TW588018B - Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof - Google Patents

Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof Download PDF

Info

Publication number
TW588018B
TW588018B TW092121052A TW92121052A TW588018B TW 588018 B TW588018 B TW 588018B TW 092121052 A TW092121052 A TW 092121052A TW 92121052 A TW92121052 A TW 92121052A TW 588018 B TW588018 B TW 588018B
Authority
TW
Taiwan
Prior art keywords
water
soluble
dispersible
item
scope
Prior art date
Application number
TW092121052A
Other languages
English (en)
Inventor
Chen-Sheng Ye
Feng-Yu Jeng
Da-Bin Shie
Jau-Liang Wu
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW092121052A priority Critical patent/TW588018B/zh
Application granted granted Critical
Publication of TW588018B publication Critical patent/TW588018B/zh
Priority to US10/882,210 priority patent/US20050271593A1/en
Priority to DE102004035803A priority patent/DE102004035803B4/de
Priority to US12/081,715 priority patent/US20080299047A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1821Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles
    • A61K49/1824Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles
    • A61K49/1827Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle
    • A61K49/1833Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule
    • A61K49/1836Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles coated or functionalised microparticles or nanoparticles coated or functionalised nanoparticles having a (super)(para)magnetic core, being a solid MRI-active material, e.g. magnetite, or composed of a plurality of MRI-active, organic agents, e.g. Gd-chelates, or nuclei, e.g. Eu3+, encapsulated or entrapped in the core of the coated or functionalised nanoparticle having a (super)(para)magnetic core coated or functionalised with a small organic molecule the small organic molecule being a carboxylic acid having less than 8 carbon atoms in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medical Informatics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

