻交叉點陣列 14…旋轉相依隨道接面 16…字元線 18…位元線 46,48···種子層 5 0…抗鐵磁定向層 52…定向鐵磁(FM)層 54…感測鐵磁(FM)層 56…隧道阻隔層 110a,110b,112a,112b,114a ,114b···切換曲線 200…晶圓 202…字元線 204…種子層 206…抗鐵磁定向層 208…定向鐵磁層 210…隧道阻隔層 212,212a 〜212d,214,214a 〜 214d…旋轉相依隧道接面 220···定向層磁向量角 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公爱)
17

Claims (1)

  1. 經濟部智慧財產局員工消費合作社印製 六、申請專利範圍 第91119863號申請案申請專利範圍修正本 93.1.14. 1. 一種用於產生磁性隧道接面之方法,其特徵在於包括有 下列步驟: 形成一包括有固定及感測層之磁性隧道接面; 5 重新設定該等層體中的至少一層體的磁化向量。 2·如申请專利範圍第1項所述之方法,其中一磁化向量藉 由施加一磁場於所需要的方向上及同時退火該接面來 被重新設定。 3.如申請專利範圍第i項所述之方法,其中該固定層磁化 1〇 向量藉由以高於該固定層的阻隔溫度(baking temperature)之溫度被退火及同時以該固定層所需要的 方向施加一磁場來被重新設定。 4·如申请專利範圍第1項所述之方法,其中該感測層磁化 角是藉由將該接面加熱至該感測層的易轴轉動臨界溫 15 度以上,同時施加該感測層所要的-方向上之-磁場, 來重新設定。 5·如申請專利範圍第i項所述之方法,其更包括有測試該 接面的切換特性;及根據測試結果來重新設定至少-個 磁化向量。 20 6.如申請專利範圍第1項所述之 之方法’其中該感測層磁化 向量及該固定層磁化向量-去 1—者稭由再退火而被重新設 定。 7·如申請專利範圍第1項所述之方法,其中該固定層磁化 向量被重新設定以補償強鐵磁叙合及弱反鐵磁麵合。 __________ 本紙張尺度遶周中_家標準________ I 1 r----丨丨裝--------訂--------I (請先閱讀背面之注意事項再填寫本頁) 18 1222063 > J A8 93. 1-14 B8 C8 D8 六、申請專利範圍 8. 如申請專利範圍第1項所述之方法,其中至少一磁化向 量被重新設定來改善切換曲線對稱。 9. 如申請專利範圍第1項所述之方法,其中至少一磁化向 量被重新設定來降低臨界切換磁場。 5 10.如申請專利範圍第1項所述之方法,其中至少一磁化向 量被重定設定指向相同方向。 11 „ --------^--------· (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 19 本紙張尺度適用中國國家標準(CNSM4規格(2]0 X 297公g )
TW091119863A 2001-10-04 2002-08-30 Method for modifying switching field characteristics of magnetic tunnel junctions TWI222063B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/971,347 US6649423B2 (en) 2001-10-04 2001-10-04 Method for modifying switching field characteristics of magnetic tunnel junctions

Publications (1)

Publication Number Publication Date
TWI222063B true TWI222063B (en) 2004-10-11

Family

ID=25518254

Family Applications (1)

Application Number Title Priority Date Filing Date
TW091119863A TWI222063B (en) 2001-10-04 2002-08-30 Method for modifying switching field characteristics of magnetic tunnel junctions

Country Status (7)

