TW202245768A - 用於治療小細胞肺癌之氧雜雙環庚烷 - Google Patents

用於治療小細胞肺癌之氧雜雙環庚烷 Download PDF

Info

Publication number
TW202245768A
TW202245768A TW111102242A TW111102242A TW202245768A TW 202245768 A TW202245768 A TW 202245768A TW 111102242 A TW111102242 A TW 111102242A TW 111102242 A TW111102242 A TW 111102242A TW 202245768 A TW202245768 A TW 202245768A
Authority
TW
Taiwan
Prior art keywords
carboplatin
administered
cells
dose
etoposide
Prior art date
Application number
TW111102242A
Other languages
English (en)
Inventor
拉維 薩吉亞
約翰 科瓦克
Original Assignee
美商利克斯特生物科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商利克斯特生物科技公司 filed Critical 美商利克斯特生物科技公司
Publication of TW202245768A publication Critical patent/TW202245768A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4995Pyrazines or piperazines forming part of bridged ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2827Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/545Medicinal preparations containing antigens or antibodies characterised by the dose, timing or administration schedule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Endocrinology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pulmonology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本發明提供一種治療患有SCLC之個體的方法,其包括向該個體投予有效量之PP2A抑制劑及視情況選用之一或多種抗癌劑。

Description

用於治療小細胞肺癌之氧雜雙環庚烷
本發明係關於可用於在有需要之個體中抑制磷酸酶2A(PP2A)之方法。
蛋白磷酸酶2A(PP2A)為一種普遍存在之絲胺酸/蘇胺酸磷酸酶,其使得ATM/ATR依賴性及非依賴性反應途徑之眾多蛋白質去磷酸化(Mumby, M. 2007)。先前已證明對PP2A之藥理學抑制經由對多種訊號傳導蛋白質(諸如p53、γH2AX、PLK1及Akt)之持續性(constitutive)磷酸化使癌細胞對放射介導之DNA損傷敏感,從而導致細胞週期失調、抑制DNA修復及細胞凋亡(Wei, D.等人, 2013)。
斑螫素,即斑螫(Mylabris)提取物之主要活性成分,係一種來源於中藥之化合物,已證明其為PP2A之有效抑制劑(Efferth, T.等人, 2005)。儘管斑螫素先前已用於治療肝細胞瘤並且已顯示對多藥物抗性白血病細胞株之效力(Efferth, T.等人, 2002),其嚴重毒性限制了其臨床可用性。LB-100(亦即,(3-[(4-甲基哌嗪-1-基)羰基]-7-氧雜雙環[2.2.1]庚烷-2-甲酸]),係一種具有顯著較低毒性之斑螫素小分子衍生物。先前臨床前研究已顯示LB-100可增強替莫唑胺(temozolomide)、阿黴素(doxorubicin)及放射療法對膠質母細胞瘤(GBM)、轉移性嗜鉻細胞瘤及胰臟癌之細胞毒性作用(Wei, D.等人, 2013;Lu, J.等人, 2009;Zhang, C.等人, 2010;Martiniova, L.等人, 2011)。LB-100亦正進行與多西他賽組合用於治療實體瘤之1期研究(Chung, V. 2013)。
2017年,全世界有超過一百萬人死於肺癌,而小細胞癌佔所有肺癌之大約15%。即使利用雙或三藥物療法組合,小細胞肺癌(SCLC)伴「廣泛疾病」(ED-SCLC,70%患者)之中值存活時間僅為大約9個月,而總體5年存活率保持在5%左右。PP2A廣泛表現於SCLC細胞中,然而,對其在SCLC中之潛在相關性仍然幾乎一無所知。蛋白磷酸酶2A(PP2A)為一種磷酸酶,其參與調控範圍廣泛的癌症亞型(包括肺癌及B細胞源性白血病)中之關鍵致癌蛋白,諸如c-Myc及Bcr-Abl。因此,仍需要改良之治療用於患有SCLC且特定言之ED-SCLC之患者。本發明涵蓋認定單獨或與一或多種抗癌劑組合之LB-100可用於治療患有SCLC(例如ED-SCLC)之患者。
本發明尤其提供治療患有小細胞肺癌(SCLC)之個體的方法,該等方法包括向該個體投予有效量之具有以下結構之化合物,該化合物在本文中稱為LB-100(亦即,(3-[(4-甲基哌嗪-1-基)羰基]-7-氧雜雙環[2.2.1]庚烷-2-甲酸]):
Figure 02_image001
, 或其醫藥學上可接受之鹽、兩性離子或酯。
在一些實施例中,本發明提供一種治療患有SCLC之個體的方法,該方法包括投予LB-100與一或多種抗癌劑之組合,其中該等量在一起服用時有效治療該個體。
在一些實施例中,本發明提供一種治療患有SCLC且接受一或多種抗癌劑之個體的方法,該方法包括向該個體投予相對於在不存在LB-100時投予該一或多種抗癌劑有效增強治療之量的LB-100。
在一些實施例中,該一或多種額外抗癌劑係選自卡鉑(carboplatin)、依託泊苷(etoposide)及阿特珠單抗(atezolizumab)。在一些實施例中,該一或多種額外抗癌劑為卡鉑、依託泊苷及阿特珠單抗。
在一些實施例中,該SCLC為未經治療之廣泛期SCLC(ED-SCLC)。
相關申請案之交叉引用
本申請案主張2021年1月19日提出申請之美國臨時專利申請案第63/139,047號之權益,該案之全部內容係以對其引用之方式併入本文中。
如以下及本文中更詳細描述,在一些實施例中,本發明提供一種治療患有小細胞肺癌(SCLC)之個體的方法,該方法包括向該個體投予有效量之具有以下結構之PP2A抑制劑,其在本文中稱為「LB-100」(亦即,(3-[(4-甲基哌嗪-1-基)羰基]-7-氧雜雙環[2.2.1]庚烷-2-甲酸]):
Figure 02_image001
, 或其醫藥學上可接受之鹽、兩性離子或酯。LB-100之製備方法至少可見於US 7,998,957 B2及US 8,426,444 B2。
蛋白磷酸酶2A(PP2A)為一種普遍存在之絲胺酸/蘇胺酸磷酸酶,其為主要腫瘤抑制因子,參與對肺癌及其他癌症類型中諸如c-MYC及BCR-ABL之致癌蛋白的關鍵調控。其具有範圍廣泛的細胞調控功能,諸如細胞存活、細胞凋亡、有絲***及DNA損傷反應(13)。先前研究及最近I期臨床試驗已顯示PP2A抑制可能會使腫瘤對放射及化學療法敏感(14)。在LB-100用於晚期實體瘤之I期臨床試驗中,LB-100得以良好耐受,且20名患者中有10名達成了穩定疾病(15)。鑒於PP2A普遍存在,抑制LB-100可能具有多種下游效應。臨床前研究指示,用LB-100進行PP2A抑制可導致DNA損傷反應下調(16-18),消除細胞週期檢查點(16, 19),增加HIF依賴性腫瘤血管生成(20),以及藉由抑制N-CoR複合物形成而誘導細胞分化(16)。
此外,Xiao等人 2018顯示,PP2A使葡萄糖碳利用自糖解重定向至戊糖磷酸途徑(PPP)以挽救氧化應力,揭示可藉由小分子抑制PP2A及G6PD而有效地靶向PPP在範圍廣泛的B細胞惡性腫瘤中之守門功能(21)。
如以上所描述,LB-100(3-(4甲基哌嗪-羰基)-7-草醯雙環[2.2.1]庚烷-2-甲酸;NSC D753810)為蛋白磷酸酶2A之小分子(MW 268)抑制劑(PP2A),且抑制PP2A之有效性為蛋白磷酸酶1 (PP1)之約80倍。該化合物在活體外及活體內具有單一劑活性。作為非限制性理論,增強機制看似為抑制由非特異性DNA損傷劑誘導之細胞週期及有絲***檢查點,使休眠癌細胞進入S期並繼續有絲***,但存在急性DNA損傷(22)。亦作為非限制性理論,LB-100看似在高劑量下影響脈管系統誘導瞬時可逆血管「滲漏」。由於其獨特作用機制,LB-100有可能可用於治療多種類型之癌症,以及成為同類首個新型訊號轉導調節劑。 小細胞肺癌
肺癌為全世界癌症死亡之主要原因,每年有一百萬新病例。小細胞肺癌(small cell lung cencer, SCLC)為一種侵襲性形式之癌症,與吸菸密切相關。在美國,2010年新診斷222,000例肺癌,其中35,000例為SCLC(美國癌症學會)。SCLC患者之中值年齡為63歲,且超過25%患者之年齡超過70歲(1)。與非小細胞肺癌(NSCLC)相比,小細胞肺癌為一種具有高轉移率之快速生長型腫瘤。根據由退伍軍人管理局肺癌研究組開發之由侷限期疾病(LD-SCLC)或廣泛期疾病(ED-SCLC)組成之兩期系統(2)對患者進行分期。侷限期疾病SCLC侷限於在可接受之放射場內之單一半胸區域。大約65%至70% SCLC患者存在據發現超出半胸區域之ED-SCLC。未經治療之ED-SCLC患者的中值存活時間為大約5週;經化學療法治療之患者的中值存活時間為7至11個月(3)。在當前管控方案下,ED-SCLC之2年存活率低於10%。
組合化學療法仍為ED-SCLC患者之治療焦點。熟習醫學技術者將瞭解與此種療法相關之挑戰,因為兩種或更多種藥物之間的活體內相互作用通常為複雜的。任何單一藥物之作用皆與其吸收、分布、代謝及消除有關。當將兩種藥物引入體內時,各藥物會影響另一藥物之吸收、分布、代謝及消除,由此改變另一者之作用。舉例而言,一種藥物可抑制、活化或誘導參與消除其他一或多種藥物之代謝途徑的酶的產生。(Guidance for Industry, 1999)因而,當投予兩種或更多種藥物來治療相同疾患時,無法預測此種藥物是否將補充、不影響或干擾另一藥物在人類個體中之治療活性。
不僅兩種或更多種藥物之間的相互作用可能影響各藥物之預定治療活性,而且相互作用可能增加毒性代謝物之水準(Guidance for Industry, 1999)。該相互作用亦可增高或減輕各藥物之副作用。因此,在投予兩種或多種藥物來治療疾病時,無法預測各藥物之負面副作用概況(profile)會發生何種變化。
另外,難以準確預測兩種或更多種藥物之間的相互作用的效果何時將變得明顯。舉例而言,藥物之間的代謝相互作用可能在初步投予第二或另一藥物後、在兩種藥物達到穩態濃度之後或在藥物之一中止後變得明顯。(Guidance for Industry, 1999)
在SCLC之情形下,在1970年代及1980年代初期,CAV(環磷醯胺(cyclophosphamide)、阿黴素及長春新鹼(vincristine))為最常用之組合方案。在1980年代中期,發現了依託泊苷作為用於SCLC之活性劑,且臨床前研究顯示依託泊苷與順鉑之間存在協同作用。隨機臨床研究證實,此組合與CAV同樣有效,而毒性更低(3)。
若干其他劑已顯示在SCLC中具有活性,且許多研究已比較3藥物方案與標準2藥物方案,但並未改良效力。由挪威肺癌研究組進行之一項3期試驗將436名患者隨機分組,包括214名LD-SCLC患者及222名ED-SCLC患者。患者接受依託泊苷加順鉑或環磷醯胺、表阿黴素及長春新鹼之組合(CEV)。ED-SCLC患者之中值存活時間在依託泊苷加順鉑組中為8.4個月,而在CEV組中為6.5個月(p=.21) (4)。
2005年,由癌症與白血病B組(CALGB)進行之3期研究在ED-SCLC患者中比較了組合依託泊苷/順鉑加或不加太平洋紫杉醇及顆粒球群落刺激因子(G-CSF) (5)。將總計565名患者隨機分組。卡鉑/依託泊苷組之中值無進展存活時間為5.9個月,相比之下,接受卡鉑/依託泊苷/太平洋紫杉醇之患者為6個月,並且依託泊苷/順鉑組之中值總體存活時間為9.9個月,而太平洋紫杉醇組為10.6個月。2.4%未接受太平洋紫杉醇之患者及6.5%經太平洋紫杉醇治療之患者發生毒性死亡。因而,向依託泊苷及順鉑中添加太平洋紫杉醇並未提高存活率,且與ED-SCLC患者中不可接受之毒性有關(5)。
2005年亦報導曾對ED-SCLC患者進行之最大規模研究之一的結果。此研究包括784名患者,隨機接受拓撲替康加順鉑或標準依託泊苷加順鉑;效力在總體反應率(63%對比69%)、中值進展時間(24.1對25.1週)、中值存活時間(39.3對40.3週)及1年存活率(兩組皆為31.4%)方面相當(6)。
最近,III期IMpower133隨機雙盲研究評估了在ED-SCLC患者中添加程式性死亡訊號傳導檢查點抑制劑(阿特珠單抗)是否可改良化學療法益處(7)。將總計201名患者隨機分配至鉑/依託泊苷/阿特珠單抗組,並將202名患者分配至安慰劑組。鉑/依託泊苷組之中值無進展存活時間為4.3個月,相比之下,鉑/依託泊苷/阿特珠單抗組為5.2個月。鉑/依託泊苷/阿特珠單抗組之中值總體存活時間為12.3個月,而安慰劑組為10.3個月。在ED-SCLC患者中向依託泊苷及鉑化學療法中添加免疫療法提高了總體存活時間及無進展存活時間且與不可接受之毒性無關(7)。IMpower133被視為20年來與一線ED-SCLC之照護標準相比在總體存活時間方面顯示有臨床意義之改良的首個研究。
已在多種人類實體瘤(卵巢、頭頸部、非小細胞肺及小細胞肺)中研究了卡鉑,客觀反應率在10%與85%之間。其亦成功地與許多其他細胞毒性劑組合用於治療卵巢癌、NSCLC及SCLC(8-10)。1992年對卡鉑在SCLC患者中之2期及3期研究之綜述確定了卡鉑為用於未經治療之SCLC之活性劑(11)。
基於鉑之療法(卡鉑或順鉑)與依託泊苷組合為當前用於ED-SCLC患者之照護標準。然而,卡鉑往往比順鉑更受歡迎,因為其具有諸如胃腸、腎臟、聽覺及神經毒性較弱以及更容易投予之優勢(12)。 卡鉑 / 依託泊苷 / 阿特珠單抗作為第一線治療
卡鉑為順鉑之類似物,其具有更有利之毒性概況(Ruckdeschel 1994)。其與DNA相互作用並形成鏈內及鏈間連接。最常觀測到之副作用包括血小板減少、嗜中性球減少、白血球減少及貧血。如同其他含鉑化合物,卡鉑可能在藥物投予數分鐘內誘發過敏型反應,諸如面部水腫、喘息、心跳過速及低血壓。此等反應可用腎上腺素、皮質類固醇或抗組胺劑來控制(更多資訊參見仿單)。
依託泊苷為鬼臼毒素之半合成衍生物,其藉由阻止細胞進入有絲***或藉由在有絲***前階段將其破壞而展現活體外細胞抑制活性。依託泊苷干擾DNA合成,並且看似使人類淋巴母細胞停滯在細胞週期之S-G2晚期。最常見之副作用包括白血球減少及血小板減少(更多資訊參見仿單)。
指示依託泊苷與其他抗腫瘤藥組合用於治療SCLC、NSCLC、惡性淋巴瘤及睾丸惡性腫瘤。批准之適應症可因特定國家而異。依託泊苷亦用於針對許多其他類型癌症之臨床研究,包括頭頸癌、腦癌、膀胱癌、子宮頸癌及卵巢癌。
阿特珠單抗為一種人類化免疫球蛋白(Ig) G1單株抗體,其靶向程式性死亡受體1配體(PD-L1)並抑制PD-L1與其受體程式性死亡受體1 (PD-1)及B7-1 (亦稱為CD80)之間的相互作用,二者皆作為T細胞上表現之抑制性受體發揮功能。美國及歐洲已批准靜脈內阿特珠單抗用於治療對基於鉑之方案已失敗或不適合的晚期尿路上皮癌成人患者。(25, 26)另外,阿特珠單抗與貝伐珠單抗、太平洋紫杉醇及卡鉑組合在美國已獲批作為一線治療用於無EGFR或ALK基因組腫瘤畸變之轉移性NSCLC成年患者,並在先前化學療法後作為單一療法用於局部晚期及轉移性NSCLC。(27)最近,阿特珠單抗在美國亦獲得加速批准,與非白蛋白結合型太平洋紫杉醇(nabpaclitaxel)組合用於腫瘤表現PD-L1之不可切除型局部晚期或轉移性三陰性乳癌患者。(28)最後,阿特珠單抗經批准與卡鉑及依託泊苷組合作為一線治療用於患有廣泛期小細胞肺癌之成年患者,顯示改良之存活時間(鉑/依託泊苷/阿特珠單抗組之中值OS為12.3個月對比鉑/依託泊苷/安慰劑為10.3個月)。在ED-SCLC中向依託泊苷及鉑化學療法中添加免疫療法亦提高了無進展存活時間且與不可接受之毒性無關。(7)用阿特珠單抗治療通常得以良好耐受,但可能與免疫相關不良事件(irAE)相關(更多資訊參見仿單)。 本發明之方法
如以上及本文中所描述,本發明涵蓋令人驚訝地發現LB-100可用於治療患有SCLC之個體。
在一些實施例中,本發明提供一種治療患有SCLC之個體的方法,該方法包括投予單獨或與一或多種抗癌劑組合之LB-100,其中該等量在合起來時有效治療該個體。在一些此種實施例中,該SCLC為ED-SCLC。
在一些實施例中,本發明提供一種治療患有SCLC且接受一或多種抗癌劑之個體的方法,該方法包括向該個體投予相對於在不存在LB-100時投予該一或多種抗癌劑有效增強治療之量的LB-100。在一些此種實施例中,該SCLC為ED-SCLC。
在一些實施例中,該一或多種額外抗癌劑係選自卡鉑、依託泊苷及阿特珠單抗。在一些實施例中,該一或多種額外抗癌劑為卡鉑、依託泊苷及阿特珠單抗中之每一者。
在一些實施例中,該SCLC為未經治療之廣泛期SCLC(ED-SCLC)。
在一些實施例中,LB-100之量及該一或多種抗癌劑之量係各自週期性地投予該個體。例示性此種投予方法進一步描述於本文中。
在一些實施例中,該一或多種抗癌劑係在投予LB-100同時、之前或之後獨立地投予。在一些實施例中,該一或多種抗癌劑係在投予LB-100之後獨立地投予。
在一些實施例中,LB-100之量及該一或多種額外抗癌劑之量在一起服用時有效減輕該個體之癌症臨床症狀,如本文中進一步描述。
在一些實施例中,LB-100之量有效減輕該個體之癌症臨床症狀。在一些實施例中,LB-100係以介於約0.25 mg/m2與約3.10 mg/m2之間的劑量投予。在一些實施例中,LB-100係以介於約0.83 mg/m2與約3.10 mg/m2之間的劑量投予。在一些實施例中,LB-100係以介於約0.83 mg/m2與約2.33 mg/m2之間的劑量投予。在一些實施例中,LB-100係以介於約0.83 mg/m2與約1.75 mg/m2之間的劑量投予。在一些實施例中,LB-100係以0.25 mg/m2、0.5 mg/m2、0.83 mg/m2、1.25 mg/m2、1.75 mg/m2、2.33 mg/m2或3.10 mg/m2之劑量投予。
在一些實施例中,LB-100係以0.83 mg/m2之劑量投予。
在一些實施例中,LB-100係以1.25 mg/m2之劑量投予。
在一些實施例中,LB-100係以1.75 mg/m2之劑量投予。
在一些實施例中,LB-100係以2.33 mg/m2之劑量投予。
在一些實施例中,LB-100係以3.10 mg/m2之劑量投予。
在一些實施例中,LB-100係每3週投予1、2或3天。在一些實施例中,LB-100係在21天週期之第1天及第3天投予。在一些此種實施例中,LB-100係經靜脈內投予。在一些此種實施例中,LB-100係以約0.83 mg/m2之劑量投予。在一些此種實施例中,LB-100係以約1.25 mg/m2之劑量投予。在一些此種實施例中,LB-100係以約1.75 mg/m2之劑量投予。在一些此種實施例中,LB-100係以約2.33 mg/m2之劑量投予。在一些此種實施例中,LB-100係以約3.10 mg/m2之劑量投予。
在一些此種實施例中,LB-100係在21天週期之第1天及第3天以約0.83 mg/m2之劑量投予。在一些此種實施例中,LB-100係在21天週期之第1天及第3天以約0.83 mg/m2之劑量投予,持續至少三個週期。在一些此種實施例中,LB-100係在21天週期之第1天及第3天以約0.83 mg/m2之劑量投予,持續至少四個週期。在一些此種實施例中,LB-100係在21天週期之第1天及第3天以約0.83 mg/m2之劑量投予,持續至少五個週期。在一些此種實施例中,LB-100係在21天週期之第1天及第3天以約0.83 mg/m2之劑量投予,持續該患者之終生。
如以上及本文中進一步描述,在一些實施例中,該一或多種抗癌劑包括卡鉑。在一些此種實施例中,該卡鉑係以對應於約AUC 5之劑量投予。在一些此種實施例中,該卡鉑係以達成約AUC 5之劑量投予。在一些此種實施例中,該卡鉑係以高達約750 mg/天之劑量投予。在一些實施例中,該卡鉑係以根據有需要之個體之照護標準的量投予。
在一些實施例中,該卡鉑係在21天週期之第1天投予。在一些實施例中,該卡鉑係在21天週期之第1天投予,持續至少4個週期。在一些此種實施例中,該卡鉑係經靜脈內投予。
如以上及本文中進一步描述,在一些實施例中,該一或多種抗癌劑包括阿特珠單抗。在一些此種實施例中,該阿特珠單抗係以約1200 mg/天之劑量投予。在一些實施例中,該阿特珠單抗係以根據有需要之個體之照護標準的量投予。
在一些實施例中,該阿特珠單抗係在21天週期之第1天投予。在一些實施例中,該阿特珠單抗係在21天週期之第1天投予,持續至少4個週期。在一些此種實施例中,該阿特珠單抗係經靜脈內投予。
如以上及本文中進一步描述,在一些實施例中,該一或多種抗癌劑包括依託泊苷。在一些實施例中,該依託泊苷係以約100 mg/m 2/天之劑量投予。在一些實施例中,該依託泊苷係以根據有需要之個體之照護標準的量投予。
在一些實施例中,該依託泊苷係在21天週期之第1天、第2天及第3天投予。在一些實施例中,該依託泊苷係在21天週期之第1天、第2天及第3天投予,持續至少4個週期。在一些實施例中,該依託泊苷係經靜脈內投予。
在一些實施例中,本發明提供按以上及本文中所描述之量及投予方案中之任一種投予LB-100與阿特珠單抗、卡鉑及依託泊苷之組合的方法。在一些此種實施例中,其中該一或多種抗癌劑包括阿特珠單抗、卡鉑及依託泊苷中之每一者,當在同一天呈組合形式相繼投予時,投予次序包括投予LB-100,繼而投予阿特珠單抗,繼而投予卡鉑,繼而投予依託泊苷。在一些實施例中,該投予次序在不存在該等抗癌劑中一或多種之投予時得以維持。
在一些實施例中,個體經治療至少一、二、三或四個週期,包括LB-100及一或多種抗癌劑。在一些實施例中,個體隨後進行維持治療。舉例而言,在一些實施例中,維持治療包括根據以上及本文中所描述之方法中之任一種投予之LB-100及阿特珠單抗。
在一些實施例中,罹患SCLC之患者未進行過針對SCLC之先前全身化學療法、免疫療法、生物、激素或試驗性療法。
在一些實施例中,患有SCLC之個體尚未被診斷患有NSCLC或混合型NSCLC及SCLC。
在一些實施例中,本發明提供一種方法,其中向個體投予包含LB-100及至少一種醫藥學上可接受之載劑的醫藥組合物,以用於治療該個體之癌症。
在以上方法或用途中任一種之一些實施例中,該個體為人類。
在以上方法或用途中任一種之一些實施例中,LB-100及/或該一或多種額外抗癌劑係經口或非經腸投予該個體。
如本文中所使用,「治療疾病」或「治療」涵蓋誘導疾病或與疾病相關之症狀或疾患的預防、抑制、消退或停滯。
如本文中所使用,「抑制」個體之疾病進展或疾病併發症意謂預防或減輕個體之疾病進展及/或疾病併發症。
如本文中所使用,可使用熟習此項技術者熟知的多種方法或遞送系統中之任一種來「投予」劑。投予可例如經口、非經腸、經腹膜內、經靜脈內、經動脈內、透皮、經舌下、經肌肉內、經直腸、經口腔、經鼻內、經脂質體、經由吸入、經***、經眼內、經由局部遞送、經皮下、經脂肪內、經關節內、經鞘內、向腦室中、經腦室內、經腫瘤內、向腦實質中或經腦實質內進行。
可使用以下採用許多常規使用之醫藥載劑的遞送系統,但僅表示設想用於投予根據本發明之組合物的許多可能系統。
可注射藥物遞送系統包括溶液、懸浮液、凝膠、微球體及聚合物注射劑,且可包含賦形劑,諸如溶解度改變劑(例如,乙醇、丙二醇及蔗糖)及聚合物(例如,聚辛內酯及PLGA)。
其他可注射藥物遞送系統包括溶液、懸浮液、凝膠。經口遞送系統包括錠劑及膠囊劑。此等可含有賦形劑,諸如黏合劑(例如羥丙甲纖維素、聚乙烯吡咯啶酮、其他纖維素材料及澱粉)、稀釋劑(例如,乳糖及其他糖、澱粉、磷酸二鈣及纖維素材料)、崩解劑(例如澱粉聚合物及纖維素材料)及潤滑劑(例如硬脂酸酯及滑石)。
可植入系統包括棒及盤,且可含有賦形劑,諸如PLGA及聚辛內酯。
經口遞送系統包括錠劑及膠囊劑。此等可含有賦形劑,諸如黏合劑(例如羥丙甲纖維素、聚乙烯吡咯啶酮、其他纖維素材料及澱粉)、稀釋劑(例如,乳糖及其他糖、澱粉、磷酸二鈣及纖維素材料)、崩解劑(例如澱粉聚合物及纖維素材料)及潤滑劑(例如硬脂酸酯及滑石)。
經黏膜遞送系統包括貼片、錠劑、栓劑、子宮托、凝膠及乳膏,且可含有賦形劑,諸如增溶劑及增強劑(例如,丙二醇、膽汁鹽及胺基酸),以及其他媒劑(例如,聚乙二醇、脂肪酸酯及衍生物,以及親水性聚合物,諸如羥丙基甲基纖維素及透明質酸)。
皮膚遞送系統包括例如水性及非水性凝膠、乳膏、多重乳液、微乳液、脂質體、軟膏、水性及非水性溶液、洗液、氣霧劑、烴基及粉末,且可含有賦形劑,諸如增溶劑、滲透增強劑(例如脂肪酸、脂肪酸酯、脂肪醇及胺基酸)及親水性聚合物(例如聚卡波非及聚乙烯吡咯啶酮)。在一個實施例中,醫藥學上可接受之載劑為脂質體或透皮增強劑。
用於可復原遞送系統之溶液、懸浮液及粉末包括媒劑,諸如懸浮劑(例如,樹膠、黃原膠、纖維素及糖)、濕潤劑(例如,山梨醇)、增溶劑(例如,乙醇、水、PEG及丙二醇)、表面活性劑(例如,月桂基硫酸鈉、Spans、Tweens及鯨蠟基吡啶)、防腐劑及抗氧化劑(例如,對羥基苯甲酸酯、維生素E及C以及抗壞血酸)、抗結塊劑、包覆劑及螯合劑(例如,EDTA)。
如本文中所使用,「醫藥學上可接受之載劑」係指適合用於人類及/或動物而無過度不良副作用(諸如毒性、刺激及過敏反應)、與合理益處/風險比相稱之載劑或賦形劑。其可為用於向個體遞送本發明之化合物的醫藥學上可接受之溶劑、懸浮劑或媒劑。
本發明之方法中所使用之化合物可呈鹽形式。如本文中所使用,「鹽」為本發明化合物之鹽,其已藉由製備化合物之酸式鹽或鹼式鹽而得以改質。在用於治療感染或疾病之化合物的情況下,該鹽為醫藥學上可接受的。醫藥學上可接受之鹽的實例包括但不限於諸如胺之鹼性殘基之無機酸鹽或有機酸鹽;諸如酚類之酸性殘基之鹼鹽或有機鹽。鹽可使用有機酸或無機酸來製造。此種酸式鹽是氯化物、溴化物、硫酸鹽、硝酸鹽、磷酸鹽、磺酸鹽、甲酸鹽、酒石酸鹽、馬來酸鹽、蘋果酸鹽、檸檬酸鹽、苯甲酸鹽、水楊酸鹽、抗壞血酸鹽及其類似物。酚鹽為鹼土金屬鹽、鈉、鉀或鋰。在此方面,術語「醫藥學上可接受之鹽」係指本發明化合物之相對無毒之無機及有機酸或鹼加成鹽。此等鹽可在本發明化合物之最終單離及純化過程中在原位或藉由使呈游離鹼或游離酸形式之經純化本發明化合物而分別與適合之有機或無機酸或鹼反應並單離如此形成之鹽來製備。代表性鹽包括氫溴酸鹽、鹽酸鹽、硫酸鹽、硫酸氫鹽、磷酸鹽、硝酸鹽、乙酸鹽、戊酸鹽、油酸鹽、棕櫚酸鹽、硬脂酸鹽、月桂酸鹽、苯甲酸鹽、乳酸鹽、磷酸鹽、甲苯磺酸鹽、檸檬酸鹽、馬來酸鹽、富馬酸鹽、琥珀酸鹽、酒石酸鹽、萘酸鹽、甲磺酸鹽、葡糖庚酸鹽、乳糖醛酸鹽及月桂基磺酸鹽及其類似物。(參見例如Berge等人(1977) 「Pharmaceutical Salts」, J. Pharm. Sci. 66:1-19)。
本發明包括本方法之化合物之酯或醫藥學上可接受之酯。術語「酯」包括但不限於含有R-CO-OR'基團之化合物。「R-CO-O」部分可來源於本發明之母體化合物。「R'」部分包括但不限於烷基、烯基、炔基、雜烷基、芳基及羧基烷基。
本發明包括本方法之化合物之醫藥學上可接受之前藥酯。本發明化合物之醫藥學上可接受之前藥酯為可藉由溶劑分解或在生理條件下轉換為母體化合物之游離羧酸的酯衍生物。前藥之一個實例為烷基酯,其在活體內裂解以產生相關化合物。
除非另外說明,否則當用於本方法之化合物之結構包括不對稱碳原子時,應理解該化合物呈外消旋物、外消旋混合物及經單離之單一鏡像異構體形式存在。此等化合物之所有此種異構形式皆明確包括在本發明中。除非另外說明,否則各立體中心碳可為R或S構型。因此應理解,除非另外指示,否則由此種不對稱性產生之異構體(例如所有鏡像異構體及非鏡像異構體)包括在本發明之範疇內。此種異構體可藉由經典分離技術及藉由立體化學控制合成以實質純形式獲得,諸如以下文獻中所描述者:「Enantiomers, Racemates and Resolutions」, J. Jacques, A. Collet及S. Wilen, Pub. John Wiley & Sons, NY, 1981。舉例而言,可藉由對掌性管柱上之製備型層析法來進行拆分。
化合物或其鹽、兩性離子或酯視情況呈包括適當醫藥學上可接受之載劑的醫藥學上可接受之組合物的形式提供。
如本文中所使用,以毫克量度之劑之「量」或「劑量」係指藥物產品中所存在之劑之毫克數,而與藥物產品之形式無關。
如本文中所使用,術語「治療有效量」或「有效量」係指當以本發明之方式使用時,足以產生與合理收益/風險比相稱的所要治療反應而無過度不良副作用(諸如毒性、刺激或過敏反應)之組分用量。特定有效量將隨諸如所治療之特定疾患、患者之身體狀況、所治療之哺乳動物之類型、治療之持續時間、並行治療(若有)之性質及所採用之特定調配物以及化合物或其衍生物之結構等因素而變化。
在說明書中提供範圍時,應理解該範圍包括該範圍內之所有整數及其任何子範圍。舉例而言,範圍77%至90%揭示77%、78%、79%、80%及81%等。
如本文中所使用,術語「約」或「大約」具有在指定值或範圍之20%內的含義。在一些實施例中,術語「約」係指在指定值之20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%或1%內。
應理解,在提供參數範圍之情況下,本發明亦提供該範圍內之所有整數及其十分之一。舉例而言,「0.2-5 mg/kg/天」揭示0.2 mg/kg/天、0.3 mg/kg/天、0.4 mg/kg/天、0.5 mg/kg/天、0.6 mg/kg/天等,直至5.0 mg/kg/天。
對於前述實施例,設想本文中所揭示之各實施例適用於所揭示之其他實施例中之每一者。因而,本文中所描述之各個要素之所有組合皆在本發明之範疇內。
本發明之各態樣之所有特徵經必要修改後皆適用於所有其他態樣。
為了可更充分地理解本文中所描述之本發明,闡述以下實例。應理解,此等實例僅出於說明目的,而不應被視為以任何方式限制本發明。 實例 實例 1. 蛋白磷酸酶 2A 作為小細胞肺癌之治療標靶
在本研究中,採用活體外及活體內模式研究在SCLC中用LB100及LB100/卡鉑在藥理學上抑制PP2A之效果。此外,亦檢查LB100與免疫療法組合對使用SCLC細胞產生之3D球狀體之形態及完整性的影響。綜上所述,結果顯示,在SCLC中藉由用單獨或化學及免疫療法組合之LB100阻斷PP2A可增強化學治療劑之抗腫瘤作用。 結果:
PP2A SCLC 腫瘤組織及細胞株中上調,且減弱 PP2A 顯著減弱此等細胞之增殖。
先前報導了PP2A及其次單元A (PP2A-A)及C (PP2A-C)過度表現於若干SCLC細胞株中(5)。對GEO (https://www.ncbi.nlm.nih.gov/pubmed/27093186)資料集(GSE60052)之生物資訊學分析進一步證實此結果,其中與正常肺相比,PP2A-A顯著過度表現(p=0.0144)於SCLC中(圖1A)。
為了評估PP2A在SCLC中之表現水準,吾等使用對PP2A-A特異性抗體進行免疫組織化學(immunohistochemistry, IHC)比較了組織微陣列(tissue microarray, TMA)內所含有之相鄰正常(n=24)及原發性SCLC腫瘤(n=79)核心(圖1B)。TMA中所含有之各腫瘤及正常核心由對組織標識不知情之病理學家獨立評分(20, 21)。PP2A-A蛋白在大部分正常核心中不可偵測(0=79.17%,1=16.67%,2=4.16%),但在腫瘤組織中顯著上調(0=8.86%,1=41.77%,2=40.5%,3=8.87%) (圖1C)。腫瘤組織中PP2A之平均病理學評分(1.45±0.088)顯著高於(p=0.001)正常組織之平均病理學評分(0.333±0.13)。公開可利用資料集及TMA結果皆顯示PP2A-A表現在SCLC腫瘤組織中顯著上調(圖1A至圖1C)。已證實在腫瘤組織中過度表現後,吾等接下來藉由免疫印漬測定其在各個SCLC細胞株中之表現,如先前所描述(22)。與對照HBEC 3KT細胞相比,兩個次單元在SCLC細胞株(包括H82、H526、H524、H446、H146、H345及H69)中皆上調(圖1D)。
斑螫素為已知抑制PP2A之LB100母體化合物。因此,吾等使用斑螫素作為陽性對照來證明抑制PP2A在SCLC細胞中導致所觀測到之效果。實際上,斑螫素處理使PP2A活性降低了近90%,而LB100將磷酸酶活性顯著抑制至65%。(圖1E)。最後,吾等在H524 SCLC細胞中使用特異性siRNA減弱了PP2A次單元Aα。使用亂序型式(scRNA)作為對照物。正如所料,減弱PP2A顯著降低了PP2A次單元Aα水準並減弱了此等細胞中之細胞增殖(圖1F/插圖,1F)。
組合化學療法與 LB100 引起協同作用。
為了測試LB100、卡鉑及依託泊苷之細胞毒性作用,吾等用不同濃度之各藥物將六個SCLC細胞株處理72小時。在對順鉑敏感之四個細胞株H82、H526、H524及H446中,與對順鉑具抗性之其他兩個細胞株H146及H69相比,LB100更有效地誘導細胞死亡,IC50<8 μM (表A),其中在相對較高劑量之LB100下觀測到細胞死亡(IC50 ~20 μM)。
Figure 02_image004
接下來,吾等確定用LB100與化學治療藥物劑卡鉑及依託泊苷之組合處理SCLC細胞株之效果。單獨任一藥物在殺傷對LB100敏感之H524 SCLC細胞方面皆有效(圖1G)。然而,當LB100與卡鉑或依託泊苷組合(組合指數(CI)值分別為0.534及0.532)使用時,細胞死亡顯著更高 (圖1G)。在H69 SCLC細胞之情況下可見類似之協同作用。LB100/卡鉑及LB100/依託泊苷殺傷LB100抗性H69細胞,CI值分別為0.311及CI=0.646 (圖1H)。
為了確定LB100單獨以及與卡鉑及依託泊苷組合時對H524及H69細胞之細胞毒性作用,吾等亦進行了群落形成分析。用單一藥物(LB100、卡鉑或依託泊苷)或組合(LB100/卡鉑及LB100/依託泊苷)處理顯著減少了兩種細胞株中之群落形成(p<0.0001;p<0.01) (圖1I及圖1J)。而在雙藥物組合組(LB100/卡鉑及LB100/依託泊苷)中,與LB100單一處理相比,H524細胞之群落形成顯著減少。然而,在H69細胞之情況下,僅在經LB100與LB100/卡鉑處理之細胞之間觀測到顯著差異(圖1J)。因此,吾等使用更近似於腫瘤微環境之3D細胞培養模式研究LB100之效果。
測試 LB100 H446 球狀體生長之影響。
吾等進一步研究了LB100及化學療法藥物對由SCLC細胞形成之球狀體的影響。測試了三個細胞株H524、H69及H446。H524及H69細胞在低附接96孔板中形成大的軟團塊。將在不添加細胞外基質組分或基質膠之情況下隔夜形成緻密球狀體之H446細胞用於成像及組織學分析。在九天內形成300-500 μm球狀體(圖2A),在活體外形成之球狀體之大小與在轉移部位形成之腫瘤相當,在該等部位,細胞經歷缺氧、炎症、pH水準變化及通常營養剝奪條件(23)。為了測試LB100對H446球狀體之影響,吾等使用IncuCyte活細胞分析系統記錄即時功能變化。在明場(BF)中並使用綠色螢光經72小時對經或未經20 μM LB100處理之H446球狀體進行成像。使用遮蔽視場中最大BF之自動化軟體演算法量測球狀體之大小(針對球狀體之無標記即時活細胞分析:IncuCyte明場分析)。BF分析說明LB100處理之後球狀體收縮及細胞毒性染料螢光增加(圖2B及圖2C)。對經單獨及組合之LB100、卡鉑處理之球狀體進行H&E染色。處理之前,球狀體具有緻密圓形形狀(圖2D-對照組),輪廓非常清晰。然而,用LB100、卡鉑、依託泊苷或化學治療藥物與LB100之組合處理72小時顯著改變了球狀體之形態。在經LB100處理之情況下,球狀體尺寸減小並喪失其圓形形狀。卡鉑及依託泊苷處理使細胞自球狀體離解,在其周圍形成瀰漫性細胞雲。卡鉑或依託泊苷與LB100之藥物組合消除了球狀體生長,並顯著減少了球狀體之數目(圖2D)。對H446球狀體生長之IncuCyte BF分析顯示,與對照物或僅LB100處理相比,LB100與卡鉑組合減少了單一球狀體大小(圖2E及圖2G)。用LB100及依託泊苷獲得了類似結果(圖2F及圖2H)。此等結果證實了LB100單獨以及與卡鉑或依託泊苷組合用於3D球狀體模式中之效力,與吾等在2D培養物中之觀測結果類似。
藥物組合抑制 SCLC 細胞侵襲,增加卡鉑攝取,並且影響 PP2A DNA 損傷及細胞凋亡調控蛋白。
為了辨別LB100對細胞侵襲之影響,吾等測試了SCLC細胞侵襲通過一層內皮細胞(endothelial cellm EC)之能力。為此,吾等使用電基板-阻抗感測系統(Applied Biophysics, Troy, NY, USA)量測跨內皮單層電阻,如先前所描述(24)。在SCLC細胞附著並開始侵入單層時,此系統連續量測內皮單層電阻。電阻降低指示經由腫瘤細胞之跨內皮滲出破壞了內皮單層障壁。未經處理之對照細胞通過HUVEC單層高度侵襲。在單一藥物處理(LB100或卡鉑)之後,H524細胞顯示反式遷移能力無變化(對照組變化%=18.2+2;LB100=16.9+2;卡鉑=18.2+0.4),且對於H69細胞,相應值為對照組=19.6+1.7;LB100= 12.3+0.92;卡鉑=14.9+1.24(圖3A及圖3B)。然而,與未經處理之對照細胞相比,藥物組合處理顯著降低了通過HUVEC單層之細胞反式遷移能力(p<0.001)。插圖指示H524(10.6+1.2%)及H69(6.6+1.2%)在LB100+卡鉑處理20小時之後HUVEC障壁破壞百分比變化較低(p<0.001)。此表明PP2A與化學療法組合抑制可能會破壞細胞通過血管運動並防止侵襲。
因為LB100及卡鉑或依託泊苷之組合顯示協同效應,故吾等希望辨別藥物協同作用之機制。為此,使用感應藕合電漿質譜(ICP-MS)在H524及H69細胞中量測鉑(Pt)水準。將細胞用LB100預處理24小時,隨後用5 μM (H524細胞)及20 μM (H69細胞)卡鉑處理1或4小時。與對照組相比,用卡鉑處理細胞1小時在兩個細胞株中僅輕度升高Pt水準(圖3C及圖3D)。與單獨卡鉑之單一處理相比,用藥物組合處理4小時顯著增加了兩個細胞株中之Pt水準,表明LB100增強了SCLC細胞中之Pt攝取,且從而促進了卡鉑之促細胞凋亡作用。
吾等檢查了LB100單獨及與卡鉑組合時對PP2A表現之影響。藥物處理顯著降低了H524細胞中PP2A次單元A之表現(圖3E,左上圖)。但在H69細胞之情況下,對照及經處理細胞之次單元A表現相同(圖3E,右上圖)。在對照及經處理H524及H69細胞中,次單元C之表現亦不變(圖3E,中圖)。此外,LB100、卡鉑及組合療法顯著影響了與DNA損傷以及在H524及H69細胞中誘導細胞凋亡相關之標記物組蛋白γ-H2AX的磷酸化(圖3F)。另外,凋亡蛋白酶3在用LB100或卡鉑進行單一處理以及組合處理之後在H524及H69細胞中活化,如預成型體裂解所見(圖3F)。此外,PP2A失調誘導PARP活性,從而導致細胞死亡。總之,此等資料顯示,LB100與鉑類藥物組合抑制PP2A誘導SCLC細胞中之凋亡訊號傳導。
探索 LB100 H524 細胞之動力學概況的影響。
由於LB100選擇性地抑制PP2A,故吾等使用PamGene技術偵測肽之磷酸化作為細胞絲胺酸/蘇胺酸激酶(STK)之功能讀數。此分析允許吾等探究LB100在多種細胞途徑中對蛋白質磷酸化之抑制作用。發現LB100在5及10 μM濃度下顯著增加某些STK之磷酸化(n=20)。令人驚訝的是,用5 µM及10 µM LB100處理H524細胞顯著減少酪胺酸激酶肽磷酸化(n=52)。
使用Reactome軟體進行富集分析之生物資訊學分析揭示基於LB100對腫瘤發生之影響之先驗知識,選擇若干特別感興趣之途徑(27-30)。LB100介導之PP2A抑制強烈影響了訊號轉導及代謝途徑(圖4A)。對訊號轉導途徑之進一步分析顯示,與先前報導(31, 32)一致,LB100影響HGF-MET訊號傳導。另外,LB100亦靶向SCLC細胞中之代謝訊號傳導。
探索 LB100 H69 細胞中代謝途徑之影響。
為了辨別LB100對代謝訊號傳導之影響,吾等採用BiOLOG(Hayward, CA)表型微陣列技術檢查H69對碳源之利用。使用此分析法,吾等檢查了94種碳源及氧化還原染料四唑來偵測基質利用。與對照(未處理) H69細胞(圖4B)相比,LB100抑制11種碳基質之利用,可分為五組:糖(L-山梨糖、α-D-葡萄糖、D-甘露糖)、多醣(糖原、D-葡糖醛酸)、碳水化合物(糊精、麥芽三糖)、磷酸化化合物(D,L-a-磷酸甘油)及胺(腺苷、肌苷)。其中,在H69細胞中,對合成代謝生物合成反應重要之三種基質,即α-D-葡萄糖(超過6倍)及糖原(超過2.7倍)之消耗在LB100處理之後顯著減少(圖4C)。另外,LB100抑制此等細胞中之腺苷及肌苷基質利用,此可能對SCLC中之嘌呤能訊號傳導產生顯著影響。最後,使用葡萄糖氧化酶分析直接量測H69細胞自細胞培養基之葡萄糖攝取,且正如所料,發現其在用LB100處理後減少。含細胞之對照培養基中之葡萄糖水凖比無細胞之對照組(100%)低20%。與無細胞之對照組相比,LB100處理使培養基中之葡萄糖消耗減少65% (圖4D)。
探索 LB100 H524 H69 細胞中 MET 磷酸化之影響。
PamGene激酶組資料顯示殘基1227與1239之間的MET肽磷酸化降低。為了驗證此發現,吾等用H524及H69細胞提取物進行西方印漬實驗,繼而用LB100(分別為5 μM及20 μM)處理,並且使用特異性偵測磷酸化酪胺酸1234/1235之磷酸化-MET(pMET)抗體用HGF刺激10分鐘。用LB100預處理H524細胞幾乎消除了MET基礎及HGF活化MET磷酸化(圖4E,左圖)。在H69細胞中,HGF磷酸化水準顯著降低(圖4E,右圖),表明用LB100抑制PP2A影響負責細胞生存力、增殖及運動之HGF/MET訊號傳導。
先前研究顯示MET之Ser985磷酸化負調控MET激酶活性(33-35)。吾等之結果亦顯示,用LB100或與卡鉑組合處理H524細胞誘導Ser985磷酸化增加,並且與對MET酪胺酸磷酸化之抑制有關。此外,LB100減少LB100/卡鉑樣本中之PP2A A表現(圖4F)。此發現與PamGene激酶組資料相關,亦即LB100降低Tyr 1234/1235 MET磷酸化,並且可能為LB100對SCLC細胞之關鍵作用。
探索 LB100 SCLC 細胞之粒線體及糖解功能之影響。
接下來,吾等採用Seahorse XF細胞能量表型檢驗確定LB100對SCLC細胞中ATP產生之影響。將H524及H69細胞用半IC50劑量之LB100(分別為2.5 μM及10 μM)預處理。藥物處理之後,吾等對細胞數目進行計數並使用錐蟲藍排除作為讀出來檢查其生存力。在Seahorse XF96分析儀上測定細胞基礎耗氧率(oxygen consumption rate, OCR)及細胞外酸化率(ECAR)量測值。隨後用1 μM寡黴素(氧化磷酸化抑制劑(OxPhos)及1 μM羰基氰化物對三氟甲氧基苯腙(FCCP) (OxPhos解偶聯劑)對H524及H69細胞進行應力處理。由於寡黴素抑制粒線體ATP產生而FCCP藉由解偶聯粒線體中之H+梯度來誘導最大耗氧量,因此用此兩種應力方法檢查之實驗條件分別反映SCLC細胞之最大糖解能力及OxPhos能力。細胞代謝能力包括該兩個事件且表徵細胞對能量需求急劇增加之限制。LB100嚴重影響H524細胞之能量代謝;與未處理之細胞相比,其基礎OCR低4倍(圖5A)。LB100處理亦誘導對應激OCR以及基礎及應激ECAR之抑制(圖5B及圖5C)。此等結果顯示LB100對此等細胞中之主要ATP產生的源糖解及OxPhos途徑具有顯著抑制作用。在H69細胞中亦觀測到基礎OCR及ECAR顯著降低(圖5D)。然而,在用LB100處理後,此等細胞中之應激OCR及ECAR無顯著降低(圖5E及圖5F)。
為了確定LB100單獨或與卡鉑組合對來自粒線體呼吸及糖解之ATP產生的作用,吾等進行了Agilent Seahorse XF-96即時ATP速率分析。在H524細胞中,與未處理之細胞相比,所有三組之總ATP產生率皆顯著降低73.7% (LB100)、36.3% (卡鉑)及63.7% (LB100/卡鉑) (圖6A)。在經藥物處理之細胞中,粒線體及糖解ATP產生率亦顯著較低。重要的是,LB100及LB100/卡鉑在抑制粒線體ATP及糖解ATP產生方面比單獨卡鉑更有效,並且改變了H524細胞之能量表型。該等細胞傾向於較低能量及糖解(圖6B)。
為了闡明藥物對H524細胞糖解代謝之影響,吾等分析了質子流出率(PER)。藉由自流入細胞外培養基中之總酸化或質子流量(來自糖解及粒線體)減去由粒線體CO 2產生而產生之酸化(粒線體來源之CO 2可在細胞外介質中部分水合,導致額外細胞外酸化超出糖解所貢獻者)來計算PER。與未經處理之細胞相比,藥物處理後PER之基礎值降低了>50%(圖6C)。在OxPhos抑制劑寡黴素及第二次急性注射抗黴素/魚藤酮(粒線體電子傳輸抑制劑)之存在下測量PER顯示LB100處理組中顯著降低。LB100處理亦削弱糖解並減少代償性糖解(細胞在用抗黴素/魚藤酮進行OxPhos抑制之後增加糖解之能力)(圖6D及圖6E)。另外,量測H69細胞中之ATP產生。H69細胞顯示與H524細胞相同之趨勢,亦即,LB100組總ATP產生率下降54%,卡鉑組下降12%,且LB100/卡鉑組下降57% (圖6F)。此外,LB100及LB100/卡鉑顯著降低了H69細胞中之粒線體ATP產生率,且H69細胞之能量圖顯示,與未處理之細胞相比,糖解ATP產生率略有下降(圖6G)。為了證實LB100亦影響LB100抗性細胞中之糖解途徑,吾等測量了此等細胞中之PER。在LB100組中,PER之基礎水準受到顯著抑制(圖6H)。另外,LB100處理在粒線體電子傳輸抑制劑存在下顯著抑制PER (圖6I及圖6J)。LB100單獨或與卡鉑組合導致H69細胞中糖解代謝活性受損及氧化能力受限。總而言之,此等結果顯示LB100單獨或與卡鉑組合有效地靶向SCLC細胞之代謝功能,從而降低細胞增殖及遷移,致使其對化學療法敏感。
LB100 及阿特珠單抗增加 CD8 +T 細胞識別 3D 中之腫瘤細胞。
由於檢查點抑制劑可誘導抗癌免疫反應且PP2A抑制已顯示在若干癌症中增強抗癌免疫力,故吾等在3D培養系統中在存在T細胞之情況下使用H446球狀體評估LB100及阿特珠單抗以及靶向PD-L1之人類化IgG抗體之組合。遵循方法中所描述之方案,自健康供體之全血、血沉棕黃層分離細胞毒性CD8+細胞。圖7A含有顯示處理方案之示意圖。將H446球狀體置於含T細胞及活化珠粒以及LB100、阿特珠單抗或LB100與阿特珠單抗組合之圓底96孔板中,並利用延時成像觀察球狀體。平均球狀體直徑在300與350 μm之間,且其在0小時時具有相同形態(圖7B及圖7C)。監測球狀體存活率48小時,並且自相位差影像量測其直徑。與對照組相比,阿特珠單抗/T細胞及LB100/阿特珠單抗/T細胞組之後細胞分布直徑顯著增加(p<0.001) (圖7D及圖7E)。單獨LB100對球狀體退化具有中度影響(p< 0.01) (圖7D)。T細胞與LB100或阿特珠單抗組合影響球狀體完整性。來自IncuCyte延時顯微術之明場影像顯示自第0天開始,球狀體具有圓形形狀及良好呈現之球狀體結構(圖7F)。LB100在無T細胞之情況下在第1天之後開始使球狀體崩解,而阿特珠單抗在無T細胞之情況下對球狀體無影響。活化T細胞與LB100、阿特珠單抗及兩種藥物組合誘導死細胞脫落、T細胞在球狀體核心中積聚,且第2天,在影像中僅觀測到球狀體片段(圖7F)。使用CD3抗體之IHC顯示三組LB100/T細胞、阿特珠單抗/T細胞及LB100/阿特珠單抗/T細胞中腫瘤細胞中之T細胞簇。組合處理誘導球狀體破壞,導致球狀體中活化T細胞浸潤,從而引起細胞解離、球狀體形態喪失及細胞毒性增加。H&E染色上T細胞+珠粒簇與CD3染色之棕色斑點相匹配(圖7G)。
探索 LB100 SCLC 小鼠模式中之腫瘤生長的影響。
已在活體外系統中證明LB100、卡鉑及其組合之效力後,吾等接下來使用SCLC異種移植小鼠模式在活體內檢查。用LB100或LB100及卡鉑組合處理引起腫瘤大小在統計學上顯著減小(圖8A)。值得注意的是,此等藥物未展現顯著毒性,其亦未顯著影響體重(圖8B)。然而,與媒劑處理組相比,用LB100、卡鉑及其組合處理導致腫瘤重量顯著降低(圖8C)。與媒劑組相比,LB100/卡鉑抑制原發瘤生長89%。結果顯示藥物組合最大限度地抑制腫瘤生長(圖8D)。用卡鉑及LB100/卡鉑處理30天之後量測小鼠腫瘤中之Pt顯示組合處理後腫瘤內Pt水準顯著增加(圖8E)。腫瘤之IHC證實pMET、pp2A A、CD31及Ki67標記物在藥物組合組中染色低(圖9)。 論述/結論:
本研究顯示,LB100單獨或與化學治療藥物組合抑制SCLC中之細胞增殖及群落形成。在LB100與卡鉑之組合下觀測到對細胞增殖之最大抑制作用。此外,該組合在更接近於腫瘤微環境之SCLC球狀體模式中為有效的。與對照未處理細胞相比,此藥物組合亦顯著抑制了SCLC細胞通過HUVEC單層侵襲。此等結果連同LB100/卡鉑組合在顯著降低SCLC異種移植小鼠模式之腫瘤大小及體重方面有效之事實強調了此創新治療選擇用於SCLC之潛能。
另外,LB100處理抑制了SCLC細胞中HGF誘導之MET磷酸化。與吾等之結果一致,已知PP2A經由S895去磷酸化來調控MET活化,由此導致Y1234及Y1235自磷酸化,從而引起受體活化(34)。不希望受理論束縛,HGF誘導之MET磷酸化看似在SCLC之上皮間質轉化(EMT)中發揮重要作用(22)。另外,MET/HGF軸在包括肺癌在內之多個腫瘤類型之化學抗性發展中起主要作用。在NSCLC中,MET受體活化藉由經由活化PI3K-AKT途徑及下調細胞凋亡誘導因子以抑制細胞凋亡來誘導化學抗性(37)。用MET抑制劑阻斷此過程使此等細胞在活體外及活體內對化學療法重新敏感(38)。LB100可破壞MET配體活化之事實表明LB100亦可減弱化學抗性,此為治療SCLC之主要障礙。亦已知c-MET參與若干癌症之代謝再程式化(39-42)。
在用單獨或與卡鉑組合之LB100抑制PP2A活性後,觀測到葡萄糖攝取以及糖解及OxPhos顯著降低。此外,在此等處理後,此等細胞之糖解能力及氧化能力降低。不希望受理論束縛,此等結果表明LB100及卡鉑處理導致混合糖解/OxPhos表型逆轉,從而使SCLC細胞對化學藥物敏感。ATP產生增加與ATP結合卡匣(ATP-binding cassette, ABC)轉運蛋白活性增加相關,從而導致化學抗性( 45),此與ATP水準升高直接影響ABC轉運蛋白活性之事實相一致。不希望受理論束縛,LB100抑制糖解、OxPhos及剝奪ATP可能導致流出泵功能減弱,從而增加藥物之毒性並逆轉藥物抗性。
質譜資料表明,在LB100處理後,SCLC細胞及腫瘤組織中之Pt濃度顯著增加。已提出銅流入/流出轉運蛋白在癌症中基於鉑之藥物攝取及抗性( 46)方面發揮重要作用。在許多癌症中觀測到銅轉運蛋白1 (CTR1)表現減少及ABC轉運蛋白、ATP 7A/7B流出轉運蛋白及多藥物抗性蛋白MTB1增加(47)。不希望受理論束縛,在SCLC中觀測到之Pt攝取增加可能由於響應於LB100而改變之一或多種銅流入/流出轉運蛋白之表現。與此思想一致,LB100及卡鉑之組合協同作用以誘導SCLC細胞中之DNA損傷及細胞凋亡。