玖、發明說明: 【發明所屬之技術領域】 本發明係有關一種水溶性及分散性之氧化鐵(Fe⑹奈 米粒子之製造方法及其作為磁共振造影㈣劑及磁能導引 之相關分子生物技術及臨床檢測、診斷、治療之應用應用。 【先前技術】 j 奈米粒子(nanoparticles) 一般而言係指粒徑範圍從 lnm至l〇〇nm之間之微細粒子,由於奈米粒子微小之尺寸, =面效應與體積效應使得奈米粒子本身具有許多特殊之性 質,例如··極高的表面積與表面能量、不連續的電子能階、 特殊光的吸收、單磁區的產生…等特性,因此,奈米粒子在 新材料之開發上具有極大的潛力。每個帶磁性之奈米粒子都 有一定的磁場定向,但是當粒子變得很小時,其磁場會變得 很不穩定,美國喬治亞理工學院的科學成功發現,精確控制 ,性奈米粒子之大小及磁性,則可利用此磁性奈米粒子攜帶 藥品注射入病人體内,再利用磁力將藥品輸送至身體各部 ^,藉此協助醫生準確地治療疾病,此外,磁性奈米粒子亦 可改善目4的磁共振掃描(magnetic resonance imaging) 技術增加影像之對比度以幫助醫生檢查腫瘤細胞、動脈硬 化斑、中樞神經系統等疾病。 大多數氧化鐵奈米粒子在生物醫學使用上都會包覆一 層f質增加水溶性與分散性,這些覆蓋物質為蛋白素、親水 性问分子、殿粉和聚合葡萄糖。在靜脈注射方面,包覆了親 生物貝後的氧化鐵奈米粒子整個大小約為30到150nm都 有,而且以聚集型為主。 目m已知製造Fe3〇4的技術是在有機相中產生均勻分佈 588018 奈米粒子,而在水溶液相中則多以聚集型為主。雖然可以藉 由加入高分子或界面活性劑在粒子表面形成保護層而在水 /合液中得到分散的奈米粒子,但通常粒子表面受到高分子 或界面活性劑分子保護不易與生物分子結合作進一步的應 用另外連、,,σ後之複合結構穩定性不佳易產生沉殿等現象, 進而影響其應用性。然而,絕大部分之生物分子皆為水溶性 物質,倘若要將奈米粒子制於生醫領域巾,製備具水溶性 且均勻分散性之奈米粒子之技術將是非常重要之環節。 此外,目前市售之顯影劑係以含有Gd3+為主,為一種重 金屬,對細胞具有毒性,不當的劑量使用或劑型設計容易影 響人體健康,且使用W顯影劑有時會出現「偽訊號」的現 象,或是因體内分泌影響而稀釋其濃度造成訊號消失等缺 點。因此’藉由氧化鐵奈米粒子的特殊超順磁特性製成更適 於人體醫療診斷之顯影劑,較之有更高之安全性為一值得開 發之技術。 發明内容】
有鑑於習知製造水溶性及分散性之氧化鐵奈米粒子 各種弊端及以及料磁共振顯影劑之_,本發明 僅能在水相製程中產生具高度水溶性特質的氧化鐵,並且 超順磁性之磁導能力及作為磁共振顯景“ Resonance Imaging,MRI)的顯影劑,且由於i單純之罗 介面及水相中之製程易於生物分子及藥劑聯結,而能進: 發展為功能性造影及標的型治療策略的平△技賞 本發明之目的之-係提供—種水溶性;分:性之以 奈未粒子之製造方法’包含下列步驟:(a)將含有…及卜 6 之溶液以特定濃度比例混合;(b)加入適量之有機酸作為附 著劑,(c)將溶液pH值控制至1〇以上使沉殿物產生;(d) 收集並清洗該沉澱物;(e)再加入過量之有機酸作為附著 劑,(f)加入適當有機溶劑及水以去除前述過量之有機酸; 及(g)收集純化後之Fe3〇4奈米粒子。 其中前述步驟(a)之Fe2+及Fe3+溶液之特定濃度混合比 例並無一定限制,較佳為1:2〜1··4,最佳係為1:2。 知其中前述步驟(b)及(e)之有機酸係可選自下列群組··醋 酸、半胱胺酸(cysteine )、丙胺酸(Alanine)、甘胺酸 (glycine)及油酸,其中係以甘胺酸效果最佳。步驟及(㊀) 1可使用相同或不相同有機酸,較佳係為使用相同之有機 酸。該有機酸係作為附著劑,步驟⑻係先利 ^反應物共存之技術製得㈣4奈米粒子,步驟⑷再力= 達到奈米粒子表面覆蓋完全之目的,順 陡及刀政性之FesO4奈米粒子。 -中則ι4步驟(c)係可藉由加入驗性物質調整邱值,例 如· NaOH、NHWH或其他類似物。 ::引述步驟⑴之有機溶劑係可選自下列群組:丙 -。、甲醇、乙醇及正己烷,其中較係為丙綱。 饥其t前述製造方法較佳料2()〜机下進行,最佳係為 本&月之$目的係提供_種f⑽氧 ^ 其特徵為:具有水溶性 孰不木拉子 2 2⑽。 /讀及刀政性,且粒子大小為6.2nm ± 本發明之另一目的在姐 係包含由前述製造方法^之";種磁共振造影顯影劑,主要 万去衣成之水溶性及分散性之Fe3〇4奈米 粒子及水。 本發明之方法係可克服現有技術之缺點,製造出分佈均 句、可溶於水但並未添加任何高分子及界面活性劑之Fe办 奈米粒子’並可應用於作為磁共振造影之顯影劑,未來將可 廣泛地應用於生醫檢測及醫療部分。 【實施方式】 本發明之具有高度水溶性及分散性之Fe3Q4奈米粒子之 製2造方法3流程圖,如第一圖所示,包含下列步驟:將含有
Fe2及Fe3+之溶液以特定濃度比例混合;加入適量之有機酸 作為附著劑;調整溶液pH值至大於1〇之鹼性環境以產生
Fe^奈米粒子沉澱物;收集並清洗該以也奈米粒子沉澱 物;再加入過量之有機酸作為附著劑;加入適當有機溶劑及 水以去除前述過量之有機酸;及收集純化後之以也奈米粒 子。 以下仏長:供貫施例加以說明本發明之水溶性及分散性 Fe^奈米粒子之製造方法及其做為磁共振造影顯影劑之應 用,俾使更清楚本發明之優點。 實施例1 :水溶性Fe3〇4之奈米粒子之製造 首先,將0· 2M之FeCl2及〇· 1M之FeCl3分別溶於2M 之HC1水溶液,以體積比1:4 (FeCl2 : FeCl3)之比例混合, 之後加入1克之甘胺酸(較佳為〇 · 5〜1 · 5克)作為附著劑, 接著慢慢滴入5M NaOH水溶液調整混合液中的pH值大於1〇 以提供一鹼性環境使溶液中Fe3〇4沉澱出來,之後再授拌1〇 分鐘後用二次水清洗數次,收集該黑色沉殿物(p>e3Q4);接 著,加入3克甘胺酸作為附著劑,攪拌10〜15分鐘後再震盪 鐘以使附著劑可完全覆蓋Fe3〇4奈米粒子表面,之後將 所知之Fe3〇4奈米粒子加入丙酮與水的混合液中以去除過量 ^有機酸附著劑,再以8000rmp之轉速離心2〇分鐘使以也 $米粒子沉澱,即可獲得本發明之水溶性及分散性之以必 示米粒子。第一圖係頰示將本實施例之以心奈米粒子溶於 —人水中之電子顯微影像圖,其粒子大小為± 2 2 nm ’由圖中顯示本發明之奈米粒子確實具有高度水溶 性及分散性之特點,且可穩定的長時間存在於水溶液中。 貫施例2:以pe3()4奈米粒子作為磁共振造影之顯影劑—注 射於肝臟 本實施例係使用前述實施例i製成之奈米粒子作 為磁共振造影之顯影劑,其製法僅需將以心奈米粒子溶於 一次水中,亚可視需要適量添加血清等類似體液之添加物即 可製得顯影劑。 第三(A)圖係顯示肝臟中未注射以心奈米粒子顯影劑前 之磁共振造影圖;第三⑻圖係顯示肝臟中注射G 86^的 FeW奈米粒子顯影劑後之磁共振造影圖,比較第三及第 三⑻圖中箭頭所指處可清楚看出,奈米粒子顯影劑得 確可進入肝臟中達到顯影效果。 貫施例3·以pe3G4奈米粒子料磁共振造影之顯影劑—注 射於腎臟 同前述實施例2所使用之_4奈米粒子之磁共振造影 顯影劑’I實施例係將之注射於腎臟中觀察其顯影之效果。 第四(A)圖係顯示腎臟中未注射^奈米粒子顯影劑 588018 前之磁共振造影圖·,第四(B)圖係顯示肝臟中注射〇86gM 的FeA奈米粒子顯影劑後之磁共振造影圖,比較第四 及第四⑻圖中前頭所指處可清楚看出,奈米粒子顯影 劑得確可進入腎臟中達到顯影效果。 實施例4:以^〇4奈米粒子作為磁共振造影之顯影劑 之安全性測試 以大鼠為測試對象’將以分別注射5mg/Kg量的^必 奈米粒子後,分別於〇、2、4、6週後計算其存活率,結果 如第五圖所示’經注射Fe304奈米粒子之大氣皆無死亡,存 活率為1嶋,因此以Fe3〇4奈米粒子作為顯影劑係符合安全 之考量。 •综上所述’本發明之技術相較於習知技術具有以下優 黑占· 1. ^發明之技術不需藉由親水性高分子、界面活性劑 分子、蛋白素、澱粉和聚合葡萄糖等保護下即可妒 備出高水溶性、分散均勻之F e3 04奈米粒子,對於後 續之表面修飾與連結提供更大之設計空間。 2. 本?明之Fe3〇4奈米粒子可與核酸及蛋白質等生物分 子藉由共價鍵或非共價鍵形成各種結合方式,以應 用於生化醫療方面。 "" 3. 使用本發明之Fe3〇n好製成之磁隸造影顯影 劑相較於目前市售顯影劑材料,本發明之Fe3〇4夺米 粒子的大小非常小(6.2nm ±2.2nm),並且由於太 米化而呈現之超順磁特性,其中弛緩速率n值遠低 於市售SIP 0顯影劑系統(亦為氧化鐵奈米粒子之顯 影劑)’表-是將本發明之Fe304奈米粒子,市售SIP0 10 588018 與含Gd3+之顯影劑的弛緩速率T1與T2比較。 表一 本發明之 Fe3〇4 奈 米粒子顯 影劑 市售SIPO 顯影劑 市售Gd3+ 之顯影劑 T1 34ms 176ms 74.4ms T2 23ms 0.77ms *以上皆以相同濃度4.61 mM(金屬離子濃度)之顯影劑情況 下做比較。 1. 表一所測得的T1值,本發明之Fe304奈米粒子比
SPIO與含Gd3+之顯影劑要低,但在T1顯影效果比 較,Gd3+是優於氧化鐵(在離子濃度為1E-1〜1E-2 M),不過本發明之Fe304奈米粒子則優於SPIO,無 論是以血清(serum)或是水當作溶劑的條件下。 2. 表一所測得的T2值,本發明之Fe304奈米粒子並未 比SPIO低,但在T2的顯影效果比較,本發明之Fe304 奈米粒子在離子濃度為1E-1〜IE-2 Μ條件時與 SPIO的比較並無差別。 3. 本發明之Fe304奈米粒子顯影劑相較於市售SIP0顯
影劑系統(亦為氧化鐵奈米粒子之顯影劑)並無澱 粉和聚合葡萄糖等保護之下就能溶於水溶液並呈分 散型態,同時T1顯影效果比市售SIP0顯影劑好且 T2顯影也與市售SIP0顯影劑無太大差異。 4. 本發明之Fe304奈米粒子顯影劑相較於市售Gd3+之 顯影無高毒性問題、低免疫刺激性且不會在生物體 内產生沉殿。此外,相較於稀土族的Gd3+製程價格 更低並且不需要螯合劑保護。 雖然本發明之較佳實施例以揭露於上,然其並非用以限 11 588018 定本發明,任何熟習此項技藝者,在不脫離本發明之精神和 範圍内,皆可作各種變化,因此本發明之保護範圍係由後述 之申請專利範圍所界定。
12 588018 【圖式之簡單說明】 第〆圖係顯示本發明之Fe3〇4奈米粒子之製造方法流程 圖。 第二圖係顯示本發明製得之Fe3〇4奈米粒子溶於水中之 電子顯微鏡照片。 第三(A)圖係顯示未注射FhO4奈米粒子顯影劑前之肝臟 磁共振造影圖。 第三(B)圖係顯示已注射FesO4奈米粒子顯影劑後之肝臟 磁共振造影圖。 第四(A)圖係顯示未注射 磁共振造影圖。 示未注射F e3 04奈米粒子顯影劑前之腎臟 第四(B)圖係顯示已注射 磁共振造影圖。 第五圖係_示注射 左射FesO4奈米粒子顯影劑後之腎臟 FesO4奈米粒子顯影劑後之大鼠存活 13