Country Link
US (2) US6649423B2 (zh)
EP (1) EP1300853B1 (zh)
JP (1) JP4456805B2 (zh)
KR (1) KR100923772B1 (zh)
CN (1) CN100336239C (zh)
DE (1) DE60203677T2 (zh)
TW (1) TWI222063B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407907B1 (ko) * 2001-05-15 2003-12-03 한국과학기술연구원 자기 터널 접합 소자의 열처리 방법과 그 방법으로 제조된자기 터널 접합 소자
US6717194B2 (en) * 2001-10-30 2004-04-06 Micron Technology, Inc. Magneto-resistive bit structure and method of manufacture therefor
FR2832542B1 (fr) * 2001-11-16 2005-05-06 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetique, memoire et procedes d'ecriture et de lecture utilisant ce dispositif
US6744651B2 (en) * 2002-09-20 2004-06-01 Taiwan Semiconductor Manufacturing Company Local thermal enhancement of magnetic memory cell during programming
US20040085463A1 (en) * 2002-11-06 2004-05-06 Manish Sharma Imaging system with non-volatile memory
US7189583B2 (en) * 2003-07-02 2007-03-13 Micron Technology, Inc. Method for production of MRAM elements
US7473656B2 (en) * 2003-10-23 2009-01-06 International Business Machines Corporation Method for fast and local anneal of anti-ferromagnetic (AF) exchange-biased magnetic stacks
US20050237676A1 (en) * 2004-04-26 2005-10-27 Hitachi Global Storage Technologies Fe seeded self-pinned sensor
JP2007207919A (ja) 2006-01-31 2007-08-16 Toshiba Corp 磁気抵抗効果素子および磁気メモリ
US7646569B2 (en) * 2006-07-20 2010-01-12 Hitachi Global Storage Technologies Netherlands B.V. Pinned layer in magnetoresistive sensor
US20090218645A1 (en) * 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US7834410B2 (en) * 2009-04-13 2010-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Spin torque transfer magnetic tunnel junction structure
US20100315869A1 (en) * 2009-06-15 2010-12-16 Magic Technologies, Inc. Spin torque transfer MRAM design with low switching current
CN104766924A (zh) * 2014-01-08 2015-07-08 上海矽睿科技有限公司 一种磁性材料退火工艺
KR101661275B1 (ko) * 2014-04-18 2016-09-29 한양대학교 산학협력단 메모리 소자
CN105280214B (zh) * 2015-09-10 2018-02-27 中国科学院物理研究所 电流驱动型磁随机存取存储器和自旋逻辑器件
CN112289922B (zh) * 2019-07-22 2023-05-30 中电海康集团有限公司 磁传感器及其制作方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650958A (en) * 1996-03-18 1997-07-22 International Business Machines Corporation Magnetic tunnel junctions with controlled magnetic response
JP3219713B2 (ja) * 1997-02-07 2001-10-15 アルプス電気株式会社 磁気抵抗効果素子の製造方法
US6048739A (en) * 1997-12-18 2000-04-11 Honeywell Inc. Method of manufacturing a high density magnetic memory device
US6114719A (en) * 1998-05-29 2000-09-05 International Business Machines Corporation Magnetic tunnel junction memory cell with in-stack biasing of the free ferromagnetic layer and memory array using the cell
US6081446A (en) * 1998-06-03 2000-06-27 Hewlett-Packard Company Multiple bit magnetic memory cell
US5982660A (en) 1998-08-27 1999-11-09 Hewlett-Packard Company Magnetic memory cell with off-axis reference layer orientation for improved response
US6166948A (en) * 1999-09-03 2000-12-26 International Business Machines Corporation Magnetic memory array with magnetic tunnel junction memory cells having flux-closed free layers
US6326637B1 (en) * 1999-10-18 2001-12-04 International Business Machines Corporation Antiferromagnetically exchange-coupled structure for magnetic tunnel junction device
US6285581B1 (en) * 1999-12-13 2001-09-04 Motorola, Inc. MRAM having semiconductor device integrated therein
JP2001196658A (ja) * 2000-01-07 2001-07-19 Fujitsu Ltd 磁気素子及び磁気記憶装置
US6172904B1 (en) * 2000-01-27 2001-01-09 Hewlett-Packard Company Magnetic memory cell with symmetric switching characteristics
US6727105B1 (en) * 2000-02-28 2004-04-27 Hewlett-Packard Development Company, L.P. Method of fabricating an MRAM device including spin dependent tunneling junction memory cells
JP3550533B2 (ja) * 2000-07-06 2004-08-04 株式会社日立製作所 磁界センサー、磁気ヘッド、磁気記録再生装置及び磁気記憶素子
US6541316B2 (en) * 2000-12-22 2003-04-01 The Regents Of The University Of California Process for direct integration of a thin-film silicon p-n junction diode with a magnetic tunnel junction
US6744086B2 (en) * 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
US6430085B1 (en) * 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with shape and induced anisotropy ferromagnetic cladding layer and method of manufacture
US6430084B1 (en) * 2001-08-27 2002-08-06 Motorola, Inc. Magnetic random access memory having digit lines and bit lines with a ferromagnetic cladding layer
US6741496B2 (en) * 2001-09-27 2004-05-25 Intel Corporation Electron spin mechanisms for inducing magnetic-polarization reversal
US7190611B2 (en) * 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization

Also Published As

Publication number Publication date
JP4456805B2 (ja) 2010-04-28
KR20030029023A (ko) 2003-04-11
US20040129928A1 (en) 2004-07-08
DE60203677D1 (de) 2005-05-19
US6649423B2 (en) 2003-11-18
CN1412863A (zh) 2003-04-23
CN100336239C (zh) 2007-09-05
EP1300853A1 (en) 2003-04-09
DE60203677T2 (de) 2006-03-02
US20030067802A1 (en) 2003-04-10
EP1300853B1 (en) 2005-04-13
KR100923772B1 (ko) 2009-10-27
US6828610B2 (en) 2004-12-07
JP2003218430A (ja) 2003-07-31

Similar Documents

Publication Publication Date Title
US7227773B1 (en) Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
TWI222063B (en) Method for modifying switching field characteristics of magnetic tunnel junctions
JP5441881B2 (ja) 磁気トンネル接合を備えた磁気メモリ
Engel et al. The science and technology of magnetoresistive tunneling memory
Slaughter et al. Fundamentals of MRAM technology
US8912614B2 (en) Magnetic tunnel junction devices having magnetic layers formed on composite, obliquely deposited seed layers
US6909633B2 (en) MRAM architecture with a flux closed data storage layer
KR100624762B1 (ko) 고밀도 mram 어플리케이션을 위한 합성-페리자성체센스-층
EP1248273A2 (en) Cladded read conductor for a tunnel junction memory cell
JP4226295B2 (ja) 磁気的に軟らかい基準層を有する磁気抵抗素子
US8198660B2 (en) Multi-bit STRAM memory cells
WO2007047311A2 (en) Spin transfer based magnetic storage cells utilizing granular free layers and magnetic memories using such cells
US20080273375A1 (en) Integrated circuit having a magnetic device
JP2008059746A (ja) 磁気的に軟らかい基準層を有する磁気抵抗素子のための読出し方法
TWI222637B (en) Multi-stage per cell magnetoresistive random access memory
US8482970B2 (en) Multi-bit STRAM memory cells
US8824200B1 (en) Nonvolative memory cells programable by phase change
US11049538B2 (en) Voltage-controlled interlayer exchange coupling magnetoresistive memory device and method of operating thereof
JP4477829B2 (ja) 磁気記憶デバイスを動作させる方法
JP2003188359A (ja) 磁気的に軟らかい合成フェリ磁性体基準層を含む磁気抵抗素子
US7312506B2 (en) Memory cell structure
US7193259B2 (en) Thermally written magnetic memory device
US7436700B2 (en) MRAM memory cell having a weak intrinsic anisotropic storage layer and method of producing the same
Deak Influence of pinned-layer dispersion on magnetic tunnel junction switching distributions
Hirota et al. Magnetic random access memory (MRAM)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees