TW202232147A - 濾光器、光學裝置、及光吸收性組成物 - Google Patents

濾光器、光學裝置、及光吸收性組成物 Download PDF

Info

Publication number
TW202232147A
TW202232147A TW110135814A TW110135814A TW202232147A TW 202232147 A TW202232147 A TW 202232147A TW 110135814 A TW110135814 A TW 110135814A TW 110135814 A TW110135814 A TW 110135814A TW 202232147 A TW202232147 A TW 202232147A
Authority
TW
Taiwan
Prior art keywords
light
wavelength
transmittance
transmission spectrum
wavelength range
Prior art date
Application number
TW110135814A
Other languages
English (en)
Inventor
久保雄一郎
新毛勝秀
Original Assignee
日商日本板硝子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本板硝子股份有限公司 filed Critical 日商日本板硝子股份有限公司
Publication of TW202232147A publication Critical patent/TW202232147A/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/226Glass filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/32Radiation-absorbing paints
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)

Abstract

本發明之濾光器1a於25℃具有滿足下述(i)、(ii)、(iii)、及(iv)之條件之第一穿透光譜,(i)波長450 nm~600 nm之範圍內之穿透率之最小值為70%以上;(ii)波長300 nm~370 nm之範圍內之穿透率之最大值為5%以下;(iii)波長800 nm~1000 nm之範圍內之穿透率之最大值為5%以下;(iv)波長1500 nm~1700 nm之範圍內之穿透率之最小值為60%以上。

Description

濾光器、光學裝置、及光吸收性組成物
本發明係關於一種濾光器、光學裝置、及光吸收性組成物。
於使用CCD(Charge Coupled Device,電荷耦合裝置)或CMOS(Complementary Metal Oxide Semiconductor,互補金氧半導體)等固體攝像元件之攝像裝置中,於固體攝像元件之前面配置有各種濾光器,以獲得具有良好之顏色再現性之圖像。一般而言,固體攝像元件於紫外線區域至紅外線區域之較廣波長範圍具有分光感度。另一方面,人類之視感度僅存在於可見光之區域。因此,為了使攝像裝置中之固體攝像元件之分光感度接近人類之視感度,已知有一種於固體攝像元件之前面配置遮蔽紅外線或紫外線之一部分光之濾光器的技術。
過去,此種濾光器一般利用由介電體多層膜引起之光反射來遮蔽紅外線或紫外線。另一方面,近年來,具備含光吸收劑之膜之濾光器受到矚目。由於具備含光吸收劑之膜之濾光器之穿透率特性不易受入射角的影響,故於攝像裝置中,即便於光斜向入射至濾光器之情形時,亦可獲得色調變化較小之良好圖像。又,由於不使用光反射膜之光吸收型濾光器可抑制產生由光反射膜之多次反射所致之重影或閃光,故於逆光狀態或夜景之拍攝中有利於獲得良好之圖像。此外,具備含光吸收劑之膜之濾光器亦有利於實現攝像裝置之小型化及薄型化。作為此種光吸收劑,例如已知有一種由膦酸及銅離子所形成之光吸收劑。
例如,專利文獻1中記載有一種濾光器,其含有由具有苯基或鹵化苯基之膦酸及銅離子所形成之光吸收劑。
專利文獻2中記載有一種濾光器,其具備能夠吸收紅外線及紫外線之UV-IR吸收層。UV-IR吸收層包含由膦酸及銅離子所形成之UV-IR吸收劑。
專利文獻3中記載有一種紅外線截止濾光器,其具備:含有機色素之層、及含膦酸銅之層。
專利文獻4中記載有一種具備光吸收膜之濾光器。光吸收膜係由含有光吸收劑之液狀組成物之硬化物所形成,該光吸收劑係由具有芳基之膦酸及銅離子所形成。專利文獻4中記載有一種於波長300 nm~2200 nm之濾光器之穿透光譜。 先前技術文獻 專利文獻
專利文獻1:日本專利第6339755號公報 專利文獻2:日本專利第6232161號公報 專利文獻3:日本專利第6281023號公報 專利文獻4:日本專利第6639764號公報
發明所欲解決之課題
根據專利文獻1~4所記載之技術,可吸收紫外線之一部分光及屬於波長700~1000 nm之範圍的紅外線之光。另一方面,就於具有更長波長之特定波長範圍提高濾光器之穿透率之觀點而言,專利文獻1~4所記載之技術仍有再研究之餘地。因此,本發明提供一種濾光器,其遮蔽紫外線之一部分光及屬於波長700~1000 nm的範圍之紅外線之光,並於可見光範圍及具有更長波長之特定波長範圍具有較高之穿透率。且提供一種有利於製作此種濾光器之光吸收性組成物。 解決課題之技術手段
本發明提供一種濾光器,其於25℃具有滿足下述(i)、(ii)、(iii)、及(iv)之條件之第一穿透光譜, (i)波長450 nm~600 nm之範圍內之穿透率之最小值為70%以上; (ii)波長300 nm~370 nm之範圍內之穿透率之最大值為5%以下; (iii)波長800 nm~1000 nm之範圍內之穿透率之最大值為5%以下; (iv)波長1500 nm~1700 nm之範圍內之穿透率之最小值為60%以上。
又,本發明提供一種光學裝置,其具備: 相機模組,其獲取藉由對象物之可見光所識別之圖像資訊、 TOF感測器,其獲取與對象物之測距資訊、及 上述濾光器,其配置於上述相機模組及上述TOF感測器之前面。
又,本發明提供一種光吸收性組成物,其含有: 銅錯合物、 分子內具有2個烷氧基之第一含烷氧基之化合物及上述第一含烷氧基之化合物之水解物中之至少一者、及 分子內具有3個或4個烷氧基之第二含烷氧基之化合物及上述第二含烷氧基之化合物之水解物中之至少一者。 發明之效果
上述濾光器可遮蔽紫外線之一部分光及波長700~1000 nm之範圍之光,並且於可見光範圍及具有更長波長之特定波長範圍具有較高之穿透率。又,根據上述光吸收性組成物,能夠製作此種濾光器。
以下,參照圖式對本發明之實施方式進行說明。再者,以下說明係關於本發明之一例,本發明並不限定於其等。
圖1所示之濾光器1a於25℃具有第一穿透光譜。第一穿透光譜滿足下述(i)、(ii)、(iii)、及(iv)之條件。 (i)波長450 nm~600 nm之範圍內之穿透率之最小值T min 450-600為70%以上。 (ii)波長300 nm~370 nm之範圍內之穿透率之最大值T max 300-370為5%以下。 (iii)波長800 nm~1000 nm之範圍內之穿透率之最大值T max 800-1000為5%以下。 (iv)波長1500 nm~1700 nm之範圍內之穿透率之最小值T min 1500-1700為60%以上。
此處,波長Xnm~Ynm之範圍內之穿透率之最小值T min X-Y為A%以上等同於在波長Xnm~Ynm之範圍之全域之穿透率為A%以上。此外,波長X’nm~Y’nm之範圍內之穿透率之最大值T max X’-Y’為B%以下等同於在波長X’nm~Y’nm之範圍之全域之穿透率為B%以下。
藉由使濾光器1a之第一穿透光譜滿足(i)之條件,濾光器1a於可見光範圍具有較高之穿透率。最小值T min 450-600較理想為75%以上,更理想為80%以上。
藉由使濾光器1a之第一穿透光譜滿足(ii)之條件,可遮蔽紫外線之一部分光。最大值T max 300-370較理想為3%以下,更理想為1%以下。
藉由使濾光器1a之第一穿透光譜滿足(iii)之條件,可遮蔽波長800~1000 nm之範圍之光。最大值T max 800-1000較理想為3%以下,更理想為1%以下。
藉由使濾光器1a之第一穿透光譜滿足(iv)之條件,濾光器1a於具有更長波長之特定波長範圍,例如1500 nm~2000 nm之範圍具有較高之穿透率。
濾光器1a於可見光範圍及1500 nm以上之特定之紅外線範圍具有較高之穿透率。因此,例如於搭載於數位相機或智慧型手機等攜帶型終端之相機模組中,可用作遮蔽人類之視感度曲線之有效範圍以外的波長即紅外線之一部分波長之光的近紅外線截止濾光器。此外,濾光器1a亦可應用於以Light detection and ranging(LiDAR,光達)等測距裝置為代表之Time Of Flight(TOF,飛行時間)方式之測距裝置或其周邊裝置。於LiDAR等中使用TOF方式之感測器之情形時,至今使用具有900 nm左右之屬於近紅外線範圍之波長的雷射等光。然而,於使用900 nm左右之波長之光之情形時,感測器等受光器有可能會受太陽光等之影響。太陽光亦包含較多波長900 nm之光,受背景雜訊之影響,而有可能導致測距精度等變差。
因此,業界正研究使用波長1550 nm左右之雷射等光之TOF方式或使用此方式之LiDAR。於太陽光之光譜中,波長1550 nm處之光強度及光量較波長900 nm處之光強度及光量小。因此,若為了使用1550 nm左右之波長之光,將受光器或其周邊之元件等設計得與該1550 nm左右之波長之光之波長範圍相對應,則期待即便於白天,於LiDAR之測定結果中由太陽光引起之雜訊得到減輕,進而測定中之S/N提昇。
假定出現用以拍攝由人類可識別之可見光範圍之光所形成之圖像的相機模組、及搭載有以LiDAR為代表之TOF方式之測距裝置的機器、或者在上述相機模組集成有一部分TOF方式之測距功能的機器。例如,假定一種機器,其具備以下功能,亦即,可獲取藉由上述相機模組等所拍攝到之活動圖像或靜止圖像等圖像,另一方面,亦可獲取包含利用LiDAR等TOF方式之測距裝置等所獲得之高精度距離資訊的圖像。又,假定有一種具備獲取包含詳細之距離資訊之活動圖像或靜止圖像等圖像之功能的機器。於此種機器中,若應用濾光器1a,則可使圖像形成所需之與人類之視感度之範圍相應的波長之光穿透,且可使測距裝置所使用之波長1550 nm左右之光或具有更長波長之波長長達2000 nm的光穿透。此外,可遮蔽屬於紫外線之光、及波長700 nm~1000 nm或波長700 nm~1100 nm之光,濾光器1a之方便性、簡易性及光學特性優異。
濾光器1a例如藉由吸收而遮蔽一部分光。因此,就抑制於相機模組或測距裝置之內部產生會成為問題之閃光及重影的觀點而言,濾光器1a較為有利。
波長1550 nm之雷射及LED等強光對人眼之影響亦較波長900 nm之情形小。例如,根據國際電氣標準會議所制定之規格IEC60825所示之雷射產品之安全基準,MPE(The maximum permissible exposure,最大容許暴露量)於1微秒(μs)之脈衝寬度,波長900 nm之情形時為1×10 -6J/cm 2,相對於此,波長1550 nm之情形時為1 J/cm 2。雷射光對人之安全係絕對須確保之事情,就擴大測定對象之觀點而言,有利的是藉由使用1550 nm左右之波長之光來降低用來確保安全性之阻礙。於以LiDAR為代表之TOF方式之測距裝置中,基於照射光而被測定對象物等反射之光之飛行時間來進行距離之測量。於人類持有TOF方式之測距裝置之情形時,來自對象測定物等之反射光會返回至該人類處。於此種情況,在TOF方式之測距裝置包含出射波長1550 nm左右之波長之光之發光器等的情形時,當將TOF方式之測距裝置等配置於接近人眼、顏面、或者上半身之場所、或其等之高度附近時,認為該等安全性相關事宜有利於採用濾光器1a。
於濾光器1a之第一穿透光譜中,最小值T min 1500-1700較理想為70%以上,更理想為75%以上。
於濾光器1a之第一穿透光譜中,波長1550 nm之穿透率例如為70%以上,較理想為80%以上,更理想為85%以上。
濾光器1a之第一穿透光譜例如進而滿足下述(v)之條件。藉此,於波長550 nm~800 nm之範圍內,第一光譜容易與人類之視感度匹配。 (v)於波長550 nm~800 nm之範圍內顯示50%之穿透率之第一截止波長λ C1存在於600 nm~700 nm之範圍內。
第一截止波長λ C1較理想為存在於620 nm~680 nm之範圍內。
濾光器1a之第一穿透光譜例如進而滿足下述(vi)之條件。藉此,濾光器1a容易於1500 nm以上之特定紅外線範圍具有較高之穿透率。 (vi)於波長1000 nm~1800 nm之範圍內顯示50%之穿透率之第二截止波長λ C2存在於1150 nm~1500 nm之範圍內。
第二截止波長λ C2較理想為存在於1200 nm~1430 nm之範圍內。
進而,於濾光器1a之第一穿透光譜中,第二截止波長λ C2與第一截止波長λ C1之差之絕對值|λ C2-λ C1|之值例如為600 nm以上,較理想可為650 nm以上,更理想可為700 nm以上。進而,|λ C2-λ C1|之值例如為800 nm以下,較理想可為780 nm以下,更理想可為760 nm以下。
濾光器1a之第一穿透光譜例如進而滿足下述(vii)之條件。藉此,於波長350 nm~450 nm之範圍內,第一光譜容易與人類之視感度匹配。 (vii)於波長350 nm~450 nm之範圍內顯示50%之穿透率之第三截止波長λ C3存在於360 nm~430 nm之範圍內。
又,於濾光器1a之第一穿透光譜中,第一截止波長λ C1與第三截止波長λ C3之差之絕對值|λ C1-λ C3|之值例如為200 nm以上,較理想可為210 nm以上,更理想可為220 nm以上。進而,|λ C1-λ C3|之值例如為270 nm以下,較理想可為260 nm以下,更理想可為250 nm以下。
濾光器1a之第一穿透光譜例如進而滿足下述(viii)之條件。藉此,濾光器1a可遮蔽具有波長1000 nm~1100 nm之紅外線之一部分。 (viii)波長1000 nm~1100 nm之範圍內之穿透率之最大值T max 1000-1100為10%以下。
最大值T max 1000-1100較理想為5%以下。
濾光器1a之第一穿透光譜例如進而滿足下述(ix)之條件。藉此,濾光器1a可用於例如使用波長1700 nm~1900 nm之範圍內之光來進行測距之機器。 (ix)波長1700 nm~1900 nm之範圍內之穿透率之最小值T min 1700-1900為60%以上。
最小值T min 1700-1900較理想為65%以上,更理想為70%以上。
濾光器1a之第一穿透光譜例如進而滿足下述(x)之條件。藉此,濾光器1a可用於例如使用波長1900 nm~2200 nm之範圍內之光來進行測距之機器。 (x)波長1900 nm~2200 nm之範圍內之穿透率之最小值T min 1900-2200為60%以上。
最小值T min 1900-2200較理想為65%以上,更理想為70%以上。
如圖1所示,濾光器1a例如具備光吸收層10。光吸收層10含有光吸收劑。光吸收層10之厚度並不限定於特定之值。光吸收層10例如具有100 μm~400 μm之厚度。藉此,容易使具備濾光器1a之機器實現低高度化。光吸收層10之厚度較理想為120 μm~350 μm,更理想為140 μm~300 μm。
濾光器1a例如於70℃具有以下第二穿透光譜,該第二穿透光譜具有於波長550 nm~800 nm之範圍內顯示50%之穿透率之第四截止波長λ C4。第四截止波長λ C4與第一截止波長λ C1之差之絕對值|λ C4-λ C1|並不限定於特定之值,例如為15 nm以下。於此情形時,於濾光器1a中,關於在波長550 nm~800 nm之範圍之作為穿透頻帶與遮蔽頻帶之邊界的截止波長,即便濾光器1a之環境的溫度變動亦不易改變。
絕對值|λ C4-λ C1|較理想為10 nm以下,更理想為8 nm以下,進而理想為5 nm以下。
濾光器1a例如於70℃具有以下第二穿透光譜,該第二穿透光譜具有於波長1000 nm~1800 nm之範圍內顯示50%之穿透率之第五截止波長λ C5。第五截止波長λ C5與第二截止波長λ C2之差之絕對值|λ C5-λ C2|並不限定於特定之值,例如為30 nm以下。於此情形時,於濾光器1a中,關於在波長1000 nm~1800 nm之範圍之作為穿透頻帶與遮蔽頻帶之邊界的截止波長,即便濾光器1a之環境的溫度變動亦不易改變。
絕對值|λ C5-λ C2|較理想為20 nm以下。
濾光器1a例如於70℃具有以下第二穿透光譜,該第二穿透光譜具有於波長350 nm~450 nm之範圍內顯示50%之穿透率之第六截止波長λ C6。第六截止波長λ C6與第三截止波長λ C3之差之絕對值|λ C6-λ C3|並不限定於特定之值,例如為15 nm以下。於此情形時,於濾光器1a中,關於在波長350 nm~450 nm之範圍之作為穿透頻帶與遮蔽頻帶之邊界的截止波長,即便濾光器1a之環境的溫度變動亦不易改變。
絕對值|λ C6-λ C3|較理想為10 nm以下,更理想為8 nm以下。
於濾光器1a之第一穿透光譜中,波長1530 nm~1570 nm之範圍之穿透率之平均值例如為70%以上,較理想為75%以上,更理想為80%以上。於濾光器中,為了獲取包含藉由TOF方式之測距功能所得之距離資訊之圖像,有利的是對可見光範圍之光之穿透率較高,且對波長1550 nm左右之光之穿透率較高。
於濾光器1a之第一穿透光譜中,波長1530 nm~1570 nm之範圍之穿透率之平均值與波長450 nm~600 nm之範圍之穿透率之平均值的比Tr(1)例如為0.8以上,較理想為0.85以上。比Tr(1)例如為1.2以下,較理想為1.1以下。
於濾光器1a之第一穿透光譜中,波長1800 nm~2100 nm之穿透率之平均值例如為80%以上,較理想為82%以上,更理想為85%以上。認為該波長範圍之濾光器1a之穿透率變高之原因在於:在光吸收層10中,吸收波長1800 nm~2100 nm之範圍之光之官能基或者具有此種官能基之化合物的含量較少。
濾光器1a例如與專利文獻4所記載之濾光器相比具有以下特徵:特定之波長範圍之吸收較少,該波長範圍之穿透率較高。濾光器1a之第一穿透光譜例如亦可於波長1600 nm~1800 nm之範圍及波長2100 nm~2200 nm之範圍具有極小值(吸收峰)。於此情形時,濾光器1a之第一穿透光譜之波長1600 nm~1800 nm之範圍的穿透率之極小值例如為70%以上,較理想為75%以上。濾光器1a之第一穿透光譜之波長2100 nm~2200 nm之範圍的穿透率之最小值例如為70%以上,較理想為75%以上。
於濾光器1a之第一穿透光譜中,波長1600 nm~1800 nm之範圍之穿透率之最小值與波長1800 nm~2100 nm之範圍之穿透率之平均值的比Tr(2)例如為0.8以上,較理想為0.85以上。又,比Tr(2)例如為1.1以下,較理想為1.0以下。
於濾光器1a之第一穿透光譜中,波長2100 nm~2200 nm之範圍之穿透率之最小值與波長1800 nm~2100 nm之範圍之穿透率之平均值的比Tr(3)例如為0.8以上,較理想為0.85以上。又,Tr(3)例如為1.1以下,較理想為1.0以下。
濾光器1a中之形成光吸收層10之材料並不限定於特定材料,只要濾光器1a之第一穿透光譜滿足上述(i)、(ii)、(iii)、及(iv)之條件即可。光吸收層10例如可藉由使特定之光吸收性組成物硬化而形成。於此情形時,光吸收性組成物例如含有:銅錯合物、第一含烷氧基之化合物及第一含烷氧基之化合物之水解物中之至少一者、以及第二含烷氧基之化合物及第二含烷氧基之化合物之水解物中之至少一者。第一含烷氧基之化合物為分子內具有2個烷氧基之化合物。第一含烷氧基之化合物例如為能夠水解縮合之化合物。第二含烷氧基之化合物為分子內具有3個或4個烷氧基之化合物。第二含烷氧基之化合物例如為能夠水解縮合之化合物。藉由使此種光吸收性組成物硬化,可製作滿足上述(i)、(ii)、(iii)、及(iv)之條件之濾光器。可藉由使用此種光吸收性組成物製作滿足上述(i)、(ii)、(iii)、及(iv)之條件之濾光器的理由尚不明確。認為藉由添加第一含烷氧基之化合物及調整其添加量,會使得與周圍立體鍵結之官能基或官能基群減少,而於硬化之過程中及硬化後,層中之聚合物之構成變得相對疏散。因此,認為「具有可能在紅外線區域具有吸收之官能基」之一部分分子的量會因蒸發或昇華而自層中減少。由於該等分子或一部分官能基會吸收波長1500 nm~2000 nm之光,故認為結果使得於該波長範圍,濾光器之穿透率較高。
光吸收性組成物之硬化物之穿透光譜例如滿足上述(i)、(ii)、(iii)、及(iv)之條件。光吸收性組成物之硬化物之穿透光譜亦可進而滿足濾光器1a之第一穿透光譜所滿足之上述其他條件中之至少一者。於此情形時,光吸收性組成物之硬化物之厚度例如為100 μm~400 μm。
銅錯合物例如含有膦酸及銅成分。銅錯合物例如可為選自由包含具有芳基之膦酸及銅成分之化合物、以及包含具有烷基之膦酸及銅成分之化合物所組成之群中之至少一者。銅錯合物可包含該等兩種化合物。藉由使銅錯合物含有膦酸及銅成分,而可利用濾光器提高包含波長450 nm~650 nm之可見光範圍之穿透率,並且吸收包含波長較可見光範圍短之一部分紫外線之光、及波長超過700 nm之光。因此,濾光器1a之穿透光譜容易與人類之視感度匹配。關於銅錯合物,例如於光吸收層10中內包在樹脂等透明物質。
於銅錯合物為包含具有芳基之膦酸及銅成分之化合物的情形時,銅錯合物容易發揮主要吸收波長300 nm~400 nm之範圍之光及波長800 nm~1000 nm之範圍之光的作用。另一方面,於銅錯合物為包含具有烷基之膦酸及銅成分之化合物的情形時,銅錯合物容易發揮主要吸收波長300 nm~360 nm之範圍之光及波長800 nm~1100 nm之範圍之光的作用。
於光吸收性組成物中,藉由將包含具有芳基之膦酸及銅成分之化合物之含量與包含具有烷基之膦酸及銅成分之化合物之含量的比調節為特定範圍,而容易在濾光器1a中提高波長1500 nm~1700 nm之範圍之光之穿透率。又,藉由將光吸收性組成物中之具有芳基之膦酸之添加量與具有烷基之膦酸之添加量的比調節為特定範圍,而容易在濾光器1a中提高波長1500 nm~1700 nm之範圍之光之穿透率。
具有芳基之膦酸並不限定於特定之膦酸,例如為:苯基膦酸、硝苯基膦酸、羥苯基膦酸、溴苯基膦酸、二溴苯基膦酸、氟苯基膦酸、二氟苯基膦酸、氯苯基膦酸、二氯苯基膦酸、碘苯基膦酸、二碘苯基膦酸、苄基膦酸、溴苄基膦酸、二溴苄基膦酸、氟苄基膦酸、二氟苄基膦酸、氯苄基膦酸、二氯苄基膦酸、二氯苄基膦酸、碘苄基膦酸、或二碘苄基膦酸。
具有烷基之膦酸並不限定於特定之膦酸,例如為具有含1~8個碳原子之烷基之膦酸。
於光吸收性組成物中,具有芳基之膦酸之含量Cf及具有烷基之膦酸之含量Cs並不限定於特定關係。於光吸收性組成物中,Cf:Cs以質量基準計,例如為40:60~100:0,較理想為50:50~100:0。藉此,使用光吸收性組成物所製作之濾光器容易具有所需穿透特性。
於光吸收性組成物中,含量Cfc相對於含量Ctc之比並不限定於特定之值。含量Ctc係將具有烷氧基之化合物及其化合物之水解物換算為完全水解縮合物所得之含量。含量Cfc係將第一含烷氧基之化合物及第一含烷氧基之化合物之水解物換算為完全水解縮合物所得的含量。含量Cfc相對於含量Ctc之比以質量基準計,例如為0.01~0.6。如上所述,認為藉由第一含烷氧基之化合物,使得與周圍立體鍵結之官能基或官能基群減少,而於硬化之過程中及硬化後,層中之聚合物之構成容易變得相對疏散。認為相對疏散之結構有助於去除溶劑或副產物。另一方面,藉由使含量Cfc相對於含量Ctc之比為0.6以下,容易促進在層中形成網狀結構。藉此,可形成不黏著(tack free)之光吸收層,而容易使光吸收性組成物以所需之狀態下硬化。又,光吸收性組成物之硬化物之機械強度容易承受住下一步驟中之物理性處理或化學性處理。
含量Cfc相對於含量Ctc之比以質量基準計,較理想為0.02~0.5,更理想為0.03~0.4。
光吸收性組成物亦可含有硬化性樹脂,亦可不含硬化性樹脂。於光吸收性組成物中,硬化性樹脂之固形物成分量Crs相對於將具有烷氧基之化合物及其化合物之水解物換算為完全水解縮合物所得之含量Ctc的比並不限定於特定之值。固形物成分量Crs相對於含量Ctc之比以質量基準計,例如為0~2。硬化性樹脂可提昇光吸收層10之緻密性及機械強度。另一方面,藉由使固形物成分量Crs相對於含量Ctc之比為2以下,可避免硬化性樹脂阻礙第一含烷氧基之化合物使層中之聚合物之構成變得相對疏散之作用。
固形物成分量Crs相對於含量Ctc之比以質量基準計,較理想為0~1.5,更理想為0~1.3,進而理想為0~1.28。如此,光吸收性組成物中之硬化性樹脂之含量可相對較少。
於光吸收性組成物中,含量Cfc相對於和Ctr之比並不限定於特定之值。和Ctr是指將具有烷氧基之化合物及其化合物之水解物換算為完全水解縮合物所得之含量Ctc、與硬化性樹脂之固形物成分量Crs之和。含量Cfc係將第一含烷氧基之化合物及第一含烷氧基之化合物之水解物換算為完全水解縮合物所得之含量。含量Cfc相對於和Ctr之比以質量基準計,例如為0.01~0.4。認為藉此,於硬化之過程中及硬化後,容易使層中之聚合物之構成變得相對疏散。另一方面,藉由使含量Cfc相對於和Ctr之比為0.4以下,可形成不黏著之光吸收層,而使光吸收性組成物以所需之狀態硬化。光吸收性組成物之硬化物之機械強度可承受住下一步驟中之物理性處理或化學性處理。含量Cfc相對於和Ctr之比以質量基準計,較理想為0.02~0.35,更理想為0.02~0.3,進而理想為0.04~0.26。
於光吸收性組成物中,第一含烷氧基之化合物及第二含烷氧基之化合物可分別為例如矽烷氧化物(烷氧基矽烷),亦可分別為Ti及Al等金屬之烷氧化物。將分子內具有2個烷氧基之烷氧化物稱為二官能烷氧化物,將分子內具有3個烷氧基之烷氧化物稱為三官能烷氧化物,將分子內具有4個烷氧基之烷氧化物稱為四官能烷氧化物。將具有2~4個烷氧基之烷氧基矽烷分別稱為二~四官能烷氧基矽烷。
烷氧基矽烷會於存在水及酸觸媒等之條件下水解而聚合,從而形成聚合物或無機性化合物。藉由使四官能烷氧基矽烷水解而聚合,從而形成SiO 2所表示之固體化合物。藉由使三官能烷氧基矽烷水解而聚合,從而形成R-SiO 1.5所表示之固體化合物。再者,於本說明書中,「R-」意指有機成分。該等化合物可構成立體網狀結構。光吸收組成物可含有選自由三官能烷氧基矽烷、三官能烷氧基矽烷之水解物、四官能烷氧基矽烷、四官能烷氧基矽烷之水解物所組成之群中之至少一者。二官能烷氧基矽烷每分子僅具有兩個反應性官能基。認為於光吸收性組成物含有二官能烷氧基矽烷之情形時,與周圍立體鍵結之官能基或官能基群減少,從而硬化之過程中及硬化後之層之聚合物之構成容易變得相對疏散。因此認為,於光吸收性組成物之硬化過程中,溶劑或因反應而生成之乙酸或者醇容易被高效率地排出至外部。其結果,認為具有可吸收紅外線區域之特定波長範圍之光的官能基之一部分分子因蒸發及昇華等而自層中減少,可抑制該波長範圍之光之吸收。
四官能烷氧基矽烷並不限定於特定之烷氧基矽烷,例如為四甲氧基矽烷或四乙氧基矽烷。三官能烷氧基矽烷並不限定於特定之烷氧基矽烷。三官能烷氧基矽烷例如為:甲基三甲氧基矽烷、甲基三乙氧基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、3-環氧丙氧基丙基三甲氧基矽烷、3-環氧丙氧基丙基三乙氧基矽烷、正丙基三乙氧基矽烷、正丙基三甲氧基矽烷、己基三乙氧基矽烷、己基三甲氧基矽烷、三氟丙基三乙氧基矽烷、三氟丙基三甲氧基矽烷、乙烯基三乙氧基矽烷、乙烯基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、3-胺基丙基三甲氧基矽烷、3-巰丙基三乙氧基矽烷、3-巰丙基三甲氧基矽烷、3-異氰酸基丙基三乙氧基矽烷、或3-異氰酸基丙基三甲氧基矽烷。二官能烷氧基矽烷並不限定於特定之烷氧基矽烷。二官能烷氧基矽烷例如為:二甲基二乙氧基矽烷、二甲基二甲氧基矽烷、二苯基二甲氧基矽烷、二苯基二乙氧基矽烷、3-環氧丙氧基丙基甲基二甲氧基矽烷、或3-環氧丙氧基丙基甲基二乙氧基矽烷。
於光吸收性組成物中,硬化性樹脂可內含銅錯合物。硬化性樹脂亦可內含具有烷氧基之化合物、其化合物之水解物、或其化合物之聚合物。於使光吸收性組成物硬化而製作濾光器時,藉由存在硬化性樹脂,而存在光吸收性組成物硬化所形成之層或膜之緻密性提昇,而容易提高層或膜之剛性的優點。另一方面,藉由調整光吸收性組成物中之硬化性樹脂之含量,使得第一含烷氧基之化合物使層之結構變得適度疏散之作用不易降低。
硬化性樹脂並不限定於特定之樹脂。硬化性樹脂例如為選自由環氧樹脂、胺酯樹脂(urethane resin)、丙烯酸樹脂、聚烯烴系樹脂、及聚矽氧樹脂所組成之群中之至少一者。
光吸收性組成物可進而含有磷酸酯。於使用光吸收性組成物所形成之光吸收層中,具有烷氧基之化合物或其化合物之水解物與磷酸酯相比,可賦予光吸收層較高之耐濕性,並使銅錯合物適當分散。因此,藉由使光吸收性組成物含有具有烷氧基之化合物或其化合物之水解物,可降低磷酸酯之使用量。光吸收性組成物亦可不含磷酸酯。
磷酸酯例如為具有聚氧烷基之磷酸酯。具有聚氧烷基之磷酸酯並不限定於特定之磷酸酯。具有聚氧烷基之磷酸酯例如為:Plysurf A208N:聚氧乙烯烷基(C12、C13)醚磷酸酯、Plysurf A208F:聚氧乙烯烷基(C8)醚磷酸酯、Plysurf A208B:聚氧乙烯月桂醚磷酸酯、Plysurf A219B:聚氧乙烯月桂醚磷酸酯、Plysurf AL:聚氧乙烯苯乙烯化苯醚磷酸酯、Plysurf A212C:聚氧乙烯十三基醚磷酸酯、或Plysurf A215C:聚氧乙烯十三基醚磷酸酯。其等均為第一工業製藥公司製造之產品。又,磷酸酯例如為:NIKKOL DDP-2:聚氧乙烯烷基醚磷酸酯、NIKKOL DDP-4:聚氧乙烯烷基醚磷酸酯、或NIKKOL DDP-6:聚氧乙烯烷基醚磷酸酯。其等均為Nikko Chemicals公司製造之產品。
如圖1所示,濾光器1a進而具備透明基板20。透明基板20具有彼此平行之一對主面。於濾光器1a中,在透明基板20之一個主面上配置有光吸收層10。濾光器1a亦可變更為在透明基板20之兩個主面上配置有光吸收層10。光吸收層10例如可藉由於透明基板20之一個主面上或兩個主面上塗布上述光吸收性組成物並使其硬化而形成。再者,光吸收層10與透明基板20之主面亦可接觸。另一方面,於光吸收層10與透明基板20之主面之間亦可形成其他功能層,只要濾光器1a之第一穿透光譜滿足上述(i)、(ii)、(iii)、及(iv)之條件即可。其他功能層並不限定於特定之層,例如提昇光吸收層10與透明基板20之密接性之層、或者除了使上述光吸收性組成物硬化所得之層以外之層。透明基板20所具有之透明性並不限定於特定之水準,只要濾光器1a之第一穿透光譜滿足上述(i)、(ii)、(iii)、及(iv)之條件即可。例如,於透明基板20具有0.2 mm之厚度之情形時,可使用於波長400 nm~700 nm顯示75%以上之穿透率之基板。此外,透明基板20亦可為具有於波長1400 nm~2200 nm顯示75%以上之穿透率之穿透光譜的基板。
透明基板20並不限定於特定之基板。透明基板20可為包含玻璃之透明玻璃基板,亦可為包含樹脂之透明樹脂基板。透明玻璃基板具有較高之透明性並且具有明顯平滑之主面,且非常經濟實惠。此外,透明玻璃基板具有較高之硬度及較高之楊氏模數,故即便其厚度較小,亦能足夠承受住製造步驟或流通。透明樹脂基板具有較高之透明性且較為輕量,適合各種生產,於透明基板20為透明樹脂基板之情形時,例如可經濟地供給多種形狀之基板。透明樹脂基板之材質並不限定於特定之材質。透明樹脂基板之材質例如為:環氧樹脂、胺酯樹脂、丙烯酸樹脂、聚乙烯樹脂、聚對苯二甲酸乙二酯樹脂、聚丙烯樹脂、聚烯烴樹脂、聚醯胺樹脂、聚醯亞胺樹脂、聚氯乙烯樹脂、聚苯乙烯樹脂、或聚矽氧樹脂。
濾光器1a亦可變更為具有以下構成,即於透鏡、繞射光柵及偏光元件等光學元件之面上配置有光吸收層。例如,於透鏡等光學元件之面上塗布上述光吸收性組成物並使其硬化,而可提供具備光學元件及光吸收層之濾光器。例如,於相機模組所含之透鏡系中,若以包含至少1個透鏡之方式構成濾光器,則可使具有所需穿透光譜之光入射至攝像元件,而無需另外製作濾光器並進行配置。如此,例如藉由於功能性光學元件所具有之至少1個面上形成光吸收層10,可提供兼備光學元件本來之功能及光吸收性功能之濾光器。光學元件並不限定於上述所例舉之元件。光學元件所含之材質並不限定於特定之材質,例如可包含作為透明基板20之材質之例所例舉之材質。
濾光器1a可變更為圖2所示之濾光器1b。濾光器1b為具備光吸收層10之膜狀濾光器。濾光器1b例如藉由以下操作獲得:於具有平滑主面之基板之該主面上塗布上述光吸收性組成物並使其硬化而形成光吸收層10,使該光吸收層10脫離基板。基板之平滑主面係以濾光器1b滿足上述(i)、(ii)、(iii)、及(iv)之條件之方式構成。作為製造濾光器1b用之基板,可使用上述透明基板20,亦可使用金屬製基板或陶瓷製基板。濾光器1b為膜狀之濾光器,構成為無基板之濾光器。因此,濾光器1b適合薄型化,容易降低濾光器1b之製造成本。濾光器1b亦可藉由於基板上形成光吸收層10後,將光吸收層10自基板剝離而獲得。可於將光吸收性組成物塗布於基板前,於基板之平滑主面塗布氟樹脂。藉此,可容易地將光吸收層10自基板剝離。
亦可藉由以下方式獲得濾光器:於包含曲面或者具有格子狀構造或凹凸之面的基體上塗布上述光吸收性組成物並使其硬化,形成光吸收層10後,使該光吸收層10自基體脫離。於此情形時,光吸收層10係沿基體之面而形成,因此具有與基體之面相對應之形狀。因此,可製作與基體之面之特性相應之濾光器。
濾光器1a或1b亦可變更為除光吸收層10以外,進而具備會使可見光或波長1500 nm以上之光之反射率降低的抗反射膜或反射降低膜。藉此,到達攝像元件之該波長之光之光量容易變大。藉由使濾光器進而具備抗反射膜或反射降低膜,例如可使自濾光器反射之光之反射率未達5%。
抗反射膜或反射降低膜例如可由一種以上之材料以具有一層以上之層的方式形成於光吸收層10之至少一個面。構成抗反射膜或反射降低膜之材料並不限定於特定之材料。抗反射膜或反射降低膜例如可為以SiO 2或SiO 1.5作為主成分之藉由溶膠凝膠法等所形成之膜,亦可為於上述主成分中分散有中空微粒子或低折射率材料之微粒子之膜。抗反射膜或反射降低膜可為包含TiO 2、Ta 2O 3、SiO 2、Nb 2O 5、ZnS、MgF、或其等之混合物且藉由蒸鍍法、濺鍍法、或離子鍍覆法等方法所形成之膜。蒸鍍法亦可為離子束輔助蒸鍍法。抗反射膜或反射降低膜亦可為包含上述材料之一層之構成之膜,亦可為交替積層不同材料之膜所得之多層膜。又,抗反射膜或反射降低膜可與光吸收層10相接地形成,亦可與和光吸收層10相接地形成之其他功能層相接地形成。
濾光器1a或1b除光吸收層10以外,亦可具備所謂光反射膜,該光反射膜係對需遮蔽之波長範圍之光具有較高反射率之膜。於此情形時,濾光器亦可藉由光吸收層10與光反射膜之協同作用,而滿足與上述之穿透光譜相關之條件。藉由有效地調整光反射膜之光譜,例如亦可使光吸收層10之厚度變薄。光反射膜例如可由一種以上之材料以具有一層以上之層的方式形成於光吸收層10之至少一面。構成光反射膜之材料並不限定於特定之材料。光反射膜可為以SiO 2或SiO 1.5作為主成分之藉由溶膠凝膠法等所形成之膜,亦可為於上述主成分中分散有中空微粒子或低折射率材料之微粒子之膜。光反射膜亦可為包含TiO 2、Ta 2O 3、SiO 2、Nb 2O 5、ZnS、MgF、或其等之混合物且藉由蒸鍍法、濺鍍法、或離子鍍覆法等方法所形成之膜。蒸鍍法亦可為離子束輔助蒸鍍法。光反射膜可為包含上述材料之一層構成之膜,亦可為交替積層不同材料之膜所得之多層膜。光反射膜可與光吸收層10相接地形成,可與和光吸收層10相接地形成之其他功能層相接地形成,亦可與透明基板20之至少一個主面相接地形成。
本發明之濾光器並不限定於上述態樣,只要不存在技術衝突,則上述與濾光器相關之各特徵均可適當加以組合。
使用濾光器1a,例如可提供圖3所示之機器50。機器50除濾光器1a以外,亦具備TOF感測器部30及相機模組部40。相機模組部40係用以識別可見光範圍或紅外線範圍之光而形成圖像之要素。相機模組部40例如獲取藉由可見光或紅外線範圍之光所識別之圖像資訊。再者,圖3中僅記載有說明所需之最低限度之要素或功能。機器50亦可具備其他要素。
TOF感測器部30例如獲取與對象物之測距資訊。TOF感測器部30具備:照射器31、受光器33、及控制部35。照射器31將波長1550 nm左右或處於波長1500 nm~2200 nm之範圍內之波長之光作為照明光LI出射,並照射至測定對象物G。受光器33接受來自測定對象物G之反射光LR。反射光LR之波長可處於波長1500 nm~2200 nm之範圍內。控制部35控制照射器31及受光器33。可獲得作為來自TOF感測器部30之輸出圖像的測距資訊圖像Id。於測距資訊圖像Id中,例如藉由顏色濃淡或顏色不同來表示與測定對象物G之距離遠近。
照射器31例如包含發光元件及光學元件。發光元件為出射處於上述範圍內之波長之光之雷射及LED等元件。光學元件為使來自發光元件之光照射至測定對象物G之元件。照射器31所含之光學元件可包含:複數個透鏡、稜鏡等折射器或者偏光器、或者用以使光擴散之擴散元件等。於圖3中,省略了照射器31中之發光元件及光學元件之圖示。
受光器33例如包含光學元件及受光元件。光學元件係用以接受來自測定對象物G之反射光LR等之元件。受光器33所含之光學元件亦可包含:複數個透鏡、或稜鏡等折射器或者偏光器、或者用以使光擴散之擴散元件等。光學元件使來自測定對象物G之反射光LR等聚光於受光元件。受光元件可為CCD或CMOS方式之影像感測器,亦可為雪崩光電二極體(APD)。於圖3中,省略了受光器33中之光學元件及受光元件之圖示。
相機模組部40獲取藉由參考光照射到之對象物之圖像。參考光可為太陽光,亦可為藉由配置於相機模組附近之照明器所照射之屬於紅外線範圍之光。相機模組部40例如具備:相機模組43、及用以控制相機模組43之控制部45。相機模組43例如具備光學元件及受光元件。光學元件係用以接受來自對象物之光之元件。控制部45例如控制光學元件及受光元件。來自相機模組部40之輸出圖像例如為圖3所示之對象物之通常圖像Iu。通常圖像Iu可為包含藉由可見光可識別之對象物之形狀及顏色等之圖像。於使用屬於紅外光之光作為參考光之情形時,機器50可起到紅外線相機之作用。另一方面,於此情形時,需注意TOF感測器部30所用之光之波長範圍與參考光之波長範圍的重疊,或者因該重疊所致之雜訊。
相機模組43所含之光學元件亦可包含複數個透鏡或稜鏡等折射器或者偏光器等。光學元件使來自對象物之光聚光於相機模組43所含之受光元件。受光元件可為CCD或CMOS方式之影像感測器。於圖3中,省略了相機模組43之光學元件及受光元件之圖示。
如圖3所示,濾光器1a例如配置於TOF感測器部30之受光器33及相機模組43與測定對象物G之間。濾光器1a亦可配置於TOF感測器部30之照射器31、受光器33及相機模組43與測定對象物G之間。換言之,濾光器1a亦可配置於具備TOF感測器部30及相機模組43之機器之前面。濾光器1a例如可使屬於可見光範圍之波長之光、及波長1550 nm左右或屬於波長1500 nm~2200 nm之範圍之波長的光以較高之穿透率穿透,並且可遮蔽紫外線及波長700 nm~1100 nm之範圍內之光。因此,單獨利用濾光器1a,便可僅使發揮TOF感測器部30及相機模組部40之功能所需之波長之光穿透。
假定搭載TOF感測器及相機模組兩者之此種裝置增加。例如假定TOF感測器及相機模組兩者被搭載於智慧型手機及平板型資訊終端。此種裝置較小且為薄型,因此有可能將TOF感測器與相機模組接近地配置。藉由使用濾光器1a,可使TOF感測器及相機模組周邊成為更簡單之構成。
機器50亦可進而具備用以保護機器50之蓋玻璃(省略圖示)。該蓋玻璃亦可配置於濾光器1a之前面,即較濾光器1a距測定對象物G更近之位置。藉由蓋玻璃,可保護濾光器1a、TOF感測器部30、及相機模組部40免受外部衝擊或溫度變化影響。再者,例如可於剛性玻璃或藍寶石等硬質之透明基板20形成光吸收層10而製作濾光器1a。由於藍寶石等之硬度特別高,故例如藉由將濾光器1a以透明基板20之形成有光吸收層10之主面朝向相機模組之方式進行配置,可提供同時具備保護性功能之濾光器1a。 實施例
藉由實施例,更詳細地對本發明進行說明。再者,本發明並不限定於以下實施例。
<實施例1> 將乙酸銅一水合物4.500 g與四氫呋喃(THF)240 g混合,攪拌3小時而獲得乙酸銅溶液。繼而,向所得之乙酸銅溶液添加作為磷酸酯化合物之Plysurf A208N(第一工業製藥公司製造)1.646 g並攪拌30分鐘,而獲得A1液。向苯基膦酸0.706 g添加THF 40 g,並攪拌30分鐘,獲得B1α液。向4-溴苯基膦酸4.230 g添加THF 40 g,攪拌30分鐘,而獲得B1β液。繼而,將B1α液與B1β液混合並攪拌1分鐘,向該混合液添加甲基三乙氧基矽烷(MTES)(信越化學工業公司製造,產品名:KBE-13)8.664 g、及四乙氧基矽烷(TEOS)(岸田化學公司製造 特級)2.840 g,進而攪拌1分鐘,獲得B1液。攪拌A1液並同時向A1液添加B1液,於室溫攪拌1分鐘。繼而,向該溶液添加甲苯100 g後,於室溫攪拌1分鐘,獲得C1液。將該C1液添加至燒瓶,利用油浴(東京理化器械公司製造,型號:OSB-2100)進行加溫,並且藉由旋轉蒸發器(東京理化器械公司製造,型號:N-1110SF)進行去溶劑處理。將油浴之設定溫度調整為105℃。其後,自燒瓶中取出去溶劑處理後之D1液。如此,獲得含有光吸收性化合物之D1液,該光吸收性化合物包含具有芳基之膦酸及銅成分。
將乙酸銅一水合物4.500 g、及THF240 g混合,攪拌3小時,而獲得乙酸銅溶液。繼而,向所得之乙酸銅溶液添加作為磷酸酯化合物之Plysurf A208N 2.573 g,攪拌30分鐘,而獲得E1液。又,向正丁基膦酸2.885 g添加THF 40 g,攪拌30分鐘,而獲得F1液。攪拌E1液並同時向E1液添加F1液,於室溫攪拌1分鐘。繼而,向該溶液添加甲苯100 g後,於室溫攪拌1分鐘,獲得G1液。將該G1液添加至燒瓶,利用油浴進行加溫,並且藉由旋轉蒸發器進行去溶劑處理。油浴之設定溫度係調整至105℃。其後,自燒瓶中取出去溶劑處理後之H1液。如此獲得含有光吸收性化合物之H1液,該光吸收性化合物包含具有烷基之膦酸及銅成分。
以具有芳基之膦酸之含量Cf及具有烷基之膦酸之含量Cs以質量基準計成為Cf:Cs=71:29之方式混合D1液及H1液,進而,將硬化性樹脂(信越化學工業公司製造,產品名:KR-300)、觸媒(信越化學工業公司製造,產品名:CAT-AC)、作為三官能烷氧基矽烷之甲基三乙氧基矽烷(MTES)(信越化學工業公司製造,產品名:KBE-13)、作為四官能烷氧基矽烷之四乙氧基矽烷(TEOS)(岸田化學公司製造 特級)、及作為二官能烷氧基矽烷之二甲基二乙氧基矽烷(DMDES)(信越化學工業公司製造,產品名:KBE-22)以表1所示之量混合。將該混合物攪拌30分鐘,獲得實施例1之光吸收性組成物。將實施例1之光吸收性組成物中之各烷氧基矽烷換算為完全水解縮合物所得之固形物成分量及硬化性樹脂之固形物成分量示於表2。於表1中,其他實施例及比較例中亦主要示出混合時或製作光吸收性組成物時之各原料之混合量(添加量)。
將表面防污塗布劑(大金工業公司製造,產品名:OPTOOL DSX,有效成分之濃度:20質量%)0.1 g、及氫氟醚含有液(3M公司製造,產品名:NOVEC 7100)19.9 g混合,攪拌5分鐘,製備氟處理劑(有效成分之濃度:0.1質量%)。將該氟處理劑塗布於具有130 mm×100 mm×0.70 mm之尺寸之硼矽酸玻璃(SCHOTT公司製造,產品名:D263 T eco)的一個主面。其後,將該玻璃基板於室溫放置24小時,使氟處理劑之塗膜乾燥,其後,藉由包含NOVEC 7100之無塵布輕輕擦拭玻璃表面,除去多餘之氟處理劑。如此製作氟處理基板。
使用分注器,將實施例1之光吸收性組成物塗布於氟處理基板之一個主面之中心部之80 mm×80 mm之範圍,而形成塗膜。使所得之塗膜於室溫充分乾燥後,將其放入烘箱,於室溫~45℃之範圍耗時6小時提高溫度,並且去除溶劑及副產物,進而,耗時8小時將溫度自45℃提高至85℃,並進一步去除溶劑及副產物。其後,將塗膜自氟處理基板剝離,使所得之膜進而於溫度85℃且相對濕度為85%之環境下放置24小時,進行後硬化處理,結束反應。於膜乾燥一定程度後,將其自基板剝離,進而促進反應進行,並去除殘存於膜中之溶劑或副產物等。實施例1之光吸收性組成物包含水解性之特定量之烷氧基矽烷。設定後硬化處理之條件,以促進烷氧基矽烷之水解及聚合、以及聚合物之鍵結等。如此獲得實施例1之濾光器。
<實施例2~7> 如表1所示對各原料之添加量進行調整,除此之外,與實施例1同樣地獲得實施例2~7之光吸收性組成物。使用實施例2~7之光吸收性組成物代替實施例1之光吸收性組成物,除此之外,與實施例1同樣地分別獲得實施例2~7之濾光器。
<實施例8> 使用二甲基二甲氧基矽烷(DMDMS)(信越化學工業公司製造,產品名:KBM-22)作為二官能烷氧基矽烷,如表1所示對各原料之添加量進行調整,除此之外,與實施例1同樣地獲得實施例8之光吸收性組成物。
使用分注器,將實施例8之光吸收性組成物塗布於具有130 mm×100 mm×0.70 mm之尺寸之硼矽酸玻璃(SCHOTT公司製造,產品名:D263 T eco)之一個主面之中心部之80 mm×80 mm的範圍,形成塗膜。使所得之塗膜於室溫充分乾燥後,將其放入烘箱,於室溫~45℃之範圍耗時6小時提高溫度,並且去除溶劑及副產物,進而,耗時8小時將溫度自45℃提高至85℃,並且進一步去除溶劑及副產物。其後,將塗膜於溫度85℃且相對濕度為85%之環境下放置24小時,進行塗膜之後硬化處理,結束反應。如此,獲得具備作為透明基板之玻璃基板及光吸收層之實施例8之濾光器。
<實施例9~21> 如表1所示對各原料之添加量進行調整,除此之外,與實施例1同樣地獲得實施例9~21之光吸收性組成物。使用實施例9~21之光吸收性組成物代替實施例1之光吸收性組成物,除此之外,與實施例1同樣地分別獲得實施例9~21之濾光器。
<比較例1> 如表1所示對各原料之添加量進行調整,除此之外,與實施例1同樣地獲得比較例1之光吸收性組成物。使用比較例1之光吸收性組成物代替實施例1之光吸收性組成物,除此之外,與實施例1同樣地獲得比較例1之濾光器。
<穿透光譜之測定> 使用日本分光公司製造之紫外-可見-近紅外分光光度計V-770,對實施例1~15之濾光器、實施例17~21之濾光器、及比較例1之濾光器於0°入射角時之穿透光譜。除非另有說明,否則穿透光譜之測定係將濾光器周圍之環境溫度設為25℃來進行。將實施例1、2、6、7、8、11、19及20之濾光器之穿透光譜之測定結果分別示於圖4、5、6、7、9、10、12及13。又,將與基於各實施例之濾光器之穿透光譜之測定結果及比較例1之濾光器之穿透光譜之測定結果所導出之波長及穿透率相關的一些特性示於表3及4。再者,同樣地對實施例8中所使用之作為透明基板之硼矽酸玻璃之玻璃基板單獨於0°之入射角時的穿透光譜進行測定。將其結果示於圖8。如圖8所示,玻璃基板至少於波長360 nm~2500 nm之範圍具有90%以上之穿透率。
將實施例16之濾光器設置於OPTQUEST公司製造之小型恆溫槽之內部,將小型恆溫槽之內部溫度調節為25℃。於該狀態下,使用日立製作所公司製造之紫外-可見分光光度計U-4100,測定實施例16之濾光器於0°入射角時之穿透光譜。進而,於將小型恆溫槽之內部溫度調節為70℃之狀態下,同樣地測定實施例16之濾光器於0°入射角時之穿透光譜。將各溫度之實施例16之穿透光譜示於圖11。於圖11中,實線之曲線圖表示於25℃之穿透光譜,虛線之曲線圖表示於70℃之穿透光譜。將與基於實施例16之濾光器之穿透光譜之測定結果所導出之波長及穿透率相關之一些特性示於表3及4。
<厚度測定> 使用基恩士公司製造之雷射位移計LK-H008,測定各實施例及比較例1之濾光器之厚度。將結果示於表3。再者,實施例8之濾光器之厚度並未將玻璃基板之厚度考慮在內。
如表3所示,各實施例之濾光器滿足上述(i)、(ii)、(iii)、(iv)、(v)、(vi)、(vii)、(viii)、(ix)、及(x)之條件。根據實施例8之濾光器,可理解到:即便光吸收性組成物不含硬化性樹脂,亦可獲得所需之濾光器。另一方面,比較例1之濾光器未滿足(ii)之條件。
實施例21之濾光器及比較例1之濾光器於波長1500 nm~1700 nm之範圍內之穿透率之最小值較實施例1~20之濾光器之最小值低。因此,表明於光吸收性組成物中,具有芳基之膦酸之含量Cf及具有烷基之膦酸之含量Cs以質量基準計滿足Cf:Cs=50:50~100:0的關係有利於提高波長1500 nm~1700 nm之範圍內的穿透率之最小值。
根據圖11以及表3,關於實施例16之濾光器之穿透光譜於波長550 nm~800 nm之範圍內之截止波長、於波長1000 nm~1800 nm之範圍內之截止波長、及於波長350 nm~450 nm之範圍內之截止波長,即便濾光器之溫度自25℃變化為70℃,仍無較大變動。
[表1]
   含芳基膦酸之含量Cf與含烷基膦酸之含量Cs之質量比 製作含有含芳基膦酸之化合物時之烷氧基矽烷之添加量[g] 製作光吸收性組成物時之 烷氧基矽烷之添加量[g] 製作光吸收性組成物時之硬化性樹脂之添加量[g] 製作光吸收性組成物時之觸媒之添加量[g] 製作光吸收性組成物時之 各烷氧基矽烷之總量[g]
Cf Cs MTES TEOS MTES TEOS DMDES DMDMS MTES TEOS DMDES DMDMS
實施例1 71 29 6.151 2.016 7.696 4.015 3.476 0.000 8.925 0.089 13.847 6.031 3.476 0.000
實施例2 71 29 6.151 2.016 9.236 4.015 2.317 0.000 6.250 0.063 15.387 6.031 2.317 0.000
實施例3 71 29 6.151 2.016 13.854 6.028 3.476 0.000 5.357 0.054 20.005 8.044 3.476 0.000
實施例4 71 29 6.151 2.016 17.509 7.033 3.046 0.000 4.018 0.040 23.66 9.049 3.046 0.000
實施例5 71 29 6.151 2.016 21.55 8.037 2.317 0.000 2.679 0.027 27.701 10.053 2.317 0.000
實施例6 71 29 6.151 2.016 25.975 9.042 1.304 0.000 2.054 0.021 32.126 11.058 1.304 0.000
實施例7 71 29 6.151 2.016 20.203 7.033 1.014 0.000 0.000 0.000 26.354 9.049 1.014 0.000
實施例8 71 29 6.151 2.016 7.696 4.015 0.000 2.818 8.925 0.089 13.847 6.031 0.000 2.818
實施例9 71 29 6.151 2.016 6.157 4.015 4.635 0.000 8.925 0.089 12.308 6.031 4.6347 0.000
實施例10 71 29 6.151 2.016 4.618 4.015 5.793 0.000 8.925 0.089 10.769 6.031 5.7933 0.000
實施例11 71 29 6.151 2.016 3.078 4.015 6.952 0.000 8.925 0.089 9.2294 6.031 6.952 0.000
實施例12 71 29 6.151 2.016 7.696 4.015 3.476 0.000 11.156 0.112 13.847 6.031 3.476 0.000
實施例13 71 29 6.151 2.016 7.696 4.015 3.476 0.000 13.388 0.134 13.847 6.031 3.476 0.000
實施例14 71 29 6.151 2.016 7.696 4.015 3.476 0.000 17.85 0.179 13.847 6.031 3.476 0.000
實施例15 71 29 6.151 2.016 7.696 4.015 3.476 0.000 22.313 0.223 13.847 6.031 3.476 0.000
實施例16 71 29 6.151 2.016 7.696 4.015 3.476 0.000 8.925 0.089 13.847 6.031 3.476 0.000
實施例17 83 17 7.191 2.357 7.696 4.015 3.476 0.000 8.925 0.089 14.887 6.372 3.476 0.000
實施例18 59 41 5.112 1.676 7.696 4.015 3.476 0.000 8.925 0.089 12.808 5.691 3.476 0.000
實施例19 50 50 4.332 1.420 7.696 4.015 3.476 0.000 8.925 0.089 12.028 5.435 3.476 0.000
實施例20 100 0 8.664 2.840 7.696 4.015 3.476 0.000 8.925 0.089 16.36 6.855 3.476 0.000
實施例21 40 60 3.466 1.136 7.696 4.015 3.476 0.000 8.925 0.089 11.162 5.151 3.476 0.000
比較例1 29 71 2.513 0.824 7.696 4.015 3.476 0.000 8.925 0.089 10.209 4.839 3.476 0.000
[表2]
   各烷氧基矽烷之固形物成分量[g] 硬化性樹脂固形物成分量[g] 各烷氧基矽烷之固形物成分之質量比 硬化性樹脂之固形物成分相對於烷氧基矽烷之固形物成分之總量之質量比 二官能性烷氧基矽烷之固形物成分相對於烷氧基矽烷及硬化性樹脂之固形物成分之質量比
MTES TEOS DMDES DMDMS 總量 MTES TEOS DMDES DMDMS
實施例1 5.227 1.747 1.738 0.000 8.711 4.463 0.600 0.200 0.200 0.000 0.51 0.13
實施例2 5.808 1.747 1.159 0.000 8.713 3.125 0.667 0.200 0.133 0.000 0.36 0.10
實施例3 7.551 2.330 1.738 0.000 11.619 2.679 0.650 0.200 0.150 0.000 0.23 0.12
實施例4 8.930 2.621 1.523 0.000 13.074 2.009 0.683 0.200 0.117 0.000 0.15 0.10
實施例5 10.456 2.911 1.159 0.000 14.526 1.340 0.720 0.200 0.080 0.000 0.09 0.07
實施例6 12.126 3.202 0.652 0.000 15.980 1.027 0.759 0.200 0.041 0.000 0.06 0.04
實施例7 9.947 2.621 0.507 0.000 13.075 0.000 0.761 0.200 0.039 0.000 0.00 0.04
實施例8 5.227 1.747 0.000 1.738 8.711 4.463 0.600 0.200 0.000 0.200 0.51 0.13
實施例9 4.646 1.747 2.318 0.000 8.710 4.463 0.533 0.201 0.266 0.000 0.51 0.18
實施例10 4.065 1.747 2.897 0.000 8.708 4.463 0.467 0.201 0.333 0.000 0.51 0.22
實施例11 3.484 1.747 3.477 0.000 8.707 4.463 0.400 0.201 0.399 0.000 0.51 0.26
實施例12 5.227 1.747 1.738 0.000 8.711 5.578 0.600 0.200 0.200 0.000 0.64 0.12
實施例13 5.227 1.747 1.738 0.000 8.711 6.694 0.600 0.200 0.200 0.000 0.77 0.11
實施例14 5.227 1.747 1.738 0.000 8.711 8.925 0.600 0.200 0.200 0.000 1.02 0.10
實施例15 5.227 1.747 1.738 0.000 8.711 11.156 0.600 0.200 0.200 0.000 1.28 0.09
實施例16 5.227 1.747 1.738 0.000 8.711 4.463 0.600 0.200 0.200 0.000 0.51 0.13
實施例17 5.619 1.845 1.738 0.000 9.203 4.463 0.611 0.201 0.189 0.000 0.48 0.13
實施例18 4.834 1.648 1.738 0.000 8.221 4.463 0.588 0.200 0.211 0.000 0.54 0.14
實施例19 4.540 1.574 1.738 0.000 7.852 4.463 0.578 0.200 0.221 0.000 0.57 0.14
實施例20 6.175 1.985 1.738 0.000 9.899 4.463 0.624 0.201 0.176 0.000 0.45 0.12
實施例21 4.213 1.492 1.738 0.000 7.443 4.463 0.566 0.200 0.234 0.000 0.60 0.15
比較例1 3.853 1.401 1.738 0.000 6.993 4.463 0.551 0.200 0.249 0.000 0.64 0.15
[表3]
   波長450 nm~600 nm之穿透率之最小值[%] 波長300 nm~370 nm之穿透率之最大值[%] 波長800 nm~1000 nm之穿透率之最大值[%] 波長1500 nm~1700 nm之穿透率之最小值[%] 波長550 nm~800 nm之截止波長[nm] 波長1000 nm~1800 nm之截止波長[nm] 波長350 nm~450 nm之截止波長[nm] 波長1000 nm~1100 nm之穿透率之最大值[%] 波長1700 nm~1900 nm之穿透率之最小值[%]] 波長1900 nm~2200 nm之穿透率之最小值[%] 膜厚 [μm]
實施例1 82.16 0.08 0.24 78.42 644 1370 405 0.61 84.10 82.94 188
實施例2 81.36 0.05 0.17 77.28 641 1378 406 0.44 83.20 82.41 181
實施例3 80.90 0.04 0.34 76.75 640 1382 406 0.36 82.78 82.00 197
實施例4 81.65 0.12 0.23 78.18 643 1369 403 0.69 83.50 82.63 171
實施例5 80.34 0.06 0.17 76.47 639 1383 405 0.38 82.42 81.29 186
實施例6 80.64 0.03 0.19 76.42 640 1385 406 0.34 82.54 81.50 172
實施例7 80.95 0.08 0.16 77.36 641 1377 404 0.48 82.80 82.22 152
實施例8 80.58 0.06 0.25 76.77 639 1381 404 0.40 82.48 81.35 217
實施例9 81.15 0.02 0.27 76.38 640 1388 408 0.29 82.54 81.68 216
實施例10 80.91 0.02 0.33 75.80 640 1392 408 0.23 82.03 81.07 212
實施例11 80.73 0.02 0.26 75.85 640 1393 408 0.22 81.91 81.20 220
實施例12 81.77 0.04 0.21 77.63 642 1375 407 0.53 82.56 81.48 212
實施例13 81.27 0.03 0.30 77.22 641 1379 408 0.46 81.90 79.62 235
實施例14 82.71 0.12 0.29 79.33 646 1360 406 1.03 82.50 80.42 223
實施例15 83.50 0.27 0.60 80.63 650 1343 404 2.10 82.68 80.22 207
實施例16 25℃ 81.12 0.04 0.07 77.83 639 1381 408 0.37 84.37 83.67 206
70℃ 78.99 0.01 0.08 74.37 635 1395 414 0.36 83.59 83.61 206
實施例17 78.32 0.02 0.26 80.61 633 1340 410 1.03 82.37 80.19 242
實施例18 84.02 0.62 0.21 74.82 652 1399 400 0.27 84.05 84.26 163
實施例19 83.22 0.98 0.06 70.04 655 1426 398 0.05 83.07 83.78 185
實施例20 75.45 0.01 0.37 79.68 627 1237 413 4.96 81.66 77.82 279
實施例21 82.09 2.30 0.20 65.51 658 1444 394 0.12 81.17 82.72 183
比較例1 80.87 12.75 0.26 67.14 676 1437 385 0.12 82.64 84.93 237
[表4]
   波長1530 nm~1570 nm之穿透率之平均值[%] 波長1800 nm~2100 nm之穿透率之平均值[%] 波長1600 nm~1800 nm之穿透率之最小值[%] 波長2100 nm~2200 nm之穿透率之最小值[%] Tr(1) Tr(2) Tr(3)
實施例1 83.44 89.91 82.89 82.94 0.95 0.92 0.92
實施例2 82.66 89.63 82.02 82.41 0.95 0.92 0.92
實施例3 82.28 89.37 81.54 82.00 0.95 0.91 0.92
實施例4 83.21 89.62 82.42 82.63 0.95 0.92 0.92
實施例5 82.06 89.19 81.13 81.29 0.94 0.91 0.91
實施例6 82.02 89.29 81.24 81.50 0.94 0.91 0.91
實施例7 82.56 89.43 81.71 82.22 0.94 0.91 0.92
實施例8 82.22 89.23 81.15 81.35 0.94 0.91 0.91
實施例9 82.19 89.56 81.33 81.68 0.94 0.91 0.91
實施例10 81.83 89.53 81.03 81.07 0.94 0.90 0.91
實施例11 81.81 89.44 81.04 81.20 0.95 0.91 0.91
實施例12 82.94 89.41 81.51 81.48 0.95 0.91 0.91
實施例13 82.58 89.26 80.24 79.62 0.95 0.90 0.89
實施例14 84.02 89.58 80.54 80.42 0.96 0.90 0.90
實施例15 84.98 89.69 80.63 80.22 0.96 0.90 0.89
實施例16 25℃ 83.61 90.62 83.09 83.67 0.95 0.92 0.92
70℃ 80.97 91.42 82.25 83.61 0.93 0.90 0.91
實施例17 84.52 89.15 80.88 80.19 0.97 0.91 0.90
實施例18 81.24 89.71 83.00 84.26 0.93 0.93 0.94
實施例19 78.28 89.74 82.03 83.78 0.90 0.91 0.93
實施例20 87.36 88.57 79.68 77.82 1.01 0.90 0.88
實施例21 75.00 88.57 80.17 82.72 0.87 0.91 0.93
比較例1 76.21 89.22 81.95 84.93 0.89 0.92 0.95
1a:濾光器 1b:濾光器 10:光吸收層 20:透明基板 30:TOF感測器部 40:相機模組部 50:機器
[圖1]表示本發明之濾光器之一例之剖面圖。 [圖2]表示本發明之濾光器之另一例之剖面圖。 [圖3]表示具備本發明之濾光器之機器之一例的方塊圖。 [圖4]係實施例1之濾光器之穿透光譜。 [圖5]係實施例2之濾光器之穿透光譜。 [圖6]係實施例6之濾光器之穿透光譜。 [圖7]係實施例7之濾光器之穿透光譜。 [圖8]係透明玻璃基板之穿透光譜。 [圖9]係實施例8之濾光器之穿透光譜。 [圖10]係實施例11之濾光器之穿透光譜。 [圖11]係實施例16之濾光器之穿透光譜。 [圖12]係實施例19之濾光器之穿透光譜。 [圖13]係實施例20之濾光器之穿透光譜。
1a:濾光器
10:光吸收層
20:透明基板

Claims (21)

  1. 一種濾光器,其於25℃具有滿足下述(i)、(ii)、(iii)、及(iv)之條件之第一穿透光譜, (i)波長450 nm~600 nm之範圍內之穿透率之最小值為70%以上; (ii)波長300 nm~370 nm之範圍內之穿透率之最大值為5%以下; (iii)波長800 nm~1000 nm之範圍內之穿透率之最大值為5%以下; (iv)波長1500 nm~1700 nm之範圍內之穿透率之最小值為60%以上。
  2. 如請求項1之濾光器,其中,上述第一穿透光譜進而滿足下述(v)之條件, (v)於波長550 nm~800 nm之範圍內顯示50%之穿透率之第一截止波長存在於600 nm~700 nm之範圍內。
  3. 如請求項1或2之濾光器,其中,上述第一穿透光譜進而滿足下述(vi)之條件, (vi)於波長1000 nm~1800 nm之範圍內顯示50%之穿透率之第二截止波長存在於1150 nm~1500 nm之範圍內。
  4. 如請求項1至3中任一項之濾光器,其中,上述第一穿透光譜進而滿足下述(vii)之條件, (vii)於波長350 nm~450 nm之範圍內顯示50%之穿透率之第三截止波長存在於360 nm~430 nm之範圍內。
  5. 如請求項1至4中任一項之濾光器,其中,於上述第一穿透光譜中,在波長550 nm~800 nm之範圍內顯示50%之穿透率之第一截止波長與在波長1000 nm~1800 nm之範圍內顯示50%之穿透率之第二截止波長之差的絕對值為600 nm以上且800 nm以下。
  6. 如請求項1至5中任一項之濾光器,其中,於上述第一穿透光譜中,在波長550 nm~800 nm之範圍內顯示50%之穿透率之第一截止波長與在波長350 nm~450 nm之範圍內顯示50%之穿透率之第三截止波長之差的絕對值為200 nm以上且270 nm以下。
  7. 如請求項1至6中任一項之濾光器,其中,上述第一穿透光譜進而滿足下述(viii)之條件, (viii)波長1000 nm~1100 nm之範圍內之穿透率之最大值為10%以下。
  8. 如請求項1至7中任一項之濾光器,其中,上述第一穿透光譜進而滿足下述(ix)之條件, (ix)波長1700 nm~1900 nm之範圍內之穿透率之最小值為60%以上。
  9. 如請求項1至8中任一項之濾光器,其中,於上述第一穿透光譜中,波長1550 nm處之穿透率為70%以上。
  10. 如請求項1至9中任一項之濾光器,其中,上述第一穿透光譜進而滿足下述(x)之條件, (x)波長1900 nm~2200 nm之範圍內之穿透率之最小值為60%以上。
  11. 如請求項1至10中任一項之濾光器,其具備光吸收層,該光吸收層具有光吸收劑且具有100 μm~400 μm之厚度。
  12. 如請求項2之濾光器,其於70℃具有第二穿透光譜,該第二穿透光譜具有於波長550 nm~800 nm之範圍內顯示50%之穿透率之第四截止波長, 上述第四截止波長與上述第一截止波長之差之絕對值為15 nm以下。
  13. 如請求項3之濾光器,其於70℃具有第二穿透光譜,該第二穿透光譜具有於波長1000 nm~1800 nm之範圍內顯示50%之穿透率之第五截止波長, 上述第五截止波長與上述第二截止波長之差之絕對值為30 nm以下。
  14. 如請求項4之濾光器,其於70℃具有第二穿透光譜,該第二穿透光譜具有於波長350 nm~450 nm之範圍內顯示50%之穿透率之第六截止波長, 上述第六截止波長與上述第三截止波長之差之絕對值為15 nm以下。
  15. 一種光學裝置,其具備: 相機模組,其獲取藉由對象物之可見光所識別之圖像資訊、 TOF感測器,其獲取與對象物之測距資訊、及 請求項1至14中任一項之濾光器,其配置於上述相機模組及上述TOF感測器之前面。
  16. 如請求項15之光學裝置,其中,上述TOF感測器包含:照射器,其向對象物照射處於波長1500 nm~2200 nm之範圍內之波長之光、受光器,其接受來自對象物之處於波長1500 nm~2200 nm之範圍內之波長之反射光、及控制部。
  17. 一種光吸收性組成物,其含有: 銅錯合物、 分子內具有2個烷氧基之第一含烷氧基之化合物及上述第一含烷氧基之化合物之水解物中之至少一者、及 分子內具有3個或4個烷氧基之第二含烷氧基之化合物及上述第二含烷氧基之化合物之水解物中之至少一者。
  18. 如請求項17之光吸收性組成物,其中,將上述第一含烷氧基之化合物及上述第一含烷氧基之化合物之上述水解物換算為完全水解縮合物所得之含量,相對於將具有烷氧基之化合物及上述化合物之水解物換算為完全水解縮合物所得之含量的比以質量基準計,為0.01~0.6。
  19. 如請求項17或18之光吸收性組成物,其中,硬化性樹脂之固形物成分量相對於將具有烷氧基之化合物及上述化合物之水解物換算為完全水解縮合物所得之含量的比以質量基準計,為0~2。
  20. 如請求項17~19中任一項之光吸收性組成物,其中,將上述第一含烷氧基之化合物及上述第一含烷氧基之化合物之上述水解物換算為完全水解縮合物所得之含量,相對於將具有烷氧基之化合物及上述化合物之水解物換算為完全水解縮合物所得之含量與硬化性樹脂之固形物成分量之和的比以質量基準計,為0.01~0.4。
  21. 如請求項17至20中任一項之光吸收性組成物,其中,具有芳基之膦酸之含量Cf及具有烷基之膦酸之含量Cs以質量基準計,滿足Cf:Cs=50:50~100:0之關係。
TW110135814A 2020-10-13 2021-09-27 濾光器、光學裝置、及光吸收性組成物 TW202232147A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020172611 2020-10-13
JPJP2020-172611 2020-10-13

Publications (1)

Publication Number Publication Date
TW202232147A true TW202232147A (zh) 2022-08-16

Family

ID=81207903

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110135814A TW202232147A (zh) 2020-10-13 2021-09-27 濾光器、光學裝置、及光吸收性組成物

Country Status (6)

Country Link
US (1) US20230400615A1 (zh)
JP (1) JPWO2022080105A1 (zh)
KR (1) KR20230084169A (zh)
CN (1) CN116325164A (zh)
TW (1) TW202232147A (zh)
WO (1) WO2022080105A1 (zh)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984920A (ja) * 1982-11-05 1984-05-16 Fujitsu Ltd ポリジハイドロジエンシロキサンの製法
JPH0339576Y2 (zh) 1985-08-13 1991-08-20
JPS6339755U (zh) 1986-08-26 1988-03-15
FR2770230B1 (fr) * 1997-10-27 1999-12-03 Centre Nat Etd Spatiales Reflecteurs solaires
JP5331361B2 (ja) * 2008-03-31 2013-10-30 株式会社クレハ 銅塩組成物、並びに、これを用いた樹脂組成物、赤外吸収膜及び光学部材
KR101927011B1 (ko) 2015-07-09 2018-12-07 니혼 이타가라스 가부시키가이샤 적외선 컷 필터, 촬상 장치, 및 적외선 컷 필터의 제조 방법
US11668800B2 (en) * 2017-08-07 2023-06-06 Agc Glass Europe Protective housing for a sensing device
CN112654901B (zh) * 2018-09-11 2022-11-08 日本板硝子株式会社 滤光片用液态组合物及滤光片
JP6639764B1 (ja) 2018-09-11 2020-02-05 日本板硝子株式会社 光学フィルタ用液状組成物及び光学フィルタ

Also Published As

Publication number Publication date
CN116325164A (zh) 2023-06-23
WO2022080105A1 (ja) 2022-04-21
JPWO2022080105A1 (zh) 2022-04-21
KR20230084169A (ko) 2023-06-12
US20230400615A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
TWI741195B (zh) 濾光器
TWI739011B (zh) 濾光器、相機模組及附相機之資訊終端
TWI651400B (zh) 紅外線吸收性組成物、截斷紅外線之濾光器、及攝影光學系統
TWI771532B (zh) 濾光器及攝像裝置
TWI724265B (zh) 液狀組成物和吸收層
JP2020112826A (ja) 光学フィルタ
KR102465624B1 (ko) 광흡수성 조성물 및 광학 필터
TW202232147A (zh) 濾光器、光學裝置、及光吸收性組成物
JP6368444B1 (ja) 光学フィルタの製造方法
JP6368417B1 (ja) 光学フィルタ
JPWO2020054400A1 (ja) 光学フィルタ用液状組成物及び光学フィルタ
WO2024048254A1 (ja) 光吸収性組成物、光吸収体、光学フィルタ、環境光センサ、撮像装置、光吸収性組成物の製造方法、及び光吸収体の製造方法
JP2019028420A (ja) 光学フィルタ
JP6634540B1 (ja) 光学フィルタ、カメラモジュール、及び情報端末
WO2023248738A1 (ja) 光吸収体、光吸収性化合物、光吸収性化合物の分散液、光吸収性組成物、光学フィルタ、光電変換素子、環境光センサ、及び撮像装置
JP6634541B1 (ja) 光学フィルタ、カメラモジュール、及び情報端末
TW202417898A (zh) 光吸收性組成物、光吸收體、濾光器、環境光感測器、攝像裝置、光吸收性組成物之製造方法、及光吸收體之製造方法
TW202419904A (zh) 光吸收體、光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、濾光器、光電轉換元件、環境光感測器、及攝像裝置
JP2019028427A (ja) 光学フィルタ及びカメラ付き情報端末