吾等已證明PD-L1過度表現於來源於SCLC之Rb f/f/Trp53 f/f小鼠模式之神經內分泌細胞中(未公開資料),且阿特珠單抗與LB100組合在活化T細胞存在下誘導球狀體破壞,導致球狀體中活化T細胞浸潤,從而導致細胞解離、球狀體形態喪失及細胞毒性增加。
因此,目前資料表明,用LB100消除PP2A經由改變轉運蛋白之表現因而增加化學敏感性來維持其對致癌基因MET活性、能量產生及藥物攝取之多效性作用來抑制細胞增殖、腫瘤生長及轉移。此外,目前資料亦表明,組合LB100與卡鉑及依託泊苷可增強LB100之此等多效性作用,且組合免疫療法與LB100處理導致H446球狀體之T細胞浸潤增加,從而導致此等球狀體崩解。總之,本研究之結果表明,藥理學靶向PP2A看似為用於SCLC之可行策略。 材料及方法 組織微陣列
小細胞肺癌TMA來自於US Biomax Inc. (Rockville, MD; LC818)。在希望之城病理學/實體腫瘤中心使用先前描述之標準技術(49),利用針對PP2A A之抗體(CST, City of Industry, CA)進行免疫組織化學(IHC)染色。簡而言之,由兩名獨立的病理學家審查各TMA並且按0至3之標度評分:0+,無染色,無表現;1+,弱染色,低表現;2+,中度染色,中度表現;以及3+,強染色,高表現。 細胞培養試劑
懸浮液SCLC H524、H526、H82、H446、H69及H146細胞係購自ATCC(Manassas, VA)並且在37℃與5% CO2下維持在補充有10% (v/v)胎牛血清及1% (v/v)青黴素/鏈黴素(Corning Life Science,Tweksbury,MA)及L-麩醯胺酸之RPMI1640(Corning Life Science, Tweksbury, MA)中。常規監測細胞株之形態,並使用黴漿菌偵測套組(InvivoGen,San Diego,CA)常規檢測細胞株之黴漿菌。 免疫印漬
使用RIPA溶解緩衝液製備全細胞溶解產物,並如先前所描述使用對PP2A A、PP2A C、磷酸-組蛋白H2AX (S139)、MET、pMet (Tyr 1234/1235)、切割凋亡蛋白酶3及來自CST之泛肌動蛋白抗體(City of Industry, CA)、切割PARP1 (Santa Cruz Biotechnology, Dallas, TX)及pMET (Ser985) (ThermoFisher Scientific, Waltham, MA)特異之抗體以免疫印漬偵測蛋白質(22)。 細胞生存力分析
為了測定特異性細胞毒性,吾等使用如先前所描述之細胞計數套組-8 (Dojindo Molecular Technologies, Rockville, MD) (50)。 群落形成
將含大約1×10 3個細胞之0.3%瓊脂糖接種於96孔板中之0.6%瓊脂糖層上。使細胞在LB100、卡鉑或LB100/卡鉑存在下生長三週以觀測群落形成。將群落固定於4%甲醛中並用結晶紫染色。在Zeiss Observer 7倒置顯微鏡(Carl Zeiss, Oberkochen, Germany)上使用5倍物鏡以200微米步長拍攝平鋪明場影像之Z堆疊。使用Zen Blue v2.5 (Carl Zeiss Microimaging),藉由首先縫合參考切片來處理堆疊,隨後使用Extended Depth of Focus模組以預設設置將Z堆疊資訊壓縮至單一影像中。使用點工具對所得平鋪影像進行手動計數,並在QuPath 0.1.3中生成彙總量測值(51)。 PP2A 磷酸酶活性量測
使用PP2A免疫沉澱Ser/Tre磷酸酶分析套組(Millipore, Temecula, CA),遵循製造商之方案來量測PP2A活性。簡而言之,將8×10 6個H524細胞用LB100處理24小時。資料呈現為與對照組相比之相對PP2A活性百分比。 siPP2A subAα 轉染
Ser/Thr磷酸酶2A調控次單元A α同種型siRNA係購自MyBioSource(https://www.mybiosource.com/ search/PPP2R1A-siRNA)。使用jetPRIME試劑(Polyplus-transfection, LA, CA),用100 nM siRNA轉染細胞。用抗PPP2R1A ab (MyBioSource, San Diego, CA)驗證siRNA瞬時轉染。 跨內皮滲出分析
如吾等先前所描述,使用電基質-阻抗感測系統(Applied Biophysics, Troy, NY),使用跨內皮單層電阻量測,對SCLC細胞侵襲通過內皮細胞(EC)層之能力進行定量(24)。 使用 IncuCyte® 活細胞分析系統及 IncuCyte® Cytotox 試劑監測球狀體生長及細胞毒性
H446細胞以10,000個細胞/孔之密度接種,並允許形成球狀體(72小時)。隨後用LB100、卡鉑或LB100/卡鉑處理細胞並獲得球狀體生長之動力學。每4小時對球狀體進行成像,持續6天,並使用IncuCyte ZOOM軟體進行分析。 ICP-MS 分析
在Isotoparium (California Institute of Technology)製備樣本並使用預清潔之四氟乙烯燒杯(PFA)、Optima級試劑(Fisher Chemical)及18.2 MΩ Milli-Q水分析Pt濃度。首先在500 μl濃HNO3中在160℃下將細胞團塊消化30分鐘,隨後完全乾燥。將小鼠腫瘤在1 mL濃HNO3中在120℃下消化30-45分鐘,定期脫氣,隨後完全乾燥。將樣本冷卻至室溫,置於50:50 v/v濃HNO3:H2O2中(1 mL用於細胞團塊,2 mL用於腫瘤)以燃盡有機物。將細胞團塊置於160℃熱板上隔夜。在120℃下將腫瘤加熱8小時,定期脫氣。隨後將所有樣本完全蒸發並在5 mL 3% v/v HNO3中復原。使用鈥(Spex Certiprep Assurance,批次編號24-80HOM)作為內標物。對所有樣本及標準稀釋液皆使用含2 ppb Ho之3% v/v HNO3儲備溶液。使用HNO3+Ho儲備溶液將細胞株之等分試樣稀釋20倍,而使用相同儲備溶液將腫瘤等分試樣稀釋100倍。每個生物重複實驗量測三次技術重複實驗以證明可再現性。使用iCAP RQ (ThermoFisher, Waltham, MA)、ICP-MS及SC-2 DX自動取樣器(Elemental Scientific, Omaha, NE)分析所有樣本。對儀器調諧參數(例如,霧化器氣流、噴燈對準及樣本攝取率、四極離子偏轉器)進行最佳化以在分析前通過標準效能檢查。使用HNO3儲備溶液創建Pt標準曲線(0.001、0.01、0.1、1.0 ppb,Spex Certiprep Assurance,批次編號24-140PTM)並量測以進行樣本校正。對於各分析,量測鉑194及195以及鈥165。各量測使用5次主要運作,每次運作進行5次掃描,且各掃描使用50 ms/同位素之停留時間。為了確保殘餘有機物不影響濃度估計值,在兩個獨立時段(不同的天數)使用兩種不同的錐形***物(通常用於地質樣本之高基質***物及推薦用於生物基質之穩固***物)量測各樣本。兩個資料集在不確定性內一致(<±2%)。將鉑質量相對於細胞團塊之總蛋白質量及小鼠樣本之腫瘤質量標準化。 使用 PamGene 微陣列分析進行激酶活性概況分析
將H524細胞用LB100處理5小時,以測試藥物對蛋白酪胺酸及絲胺酸/蘇胺酸激酶活性之影響。使用PamChip來捕捉來自酪胺酸激酶組(蛋白酪胺酸激酶-PTK)或絲胺酸/蘇胺酸激酶組(絲胺酸/蘇胺酸激酶-STK)上游激酶之活性。兩種PamChip皆含有144種肽,各肽由12-15個胺基酸構成,具有一或多個磷酸化位點。根據製造商之說明書進行PTK及STK PamGene分析。樣本由High Throughput Screening Core (City of Hope, Duarte, CA)在PamStation® 12 (PamGene, s-Hertogenbosch, Netherlands)上以三重複運作。用Evolve及BioNavigator套裝軟體(PamGene)進行影像定量及資料處理。使用途徑富集分析(http://reactome.org)來分析各晶片上與未處理之對照組相比對至少一種藥物濃度具有顯著(t檢驗p<0.05)對數倍數變化之肽。 BiOLOG 代謝分析
表型微陣列(PM)使用專利氧化還原化學,採用細胞呼吸作為通用報告因子。此等分析可能提供自然擬合來支持自代謝組學篩檢獲得之資料。氧化還原分析提供表型擴增及精確定量。氧化還原染料混合物含有水溶性無毒四唑鎓試劑,幾乎可用於任何類型之動物細胞株或初生細胞(52)。Biolog (Hayward, CA, USA)分析中所使用之染料量測了測試細胞中所存在之各種分解代謝途徑之菸醯胺腺嘌呤二核苷酸還原形式(NADH)產量之輸出。若分析孔中之培養基支持細胞生長,則活躍代謝細胞還原四唑鎓染料。染料還原引起孔中色彩形成,且表型被視為「陽性」。若代謝受阻或生長不良,則表型為「弱陽性」或「陰性」,且孔中幾乎未或未形成色彩。此比色氧化還原分析允許檢查處理對不同基質產生之代謝率的影響,且因而為一種用於與經由代謝組學篩檢來檢查代謝輸出組合之優良技術。 葡萄糖攝取分析
遵循製造商之說明書,藉由使用比色葡萄糖分析法(Invitrogen, Carlsbad, CA)測定葡萄糖消耗。簡而言之,將細胞以2×10 6個細胞/孔之密度接種至100 mm板中。細胞培養48小時之後,收集培養基上清液進行葡萄糖偵測。測定葡萄糖攝取,與細胞培養基中之初始葡萄糖濃度(視為100%)相比較。 細胞能量表型及即時 ATP 速率
使用Seahorse XF96儀器(Agilent, Santa Clara, CA)進行細胞能量表型及即時ATP分析。細胞能量表型分析量測基礎及應激水準之粒線體呼吸及糖解。即時ATP量測偵測來自糖解及粒線體之ATP產生速率。實驗前用LB100將細胞處理18小時。處理細胞次日,洗滌並且以5×10 4個/孔之密度接種於經Cell-Tak處理之96孔板中。將板離心以促進細胞附著,並且在37℃下培育60分鐘。兩種分析皆根據製造商之說明書來進行。使用Wave Desktop 2.6軟體(Agilent, Santa Clara, CA)進行資料分析。 使用藥物及 T 細胞對球狀體進行實時成像
在與T細胞及藥物一起培育後,如材料及方法中所描述(使用IncuCyte®活細胞分析系統及IncuCyte® Cytotox試劑監測球狀體生長及細胞毒性)來產生H446。使用IncuCyte 3D多腫瘤球狀體分析法監測LB100及阿特珠單抗在T細胞存在下之作用。 LB100 對皮下 H69 細胞小鼠異種移植物中腫瘤生長之影響
根據希望之城國家醫療中心動物照護與使用委員會批准之IACUC方案進行動物研究。無胸腺裸鼠(5-6週齡)係購自NCI (Frederick, MD)。在小鼠右脅經皮下注射懸浮於100 μl PBS及100 μl基質膠中之H69細胞(2×10 6) (BD Biosciences, San Jose, CA)。用卡尺在二維上量測腫瘤生長,並且當表面腫瘤可見(45-50 mm2)時,將小鼠隨機分為四組,如下:媒劑(PBS,腹膜內,每週3次),LB100 (0.25 mg/kg,腹膜內,每週3次)、卡鉑(50 mg/kg,腹膜內,每週2次)及藥物組合(LB100/卡鉑,腹膜內),持續30天。在研究結束時,藉由CO2窒息繼之以頸椎脫臼對小鼠施以安樂死。切除腫瘤組織,稱重,隨後固定於10%緩衝福馬林中並且包埋在石蠟中以用於組織學分析。 統計分析
使用GraphPad Prism 8進行統計分析。藉由未配對雙側學生t檢驗比較兩個樣本組。藉由單向ANOVA繼之以Tukey氏多重比較檢驗來分析超過兩組之資料。p<0.05之值被視為顯著並指示為:*p < 0.05,**p < 0.01,***p < 0.001。圖表示平均值±平均值標準誤差。(SE) 參考文獻 ( 實例 1)1.   S. Reynhout, V. Janssens, Physiologic functions of PP2A: Lessons from genetically modified mice. Biochim Biophys Acta Mol Cell Res 1866, 31-50 (2019). 2.   S. Mazhar, S. E. Taylor, J. Sangodkar, G. Narla, Targeting PP2A in cancer: Combination therapies. Biochim Biophys Acta Mol Cell Res 1866, 51-63 (2019). 3.   J. J. Thompson, C. S. Williams, Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer. Genes (Basel) 9, (2018). 4.   O. Kauko, J. Westermarck, Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 96, 157-164 (2018). 5.   G. Xiao, L. N. Chan, L. Klemm, D. Braas, Z. Chen, H. Geng, Q. C. Zhang, A. Aghajanirefah, K. N. Cosgun, T. Sadras, J. Lee, T. Mirzapoiazova, R. Salgia, T. Ernst, A. Hochhaus, H. Jumaa, X. Jiang, D. M. Weinstock, T. G. Graeber, M. Müschen, B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell 173, 470-484 e418 (2018). 6.   J. Lu, J. S. Kovach, F. Johnson, J. Chiang, R. Hodes, R. Lonser, Z. Zhuang, Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms. Proc Natl Acad Sci U S A 106, 11697-11702 (2009). 7.   J. S. Kovach, F. Johnson ,U. States, Ed. (Lixte Biotechnology Inc, United States, 2011). 8.   X. Bai, X. Zhi, Q. Zhang, F. Liang, W. Chen, C. Liang, Q. Hu, X. Sun, Z. Zhuang, T. Liang, Inhibition of protein phosphatase 2A sensitizes pancreatic cancer to chemotherapy by increasing drug perfusion via HIF-1α-VEGF mediated angiogenesis. Cancer Lett 355, 281-287 (2014). 9.   C. Hu, M. Yu, Y. Ren, K. Li, D. M. Maggio, C. Mei, L. Ye, J. Wei, J. Jin, Z. Zhuang, H. Tong, PP2A inhibition from LB100 therapy enhances daunorubicin cytotoxicity in secondary acute myeloid leukemia via miR-181b-1 upregulation. Sci Rep 7, 2894 (2017). 10.  C. Zhang, Y. Peng, F. Wang, X. Tan, N. Liu, S. Fan, D. Wang, L. Zhang, D. Liu, T. Wang, S. Wang, Y. Zhou, Y. Su, T. Cheng, Z. Zhuang, C. Shi, A synthetic cantharidin analog for the enhancement of doxorubicin suppression of stem cell-derived aggressive sarcoma. Biomaterials 31, 9535-9543 (2010). 11.  L. Martiniova, J. Lu, J. Chiang, M. Bernardo, R. Lonser, Z. Zhuang, K. Pacak, Pharmacologic modulation of serine/threonine phosphorylation highly sensitizes PHEO in a MPC cell and mouse model to conventional chemotherapy. PLoS One 6, e14678 (2011). 12.  D. Wei, L. A. Parsels, D. Karnak, M. A. Davis, J. D. Parsels, A. C. Marsh, L. Zhao, J. Maybaum, T. S. Lawrence, Y. Sun, M. A. Morgan, Inhibition of protein phosphatase 2A radiosensitizes pancreatic cancers by modulating CDC25C/CDK1 and homologous recombination repair. Clin Cancer Res 19, 4422-4432 (2013). 13.  P. Lv, Y. Wang, J. Ma, Z. Wang, J. L. Li, C. S. Hong, Z. Zhuang, Y. X. Zeng, Inhibition of protein phosphatase 2A with a small molecule LB100 radiosensitizes nasopharyngeal carcinoma xenografts by inducing mitotic catastrophe and blocking DNA damage repair. Oncotarget 5, 7512-7524 (2014). 14.  I. K. Gordon, J. Lu, C. A. Graves, K. Huntoon, J. M. Frerich, R. H. Hanson, X. Wang, C. S. Hong, W. Ho, M. J. Feldman, B. Ikejiri, K. Bisht, X. S. Chen, A. Tandle, C. Yang, W. T. Arscott, D. Ye, J. D. Heiss, R. R. Lonser, K. Camphausen, Z. Zhuang, Protein Phosphatase 2A Inhibition with LB100 Enhances Radiation-Induced Mitotic Catastrophe and Tumor Growth Delay in Glioblastoma. Mol Cancer Ther 14, 1540-1547 (2015). 15.  K. E. Chang, B. R. Wei, J. P. Madigan, M. D. Hall, R. M. Simpson, Z. Zhuang, M. M. Gottesman, The protein phosphatase 2A inhibitor LB100 sensitizes ovarian carcinoma cells to cisplatin-mediated cytotoxicity. Mol Cancer Ther 14, 90-100 (2015). 16.  W. S. Ho, M. J. Feldman, D. Maric, L. Amable, M. D. Hall, G. M. Feldman, A. Ray-Chaudhury, M. J. Lizak, J. C. Vera, R. A. Robison, Z. Zhuang, J. D. Heiss, PP2A inhibition with LB100 enhances cisplatin cytotoxicity and overcomes cisplatin resistance in medulloblastoma cells. Oncotarget 7, 12447-12463 (2016). 17.  W. S. Ho, H. Wang, D. Maggio, J. S. Kovach, Q. Zhang, Q. Song, F. M. Marincola, J. D. Heiss, M. R. Gilbert, R. Lu, Z. Zhuang, Pharmacologic inhibition of protein phosphatase-2A achieves durable immune-mediated antitumor activity when combined with PD-1 blockade. Nat Commun 9, 2126 (2018). 18.  R. V. Parry, J. M. Chemnitz, K. A. Frauwirth, A. R. Lanfranco, I. Braunstein, S. V. Kobayashi, P. S. Linsley, C. B. Thompson, J. L. Riley, CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25, 9543-9553 (2005). 19.  P. Zhou, D. R. Shaffer, D. A. Alvarez Arias, Y. Nakazaki, W. Pos, A. J. Torres, V. Cremasco, S. K. Dougan, G. S. Cowley, K. Elpek, J. Brogdon, J. Lamb, S. J. Turley, H. L. Ploegh, D. E. Root, J. C. Love, G. Dranoff, N. Hacohen, H. Cantor, K. W. Wucherpfennig, In vivo discovery of immunotherapy targets in the tumour microenvironment. Nature 506, 52-57 (2014). 20.  I. Kawada, R. Hasina, F. E. Lennon, V. P. Bindokas, P. Usatyuk, Y. H. Tan, S. Krishnaswamy, Q. Arif, G. Carey, R. D. Hseu, M. Robinson, M. Tretiakova, T. M. Brand, M. Iida, M. K. Ferguson, D. L. Wheeler, A. N. Husain, V. Natarajan, E. E. Vokes, P. A. Singleton, R. Salgia, Paxillin mutations affect focal adhesions and lead to altered mitochondrial dynamics: relevance to lung cancer. Cancer Biol Ther 14, 679-691 (2013). 21.  L. Faoro, P. A. Singleton, G. M. Cervantes, F. E. Lennon, N. W. Choong, R. Kanteti, B. D. Ferguson, A. N. Husain, M. S. Tretiakova, N. Ramnath, E. E. Vokes, R. Salgia, EphA2 mutation in lung squamous cell carcinoma promotes increased cell survival, cell invasion, focal adhesions, and mammalian target of rapamycin activation. J Biol Chem 285, 18575-18585 (2010). 22.  R. Kanteti, I. Dhanasingh, I. Kawada, F. E. Lennon, Q. Arif, R. Bueno, R. Hasina, A. N. Husain, W. Vigneswaran, T. Seiwert, H. L. Kindler, R. Salgia, MET and PI3K/mTOR as a potential combinatorial therapeutic target in malignant pleural mesothelioma. PLoS One 9, e105919 (2014). 23.  E. C. Finger, A. J. Giaccia, Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev 29, 285-293 (2010). 24.  T. Mirzapoiazova, N. Mambetsariev, F. E. Lennon, B. Mambetsariev, J. E. Berlind, R. Salgia, P. A. Singleton, HABP2 is a Novel Regulator of Hyaluronan-Mediated Human Lung Cancer Progression. Front Oncol 5, 164 (2015). 25.  Y. Wang, R. Yang, J. Gu, X. Yin, N. Jin, S. Xie, Y. Wang, H. Chang, W. Qian, J. Shi, K. Iqbal, C. X. Gong, C. Cheng, F. Liu, Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging 36, 188-200 (2015). 26.  G. P. Liu, W. Wei, X. Zhou, H. R. Shi, X. H. Liu, G. S. Chai, X. Q. Yao, J. Y. Zhang, C. X. Peng, J. Hu, X. C. Li, Q. Wang, J. Z. Wang, Silencing PP2A inhibitor by lenti-shRNA interference ameliorates neuropathologies and memory deficits in tg2576 mice. Mol Ther 21, 2247-2257 (2013). 27.  D. Perrotti, P. Neviani, Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol 14, e229-238 (2013). 28.  F. H. Duong, M. T. Dill, M. S. Matter, Z. Makowska, D. Calabrese, T. Dietsche, S. Ketterer, L. Terracciano, M. H. Heim, Protein phosphatase 2A promotes hepatocellular carcinogenesis in the diethylnitrosamine mouse model through inhibition of p53. Carcinogenesis 35, 114-122 (2014). 29.  F. H. Duong, M. Filipowicz, M. Tripodi, N. La Monica, M. H. Heim, Hepatitis C virus inhibits interferon signaling through up-regulation of protein phosphatase 2A. Gastroenterology 126, 263-277 (2004). 30.  L. Liu, H. Wang, J. Cui, Q. Zhang, W. Zhang, W. Xu, H. Lu, S. Liu, S. Shen, F. Fang, L. Li, W. Yang, Z. Zhuang, J. Li, Inhibition of Protein Phosphatase 2A Sensitizes Mucoepidermoid Carcinoma to Chemotherapy via the PI3K-AKT Pathway in Response to Insulin Stimulus. Cell Physiol Biochem 50, 317-331 (2018). 31.  R. Salgia, Role of c-Met in cancer: emphasis on lung cancer. Semin Oncol 36, S52-58 (2009). 32.  M. Hardy-Werbin, R. Del Rey-Vergara, M. A. Galindo-Campos, L. Moliner, E. Arriola, MET Inhibitors in Small Cell Lung Cancer: From the Bench to the Bedside. Cancers (Basel) 11,  (2019). 33.  L. Gandino, P. Longati, E. Medico, M. Prat, P. M. Comoglio, Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. J Biol Chem 269, 1815-1820 (1994). 34.  A. Hashigasako, M. Machide, T. Nakamura, K. Matsumoto, T. Nakamura, Bi-directional regulation of Ser-985 phosphorylation of c-met via protein kinase C and protein phosphatase 2A involves c-Met activation and cellular responsiveness to hepatocyte growth factor. J Biol Chem 279, 26445-26452 (2004). 35.  A. R. Virzì, A. Gentile, S. Benvenuti, P. M. Comoglio, Reviving oncogenic addiction to MET bypassed by BRAF (G469A) mutation. Proc Natl Acad Sci U S A 115, 10058-10063 (2018). 36.  V. Chung, A. S. Mansfield, F. Braiteh, D. Richards, H. Durivage, R. S. Ungerleider, F. Johnson, J. S. Kovach, Safety, Tolerability, and Preliminary Activity of LB-100, an Inhibitor of Protein Phosphatase 2A, in Patients with Relapsed Solid Tumors: An Open-Label, Dose Escalation, First-in-Human, Phase I Trial. Clin Cancer Res 23, 3277-3284 (2017). 37.  J. T. Chen, C. Y. Huang, Y. Y. Chiang, W. H. Chen, S. H. Chiou, C. Y. Chen, K. C. Chow, HGF increases cisplatin resistance via down-regulation of AIF in lung cancer cells. Am J Respir Cell Mol Biol 38, 559-565 (2008). 38.  I. Cañadas, F. Rojo, Á. Taus, O. Arpí, M. Arumí-Uría, L. Pijuan, S. Menéndez, S. Zazo, M. Dómine, M. Salido, S. Mojal, A. García de Herreros, A. Rovira, J. Albanell, E. Arriola, Targeting epithelial-to-mesenchymal transition with Met inhibitors reverts chemoresistance in small cell lung cancer. Clin Cancer Res 20, 938-950 (2014). 39.  V. Boschert, N. Klenk, A. Abt, S. Janaki Raman, M. Fischer, R. C. Brands, A. Seher, C. Linz, U. D. A. Müller-Richter, T. Bischler, S. Hartmann, The Influence of Met Receptor Level on HGF-Induced Glycolytic Reprogramming in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 21, (2020). 40.  T. Thi Thu Nguyen, E. Shang, G. Karpel-Massler, M. D. Siegelin, Metabolic Reprogramming by c-MET Inhibition as a Targetable Vulnerability in Glioblastoma. Oncoscience 7, 14-16 (2020). 41.  F. Meng, L. Wu, L. Dong, A. V. Mitchell, C. James Block, J. Liu, H. Zhang, Q. Lu, W. M. Song, B. Zhang, W. Chen, J. Hu, J. Wang, Q. Yang, M. Hüttemann, G. Wu, EGFL9 promotes breast cancer metastasis by inducing cMET activation and metabolic reprogramming. Nat Commun 10, 5033 (2019). 42.  N. Jin, A. Bi, X. Lan, J. Xu, X. Wang, Y. Liu, T. Wang, S. Tang, H. Zeng, Z. Chen, M. Tan, J. Ai, H. Xie, T. Zhang, D. Liu, R. Huang, Y. Song, E. L. Leung, X. Yao, J. Ding, M. Geng, S. H. Lin, M. Huang, Identification of metabolic vulnerabilities of receptor tyrosine kinases-driven cancer. Nat Commun 10, 2701 (2019). 43.  L. Yu, M. Lu, D. Jia, J. Ma, E. Ben-Jacob, H. Levine, B. A. Kaipparettu, J. N. Onuchic, Modeling the Genetic Regulation of Cancer Metabolism: Interplay between Glycolysis and Oxidative Phosphorylation. Cancer Res 77, 1564-1574 (2017). 44.  D. Jia, J. H. Park, K. H. Jung, H. Levine, B. A. Kaipparettu, Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells 7,  (2018). 45.  L. Ma, X. Zong, Metabolic Symbiosis in Chemoresistance: Refocusing the Role of Aerobic Glycolysis. Front Oncol 10, 5 (2020). 46.  D. Kilari, E. Guancial, E. S. Kim, Role of copper transporters in platinum resistance. World J Clin Oncol 7, 106-113 (2016). 47.  C. A. Rabik, M. E. Dolan, Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treat Rev 33, 9-23 (2007). 48.  G. L. Coles, S. Cristea, J. T. Webber, R. S. Levin, S. M. Moss, A. He, J. Sangodkar, Y. C. Hwang, J. Arand, A. P. Drainas, N. A. Mooney, J. Demeter, J. N. Spradlin, B. Mauch, V. Le, Y. T. Shue, J. H. Ko, M. C. Lee, C. Kong, D. K. Nomura, M. Ohlmeyer, D. L. Swaney, N. J. Krogan, P. K. Jackson, G. Narla, J. D. Gordan, K. M. Shokat, J. Sage, Unbiased Proteomic Profiling Uncovers a Targetable GNAS/PKA/PP2A Axis in Small Cell Lung Cancer Stem Cells. Cancer Cell 38, 129-143 e127 (2020). 49.  P. C. Ma, M. S. Tretiakova, A. C. MacKinnon, N. Ramnath, C. Johnson, S. Dietrich, T. Seiwert, J. G. Christensen, R. Jagadeeswaran, T. Krausz, E. E. Vokes, A. N. Husain, R. Salgia, Expression and mutational analysis of MET in human solid cancers. Genes Chromosomes Cancer 47, 1025-1037 (2008). 50.  J. Wang, T. Mirzapoiazova, Y. H. Carol Tan, K. M. Pang, A. Pozhitkov, Y. Wang, Y. Wang, B. Mambetsariev, E. Wang, M. W. Nasser, S. K. Batra, D. Raz, K. Reckamp, P. Kulkarni, Y. Zheng, R. Salgia, Inhibiting crosstalk between MET signaling and mitochondrial dynamics and morphology: a novel therapeutic approach for lung cancer and mesothelioma. Cancer Biol Ther 19, 1023-1032 (2018). 51.  P. Bankhead, M. B. Loughrey, J. A. Fernández, Y. Dombrowski, D. G. McArt, P. D. Dunne, S. McQuaid, R. T. Gray, L. J. Murray, H. G. Coleman, J. A. James, M. Salto-Tellez, P. W. Hamilton, QuPath: Open source software for digital pathology image analysis. Sci Rep 7, 16878 (2017). 52.  B. R. Bochner, M. Siri, R. H. Huang, S. Noble, X. H. Lei, P. A. Clemons, B. K. Wagner, Assay of the multiple energy-producing pathways of mammalian cells. PLoS One 6, e18147 (2011). 實例 2. LB-100 與卡鉑 / 依託泊苷 / 阿特珠單抗組合用於未經治療之廣泛期小細胞肺癌之 Ib 期開放標籤研究
研究原理:2017年,全世界有超過一百萬人死於肺癌,而小細胞癌佔所有肺癌之大約15%。即使利用雙或三藥物療法組合,SCLC伴「廣泛疾病」(ED-SCLC,70%患者)之中值存活時間僅為大約9個月,而總體5年存活率保持在5%左右。PP2A廣泛表現於SCLC細胞中(未公開資料),然而,對其在SCLC中之潛在相關性仍然幾乎一無所知。蛋白磷酸酶2A (PP2A)為一種磷酸酶,其參與調控範圍廣泛的癌症亞型(包括肺癌及B細胞源性白血病)中之關鍵致癌蛋白,諸如c-Myc及Bcr-Abl。LB-100為一種有效選擇性PP2A拮抗劑,其已在許多臨床前模式中顯示效力。將在未接受治療之患者中評估LB-100與卡鉑、依託泊苷及阿特珠單抗之組合(ED-SCLC照護標準),以確定推薦II期劑量(RP2D)。
目標:此為Ib期開放標籤研究,針對未接受過SCLC全身療法的先前治療之廣泛期疾病SCLC個體。Ib期研究為單組研究,預計將納入18名可評估患者(最多30名),使用傳統3+3設計,以升高之LB-100劑量,3人一組。患者將接受卡鉑/依託泊苷/阿特珠單抗誘導療法,持續4個週期。各週期定義為3週(21天)。患者隨後將用LB-100及阿特珠單抗進行維持。中止研究療法但無疾病進展之患者將繼續每6-8週使用RECIST v1.1 (附錄B)指南評估腫瘤反應,直至疾病進展、死亡或研究結束。主要終點為確定LB-100加卡鉑/依託泊苷/阿特珠單抗用於廣泛期小細胞肺癌患者之推薦II期劑量(recommended phase II dose, RP2D)。
目的:此研究之主要目的為確定LB-100與標準劑量之卡鉑、依託泊苷及阿特珠單抗組合用於未經治療之廣泛期小細胞肺癌(ED-SCLC)患者時的推薦II期劑量(RP2D)。
該研究之次要目的為: •     無進展存活時間(Progression Free Survival, PFS) •     客觀反應率(Objective response rate, ORR) •     總體存活率(Overall survival, OS) •     總體反應持續時間(Duration of overall response, DOR) •     安全性/不良事件
該研究之探索目的為: •     LB-100及依託泊苷之藥物動力學(PK) •     與LB-100及疾病狀態相關之生物標記物以及其與臨床結果之相關性 研究設計:
劑量升高:I期劑量發現將基於第一週期DLT,使用傳統3+3來確定最大耐受劑量(maximum tolerated dose, MTD)。將探索最多4個劑量水準之LB-100。推薦II期劑量(RP2D)之確定將基於MTD(並且將不超過MTD),另外考慮劑量修改、後續週期之不良事件、臨床活性及相關研究。
擴增群組:將納入額外患者,直至12名患者以所提議之RP2D進行治療以幫助證實RP2D之耐受性並獲得關於效力之初步資料。
主要及次要終點:主要終點: - 如藉由CTCAE版本5.0所評定,確定使用DLT之組合在第一週期期間的推薦II期劑量(RP2D) 次要終點: - 藉由RECIST v1.1之客觀反應率(ORR) - 藉由RECIST v1.1之總體反應持續時間 - 藉由CTCAE版本5.0評定之安全性及不良事件 - 如藉由RECIST v1.1定義之無進展存活時間(PFS) - 總體存活時間,其定義為自研究收案日期至因任何原因死亡日期之時間。對於截至資料截止日期仍存活之患者,OS時間將在患者最後一次接觸日期進行審查(在死亡狀態下,患者中止後最後一次接觸為最後一個已知存活日期)。
樣本大小 / 應計 / 研究持續時間:樣本大小:最小=14,最大=30,預期=18 估計應計持續時間:1-1.5年 估計研究持續時間:18-24個月 估計參與持續時間:6個月
簡略合格標準:主要納入標準: ●    根據退伍軍人管理局肺研究組(Veterans Administration Lung Study Group, VALG)分期系統,經組織學或細胞學證實之廣泛期疾病小細胞肺癌 ●    如實體瘤反應評估標準(Response Evaluation Criteria in Solid Tumors, RECIST)所定義之可量測疾病 ●    無針對SCLC之先前全身性化學療法、免疫療法、生物療法、激素療法或研究療法 ●    充足血液及器官功能,包括: 血液:絕對嗜中性細胞(分節核及桿狀核)計數(ANC)≥1.5×10/L,血小板≥100×10/L,且血紅素≥9 g/dL 肝臟:膽紅素≤1.5倍正常值上限(ULN)可入選,且鹼性磷酸酶(AP)、丙胺酸胺基轉移酶(ALT)及天冬胺酸胺基轉移酶(AST)≤3.0倍ULN(若肝臟有腫瘤受累,則AP、AST、ALT≤5倍ULN可接受)。 腎臟:基於克羅夫特(Cockcroft)及高特(Gault)公式之經計算之肌酸酐清除率(CrCl)≥60 mL/min ●    篩檢時至少18歲 ●    估計預期壽命至少12週 主要排除標準: ●    當前入選或在過去30天內中止涉及研究產品或未批准使用之藥物或裝置的臨床試驗,或同時入選任何其他類型之被判為與此研究在科學或醫學上不相容之醫學研究 ●    NSCLC或混合型NSCLC及SCLC之診斷 ●    無除SCLC、原位子宮頸癌或非黑色素瘤皮膚癌外之先前惡性腫瘤,但該先前惡性腫瘤在進入研究前5年或更長時間被診斷並進行確定性治療並且無後續復發證據除外。有低等級(格里森(Gleason)評分≤6=第1等級組)局部***癌史之患者即使在進入研究前不到5年被診斷亦合格 ●    在試驗主持人看來會損害患者遵守方案之能力的嚴重伴隨性全身性病症 ●    篩檢期間需要使用全身性抗生素之活動性或持續性感染 ●    嚴重心臟疾患,諸如6個月內心肌梗塞、心絞痛或如紐約心臟協會III類或IV類所定義之心臟病 ●    中樞神經系統(CNS)轉移或軟腦膜癌病之臨床證據,但先前治療過CNS轉移、無症狀、在第一劑研究藥物前1週已不需要類固醇藥物且在第一劑研究藥物前2週已完成放療之個體除外 ●    已知或疑似對與此試驗相關之任何劑過敏 ●    懷孕或哺乳婦女 ●    自體免疫疾病史,包括不需要免疫抑制劑之輕微/輕度自體免疫疾病(諸如少於10%體表面積上有濕疹及長期服用穩定胰島素之第一型糖尿病)。 ●    已知B型肝炎或C型肝炎 ●    已知人類免疫缺陷病毒(HIV)陽性 ●    用全身性皮質類固醇或其他免疫抑制藥物治療。允許吸入型皮質類固醇用於慢性阻塞性肺病、礦皮質素(例如氟可體松)用於體位性低血壓患者及低劑量補充皮質類固醇用於腎上腺皮質機能不足。 ●    研究前28天內投予減毒活疫苗 ●    不受控制型胸腔積液、心包積液或需要反復引流手術(每月一次或更頻繁)之腹水。允許帶有留置導管之患者。 ●    不受控制或症狀性高鈣血症(>1.5 mmol/L離子鈣或鈣>12 mg/dL或校正後之血清鈣>ULN)。在進入研究前接受地諾單抗(denosumab)之患者必須願意並符合在進行研究時中止其使用並將其替換為雙膦酸鹽。 ●    特發性肺纖維化、組織性肺炎(例如閉塞性細支氣管炎)、藥物誘導性肺炎、特發性肺炎病史或進行篩檢胸部CT掃描時活動性肺炎之證據。允許放射場所中之放射性肺炎(纖維化)病史。 ●    先前同種異基因骨髓移植或實體器官移植。 ●    3次EKG中有2次QTcF(費德利西亞(Fridericia)修正公式)>470。 ●    診斷先天性長QT症候群 ●    在第一劑研究藥物前7天內用已知會延長QT間期及/或與尖端扭轉風險(Torsades de Pointes)相關之藥物進行治療。 ●    在第一劑研究藥物前7天內用CYP450基質治療。 ●    在第一劑研究藥物前7天內用腎毒性化合物治療。 ●    在第一劑研究藥物前7天內用殺鼠靈治療。 ●    在第一劑研究藥物前7天內用可能增加依託泊苷清除率之抗癲癇藥物(包括但不限於苯妥英、***、卡巴馬平及丙戊酸)治療。 ●    在第一劑研究藥物前7天內用強P-糖蛋白抑制劑治療。 ●    在計畫主持人看來可能不能夠順應研究之安全監測要求的個體。 研究產品劑量及投予
一週期為21天。患者將接受4週期誘導LB-100+阿特珠單抗/卡鉑/依託泊苷,隨後將用阿特珠單抗+LB-100進行維持。
LB-100:在誘導及維持期間各週期之第1天及第3天以指定劑量(0.83、1.25、1.75、2.33或3.10 mg/m2)經15分鐘經靜脈內(IV)首先給予。其他藥物應在LB-100輸注結束之後1小時給予。
阿特珠單抗:1,200 mg IV,在誘導及維持期間各週期之第1天,在LB-100之後。經60(±15)分鐘輸注(對於第一次輸注;對於後續輸注,縮短至30 [±10]分鐘,視患者耐受性而定),在LB-100之後給予。
卡鉑:5 AUC IV,在阿特珠單抗之後,經30-60分鐘,在誘導期間各週期之第1天。
依託泊苷:100 mg/m2 IV,在誘導期間最後給予(在各週期第1天在卡鉑之後,在各週期第2天單獨,在各週期第3天在LB-100之後)。經60分鐘輸注。
治療概述:將LB-100稀釋於50 mL注射用生理鹽水中之此Ib期研究將在門診靜脈內投予廣泛期小細胞肺癌患者15分鐘。患者將在各21天週期之第1天及第3天在15+/-5分鐘內接受自劑量水準1開始以升高劑量的靜脈內輸注稀釋於50 mL生理鹽水(0.9%)中之LB-100(參見表5.1)。LB-100應首先給予,並且應在其他藥物開始前一小時結束。在決定在下一群組之劑量升高之前,將在第21天複診(以及第2週期開始前之任何延遲)評定各劑量水準下所有三名患者之限制毒性證據。MTD定義為低於其≥33%時患者體現DLT(除非欲測試之最高劑量不存在≥33%患者有DLT)且其中至少6名患者接受治療之最高劑量水準。
該研究係基於標準3+3患者劑量升高設計。計劃將有3種可能劑量升高(且需要時有一個可能降低水準)。因而,在劑量發現期間將納入最多24名患者,其中升高/降低期間之預期樣本大小為12(在RP2D達成12名患者之其他患者將遵循總計18名且最多30名患者的預期樣本大小)。
將替換所有不能評估DLT(劑量限制性毒性)之患者。未接受計劃劑量之無DLT患者將被視為不可評估,如同因與毒性無關之原因而進行不充分追蹤評定之患者。患者將最多納入在3人群組中。若0/3患者具有可歸因於該組合之DLT,則接下來3名患者將以下一劑量水準進行治療。若1/3患者發生DLT治療,則將再有3名患者(總計6名)以相同劑量水準進行治療。若在擴增劑量水準下未觀測到可歸因於治療之額外DLT(亦即,1/6有DLT),則LB-100劑量將升高至下一水準。若兩名或更多名患者(亦即,2/6)有DLT,則將測試低於該劑量之一個水準。
一旦兩名或更多名患者在指定劑量水準下存在DLT或測試到最高劑量水準,劑量升高便將終止。患者體內將不會有劑量升高。
MTD定義為所測試之最高LB-100劑量,其中在第一治療週期期間無或僅一名患者有DLT,此時至少六名患者以該劑量治療並且可評估毒性評定。MTD比所測試之最低劑量低一個劑量水準,其中2名患者有可歸因於治療之DLT,除非認為最高劑量係安全的。除此等規則以外,所有劑量修改及隨後週期毒性皆將在升高或擴增前經審查,並且可將決定修改為更加保守(例如,在標準規則陳述升高時不升高,或在標準規則陳述擴增劑量時降低)。
任何需要中止治療之嚴重免疫相關事件亦將促使DSMC進行審查,無論治療週期如何。
劑量水準:LB-100,在21天週期之第1天及第3天,以升高劑量,在標準劑量之卡鉑/阿特珠單抗/依託泊苷之前
Figure 02_image006
LB-100:LB-100係作為供靜脈內投予之無菌溶液提供。LB-100儲存在-20℃下(範圍:-25℃至-10℃)。各小瓶含有10 mL LB-100,濃度為1 mg/mL。在第1天投予阿特珠單抗前及第3天投予依託泊苷前,將適當劑量抽吸至無菌注射器中並添加至50 mL生理鹽水(0.9%)中並且在15+/-5分鐘內輸注。稀釋於生理鹽水中後,LB-100應在4小時內投予。
卡鉑:卡鉑係以可用無菌凍乾粉末形式提供於含有50 mg、150 mg及450 mg卡鉑之單一劑量小瓶中,以供藉由靜脈內注射投予。各小瓶含有相等重量份數之卡鉑及甘露醇。臨使用前,必須根據以下時間表(表2)用無菌注射用水(USP)、5%葡萄糖水溶液或0.9%氯化鈉注射液(USP)復原各小瓶之內容物:
Figure 02_image008
此等稀釋液皆產生10 mg/mL之卡鉑濃度。卡鉑可用5%葡萄糖水溶液或0.9%氯化鈉注射液(USP) (NS)進一步稀釋至低至0.5 mg/mL之濃度。
VP-16(依託泊苷):100 mg VP-16係以5 mL溶液形式提供於無菌多劑量小瓶中以供注射。黃色透明溶液之pH為3-4。每一mL含有20 mg VP-16、2 mg檸檬酸、30 mg苯甲醇、80 mg聚山梨醇酯80/tween 80、650 mg聚乙二醇300及30.5% (v/v)醇。VP-16必須在使用前用5%葡萄糖注射液(USP)或0.9%氯化鈉注射液(USP)稀釋。沉澱發生前之時間視濃度而定,然而,當濃度為0.2 mg/mL時,其在室溫下穩定96小時,而在0.4 mg/mL下時,其穩定48小時。
阿特珠單抗(Tecentriq):阿特珠單抗為無菌、無防腐劑、無色至微黃色靜脈內輸注溶液,以含有一個1200 mg/20 mL單劑量小瓶之紙盒形式提供(NDC 50242-917-01)。小瓶在2℃至8℃(36℉至46℉)冷藏儲存於原始紙盒中以避光保存。切勿冷凍。切勿搖晃。
研究藥物時間表、劑量、途徑及時機:誘導階段為四個週期(第1週期至第4週期)。維持階段為第5週期及以後。
Figure 02_image010
療法之計劃持續時間:在第一劑研究治療前4週內,將對各患者進行(多個)基線腫瘤量測。在基線時:頭部、胸部、腹部、骨盆及骨之電腦斷層攝影(CT) [或磁共振成像(MRI)]、及/或PET掃描。不允許將超音作為腫瘤量測方法。基線時使用之相同方法必須始終用於腫瘤評定,並且將每6-8週重複,直至疾病進展。反應確認將在自第一反應證據起不少於4週發生。根據計畫主持人之判斷,可重複骨及/或PET掃描,但若基線時存在骨病變,則必須重複以確認完全反應(CR)。
患者可繼續接受研究治療,除非不可接受之毒性、疾病進展、併發疾病或5.3中所列出之標準之一要求中止。
出於合理原因,計畫主持人或試驗委託者可永久終止此研究。需要書面終止通知。
可批准終止之條件包括但不限於: ●    發現對納入研究之患者出乎意料重大或不可接受之風險。 ●    計畫主持人不能以可接受之速率報告患者。 ●    不充分遵守方案要求(不順應)。 ●    缺乏可評估及/或完全資料。 ●    決定修改藥物開發計劃。 ●    部分試驗委託者決定暫停或中止藥物開發。
在試驗由於不可預見風險以外之原因中止的情況下,當前正接受藥物並且正受益於治療之患者可經允許而繼續接受治療。
中止後時段:各經納入之患者將經歷30天安全性追蹤期,該追蹤期將在最後一劑研究藥物之後30天發生。研究站點將繼續按照常規臨床實踐監測患者。完成治療或中止治療而無疾病進展之患者將繼續使用RECIST v1.1指南(Eisenhauer等人, 2009, 附錄B)每6-8週評估腫瘤反應,直至疾病進展、死亡或研究結束,以首先發生者為凖。即使在患者已開始新療法之後出現進展,亦必須將首次記錄疾病進展之日期記錄在CRF上。進展後亦可繼續每月一次監測存活率。將收集關於疾病進展、死亡及任何中止後全身性療法、放射療法或手術干預日期之資訊,直至研究結束日期。
自治療移除之標準:必須明確遵守收案標準。若不滿足收案標準之患者無意中納入,則必須聯繫Lixte Biotechnology Holdings, Inc。另外,在以下情形下,患者將中止研究藥物及研究: ●    參與涉及研究產品之任何其他臨床試驗或參與被判為在科學或醫學上與此研究不相容之任何其他類型之醫學研究。 ●    計畫主持人/醫師的決定 ○    計畫主持人/醫師決定患者應退出研究或研究藥物。 ○    若患者出於任何原因要求用已證明對治療研究適應症有效之另一治療劑進行治療,則在引入新劑前中止研究藥物。 ●    患者的決定 ○    患者[或患者的指定者(例如,父母或法定監護人)]要求退出研究或研究藥物。 ●    試驗委託人的決定 ○    計畫主持人或DSMB或試驗委託人出於醫療、安全性、監管或其他符合適用法律、法規及良好臨床實踐之原因而終止研究或終止患者參與研究。 ●    患者明顯不順應研究程序及/或治療 ●    患者有疾病進展證據 ●    不可接受之毒性 ●    患者懷孕或未能採取充分節育措施(對於有生育潛能之患者)。
個體追蹤:短期安全性追蹤期始於最後一劑研究藥物後一天且持續30天。應自最後一劑研究藥物起報告所有AE,持續至少30天。長期追蹤期始於患者已完成第4週期或已中止研究藥物後並持續至疾病進展或死亡。進展後可繼續追蹤患者之存活率。在資料截止日期及資料鎖定以供最終分析後,該研究將被視為完成。研究完成後將進行統計分析。 欲進行之臨床觀察及檢驗- 效力:CT/PET/MRI掃描 - 安全性:依據CTCAE 5.0之不良事件(adverse event, AE)/嚴重不良事件(serious adverse event, SAE)、臨床化學、血液學 - 生物分析:用於量測血漿LB-100、茵多殺(endothall)及依託泊苷濃度之血液樣本 - 藥物動力學:LB-100及依託泊苷暴露 簡略統計考量
安全性:將對接受至少一劑研究藥物之所有患者評估安全性及毒性。安全性分析將包括以下:不良事件發生率(包括所有事件及研究藥物相關事件)、所有嚴重不良事件(SAE)、研究中死亡、最後一劑研究藥物後30天內死亡以及由於不良事件而中止研究藥物;依據最大CTCAE 5.0級及與研究藥物之關係對實驗室及非實驗室不良事件進行分類之列表及頻率表的彙總。
擴增群組:RP2D之12名患者將幫助證實RP2D之選擇。若在擴增群組期間,超過30%初始RP2D患者經歷DLT,則該研究將暫停應計(出於非DLT或其他安全性考量,PI亦可自行決定是否暫停應計)。對於12名患者,以10%真實頻率發生之任何嚴重治療相關不良事件將以72%概率至少觀測到一次,並且以20%真實頻率發生之任何此種AE將以93%概率至少觀測到一次。可估計DLT率,標準誤差為至多14%。
禁止:意欲治療癌症之任何伴隨療法,無論是衛生當局批准之療法或是實驗性療法,皆禁止用於開始研究治療前及研究治療期間之各個時間段,直至記錄疾病進展且患者已中止研究治療。此包括但不限於化學療法、激素療法、免疫療法、放射療法、研究劑或草藥療法(除非另外指出)。
除非另外指出,否則當在研究中時禁止以下藥物: ●    傳統草藥,因為其使用可能導致意想不到之藥物-藥物相互作用,從而可能導致或混淆毒性評定 ●    地諾單抗;在納入前接受地諾單抗之患者在研究中必須願意並且有資格接受雙膦酸鹽作為替代 ●    在首次研究藥物前28天內、治療期間或最後一劑阿特珠單抗後90天內任何減毒活疫苗(例如FluMist ®) ●    禁忌使用類固醇作為利用造影劑進行CT掃描之患者(亦即,造影劑過敏或腎清除率受損之患者)之前驅用藥;在該等患者中,應對胸部進行無造影劑CT掃描且對腹部及骨盆進行無造影劑CT掃描或MRI ●    已知延長QT間期及/或與尖端扭轉風險相關之藥物。 ●    CYP450基質(參見附錄F)。 ●    腎毒性化合物。 ●    殺鼠靈。 ●    可增加依託泊苷清除率之抗癲癇藥物(包括但不限於苯妥英、***、卡巴馬平及丙戊酸)。 ●    強P-糖蛋白抑制劑
劑量限制性毒性 (Dose-Limiting Toxicity, DLT) 之定義:將使用NCI不良事件通用術語標準(Common Terminology Criteria for Adverse Event, CTCAE)版本5.0對毒性進行分級。依據第5.5節,第1週期中不允許GCSF,因為其可抑制否則可能發生之毒性。若發生方案偏差且患者在第1週期確實接受了GCSF,則其將被視為不可評估DLT並且加以替換,除非其在第1週期中經歷DLT。DLT定義為第一治療週期中發生之以下不良事件中之任一種,並且被視為可能、大概或肯定與研究治療有關: ●    儘管進行最大程度之止吐治療,仍有3級以上之噁心/嘔吐。 ●    任何4級(免疫相關不良事件(irAE) ●    儘管進行最大程度之止瀉治療,仍有3級以上腹瀉。 ●    任何≥3級結腸炎(將排除感染性病因且強烈建議內視鏡證實) ●    任何3或4級非感染性肺炎,與持續時間無關 ●    在開始最大支持性照護3天內未消退至≤1級之任何2級肺炎 ●    儘管進行了最佳醫療處置(包括全身性皮質類固醇)但在事件發生3天內未降級至2級或者在14天內未降級至≤1級或基線的任何3級irAE,不包括結腸炎或肺炎 ●    AST或ALT同時升高>3× ULN且總膽紅素>2× ULN ●    AST或ALT>8× ULN或總膽紅素>3× ULN,即使無症狀,除非其與肝臟轉移明確進展或另一明確鑑定之病因有關。 ●    觀測到4級嗜中性球減少症持續時間超過5天或3級嗜中性球減少症伴有任何持續時間之發熱或敗血症結果或3級嗜中性球減少症持續>7天。 ●    4級血小板減少症或3級血小板減少症伴臨床顯著出血或3級血小板減少症持續>7天。 ●    4級貧血。 ●    任何≥3級AE,但以下列出之 排除項除外: ○    持續≤7天之3級疲勞 ○    不被視為具有臨床意義並且在72小時內恢復至2級以下之除ALT或AST以外之3級實驗室異常 ○    在有或無全身性皮質類固醇療法及/或激素替代療法且個體無症狀之情況下處置之3級內分泌病症(甲狀腺、垂體及/或腎上腺機能不足) ○    歸因於局部抗腫瘤反應之3級炎性反應(例如,轉移性疾病、淋巴結等部位之炎性反應) ○    任何AE等級之併發白斑病或禿髮 ○    在適當臨床處置下於6小時內消退之3級輸注相關反應(首次發生且不存在類固醇預防) ○    3或4級淋巴細胞減少症 針對不良事件之劑量延遲 / 調節
劑量調節:預期此試驗中大部分治療相關毒性將由卡鉑/依託泊苷/阿特珠單抗引起。往往將發生骨髓抑制,主要為嗜中性球減少症;常見非血液學毒性包括疲勞、噁心、嘔吐及黏膜炎。相比之下,預期LB-100被良好耐受;I期觀測到之數種毒性與卡鉑、依託泊苷及阿特珠單抗之已知毒性概況重疊。因此,以下一般劑量調節規則將用於LB-100治療組之患者: 若週期開始由於卡鉑/依託泊苷/阿特珠單抗毒性而延遲,則LB-100亦將延遲以便與卡鉑/依託泊苷/阿特珠單抗同時開始。 若阿特珠單抗暫停,則LB-100亦應暫停,因為其係潛在免疫調節劑 若毒性為卡鉑/依託泊苷/阿特珠單抗之典型毒性並且需要減少劑量,則不應減少LB-100之劑量。 若毒性明確歸因於一或兩種劑(卡鉑、依託泊苷、阿特珠單抗),則將減少歸因劑之劑量;否則,將減少所有3種藥物之劑量。
由於毒性而需要治療延遲超過28天之患者將中止研究。逐漸減少類固醇係一個例外。若患者必須逐漸減少用於治療不良事件之類固醇,則可停用阿特珠單抗,直至類固醇中止或降至普賴鬆劑量(或劑量當量)≤10 mg/天。
卡鉑 / 依託泊苷劑量修改:允許對卡鉑及依託泊苷進行兩次劑量減少。需要劑量減少之患者將不會重新升高。若2次劑量減少之後已發生3/4級毒性,則將中止一或多種衝撞劑(offending agent)。若由於毒性而必須中止卡鉑、依託泊苷及阿特珠單抗,則亦將中止LB-100。由於毒性而需要治療延遲超過28天之患者將中止研究。卡鉑及依託泊苷之劑量減少示於 4中。
Figure 02_image012
血液學毒性:劑量調節將基於各週期第1天(+/-2天)量測之血球計數。將不會基於最低點計數進行劑量調節。參見以下表5。
Figure 02_image014
非血液學毒性:若發生3或4級非血液學毒性,則: ●    延遲所有藥物治療 ●    評定何種藥物產生毒性 ●    每週至少一次重新評估患者,直到毒性消退至≤1級 ●    將一或多個衝撞劑之劑量減少一個劑量水準 ●    若毒性不可逆或在3週治療延遲後未消退至≤1級,則應將患者自研究移除 ●    在任何週期開始前,肌酐清除率(克羅夫特及高特公式)應為≥45 mL/min。
阿特珠單抗劑量暫停:不會減少阿特珠單抗劑量,但若患者經歷需要暫停劑量之不良事件,則其可在最後一個劑量後暫停阿特珠單抗治療長達4週。逐漸減少類固醇係一個例外。若患者必須逐漸減少用於治療不良事件之類固醇,則可停用阿特珠單抗,直至類固醇中止或降至普賴鬆劑量(或劑量當量)≤10 mg/天。
阿特珠單抗特異性不良事件之處置:將使用額外檢驗,諸如自體免疫血清學或切片檢查來確定可能之免疫原性病因。儘管在免疫調節劑下觀測到之大部分免疫介導之不良事件係輕微且自限性的,但應及早識別此種事件並迅速處理以避免潛在嚴重併發症。中止阿特珠單抗可能不會有立即治療效果,且在嚴重情況下,免疫介導之毒性可能需要用局部皮質類固醇、全身性皮質類固醇或其他免疫抑制劑進行急性處置。
Figure 02_image016
Figure 02_image018
Figure 02_image020
Figure 02_image022
Figure 02_image024
Figure 02_image026
Figure 02_image028
Figure 02_image030
Figure 02_image032
全身免疫活化:全身免疫活化為一種以過度免疫反應為特徵之罕見疾患。鑒於阿特珠單抗之作用機制,全身免疫活化被視為潛在風險。對在不存在替代病因之情況下,在投予阿特珠單抗之後出現敗血症樣症候群之患者的鑑別診斷將包括全身免疫活化,且初步評估將包括以下: •     有外周污跡之CBC •     PT、PTT、纖維蛋白原及D二聚體 •     鐵蛋白 •     三酸甘油酯 •     AST、ALT及總膽紅素 •     LDH •     完全神經及腹部檢查(評定肝脾腫大)
LB-100 劑量調節:允許對LB-100進行兩次劑量減少。根據計畫主持人之判斷,允許重新升高一次。LB-100延遲超過21天之患者必須中止研究療法。若在2次先前劑量減少之後發生歸因於LB-100之3/4級毒性,則將中止LB-100。受益於治療之患者可繼續卡鉑/依託泊苷/阿特珠單抗。LB-100之劑量減少概述於表7中。
Figure 02_image034
血液學毒性:利用LB-100時可能不經常發生骨髓抑制。因此,若發生3/4級骨髓抑制,則第一次發生時將降低卡鉑及依託泊苷之劑量,但LB-100將保持不變。第二次發生3/4級骨髓抑制時,將減少LB-100。若發生自體免疫性細胞減少症,則將延遲或中止阿特珠單抗。I期試驗中未報告明顯不良事件,且吾等預計不會減少或中止劑量。
非血液學毒性:應如表8中所概述來處置歸因於LB-100之非血液學毒性。
Figure 02_image036
藥物動力學研究:將根據表9中所示之樣本時間表在所有患者中收集血漿用於對LB-100、其主要代謝物茵多殺進行藥物動力學(PK)量測。當LB-100在依託泊苷前給予時(第1天)以及當其與依託泊苷一起給予時(第3天),取樣時間表允許測定LB-100及茵多殺PK。依託泊苷PK亦將在擴增MTD群組之患者中單獨(第2天)及與LB-100組合(第3天)進行評定。為了量測LB-100及茵多殺,將5 mL靜脈血抽取至冷卻肝素收集管(鈉或鋰)中並保持在冰上,直至血漿分離。將血漿等分(兩個等分試樣)至含有0.5 N NaOH之經適當標記之聚丙烯管(1.8-2 mL低溫小瓶)中。對於每1.0 mL血漿等分試樣,將添加0.1 mL 0.5 N NaOH。樣本將在-70℃下儲存,直至出貨時間。為了量測依託泊苷,將在表9中所指示之時間抽取額外4 mL靜脈血至含EDTA之收集管中。將諸管保持在冰上,直至血漿分離,並等分至經適當標記之低溫小瓶中並儲存在<-70℃以供後續批次分析。
Figure 02_image038
藥物動力學資料分析:將使用非隔間及隔間方法分析血漿PK資料,以得到相關次要PK參數。非隔間PK方法將用於確定LB-100及其主要代謝物茵多殺之參數(例如C max、T maxt1/2、AUC 0-t及CL)。將使用ADAPT 5軟體(USC Biomedical Simulations Resource,Los Angeles CA)對依託泊苷資料進行隔間PK分析,並且將確定各個體之次要PK參數(例如CL sys、V d、t 1/2、AUC 0-∞)。將彙總概括各藥物及代謝物之個別非隔間及隔間PK參數,並且將評定安全性及效力之潛在暴露-反應關係。
結果:第一研究個體之結果如下。在LB-100劑量水準1 (0.83 mg/m2,第1天及第3天)下,在第2週期之後注意到部分客觀反應(47%),且在誘導療法之第4週期及最後一個週期後,此反應提高至可量測腫瘤減少58%。毒性不受劑量限制且不大於不含LB-100之標準三藥物組合之預期值。預期利用阿特珠單抗及LB-100之維持療法。
儘管吾等已描述許多本發明實施例,但顯然可改變吾等之基本實例以提供利用本發明化合物及方法之其他實施例。因此,應瞭解,本發明之範疇將由所附申請專利範圍而非由已藉由實例表示之特定實施例來限定。 參考文獻 ( 實例 2)1.   Quoix E, Breton JL, Daniel C, Jacoulet P, Debieuvre D, Paillot N, Kessler R, Moreau L, Coetmeur D, Lemarie E, Milleron B. Etoposide phosphate with carboplatin in the treatment of elderly patients with small-cell lung cancer: a phase II study. Ann Oncol. 2001;12(7):957-62. Epub 2001/08/28. PubMed PMID: 11521802. 2.   Maghfoor I, Perry MC. Lung cancer. Ann Saudi Med. 2005;25(1):1-12. Epub 2005/04/13. PubMed PMID: 15822487; PMCID: PMC6150570. 3.   Niell HB, Perry MC, Clamon G, Crawford J, Miller AA, Herndon J, 2nd, Green MR. Carboplatin/etoposide/ paclitaxel in the treatment of patients with extensive small-cell lung cancer. Clin Lung Cancer. 2001;2(3):204-9. Epub 2004/01/01. PubMed PMID: 14700479. 4.   Sundstrom S, Bremnes RM, Kaasa S, Aasebo U, Hatlevoll R, Dahle R, Boye N, Wang M, Vigander T, Vilsvik J, Skovlund E, Hannisdal E, Aamdal S, Norwegian Lung Cancer Study G. Cisplatin and etoposide regimen is superior to cyclophosphamide, epirubicin, and vincristine regimen in small-cell lung cancer: results from a randomized phase III trial with 5 years' follow-up. J Clin Oncol. 2002;20(24): 4665-72. Epub 2002/12/19. doi: 10.1200/JCO.2002.12.111. PubMed PMID: 12488411. 5.   Niell HB, Herndon JE, 2nd, Miller AA, Watson DM, Sandler AB, Kelly K, Marks RS, Perry MC, Ansari RH, Otterson G, Ellerton J, Vokes EE, Green MR, Cancer, Leukemia G. Randomized phase III intergroup trial of etoposide and cisplatin with or without paclitaxel and granulocyte colony-stimulating factor in patients with extensive-stage small-cell lung cancer: Cancer and Leukemia Group B Trial 9732. J Clin Oncol. 2005;23(16):3752-9. doi: 10.1200/JCO.2005.09.071. PubMed PMID: 15923572. 6.   Eckardt JR, von Pawel J, Papai Z, Tomova A, Tzekova V, Crofts TE, Brannon S, Wissel P, Ross G. Open-label, multicenter, randomized, phase III study comparing oral topotecan/cisplatin versus etoposide/cisplatin as treatment for chemotherapy-naive patients with extensive-disease small-cell lung cancer. J Clin Oncol. 2006; 24(13): 2044-51. Epub 2006/05/02. doi: 10.1200/JCO.2005.03.3332. PubMed PMID: 16648504. 7.   Horn L, Mansfield AS, Szczesna A, Havel L, Krzakowski M, Hochmair MJ, Huemer F, Losonczy G, Johnson ML, Nishio M, Reck M, Mok T, Lam S, Shames DS, Liu J, Ding B, Lopez-Chavez A, Kabbinavar F, Lin W, Sandler A, Liu SV, Group IMS. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N Engl J Med. 2018;379(23):2220-9. doi: 10.1056/ NEJMoa1809064. PubMed PMID: 30280641. 8.   Bunn PA, Jr. Review of therapeutic trials of carboplatin in lung cancer. Semin Oncol. 1989;16(2 Suppl 5):27-33. Epub 1989/04/01. PubMed PMID: 2541506. 9.   Bunn PA, Jr., Kelly K. A phase I study of carboplatin and paclitaxel in non-small cell lung cancer: a University of Colorado Cancer Center study. Semin Oncol. 1995;22(4 Suppl 9):2-6. Epub 1995/08/01. PubMed PMID: 7644924. 10.  Prendiville J, Lorigan P, Hicks F, Leahy B, Stout R, Burt P, Thatcher N. Therapy for small cell lung cancer using carboplatin, ifosfamide, etoposide (without dose reduction), mid-cycle vincristine with thoracic and cranial irradiation. Eur J Cancer. 1994;30A(14):2085-90. Epub 1994/01/01. PubMed PMID: 7857708. 11.  Gatzemeier U, Hossfeld DK, Neuhauss R, Reck M, Achterrath W, Lenaz L. Phase II and III studies with carboplatin in small cell lung cancer. Semin Oncol. 1992;19 (1 Suppl 2):28-36. Epub 1992/02/01. PubMed PMID: 1329220. 12.  Larive S, Bombaron P, Riou R, Fournel P, Perol M, Lena H, Dussopt C, Philip-Joet F, Touraine F, Lecaer H, Souquet PJ, Groupe Lyon-Saint Etienne d'Oncologie T. Carboplatin-etoposide combination in small cell lung cancer patients older than 70 years: a phase II trial. Lung Cancer. 2002;35(1):1-7. Epub 2001/12/26. PubMed PMID: 11750705. 13.  Perrotti D, Neviani P. Protein phosphatase 2A: a target for anticancer therapy. Lancet Oncol. 2013;14(6): e229-38. Epub 2013/05/04. doi: 10.1016/S1470-2045(12) 70558-2. PubMed PMID: 23639323; PMCID: PMC3913484. 14.  Hong CS, Ho W, Zhang C, Yang C, Elder JB, Zhuang Z. LB100, a small molecule inhibitor of PP2A with potent chemo- and radio-sensitizing potential. Cancer Biol Ther. 2015;16(6):821-33. Epub 2015/04/22. doi: 10.1080/ 15384047.2015.1040961. PubMed PMID: 25897893; PMCID: PMC4623051. 15.  Chung V, Mansfield AS, Braiteh F, Richards D, Durivage H, Ungerleider RS, Johnson F, Kovach JS. Safety, Tolerability, and Preliminary Activity of LB-100, an Inhibitor of Protein Phosphatase 2A, in Patients with Relapsed Solid Tumors: An Open-Label, Dose Escalation, First-in-Human, Phase I Trial. Clin Cancer Res. 2017; 23(13): 3277-84. Epub 2017/01/01. doi: 10.1158/1078-0432.CCR-16-2299. PubMed PMID: 28039265. 16.  Lu J, Kovach JS, Johnson F, Chiang J, Hodes R, Lonser R, Zhuang Z. Inhibition of serine/threonine phosphatase PP2A enhances cancer chemotherapy by blocking DNA damage induced defense mechanisms. Proc Natl Acad Sci U S A. 2009;106(28):11697-702. Epub 2009/07/01. doi: 10.1073/pnas.0905930106. PubMed PMID: 19564615; PMCID: PMC2710674. 17.  Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, Wang Y, Chang H, Qian W, Shi J, Iqbal K, Gong CX, Cheng C, Liu F. Cross talk between PI3K-AKT-GSK-3beta and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36(1):188-200. Epub 2014/09/16. doi: 10.1016/ j.neurobiolaging.2014.07.035. PubMed PMID: 25219467. 18.  Liu GP, Wei W, Zhou X, Shi HR, Liu XH, Chai GS, Yao XQ, Zhang JY, Peng CX, Hu J, Li XC, Wang Q, Wang JZ. Silencing PP2A inhibitor by lenti-shRNA interference ameliorates neuropathologies and memory deficits in tg2576 mice. Mol Ther. 2013;21(12):2247-57. Epub 2013/08/08. doi: 10.1038/mt.2013.189. PubMed PMID: 23922015; PMCID: PMC3863796. 19.  Gordon IK, Lu J, Graves CA, Huntoon K, Frerich JM, Hanson RH, Wang X, Hong CS, Ho W, Feldman MJ, Ikejiri B, Bisht K, Chen XS, Tandle A, Yang C, Arscott WT, Ye D, Heiss JD, Lonser RR, Camphausen K, Zhuang Z. Protein Phosphatase 2A Inhibition with LB100 Enhances Radiation-Induced Mitotic Catastrophe and Tumor Growth Delay in Glioblastoma. Mol Cancer Ther. 2015;14(7):1540-7. Epub 2015/05/06. doi: 10.1158/1535-7163.MCT-14-0614. PubMed PMID: 25939762; PMCID: PMC4497833. 20.  Zhu XN, Chen LP, Bai Q, Ma L, Li DC, Zhang JM, Gao C, Lei ZN, Zhang ZB, Xing XM, Liu CX, He ZN, Li J, Xiao YM, Zhang AH, Zeng XW, Chen W. PP2A-AMPKalpha-HSF1 axis regulates the metal-inducible expression of HSPs and ROS clearance. Cell Signal. 2014;26(4):825-32. Epub 2014/01/15. doi: 10.1016/j.cellsig.2014.01.002. PubMed PMID: 24412756. 21.  Xiao G, Chan LN, Klemm L, Braas D, Chen Z, Geng H, Zhang QC, Aghajanirefah A, Cosgun KN, Sadras T, Lee J, Mirzapoiazova T, Salgia R, Ernst T, Hochhaus A, Jumaa H, Jiang X, Weinstock DM, Graeber TG, Muschen M. B-Cell-Specific Diversion of Glucose Carbon Utilization Reveals a Unique Vulnerability in B Cell Malignancies. Cell. 2018;173(2):470-84 e18. Epub 2018/03/20. doi: 10.1016/ j.cell.2018.02.048. PubMed PMID: 29551267; PMCID: PMC6284818. 22.  Zhuang Z, Lu J, Lonser R, Kovach JS. Enhancement of cancer chemotherapy by simultaneously altering cell cycle progression and DNA-damage defenses through global modification of the serine/threonine phospho-proteome. Cell Cycle. 2009;8(20):3303-6. Epub 2009/10/07. doi: 10.4161/ cc.8.20.9689. PubMed PMID: 19806030. 23.  Lu J, Zhuang Z, Song DK, Mehta GU, Ikejiri B, Mushlin H, Park DM, Lonser RR. The effect of a PP2A inhibitor on the nuclear receptor corepressor pathway in glioma. J Neurosurg. 2010;113(2):225-33. Epub 2009/12/17. doi: 10.3171/2009.11.JNS091272. PubMed PMID: 20001590. 24.  Martiniova L, Lu J, Chiang J, Bernardo M, Lonser R, Zhuang Z, Pacak K. Pharmacologic modulation of serine/threonine phosphorylation highly sensitizes PHEO in a MPC cell and mouse model to conventional chemotherapy. PLoS One. 2011;6(2):e14678. Epub 2011/02/23. doi: 10.1371/journal.pone.0014678. PubMed PMID: 21339823; PMCID: PMC3038858. 25.  Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O'Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016; 387(10031):1909-20. Epub 2016/03/10. doi: 10.1016/ S0140-6736(16)00561-4. PubMed PMID: 26952546; PMCID: PMC5480242. 26.  Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, Loriot Y, Necchi A, Hoffman-Censits J, Perez-Gracia JL, Dawson NA, van der Heijden MS, Dreicer R, Srinivas S, Retz MM, Joseph RW, Drakaki A, Vaishampayan UN, Sridhar SS, Quinn DI, Duran I, Shaffer DR, Eigl BJ, Grivas PD, Yu EY, Li S, Kadel EE, 3rd, Boyd Z, Bourgon R, Hegde PS, Mariathasan S, Thastrom A, Abidoye OO, Fine GD, Bajorin DF, Group IMS. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet. 2017;389(10064):67-76. Epub 2016/12/13. doi: 10.1016/ S0140-6736(16)32455-2. PubMed PMID: 27939400; PMCID: PMC5568632. 27.  Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D, Artal-Cortes A, Lewanski C, Braiteh F, Waterkamp D, He P, Zou W, Chen DS, Yi J, Sandler A, Rittmeyer A, Group PS. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387(10030):1837-46. Epub 2016/03/14. doi: 10.1016/ S0140-6736(16)00587-0. PubMed PMID: 26970723. 28.  Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, Dieras V, Hegg R, Im SA, Shaw Wright G, Henschel V, Molinero L, Chui SY, Funke R, Husain A, Winer EP, Loi S, Emens LA, Investigators IMT. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N Engl J Med. 2018;379(22):2108-21. Epub 2018/10/23. doi: 10.1056/NEJMoa1809615. PubMed PMID: 30345906.
[圖1]描繪LB-100對SCLC腫瘤及細胞中PP2A-A表現之影響。(A)散點圖顯示腫瘤樣本中之PP2A-A次單元上調。使用曼恩-惠特尼(Mann-Whitney)U檢驗比較正常與SCLC樣本。(B)在TMA組織切片上針對PP2A進行IHC,並使用3D-Histech PANNORAMIC SCAN全載片掃描儀(3D-Histech,Budapest,Hungary)以4倍或20倍捕捉影像。PP2A次單元A對正常肺及腫瘤組織之細胞質及細胞核進行陽性免疫染色,但在腫瘤組織中高度上調。在正常(n=24)及腫瘤(n=79)核心中按0(無染色/無蛋白表現)至3+(強染色/高蛋白質表現)之標度對TMA進行評分。(C)平均PP2A次單元染色之彙總條形圖。正常及腫瘤核心之IHC染色強度。正常組織與腫瘤組織之間存在統計上顯著之差異(p<0.001)。(D)為了比較PP2A次單元A及C之表現,對來自七個SCLC細胞株及HBEC 3KT(非惡性細胞株)之細胞溶解產物進行西方墨點法。(E)在暴露於斑螫素(10 μM)及LB-100 (5 μM) 24小時之後,使用絲胺酸/蘇胺酸磷酸酶活性分析法(Millipore)測定PP2A活性。(F)插圖顯示H524細胞中PP2A次單元Aα減少以及由於PP2A次單元Aα減弱(knockdown)而抑制細胞增殖(p<0.5) (n=3)。LB-100單獨或與卡鉑組合抑制SCLC細胞之增殖及群落形成。細胞計數套組-8分析偵測細胞H524及H69細胞生存力。(G、H)將細胞用呈單一處理形式或以恆定比率組合之LB-100、卡鉑及依託泊苷處理。使用周-塔拉雷(Chou-Talalay)方法計算組合指數(CI),以發現LB-100與卡鉑及依託泊苷之間的協同作用(CompuSyn軟體:www.combosyn.com)。諸圖描繪細胞生存力百分比之平均值+SEM (n=3)。使用群落形成分析法對H524 (I)及H69 (J)細胞形成群落之能力進行計數。針對利用H524及H69之兩種分析,分別列出藥物濃度:LB-100 (2.5 μM;20 μM)、卡鉑(4 μM;20 μM)、依託泊苷(3 μM;30 μM)、LB-100/卡鉑(2.5及4 μM;20及20 μM)及LB-100/依託泊苷(2.5及3 μM;20及30 μM)。群落在4倍下之代表性影像示於圖下方(n=2)。*p<0.05;**,p<0.01;***,p<0.001;****,p<0.0001。將實驗重複三次並顯示代表性資料。 [圖2]描繪LB-100對H446球狀體生長之影響。(A)第一天及第九天之H446細胞之單一球狀體之形態。球狀體不斷生長並呈現H&E染色。(B)用IncuCyte活細胞分析系統記錄響應於LB-100處理之球狀體生長。(C)用IncuCyte活細胞分析系統在LB-100及IncuCyte Cytotox試劑存在下以綠色螢光記錄LB100之細胞毒性作用。LB-100、卡鉑、依託泊苷及藥物組合對H446球狀體形態及生長之影響。(D)在LB-100、卡鉑、依託泊苷及組合處理下經H&E染色之H446球狀體之代表性影像。標度條100 µm。(E、G).使用IncuCyte活細胞系統監測LB100及卡鉑單獨或組合時之作用,持續70小時。在時間點70小時觀測到LB-100、卡鉑或藥物組合對球狀體大小之最大顯著抑制作用。(F、H)使用IncuCyte活細胞系統監測LB-100及依託泊苷單獨或組合時之作用,持續72小時。在時間點70及72小時(n=3)觀測到LB-100、卡鉑或藥物組合對球狀體大小之最大顯著抑制作用。*, p<0.05**p<0.01。 [圖3]描繪經由HUVEC單層之SCLC細胞侵襲。(A、B)使用電基板-阻抗感測系統獲得之H524/H69細胞破壞匯合HUVEC單層之能力的圖解表示。箭頭指示添加細胞之時間點。插圖顯示20小時藥物處理之後各組之平均值及SD。處理之後,使用Auto T4細胞計數器(Nexcelom Cellometer)對細胞生存力進行計數。對於藥物處理組(n=2),細胞生存力為90-95%。對於對照組(未處理之細胞)對比藥物組合(LB100/卡鉑),p<0.001(***)。全細胞Pt積聚。LB-100對SCLC細胞之鉑攝取之影響的圖解表示。將細胞用LB-100(H524-5 μM;H69-20 μM)預處理隔夜,隨後用卡鉑處理一或四小時(H524-10 μM;H69-30 μM)。使用全細胞團塊進行鉑(Pt)量測。值相對於總蛋白濃度進行標準化。(C、D)諸圖顯示各組之Pt積聚之平均值及SD。藥物組合顯著增加了H524及H69細胞中之Pt濃度。對照組及LB-100樣本中之Pt濃度低於偵測極限(n=3,技術重複實驗)。LB-100對H524及H69細胞中PP2A表現及細胞凋亡調控蛋白之影響。將細胞用所指示濃度之LB-100、卡鉑及組合處理72小時。(E)H524及H69細胞中PP2A次單元表現之代表性西方墨點(WB)圖(n=3)。(F)在藥物處理(n=3)之後,藉由WB分析H524及H69細胞中γ-H2AX、凋亡蛋白酶3及PARP1切割活性之蛋白質磷酸化。代表性WB圖顯示處理之後H524及H69細胞中γ-H2AX磷酸化顯著增加以及凋亡蛋白酶3及PARP 1切割活性增強。使用泛肌動蛋白作為負載對照物(n=3)。 [圖4]描繪對H524細胞及Biolog表型微陣列進行LB-100處理之後PamGene PTK及STK之反應組途徑分析。(A)針對訊號轉導及代謝途徑觀測到顯著變化。(B)微陣列分析顯示用20 µM LB100處理之隔夜處理抑制了碳基質源之利用。表中包括10種受LB-100影響之碳源(n=3)。(C)LB-100顯著抑制H69細胞之兩種碳基質利用。對於對照組(未處理之細胞)對比LB-100, P<0.001(***)。(D)使用Amplex Red葡萄糖/氧化酶分析套組量測細胞培養基中之葡萄糖水凖。經LB-100(20 μM)處理之細胞之細胞培養基中的葡萄糖水凖顯著較高。在初始培養基中偵測到葡萄糖濃度且視為100%。自初始葡萄糖培養基濃度減去最終葡萄糖培養基水準得到含細胞之培養基中之葡萄糖% (n=3)。LB-100對MET磷酸化之影響。(E)將H524及H69細胞用LB-100 (H524-5 μM及H69-20 μM)處理隔夜,繼而在10分鐘內用100 ng/ml HGF刺激。收集細胞並溶解,以便用pMET及總MET抗體進行WB分析。使用泛肌動蛋白作為負載對照物(n=3)。(F)藉由西方墨點法分析H524細胞溶解產物(對照物、LB-100、卡鉑及組合(LB-100/卡鉑),以檢查MET在Ser985及Tyr1234/1235處之磷酸化狀態。使用肌動蛋白作為負載對照物(n=3)。 [圖5]描繪LB-100對SCLC細胞中之細胞能量表型之影響。(A) LB100處理(2.5 µM)誘導H524細胞中之代謝開關。藉由使用XF細胞能量表型報告子產生器來獲得細胞能量表型。空心方塊指示基線能量表型,實心方塊表示在寡黴素/FCCP注射之後量測之應力能量表型。(B、C)隨時間量測對照組(藍色圓圈)及LB-100(橙色圓圈) H524細胞中之OCR及ECAR。(n=2,每一名研究參與者六個不同的孔)。(D)LB-100(10 µM)對H69細胞能量表型之影響。(E、F)粒線體應激子對H69細胞中OCR及ECAR之影響。藍色圓圈指示對照組且橙色圓圈顯示LB-100處理。(n=2,六次技術重複實驗)。 [圖6]描繪SCLC細胞中之ATP產生速率。(A)將H524細胞用LB100(2.5 μM)、卡鉑(4 μM)或組合處理,並使用Agilent Seahorse XF即時ATP速率分析法量測ATP產生速率。在無或有藥物處理之H524細胞中評估mitoATP(粒線體)及glycoATP(糖解)速率。所有藥物處理皆顯著降低mitoATP(上,藍色)及glycoATP(下,紅色)產生速率。(B)H524細胞之能量圖。LB-100與藥物組合之後,細胞減少糖解。(C至E)Agilent Seahorse XF pH感測器探針量測游離質子濃度變化,此對應於細胞外酸化速率(Extracellylar Acidification Rate, ECAR)。即時ATP速率分析包括改良之量度,亦即質子流出速率(Proton Efflux Rate, PER),其偵測所有來源之細胞外酸化。LB-100在基線條件下及兩次注射特異性抑制劑氧化磷酸化寡黴素(1.5 μM)及抗黴素(0.5 μM)/魚藤酮(0.5 μM)之後顯著降低PER。(F)將H69細胞用LB-100(10 µM)、卡鉑(10 µM)或含LB100/卡鉑之組合處理。使用Agilent Seahorse XF即時ATP速率分析法量測細胞中之ATP水準。LB-100、卡鉑及組合顯著減少mitoATP。(G)H69細胞之能量圖。(H至J).LB100處理之後來自基線及寡黴素及抗黴素/魚藤酮注射之糖解之H69細胞質子流出速率。(n=2,六次技術重複實驗)。 [圖7]描繪在LB100及阿特珠單抗存在下H446球狀體中T細胞浸潤之結果。(A)活化T細胞對H446球狀體降解之影響的示意圖。在時間點0,將96孔板上之單一球狀體用LB-100、阿特珠單抗及T細胞處理。珠粒藉由兩個作用訊號CD3及CD28模擬活體內T細胞活化。使用IncuCyte®活細胞分析系統進行球狀體成像。右圖呈現與LB-100、阿特珠單抗及活化T細胞一起培育48小時之後的球狀體退化。(B、C)自動化影像分析提供量度(0小時-μm,48小時-mm)及球狀體面積(黃色-明場遮罩)。柱條表示0小時之球狀體平均值。明場遮罩中之代表性影像。(D、E)在T細胞存在下進行48小時LB-100及阿特珠單抗處理之後量測H446球狀體細胞分布。影像表示由H446細胞覆蓋之區域。(F)對照組及處理組中相同H446球狀體之連續影像。標度條400 µm(G)處理48小時之後用H446球狀體之CD3抗體進行H&E及免疫組織化學染色(IHC)。標度條50 µm。在處理之前,將5×10 3個細胞接種於圓底96孔板中並生長3天。 [圖8]描繪單獨及與卡鉑一起時對H69細胞小鼠異種移植物之LB-100活性的結果。量測腫瘤大小(A)及體重(B)。經由腹膜內注射遞送LB-100(* p<0.05)、卡鉑(*** p<0.001)及其組合(*** p<0.001)之後抑制腫瘤生長。 P值顯示與媒劑組相比之顯著差異。C.來自媒劑及藥物處理組之腫瘤影像。D.在實驗結束時量測腫瘤質量。與媒劑組相比,單獨LB-100或卡鉑或LB-100與卡鉑之組合顯著減少腫瘤質量。E.柱形顯示經卡鉑及LB-100/卡鉑處理之小鼠腫瘤中之總鉑(Pt)濃度(n=3,作為技術重複實驗)。Pt質量相對於腫瘤總質量標準化。使用ANOVA,用杜凱式(Tukey)事後檢驗(* p<0.05)、卡鉑(** p<0.01)進行統計分析。 [圖9]描繪經由H&E染色評估某些小鼠腫瘤。小鼠腫瘤之H&E染色( A)顯示密集核染色及大量有絲***細胞。用LB100或卡鉑處理增加了腫瘤組織中之壞死區域,而組合處理含有較少腫瘤細胞。利用PP2A A、pMET、CD31 (用於血管生成)及Ki-67(用於細胞增殖)抗體之IHC染色指示用組合治療降低了腫瘤切片中之染色強度。顯示各組之腫瘤切片之代表性影像。標度條100 µm。 [圖10]描繪I期臨床試驗研究圖。

Claims (38)

  1. 一種治療患有小細胞肺癌之個體的方法,其包括向該個體投予有效量之LB-100:
    Figure 03_image001
    , 或其醫藥學上可接受之鹽、兩性離子或酯。
  2. 如請求項1之方法,其進一步包括向該個體投予有效量之一或多種抗癌劑。
  3. 如請求項2之方法,其中該一或多種抗癌劑係同時、分開或相繼投予。
  4. 如請求項2至3中任一項之方法,其中該一或多種抗癌劑係獨立地選自由以下組成之群組:卡鉑(carboplatin)、阿特珠單抗(atezolizumab)及依託泊苷(etoposide)。
  5. 如請求項2至3中任一項之方法,其中該一或多種抗癌劑為卡鉑、阿特珠單抗及依託泊苷。
  6. 如請求項2至5中任一項之方法,其中該LB-100係以約0.83 mg/m 2/天之劑量投予。
  7. 如請求項2至5中任一項之方法,其中該LB-100係以約1.25 mg/m 2/天之劑量投予。
  8. 如請求項2至5中任一項之方法,其中該LB-100係以約1.75 mg/m 2/天之劑量投予。
  9. 如請求項2至5中任一項之方法,其中該LB-100係以約2.33 mg/m 2/天之劑量投予。
  10. 如請求項2至5中任一項之方法,其中該LB-100係以約3.10 mg/m 2/天之劑量投予。
  11. 如請求項1至10中任一項之方法,其中該LB-100係在21天週期之第1天及第3天投予。
  12. 如請求項1至11中任一項之方法,其中該LB-100係經靜脈內投予。
  13. 如請求項2至12中任一項之方法,其中該一或多種抗癌劑包括卡鉑。
  14. 如請求項13之方法,其中該卡鉑係以對應於約AUC 5之劑量投予。
  15. 如請求項13之方法,其中該卡鉑係以達成約AUC 5之劑量投予。
  16. 如請求項13之方法,其中該卡鉑係以高達約750 mg/天之劑量投予。
  17. 如請求項2至16中任一項之方法,其中該卡鉑係在21天週期之第1天投予。
  18. 如請求項2至17中任一項之方法,其中該卡鉑係在21天週期之第1天投予,持續至少4個週期。
  19. 如請求項2至18中任一項之方法,其中該卡鉑係經靜脈內投予。
  20. 如請求項2至19中任一項之方法,其中該卡鉑係在30至60分鐘內經靜脈內投予。
  21. 如請求項2至20中任一項之方法,其中該一或多種抗癌劑包括阿特珠單抗。
  22. 如請求項21之方法,其中該阿特珠單抗係以約1200 mg/天之劑量投予。
  23. 如請求項22之方法,其中該阿特珠單抗係在21天週期之第1天投予。
  24. 如請求項23之方法,其中該阿特珠單抗係在21天週期之第1天投予,持續至少4個週期。
  25. 如請求項24之方法,其中該阿特珠單抗係經靜脈內投予。
  26. 如請求項25之方法,其中該阿特珠單抗係在30至60分鐘內經靜脈內投予。
  27. 如請求項2至26中任一項之方法,其中該一或多種抗癌劑包括依託泊苷。
  28. 如請求項27之方法,其中該依託泊苷係以約100 mg/m 2/天之劑量投予。
  29. 如請求項28之方法,其中該依託泊苷係在21天週期之第1天、第2天及第3天投予。
  30. 如請求項29之方法,其中該依託泊苷係在21天週期之第1天、第2天及第3天投予,持續至少4個週期。
  31. 如請求項30之方法,其中該依託泊苷係經靜脈內投予。
  32. 如請求項31之方法,其中該阿特珠單抗係在60分鐘內經靜脈內投予。
  33. 如請求項2至32中任一項之方法,其中該一或多種抗癌劑包括阿特珠單抗、卡鉑及依託泊苷中之每一者。
  34. 如請求項2至33中任一項之方法,其中該一或多種抗癌劑包括阿特珠單抗、卡鉑及依託泊苷中之每一者,並且其中當在同一天呈組合形式相繼投予時,投予次序包括投予LB-100,繼而投予阿特珠單抗,繼而投予卡鉑,繼而投予依託泊苷。
  35. 如請求項34之方法,其中該投予次序在不存在該等抗癌劑中之一或多種之投予時得以維持。
  36. 如請求項1至35中任一項之方法,其中該小細胞肺癌為廣泛階段疾病小細胞肺癌(ED-SCLC)。
  37. 如請求項1至36中任一項之方法,其中該患者未進行過針對SCLC之先前全身化學療法、免疫療法、生物、激素或試驗性療法。
  38. 如請求項1至37中任一項之方法,其中該患者未被診斷為患有NSCLC或混合型NSCLC及SCLC。
TW111102242A 2021-01-19 2022-01-19 用於治療小細胞肺癌之氧雜雙環庚烷 TW202245768A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163139047P 2021-01-19 2021-01-19
US63/139,047 2021-01-19
WOPCT/US21/51647 2021-09-23
PCT/US2021/051647 WO2022159150A1 (en) 2021-01-19 2021-09-23 Oxabicycloheptanes for treatment of small cell lung cancer

Publications (1)

Publication Number Publication Date
TW202245768A true TW202245768A (zh) 2022-12-01

Family

ID=82549087

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111102242A TW202245768A (zh) 2021-01-19 2022-01-19 用於治療小細胞肺癌之氧雜雙環庚烷

Country Status (10)

Country Link
US (1) US20230065158A1 (zh)
EP (1) EP4281063A1 (zh)
JP (1) JP2024504586A (zh)
KR (1) KR20230136624A (zh)
CN (1) CN116710093A (zh)
AU (1) AU2021421147A1 (zh)
CA (1) CA3208466A1 (zh)
IL (1) IL303047A (zh)
TW (1) TW202245768A (zh)
WO (1) WO2022159150A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532050B2 (en) 2013-04-09 2020-01-14 Lixte Biotechnology, Inc. Formulations of oxabicycloheptanes and oxabicycloheptenes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502681A (ja) * 2006-09-08 2010-01-28 アンスティテュ・グスターブ・ルシ プロテインホスファターゼ1、gadd34およびプロテインホスファターゼ1/gadd34複合体の阻害剤、その調製および使用
JP5693850B2 (ja) * 2007-02-06 2015-04-01 リクスト・バイオテクノロジー,インコーポレイテッド オキサビシクロヘプタンおよびオキサビシクロヘプテン、それらの製造および使用
US10532050B2 (en) * 2013-04-09 2020-01-14 Lixte Biotechnology, Inc. Formulations of oxabicycloheptanes and oxabicycloheptenes

Also Published As

Publication number Publication date
CN116710093A (zh) 2023-09-05
AU2021421147A1 (en) 2023-06-22
JP2024504586A (ja) 2024-02-01
CA3208466A1 (en) 2022-07-28
WO2022159150A1 (en) 2022-07-28
KR20230136624A (ko) 2023-09-26
US20230065158A1 (en) 2023-03-02
EP4281063A1 (en) 2023-11-29
IL303047A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
Cui et al. ABC transporter inhibitors in reversing multidrug resistance to chemotherapy
KR102320190B1 (ko) 아필리모드 조성물 및 이를 사용하기 위한 방법
CN116096704A (zh) 用于治疗癌症的组合疗法
Zhong et al. Identification of bioactive anti-angiogenic components targeting tumor endothelial cells in Shenmai injection using multidimensional pharmacokinetics
US20220211690A1 (en) Methods for treating pten-mutant tumors
WO2019165473A1 (en) Methods of treatment of cancer comprising cdc7 inhibitors
US20230065158A1 (en) Oxabicycloheptanes for treatment of small cell lung cancer
Zhong et al. Ziyuglycoside II inhibits the growth of digestive system cancer cells through multiple mechanisms
CA3100394A1 (en) Compositions comprising bisfluoroalkyl-l,4-benzodiazepinone compounds for treating adenoid cystic carcinoma
AU2021421147A9 (en) Oxabicycloheptanes for treatment of small cell lung cancer
JP2022533100A (ja) Notch活性化乳がんを治療するためのビスフルオロアルキル-1,4-ベンゾジアゼピノン化合物
TW201722422A (zh) 用於治療癌症之合理組合療法
TWI614029B (zh) 新穎醫藥組成物及其用途
US20110014303A1 (en) Method for the treatment of cancer
CN112533610B (zh) 用于治疗腺样囊性癌的包含双氟烷基-1,4-苯并二氮杂䓬酮化合物的组合物
CA3141072A1 (en) Methods and uses for treating cancer
WO2015168255A1 (en) Methods and compositions for targeting cancer stem cells
EP2654754B1 (en) Combination for treating osteosarcoma, rhabdomyosarcoma and neuroblastoma
TW202337469A (zh) 治療小細胞肺癌之方法
US9801840B1 (en) Pharmaceutical composition and use thereof
WO2023242302A1 (en) Combination therapy for treating cancer
Chung et al. Benzamide is an organic compound with the chemical formula of C7H7NO. Menu
Gras Copanlisib
Devriese et al. Phase I study of safety, tolerability and pharmacokinetics of pazopanib in combination with oral topotecan in patients with advanced solid tumors
NZ722491B2 (en) Apilimod compositions and methods for using same