Claims (1)

  1. 拾、、辛請專利範圍: —種水溶性及分散性之Fe3〇4奈米粒子之製造方法,包含下列 步驟: (a) 將含有Fe2+及Fe3+之溶液以1:2〜1:4濃度比例混合; (b) 加入適量之有機酸作為附著劑,該有機酸係選自下列群 組:醋酸、半胱胺酸(cysteine)、丙胺酸(Alanine)、甘 胺酸(glycine)及油酸; (c) 將溶液pH值控制至10以上使沉澱物產生; (d) 收集並清洗該沉澱物; (e) 再加入過量之有機酸作為附著劑,該有機酸係選自下列 群組:醋酸、半胱胺酸(cysteine)、丙胺酸(Alanine)、 甘胺酸(glycine)及油酸; (f) 加入適當有機溶劑及水以去除前述過量之有機酸;及 (g) 收集純化後之Fe3〇4奈米粒子。 2·如申請專利範圍第1項所述之水溶性及分散性之Fe3〇4奈米粒 子之製造方法,其中前述Fe2+及Fe3+溶液之濃度混合比例係為 1:2。 Q •如申請專利範圍第1項所述之水溶性及分散性之Fe3〇4奈米粒 子之製造方法,其中前述有機酸係為甘胺酸。 4·如申請專利範圍第1項所述之水溶性及分散性之Fe3〇4奈米粒 子之製造方法’其中前述步驟(b)及(e)係可使用相同或不相同 有機酸。 5·如申請專利範圍第4項所述之水溶性及分散性之Fe3〇4奈米粒 6子之製造方法,其中前述步驟(b)及(e)係使用相同之有機酸。 •如申請專利範圍第5項所述之水溶性及分散性之Fe3〇4奈米粒 7子之製造方法,其中前述有機酸係為甘胺酸。 •如申睛專利範圍第1項所述之水溶性及分散性之Fe3〇4奈米粒 子之製造方法,農中鈐、+、止 8.如申請專利範圍第Μ二驟⑹,沉澱物係為F· 子之製造方法,其中前之水洛性及分散性之Μ奈米粒 組··丙酮、甲醇、乙醇及^驟⑴之有機溶劑係可選自下列群 及正己烷。 • 申凊專利範圍第§頊戶斤;十、 子之製造方法,Ιφι、 水溶性及分散性之Fe^奈米粒 ίο u 其雨述有機溶劑係為丙嗣。 粒子之ΞίΠ:項所述之水溶性及分散性之㈣4奈米 裟以方法,其係於20〜40。(:下進行。 I =申=專利範圍第10項所述之水溶性及分散性之㈣ 杻子之製造方法,其係於25tT進行。 12.如中請專利範圍第1項所述之水溶性及分散性之⑽夺米 粒子之製造方法,其中前述Fe3〇4奈米粒子之大小為6 2四+ 2· 2 nm。 ~ •種磁共振造影顯影劑,主要係包含由申請專利範圍第1 一 12 項中任一項所述之方法所製成之水溶性及分散性之Fe3〇4奈米 粒子及水。 14.如申請專利範圍第13項所述之磁共振造影顯影劑,其中前述 之Fe3〇4奈米粒子之大小為6· 2nm ± 2. 2 nm。 15
TW092121052A 2003-07-31 2003-07-31 Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof TW588018B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
TW092121052A TW588018B (en) 2003-07-31 2003-07-31 Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof
US10/882,210 US20050271593A1 (en) 2003-07-31 2004-07-02 Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof
DE102004035803A DE102004035803B4 (de) 2003-07-31 2004-07-23 Verfahren zur Herstellung von in Wasser dispergierten Eisenoxid-Nanoteilchen und deren Anwendung
US12/081,715 US20080299047A1 (en) 2003-07-31 2008-04-21 Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW092121052A TW588018B (en) 2003-07-31 2003-07-31 Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof

Publications (1)

Publication Number Publication Date
TW588018B true TW588018B (en) 2004-05-21

Family

ID=34059543

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092121052A TW588018B (en) 2003-07-31 2003-07-31 Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof

Country Status (3)

Country Link
US (1) US20050271593A1 (zh)
DE (1) DE102004035803B4 (zh)
TW (1) TW588018B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030301B4 (de) * 2005-06-27 2007-06-06 Institut für Physikalische Hochtechnologie e.V. Verfahren zur Herstellung von nanokristallinen magnetischen Eisenoxidpulvern
CZ301067B6 (cs) * 2006-02-24 2009-10-29 Ústav makromolekulární chemie AV CR Superparamagnetické nanocástice na bázi oxidu železa s modifikovaným povrchem, zpusob jejich prípravy a použití
US7892520B2 (en) * 2006-07-31 2011-02-22 The Hong Kong University Of Science And Technology Solid-state synthesis of iron oxide nanoparticles
KR100962181B1 (ko) 2008-04-28 2010-06-10 한국화학연구원 피셔-트롭쉬 합성용 철계 촉매 및 이의 제조방법
WO2010002922A2 (en) * 2008-06-30 2010-01-07 Life Technologies Corporation Methods for isolating and purifying nanoparticles from a complex medium
US8846644B2 (en) 2009-09-25 2014-09-30 National Cheng-Kung University Phosphate-containing nanoparticle delivery vehicle
US8828975B2 (en) 2009-09-25 2014-09-09 National Cheng-Kung University Phosphate-containing nanoparticle delivery vehicle
TW201110984A (en) * 2009-09-25 2011-04-01 Univ Nat Cheng Kung Nanoparticle delivery vehicle
IT1397612B1 (it) * 2009-12-15 2013-01-18 Colorobbia Italia Spa Magnetite in forma nanoparticellare
CN110194490A (zh) * 2019-06-14 2019-09-03 长春工程学院 一种制备磁性纳米四氧化三铁的方法和装置
CN116004303A (zh) * 2022-12-02 2023-04-25 中国科学院兰州化学物理研究所 一种水溶性Fe3O4@PEG核壳结构纳米复合添加剂的制备方法及应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL98744A0 (en) * 1990-07-06 1992-07-15 Gen Hospital Corp Method of studying biological tissue using monocrystalline particles
US5240626A (en) * 1990-09-21 1993-08-31 Minnesota Mining And Manufacturing Company Aqueous ferrofluid
US5648124A (en) * 1993-07-09 1997-07-15 Seradyn, Inc. Process for preparing magnetically responsive microparticles
US20040115345A1 (en) * 2002-07-23 2004-06-17 Xueying Huang Nanoparticle fractionation and size determination

Also Published As

Publication number Publication date
US20050271593A1 (en) 2005-12-08
DE102004035803A1 (de) 2005-03-03
DE102004035803B4 (de) 2007-01-18

Similar Documents

Publication Publication Date Title
Shen et al. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging
Silva et al. Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications
Fang et al. Multifunctional magnetic nanoparticles for medical imaging applications
Ferreira et al. The role of magnetic nanoparticles in cancer nanotheranostics
Bae et al. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T 1-and T 2-weighted magnetic resonance imaging
Rammohan et al. Nanodiamond–gadolinium (III) aggregates for tracking cancer growth in vivo at high field
Felton et al. Magnetic nanoparticles as contrast agents in biomedical imaging: recent advances in iron-and manganese-based magnetic nanoparticles
Rowe et al. Tuning the magnetic resonance imaging properties of positive contrast agent nanoparticles by surface modification with RAFT polymers
Li et al. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging
Miguel-Sancho et al. Development of stable, water-dispersible, and biofunctionalizable superparamagnetic iron oxide nanoparticles
US9468607B2 (en) Ligand directed toroidal nanoparticles for therapy and diagnostic imaging
EP2658896B1 (en) Biocompatible agent for dispersing nanoparticles into an aqueous medium using mussel adhesive protein-mimetic polymer
Polito et al. Resolving the structure of ligands bound to the surface of superparamagnetic iron oxide nanoparticles by high-resolution magic-angle spinning NMR spectroscopy
Hu et al. High-performance nanostructured MR contrast probes
Mondini et al. Zwitterion-coated iron oxide nanoparticles: surface chemistry and intracellular uptake by hepatocarcinoma (HepG2) cells
Hsu et al. Relaxivity and toxicological properties of manganese oxide nanoparticles for MRI applications
CN103143043B (zh) 一种Fe3O4/Au复合纳米颗粒的制备方法
TW588018B (en) Method for preparation of water-soluble and dispersed iron oxide nanoparticles and application thereof
KR101592235B1 (ko) 단백질 케이지의 제조방법 및 소수성 첨가제를 담지한 코어-쉘 구조의 고분자-단백질 입자의 in-situ 제조방법
CN102333547A (zh) 用于诊断成像的纳米颗粒造影剂
CN104436220B (zh) 一种壳聚糖磁性纳米微球的制备方法及其用途
Hemalatha et al. Fabrication and characterization of dual acting oleyl chitosan functionalised iron oxide/gold hybrid nanoparticles for MRI and CT imaging
Walter et al. Validation of a dendron concept to tune colloidal stability, MRI relaxivity and bioelimination of functional nanoparticles
Vu-Quang et al. Carboxylic mannan-coated iron oxide nanoparticles targeted to immune cells for lymph node-specific MRI in vivo
Yang et al. Role of surface charge in cytotoxicity of charged manganese ferrite nanoparticles towards macrophages

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees