TW202419904A - 光吸收體、光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、濾光器、光電轉換元件、環境光感測器、及攝像裝置 - Google Patents

光吸收體、光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、濾光器、光電轉換元件、環境光感測器、及攝像裝置 Download PDF

Info

Publication number
TW202419904A
TW202419904A TW112120845A TW112120845A TW202419904A TW 202419904 A TW202419904 A TW 202419904A TW 112120845 A TW112120845 A TW 112120845A TW 112120845 A TW112120845 A TW 112120845A TW 202419904 A TW202419904 A TW 202419904A
Authority
TW
Taiwan
Prior art keywords
light
phosphonic acid
content
wavelength
light absorber
Prior art date
Application number
TW112120845A
Other languages
English (en)
Inventor
久保雄一郎
Original Assignee
日商日本板硝子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本板硝子股份有限公司 filed Critical 日商日本板硝子股份有限公司
Publication of TW202419904A publication Critical patent/TW202419904A/zh

Links

Abstract

本發明之光吸收體10於0°之入射角度,具有滿足下述(I)、(II)、(III)、(IV)、及(V)之條件之透射光譜。光吸收體10具有未達0.20%之霧度。(I)平均值T A 0deg(460-600)為75%以上。(II)短波長側截止波長λ H 0deg(S)為390 nm~450 nm。(III)長波長側截止波長λ H 0deg(L)為600 nm~680 nm。(IV)平均值T A 0deg(300-380)為1.2%以下。(V)平均值T A 0deg(750-1000)為1.2%以下。

Description

光吸收體、光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、濾光器、光電轉換元件、環境光感測器、及攝像裝置
本發明係關於一種光吸收體、光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、濾光器、光電轉換元件、環境光感測器、及攝像裝置。
於使用CCD(Charge Coupled Device)或CMOS(Complementary Metal Oxide Semiconductor)等固體攝像元件之攝像裝置或環境光感測器中,各種濾光器係配置於固體攝像元件之前面。例如,於攝像裝置中,為了獲得具有良好之顏色再現性之圖像而可使用濾光器。於環境光感測器中,為了調整環境光之感測而可使用濾光器。
通常,固體攝像元件於自紫外線區域至紅外線區域之較寬之波長範圍內具有感度。另一方面,人之視感度僅存在於波長約380 nm~780 nm、所謂可見光之區域中。因此,為了使攝像裝置中之固體攝像元件之分光感度接近人之視感度,已知有於固體攝像元件之前面配置遮蔽紅外線及紫外線之一部分光之濾光器的技術。
其中,含有光吸收劑之膜或具有層之光吸收型濾光器受到關注。具備含有光吸收劑之膜之濾光器的透射率特性由於不易受到入射角之影響,故例如於攝像裝置中光傾斜入射至濾光器中之情形時,亦可獲得色調之變化較少,於面內色不均較少,且再現性優良之良好之圖像。並且,由於光吸收型濾光器不使用光反射膜,故可抑制以光反射所引起之多重反射為原因之重影或眩光之產生,容易獲得良好之圖像。並且,具備含有光吸收劑之膜之濾光器就攝像裝置的小型化及薄型化之方面而言亦有利。
例如,專利文獻1中記載有包含UV-IR吸收層之濾光器。該UV-IR吸收層包含UV-IR吸收劑,其由膦酸與銅離子形成,且能夠吸收紫外線及紅外線。進而記載有UV-IR吸收層之霧度(霧值)為5%以下。UV-IR吸收層之霧度為5%以下。例如,藉由將此種包含UV-IR吸收層之濾光器組入至攝像裝置中,可獲得高畫質之圖像。 [先前技術文獻] [專利文獻]
專利文獻1:日本專利第6606626號公報
[發明所欲解決之課題]
專利文獻1中所記載之技術從濾光器之高性能化之觀點考慮有再研究之餘地。因此,本發明提供一種從濾光器之高性能化之觀點考慮較有利之光吸收體。 [解決課題之技術手段]
本發明提供一種光吸收體,其於0°之入射角度,具有滿足下述(I)、(II)、(III)、(IV)、及(V)之條件之透射光譜,且 具有未達0.20%之霧度。 (I)波長460 nm~600 nm之範圍中之透射率之平均值為75%以上。 (II)於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長為390 nm~450 nm。 (III)於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長為600 nm~680 nm。 (IV)波長300 nm~380 nm之範圍中之透射率之平均值為1.2%以下。 (V)波長750 nm~1100 nm之範圍中之透射率之平均值為1.2%以下。
又,本發明提供一種光吸收性化合物,其包含: 第一光吸收性化合物,其包含銅成分、及下述式(a)所表示之第一膦酸;及 第二光吸收性化合物,其包含銅成分、及下述式(b)所表示之第二膦酸;且 下述式(a)中,R 1為烷基或烷基中之至少1個氫原子被取代為鹵素原子之鹵化烷基, 下述式(b)中,R 2為芳基或芳基中之至少1個氫原子被取代為鹵素原子、硝基、或羥基之改質芳基, 上述光吸收性化合物之分散液之透射光譜滿足下述(i)、(ii)、(iii)、及(iv)之條件。 (i)波長460 nm~600 nm之範圍中之透射率之平均值為85%以上。 (ii)於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長為380 nm~420 nm。 (iii)於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長為600 nm~650 nm。 (iv)波長725 nm~1000 nm之範圍中之透射率之平均值為5%~20%。
又,本發明提供一種光吸收性化合物之分散液,其特徵在於包含光吸收性化合物、 溶劑、及 烷氧基矽烷或烷氧基矽烷之水解物,且 上述光吸收性化合物包含:第一光吸收性化合物,其包含銅成分、及下述式(a)所表示之第一膦酸;及第二光吸收性化合物,其包含銅成分、及下述式(b)所表示之第二膦酸; 下述式(a)中,R 1為烷基或烷基中之至少1個氫原子被取代為鹵素原子之鹵化烷基, 下述式(b)中,R 2為芳基或芳基中之至少1個氫原子被取代為鹵素原子、硝基、或羥基之改質芳基。
又,本發明提供一種光吸收性組成物,其具備: 第一光吸收性化合物,其包含銅成分、及下述式(a)所表示之第一膦酸; 第二光吸收性化合物,其包含銅成分、及下述式(b)所表示之第二膦酸; 溶劑;及 黏合劑;且 下述式(a)中,R 1為烷基或烷基中之至少1個氫原子被取代為鹵素原子之鹵化烷基, 下述式(b)中,R 2為芳基或芳基中之至少1個氫原子被取代為鹵素原子、硝基、或羥基之改質芳基, 上述第二膦酸之含量相對於上述第一膦酸之含量之比以物質量基準計為1.8~9。
又,本發明提供一種濾光器,其具備上述光吸收體。
又,本發明提供一種光電轉換元件,其具備光受光面、及上述光吸收體,且 上述光受光面及上述光吸收體係依序配置。
又,本發明提供一種環境光感測器,其具備上述濾光器。
又,本發明提供一種攝像裝置,其具備上述濾光器。 [發明之效果]
上述光吸收體從濾光器之高性能化之觀點考慮較有利。
因搭載有相機模組之智慧型手機等資訊終端之世界性之普及,對利用相機獲取之圖像之品質或性能之要求日益提高。因此,對組入至攝像裝置或相機模組中之濾光器之高性能化之要求亦較強。尤其是於遮蔽紫外線或紅外線之濾光器中,對於其透射光譜之規格亦變得較嚴格且較詳細,此外,其霧度(霧值)之最小化之要求亦較高。
專利文獻1中記載有用以形成UV-IR吸收層之組成物中所含之銅離子之含量,亦記載有作為UV-IR吸收層之前驅物之液狀組成物之黏度的較佳範圍。另一方面,專利文獻1中所記載之UV-IR吸收層之霧度值為至少0.2%。若可提供遮蔽紫外線或紅外線,並且可實現更小之霧度之光吸收體,例如可進一步提高濾光器之性能。本發明人等反覆進行努力研究,結果終於發現如下光吸收體,其可同時實現更小之霧度、及可遮蔽紫外線或紅外線之特定之透射特性。
以下,對本發明之實施方式進行說明。再者,以下之說明與本發明之例示相關,本發明並不限定於以下之實施方式。
圖1A係表示濾光器1a之剖視圖。如圖1A所示,濾光器1a具備光吸收體10。光吸收體10於0°之入射角度,具有滿足下述(I)、(II)、(III)、(IV)、及(V)之條件之透射光譜。並且,光吸收體10具有未達0.20%之霧度。 (I)波長460 nm~600 nm之範圍中之透射率之平均值T A 0deg(460-600)為75%以上。 (II)於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長λ H 0deg(S)為390 nm~450 nm。 (III)於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長λ H 0deg(L)為600 nm~680 nm。 (IV)波長300 nm~380 nm之範圍中之透射率之平均值T A 0deg(300-380)為1.2%以下。 (V)波長750 nm~1100 nm之範圍中之透射率之平均值T A 0deg(750-1000)為1.2%以下。
於光吸收體10中,藉由滿足(I)、(II)、及(III)之條件,可見光之區域中之透射率容易變高,尤其是藉由滿足(III)之條件,光吸收體之紅色頻帶中之透射率容易變高。並且,藉由滿足(V)之條件,光吸收體10可良好地遮蔽紅外線。
如圖1A所示,光吸收體10可單獨作為濾光器1a流通。光吸收體10亦可為吸收光之一部分之膜或薄膜之形態。又,亦可為構成亦一併具有其他功能之功能性膜之一部分層之形態。濾光器1a亦可構成為圖1B所示之濾光器1b。濾光器1b除了光吸收體10以外,還具備基材20。光吸收體10例如能夠以覆蓋基材20之面之至少一部分之方式形成。基材20例如包含樹脂、玻璃、及金屬。基材20之一例為康寧公司之D263T eco。具有3 mm之厚度之D263T eco於0°之入射角度,具有圖4所示之透射光譜。圖4所示之透射光譜中,波長360 nm~2300 nm之範圍內之透射率為90%以上,335 nm~2500 nm之範圍中之透射率為85%以上。
透射光譜例如係藉由如下方法確定:於特定之入射角度(IA)下,使波長300 nm~1200 nm之光入射至特定之對象物,並利用分光光度計等測定該透射之光。反射光譜係藉由如下方法確定:於特定之入射角度,使波長300 nm~1200 nm之光入射至特定之對象物,並利用分光光度計等測定該反射之光。
光吸收體10可單獨滿足與透射光譜相關之要件,具備基材及光吸收體10之濾光器亦可滿足與透射光譜相關之要件。換言之,具備基材及光吸收體10之濾光器可於0°之入射角度滿足上述(I)、(II)、(III)、(IV)、及(V)之條件,對光吸收體10亦可滿足以下所說明之透射光譜之要件。
再者,於本說明書中,只要未特別指定,則可見光區域或可見光之區域為波長380~780 nm之範圍,且紅色頻帶被定義為波長580~780 nm之範圍之頻帶或該範圍內之一部分頻帶。又,只要未特別指定,則紅外線被定義為屬於波長大於作為可見光區域之上限之780 nm、且不超過波長1400 nm之範圍內之光(電磁波),與近紅外線(NIR)相對應。紫外線被定義為屬於波長280 nm至作為可見光區域之下限之380 nm之範圍內的光(電磁波),與UV-A及UV-B之一部分相對應。
當然要求組入至環境光感測器及攝像裝置等中之濾光器具有適當之透射光譜及反射光譜。另一方面,例如,即便於可見光區域之透射率較高之情形時,若霧度(霧值)較大,則入射至濾光器或光吸收體之光之一部分亦會於其內部散射或擴散,有可能產生白濁及不透明。因此,有可能對形成清晰之像造成影響。另一方面,由於光吸收體10滿足上述(I)、(II)、(III)、(IV)、及(V)之條件,並且具有未達0.20%之霧度,故具有所需之透射光譜,並且濾光器之透明性容易變高。因此,光吸收體10從提高利用攝像裝置獲取之圖像之畫質之觀點考慮較適宜。並且,光吸收體10於環境光感測器中容易提高環境光之感測精度。
光吸收體10之霧度值可單獨對光吸收體10進行測定而確定,亦可對在玻璃及樹脂等基材上設置有光吸收體10之濾光器進行測定而確定。
光吸收體10之霧度可為0.19%以下,理想的是0.18%以下,更理想為0.15%以下。
關於上述(I)之條件,平均值T A 0deg(460-600)理想的是80%以上,更理想為85%以上。進而,於0°之入射角度之波長300 nm~1100 nm之範圍內的光吸收體10之透射光譜中,與透射率之最大值相對應之波長可存在於500 nm~600 nm之範圍內。於該情形時,於人類之視感度光譜(視感度曲線)中,視感度最高之區域位於500 nm~600 nm,故可期待獲取印象上更明亮之像。
關於上述(II)之條件,短波長側截止波長λ H 0deg(S)理想的是400 nm~450 nm,可為400 nm~440 nm,可為400 nm~430 nm,亦可為400 nm~420 nm。
關於上述(III)之條件,長波長側截止波長λ H 0deg(L)理想的是610 nm~680 nm,更理想為620~680 nm。長波長側截止波長λ H 0deg(L)可為620 nm~670 nm,亦可為620 nm~660 nm。
關於上述(IV)之條件,平均值T A 0deg(300-380)理想的是1%以下,更理想為0.5%以下。
關於上述(V)之條件,平均值T A 0deg(750-1000)理想的是1%以下,更理想為0.5%以下。
光吸收體10於5°之入射角度,例如可具有滿足下述(VI)及(VII)之條件之反射光譜。 (VI)波長300 nm~400 nm之範圍內之反射率之最大值R M 5deg(300-400)為7.5%以下。 (VII)波長700 nm~1200 nm之範圍內之反射率之最大值R M 5deg(700-1200)為7.5%以下。
藉由滿足上述(VI)及(VII)之條件,於將具備光吸收體10之濾光器組入至攝像裝置中時,可抑制自濾光器反射之光之一部分於構成攝像裝置之殼體、框、或光圈及透鏡等光學系統之表面反射,或者該反射光之一部分將光圈或其形狀投影,並且入射至攝像元件中。因此,能夠抑制重影及眩光等無助於像形成之有害之光入射至攝像元件中。又,該特性於發揮遮蔽一部分光之作用之濾光器中,不使用由介電體多層膜等形成之光反射膜,僅利用光吸收體10之作用及功能達成其目的。
關於上述(VI)之條件,最大值R M 5deg(300-400)理想的是7.0%以下,更理想為6.5%以下,進而理想的是6%以下。
關於上述(VII)之條件,最大值R M 5deg(700-1200)理想的是7.0%以下,更理想為6.5%以下,進而理想的是6%以下。
光吸收體10例如於0°、40°、50°、60°、及70°之入射角度,可具有滿足下述(1-i)、(1-ii)、(1-iii)、及(1-iv)之條件之透射光譜。於下述條件下,λ H 40deg(S)、λ H 50deg(S)、λ H 60deg(S)、及λ H 70deg(S)分別為於40°、50°、60°、及70°之入射角度,於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長。 (1-i)λ H 40deg(S)-λ H 0deg(S)≦2.5 nm (1-ii)λ H 50deg(S)-λ H 0deg(S)≦4.5 nm (1-iii)λ H 60deg(S)-λ H 0deg(S)≦7.5 nm (1-iv)λ H 70deg(S)-λ H 0deg(S)≦20 nm
光吸收體10例如於0°、40°、50°、60°、及70°之入射角度,可具有滿足下述(2-i)、(2-ii)、(2-iii)、及(2-iv)之條件之透射光譜。於下述條件下,λ H 40deg(L)、λ H 50deg(L)、λ H 60deg(L)、及λ H 70deg(L)分別為於40°、50°、60°、及70°之入射角度,於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長。 (2-i)λ H 0deg(L)-λ H 40deg(L)≦4 nm (2-ii)λ H 0deg(L)-λ H 50deg(L)≦7 nm (2-iii)λ H 0deg(L)-λ H 60deg(L)≦12 nm (2-iv)λ H 0deg(L)-λ H 70deg(L)≦30 nm
藉由滿足(1-i)~(1-iv)及(2-i)~(2-iv)之條件,於將包含光吸收體10之濾光器組入至攝像裝置中時,於利用以較小之入射角度入射至濾光器之光有助於形成像之區域、與利用以相對較大之入射角度入射至濾光器之光有助於形成像之區域間,不易產生色調之不同。具體而言,於所獲取之圖像之中央部與周邊部不易產生色調之不同,於利用具有廣角系透鏡或超廣角系透鏡之攝像裝置獲取之圖像中亦不易產生色調之不同等。
光吸收體10典型地含有特定之光吸收劑。只要光吸收體中所含之光吸收劑於0°之入射角度之光吸收體10的透射光譜滿足上述(I)~(V)之條件,且光吸收體10具有未達0.20%之霧度,則並不限定於特定物質。
光吸收體10例如可藉由使液狀光吸收性組成物硬化而製造。光吸收體10可為薄膜,亦可為形成於玻璃或樹脂等特定之對象物上之膜,且能夠以固體之狀態存在。
光吸收性組成物包含光吸收性化合物、及黏合劑。光吸收性組成物之製備亦可使用光吸收性化合物之分散液。於光吸收體10中,帶來特定之透射光譜、反射光譜、或較低之霧度值之化合物或其前驅物亦可當然地包含於分散液中,該分散液分散有作為光吸收體10之前驅物之光吸收性組成物、及光吸收性組成物中所含之光吸收性化合物。以下,亦將光吸收性化合物之分散液稱為光吸收性分散液。光吸收性分散液與光吸收性組成物同樣地包含光吸收性化合物,但於不含藉由加熱或照射光等電磁波而硬化之化合物之方面不同。樹脂硬化係指藉由加熱、放置、及照射光等電磁波,官能基之一部分產生反應而聚合,形成高分子結構並硬化,且無法復原。
光吸收性組成物例如包含光吸收性化合物、溶劑、及黏合劑。光吸收性組成物亦可視需要進而包含分散劑。分散劑有助於溶劑中之光吸收性化合物之分散。光吸收性組成物作為光吸收體之前驅物,可具有藉由加熱或照射電磁波而硬化之硬化性。又,光吸收性組成物於硬化而成為光吸收體時,只要滿足上述(I)~(V)之要件,則並不限定於特定之組成物。該光吸收體之霧度理想的是未達0.20%。
光吸收性化合物例如可為包含膦酸與銅成分之化合物、包含磷酸酯與銅成分之化合物、包含磷酸與銅成分之化合物、M nCu yPO 4-z(M為Cu以外之金屬元素)所表示之磷酸-銅錯合物、包含磺酸與銅成分之化合物、包含鎢之氧化物之化合物、ITO及ATO等金屬氧化物、或已知之有機色素系化合物。有機色素系化合物之例為二亞銨系化合物、花青系化合物、方酸鎓系化合物、酞菁系化合物、及吡咯并吡咯系化合物。例如,光吸收體10包含含有膦酸與銅成分之光吸收性化合物作為光吸收劑,且亦可包含吸收紫外線之至少一部分之紫外線吸收劑。
其中,於紅外線區域中具有寬闊之吸收帶之包含膦酸與銅成分之化合物、包含磷酸酯與銅成分之化合物、包含磷酸與銅成分之化合物、包含磺酸與銅成分之化合物、及各化合物以錯合物之形式形成者作為光吸收劑較有利。其原因在於,可僅利用光吸收體10之光吸收之作用實現特定之波長範圍之光的遮蔽。於光吸收體10中,該等化合物可單獨使用,亦可混合數種化合物使用。又,膦酸、磷酸酯、及磷酸係包含磷(P)之氧化物,且該等亦可共存。例如,於光吸收體10中,可存在包含膦酸、磷酸酯、及銅成分之化合物。即便於獲得包含膦酸與銅成分之錯合物作為光吸收劑之情形時,亦可添加磷酸酯作為分散劑。於該情形時,包含膦酸、磷酸酯、及銅成分之化合物亦可包含於光吸收體10中。
光吸收性化合物中之膦酸只要於0°之入射角度之光吸收體10的透射光譜滿足(I)~(V)之條件,且光吸收體10具有未達0.20%之霧度,則並不限定於特定之膦酸。該膦酸例如包含下述式(a)所表示之第一膦酸。式(a)中,R 1為烷基或烷基中之至少1個氫原子被取代為鹵素原子之鹵化烷基。於該情形時,光吸收體10之透射頻帶容易擴至波長700 nm附近,光吸收體10容易具有所需之透射率特性。將具有該等基之膦酸總稱為烷基膦酸。光吸收性化合物中之膦酸例如為下述式(b)所表示之第二膦酸。式(b)中,R 2為芳基或芳基中之至少1個氫原子被取代為鹵素原子、硝基、或羥基之改質芳基。藉此,濾光器1a進而更容易具有所需之透射率特性。將具有該等基之膦酸總稱為芳基膦酸。改質芳基例如為鹵化苯基。
第一膦酸例如為甲基膦酸、乙基膦酸、正(n-)丙基膦酸、異丙基膦酸、正(n-)丁基膦酸、異丁基膦酸、第二丁基膦酸、第三丁基膦酸、或溴甲基膦酸。
第二膦酸例如為苯基膦酸、溴苯基膦酸、苄基膦酸、氟苯基膦酸、碘苯基膦酸、硝基苯基膦酸、羥基苯基膦酸、甲苯基膦酸、二甲苯基膦酸、萘基膦酸。
光吸收體10、光吸收性組成物、及光吸收性分散液亦可包含選自上述膦酸之1種或數種膦酸。
光吸收體10、光吸收性組成物、及光吸收性分散液中所含之膦酸可具備第一膦酸、及第二膦酸。於該情形時,膦酸可包含1種或2種以上之第一膦酸,亦可包含1種或2種以上之第二膦酸。於光吸收體10、光吸收性組成物、及光吸收性分散液中,亦可存在第一光吸收性化合物及第二光吸收性化合物。第一光吸收性化合物包含銅成分、及第一膦酸。第二光吸收性化合物包含銅成分、及第二膦酸。
於光吸收體10、光吸收性組成物、及光吸收性分散液中,第二膦酸之含量相對於第一膦酸之含量之比α ar/ak並不限定於特定值。比α ar/ak例如以物質量基準計為1.8~9。於光吸收性組成物或光吸收性分散液之製備中,若一部分化合物凝集成塊並沈澱,則光吸收體之霧度增高,該光吸收體難以適於攝像裝置。另一方面,藉由使比α ar/ak為9以下,於光吸收性組成物或光吸收性分散液之製備中,能夠防止一部分化合物凝集成塊並沈澱。因此,光吸收體10之霧度容易成為未達0.20%。並且,藉由使比α ar/ak為1.8以上,能夠防止短波長側截止波長變得短於特定之範圍、及長波長側截止波長變得長於特定之範圍。其結果為,光吸收體10中之可見光區域之透射率容易變高。
藉由使比α ar/ak為1.8以上,於光吸收體或濾光器之透射光譜中,於波長420 nm~480 nm之範圍中,容易防止於透射光譜之曲線上觀察到至少一個段。於波長420 nm~480 nm之範圍中,若透射率相對於波長之變化率dT/dλ[%/nm]之最大值dT/dλ max與最小值dT/dλ min的差為0.2[%/nm]以上、或透射率相對於波長之變化率之最小值dT/dλ min之值為0.2[%/nm]以下,則此種段可能顯著地出現。於dT/dλ中,T為透射率[%],λ為波長[nm]。此種段之出現有可能對將光吸收體或濾光器應用於攝像裝置或環境光感測器產生不利之影響。
比α ar/ak理想的是2以上,更理想為3以上,進而理想的是4以上,尤其理想為5.5以上,特別理想為6.0以上。比α ar/ak理想的是8.5以下,更理想為8.0以下,進而理想的是7.5以下。
於光吸收體10、光吸收性組成物、及光吸收性分散液中,銅成分係包括銅離子、銅錯合物、及含有銅之化合物之概念。銅成分可具有對於屬於近紅外線區域之光之一部分的較佳之吸收特性、及跨及波長450 nm~680 nm之可見光區域中所含之波長範圍中之光的較高之透射性。具體而言,藉由二價銅離子之d軌道中之電子的躍遷,選擇性地吸收與該能量相對應之屬於近紅外線區域之波長之光,藉此發揮出優異之近紅外線吸收特性。尤其以銅鹽之形態供給包含二價銅離子之銅成分並與膦酸混合,膦酸可配位於包含銅離子之銅成分而形成銅錯合物(銅鹽)。
供於膦酸之配位之銅成分之供給源並不限定於該等,亦可為乙酸銅、苯甲酸銅、焦磷酸銅、及硬脂酸銅等有機酸之無水銅鹽或水合物、或該等之混合體。該等銅鹽可單獨使用,亦可使用數種銅鹽或數種銅鹽之混合物。
於光吸收體10、光吸收性組成物、及光吸收性分散液中,膦酸之含量相對於銅成分之含量之比α PC並不限定於特定值。比α PC例如以物質量基準計為0.3~3。於包含第一膦酸及第二膦酸兩者之情形時,比α PC可為第一膦酸之含量及第二膦酸之含量的和相對於銅成分之含量之比。若比α PC處於0.3~3之範圍內,則各元素或基容易恰好地構成光吸收劑。藉此,於光吸收體10、光吸收性組成物、及光吸收性分散液中,不易產生氧化,容易發揮出良好之耐候性。
比α PC以物質量基準計,理想的是0.4~2,更理想為0.6~1.2。
於光吸收體10、光吸收性組成物、及光吸收性分散液中,於包含第一膦酸及第二膦酸兩者之情形時,比α ak/c及比α ar/c分別不限定於特定值。比α ak/c為第一膦酸之含量相對於銅成分之含量之比,比α ar/c為第二膦酸之含量相對於銅成分之含量之比。比α ak/c例如以物質量基準計為0.05~0.8。比α ak/c理想的是0.1~0.4,更理想為0.1~0.3。比α ar/c例如以物質量基準計為0.2~1.5,理想的是0.4~1.2,更理想為0.5~1。
光吸收體10、光吸收性組成物、及光吸收性分散液可進而含有磷酸酯化合物。利用磷酸酯之作用,於光吸收體10、光吸收性組成物、及光吸收性分散液中,光吸收性化合物(光吸收劑)容易適當地分散。磷酸酯可作為光吸收性化合物之分散劑發揮功能,其一部分可與金屬成分反應而形成光吸收性化合物。例如,磷酸酯可配位於光吸收性化合物,或者與該化合物之另一部分反應,一部分亦可與銅成分形成錯合物。0°之入射角度之光吸收體10之透射光譜只要滿足(I)~(V)之條件,則包含磷酸酯及銅成分之化合物可吸收一部分波長之光。只要至少包含膦酸及銅成分之光吸收性化合物適宜地分散於作為光吸收體之前驅物之光吸收性組成物或光吸收性分散液中,則可實質上不含磷酸酯,亦可完全不含。例如於在光吸收性組成物中包含下述烷氧基矽烷單體作為分散劑之情形時,能夠減少磷酸酯之添加量。
磷酸酯並不限定於特定之磷酸酯或其化合物。磷酸酯例如具有聚氧烷基。作為此種磷酸酯,可列舉:Plysurf A208N:聚氧乙烯烷基(C12、C13)醚磷酸酯、Plysurf A208F:聚氧乙烯烷基(C8)醚磷酸酯、Plysurf A208B:聚氧乙烯月桂醚磷酸酯、Plysurf A219B:聚氧乙烯月桂醚磷酸酯、Plysurf AL:聚氧乙烯苯乙烯化苯醚磷酸酯、Plysurf A212C:聚氧乙烯十三烷基醚磷酸酯、或Plysurf A215C:聚氧乙烯十三烷基醚磷酸酯。該等均為第一工業製藥公司製造之製品。並且,作為磷酸酯,可列舉:NIKKOL DDP-2:聚氧乙烯烷基醚磷酸酯、NIKKOL DDP-4:聚氧乙烯烷基醚磷酸酯、或NIKKOL DDP-6:聚氧乙烯烷基醚磷酸酯。該等均為Nikko Chemicals公司製造之製品。該等磷酸酯化合物可單獨使用或組合使用數種。
於光吸收體10、光吸收性組成物、及光吸收性分散液中,膦酸之含量相對於磷酸酯之含量之比β p/es並不限定於特定值。比β p/es例如以質量基準計為1~3。藉此,即便光吸收體10與水蒸氣或濕氣接觸,磷酸酯之水解亦得以抑制,光吸收體10容易具有良好之耐候性。光吸收體10中之膦酸之含量相對於磷酸酯之含量的比理想的是1.2~3.8,更理想為1.5~2.5。
光吸收體10、光吸收性組成物、及光吸收性分散液例如可進而含有烷氧基矽烷或烷氧基矽烷之水解物。烷氧基矽烷包含:烷氧基矽烷之單體、烷氧基矽烷之單體之一部分水解而成者、或烷氧基矽烷之水解物之至少一部分聚合而呈現二聚物或聚合物之形態者。藉由存在烷氧基矽烷,能夠防止光吸收劑之粒子彼此凝集,故即便減少磷酸酯之含量,光吸收劑亦容易良好地分散於光吸收性組成物或其硬化而成之光吸收體中。又,例如於使用光吸收性組成物製造光吸收體或濾光器之情形時,藉由以烷氧基矽烷單體之水解反應及縮聚反應充分地產生之方式進行處理,形成矽氧烷鍵(-Si-O-Si-),光吸收體具有良好之耐濕性。並且,光吸收體具有良好之耐熱性。其原因在於,矽氧烷鍵與-C-C-鍵及-C-O-鍵等鍵相比,鍵結能較高,化學性較穩定,耐熱性及耐濕性優異。
於光吸收性組成物包含烷氧基矽烷之情形時,於使光吸收性組成物硬化而製作光吸收體時,可進行暴露於濕度相對較高之氣體環境中一定時間之所謂加濕處理。認為,藉由加濕處理,氣體環境中之水成分促進光吸收性組成物或光吸收體中所含之烷氧基矽烷之水解,而有助於矽氧烷鍵之生成。又,藉由加濕處理,於包含光吸收劑之微粒子不會凝集之狀態下容易形成硬質緻密之光吸收體。
烷氧基矽烷只要可藉由水解反應及縮聚反應,於光吸收體中形成具有矽氧烷鍵之水解縮聚化合物,則並不限定於特定之烷氧基矽烷。烷氧基矽烷例如可為四甲氧基矽烷、四乙氧基矽烷、甲基三甲氧基矽烷、甲基三乙氧基矽烷、二甲基二乙氧基矽烷、二甲基二甲氧基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、3-環氧丙氧基丙基三甲氧基矽烷、3-環氧丙氧基丙基三乙氧基矽烷、或3-環氧丙氧基丙基甲基二乙氧基矽烷等單體,亦可為該等之一部分鍵結而成之二聚物或低聚物等。
光吸收體10及光吸收性組成物中所含之黏合劑亦可包含硬化性樹脂。硬化性樹脂並不限定於特定之樹脂。硬化性樹脂例如能夠使上述包含膦酸與銅成分之光吸收性化合物或其他光吸收性化合物分散或溶解而保持。又,硬化性樹脂理想的是於未硬化或未反應之狀態下為液狀,且至少能夠使上述包含膦酸與銅成分之光吸收性化合物分散或溶解之樹脂。進而,硬化性樹脂理想的是於包含光吸收性化合物,並且樹脂為未硬化之液狀之情形時,可藉由旋轉塗佈法、噴霧塗佈法、浸漬塗佈法、及分注法等方法,塗佈於特定之對象物上,而形成塗膜。形成塗膜之對象物係無論平面及曲面均具有特定之表面之基材。未硬化之液狀樹脂理想的是可藉由加熱、加濕、及照射光等能量、或利用該等之組合之方法而硬化。0°之入射角度之光吸收體10之透射光譜只要滿足(I)~(V)之條件,或者可滿足具有使樹脂硬化而形成之平滑表面及1 mm之厚度之板狀體的透射光譜於波長450 nm~800 nm為90%以上之條件中之任一種。硬化性樹脂之例為環狀聚烯烴系樹脂、環氧系樹脂、聚醯亞胺系樹脂、改質丙烯酸樹脂、聚矽氧樹脂、及聚乙烯醇縮丁醛(PVB)等聚乙烯系樹脂(PVA)。
光吸收體10及光吸收性組成物亦可包含促進硬化性樹脂之硬化之觸媒即硬化觸媒。硬化觸媒可為能夠控制硬化性樹脂之硬化速度、樹脂之硬化反應性、及硬化後之樹脂之硬度等條件之觸媒。
硬化觸媒理想的是包含金屬成分之有機化合物。有機金屬化合物並不限定於特定之化合物。作為有機金屬化合物,亦可使用有機鋁化合物、有機鈦化合物、有機鋯化合物、有機鋅化合物、或有機錫化合物等。
有機鋁化合物並不限定於特定之化合物。作為有機鋁化合物,例如可例示:三乙酸鋁及辛酸鋁等鋁鹽化合物;三甲氧化鋁、三乙氧化鋁、二甲氧化鋁、二乙氧化鋁、三烯丙氧化鋁、二烯丙氧化鋁、及異丙氧化鋁等烷氧化鋁化合物;以及甲氧基雙(乙醯乙酸乙酯)鋁、甲氧基雙(乙醯丙酮)鋁、乙氧基雙(乙醯乙酸乙酯)鋁、乙氧基雙(乙醯丙酮)鋁、異丙氧基雙(乙醯乙酸乙酯)鋁、異丙氧基雙(乙醯乙酸甲酯)鋁、異丙氧基雙(乙醯乙酸第三丁酯)鋁、丁氧基雙(乙醯乙酸乙酯)鋁、二甲氧基(乙醯乙酸乙酯)鋁、二甲氧基(乙醯丙酮)鋁、二乙氧基(乙醯乙酸乙酯)鋁、二乙氧基(乙醯丙酮)鋁、二異丙氧基(乙醯乙酸乙酯)鋁、二異丙氧基(乙醯乙酸甲酯)鋁、三(乙醯乙酸乙酯)鋁、及三(乙醯丙酮)鋁等鋁螯合化合物等。該等可單獨使用或組合使用數種。
有機鈦化合物並不限定於特定之化合物。作為有機鈦化合物,可例示:四乙醯丙酮鈦、二乙醯丙酮二丁氧基鈦、乙醯乙酸乙酯鈦、伸辛基乙醇酸鈦、及乳酸鈦等鈦螯合物類;以及鈦酸四異丙酯、鈦酸四丁酯、鈦酸四甲酯、四(鈦酸2-乙基己酯)、四-2-乙基己氧化鈦、丁氧化鈦二聚物、四正丁氧化鈦、四異丙氧化鈦、及二異丙氧基雙(乙醯乙酸乙酯)鈦等烷氧化鈦類。該等可單獨使用或組合使用數種。
有機鋯化合物並不限定於特定之化合物。作為有機鋯化合物,可例示:四乙醯丙酮酸鋯、二丁氧基雙(乙醯乙酸乙酯)鋯、單丁氧基乙醯丙酮酸雙(乙醯乙酸乙酯)鋯、三丁氧基單乙醯丙酮酸鋯、及四乙醯丙酮酸鋯等鋯螯合物類;以及四正丁氧化鋯及正丙氧化鋯等烷氧化鋯類。該等可單獨使用或組合使用數種。
作為有機鋅化合物,可例示:二甲氧基鋅、二乙氧基鋅、及乙基甲氧基鋅等烷氧化鋅等。該等可單獨使用或組合使用數種。
作為有機錫化合物,可例示:二甲基氧化錫、二乙基氧化錫、二丙基氧化錫、二丁基氧化錫、二戊基氧化錫、二己基氧化錫、二庚基氧化錫、及二辛基氧化錫等烷氧化錫等。該等可單獨使用或組合使用數種。
如上所述,硬化觸媒可進而含有具有金屬成分之烷氧化物、及具有金屬成分之烷氧化物之水解物中之至少1種。將具有金屬成分之烷氧化物及具有金屬成分之烷氧化物之水解物總稱為「金屬烷氧化物化合物」。金屬烷氧化物係由通式M(OR) n(M為金屬元素,n為1以上之整數)表示,係醇之羥基之氫原子被取代為金屬元素M之化合物。金屬烷氧化物藉由水解形成M-OH,進而藉由其他分子與金屬烷氧化物之反應而形成M-O-M鍵。例如,於光吸收性組成物包含硬化性樹脂等化合物,使流動性之光吸收性組成物硬化而形成光吸收體10時,金屬烷氧化物化合物亦可作為促進光吸收性組成物之硬化觸媒而發揮功能者。於藉由加熱處理使光吸收性組成物硬化時,加熱處理之溫度越高,耐熱性等耐環境性越容易提高。另一方面,若加熱處理之溫度較高,則一部分光吸收性化合物或下述紫外線吸收劑之特性有可能降低。若紫外線吸收劑之特性降低,則紫外線吸收劑所吸收之光之波長有可能偏離預定之吸收波長。亦有可能產生紫外線吸收劑之吸收能力之降低或消失。然而,於光吸收體含有金屬烷氧化物化合物之情形時,即便加熱處理之溫度不高,亦可促進光吸收性組成物之硬化。其結果為,光吸收體10容易具有較高之耐環境性。
金屬烷氧化物化合物中所含之金屬成分並不限定於特定成分。其金屬成分之例例如為Al、Ti、Zr、Zn、Sn、及Fe。作為金屬烷氧化物,例如可使用信越化學工業公司製造之作為烷氧化鋁之CAT-AC及DX-9740、Matsumoto Fine Chemical公司製造之作為烷氧化鋁之ORGATIX AL-3001、東京化成公司製造之作為烷氧化鋁之異丙氧化鋁、信越化學工業公司製造之作為烷氧化鈦之D-20、D-25、及DX-175、Matsumoto Fine Chemical公司製造之作為烷氧化鈦之ORGATIX TA-8、TA-21、TA-30、TA-80、及TA-90、信越化學工業公司製造之作為烷氧化鋯之D-15及D-31、以及Matsumoto Fine Chemical公司製造之作為烷氧化鋯之ORGATIX ZA-45及ZA-65。
於光吸收體10及光吸收性組成物中,金屬烷氧化物化合物中所含之銅成分之含量相對於金屬成分之含量的比γ MC並不限定於特定值。比γ MC以質量基準計,例如為1×10 2~7×10 2,理想的是2×10 2~6×10 2,更理想為3×10 2~5×10 2
於光吸收體10及光吸收性組成物中,金屬烷氧化物化合物中所含之磷成分之含量相對於金屬成分之含量的比γ MP並不限定於特定值。比γ MP以質量基準計,例如為0.5×10 2~5×10 2,理想的是1×10 2~4×10 2,更理想為1.5×10 2~3×10 2
光吸收體10及光吸收性組成物亦可包含紫外線吸收劑,其吸收屬於紫外線之一部分光。紫外線吸收劑於0°之入射角度之光吸收體10的透射光譜只要滿足(I)~(V)之條件,則並不限定於特定之化合物。紫外線吸收劑例如為分子內不具有羥基及羰基兩者之化合物,於以結構式表示時,為一分子內不具有羥基及羰基這兩種基之化合物。藉由反應物質或前驅物配位於具有金屬成分之烷氧化物等之分子內之特定位置等,光吸收性組成物之硬化能夠得以促進。例如,若存在如下基,則觸媒之作用有可能被削弱,該基利用供於用於光吸收性組成物之硬化之反應的物質以外之物質而容易進行配位。尤其是羥基及羰基中之任一者均具有較高之供電子性,烷氧化物化合物與具有該等基之紫外線吸收劑反應或配位,該等之一部分形成錯合物,因此紫外線吸收劑中原本所具備之紫外線吸收特性有可能發生變化。然而,於紫外線吸收劑為分子內不具有羥基及羰基這兩種基之化合物之情形時,烷氧化物化合物不易與紫外線吸收劑形成錯合物,容易發揮出紫外線吸收劑原本之紫外線吸收特性。再者,紫外線吸收劑亦可於分子內僅包含羥基及羰基中之任一種基。
紫外線吸收劑理想的是從如下等觀點考慮而選擇:吸收所需之波長範圍之光;對特定之溶劑具有相溶性;於光吸收性組成物、尤其是硬化性樹脂等中良好地分散;及耐環境性優異。紫外線吸收劑之例為二苯甲酮系化合物、苯并***系化合物、水楊酸系化合物、及三系化合物。例如,作為紫外線吸收劑,可使用TinuvinPS、Tinuvin99-2、Tinuvin234、Tinuvin326、Tinuvin329、Tinuvin900、Tinuvin928、Tinuvin405、及Tinuvin460。該等為BASF公司製造之紫外線吸收劑,Tinuvin為註冊商標。
光吸收體中之紫外線吸收劑之含量只要0°之入射角度之光吸收體10的透射光譜滿足(I)~(V)之條件,則並不限定於特定值。藉由含有少量紫外線吸收劑,可發揮出較高之光吸收能力。光吸收體10中之紫外線吸收劑之含量相對於銅成分之含量的比以質量基準計,例如為0.01~1,理想的是0.02~0.5,更理想為0.07~0.14。光吸收體中之紫外線吸收劑之含量相對於磷成分之含量的比以質量基準計,例如為0.02~2,理想的是0.04~1,更理想為0.12~0.26。
光吸收性分散液至少包含光吸收性化合物(光吸收劑)、及溶劑。光吸收性分散液亦可包含有助於光吸收性化合物之分散之分散劑。例如,於光吸收性分散液中添加適當之硬化性樹脂,可獲得光吸收性組成物。例如,藉由該光吸收性組成物之硬化而製作光吸收體10。
光吸收性分散液例如亦可包含:溶劑、包含膦酸及銅成分之光吸收性化合物、及有助於光吸收性化合物於溶劑中之分散之磷酸酯。光吸收性分散液實質上不含硬化性樹脂。因此,無分散液於光吸收性分散液之流通中硬化之擔憂,欲獲得光吸收體10者可混合光吸收性分散液、及另外準備之硬化性樹脂,而製備作為光吸收體10之前驅物之光吸收性組成物。於製品之流通中材料之硬化或增黏的擔憂減少亦可有助於分散液之保存期(shelf life)或適用期之長壽命化。
所謂光吸收性分散液實質上不含硬化性樹脂,意指即便對光吸收性分散液施加加熱或電磁波(包括可見光或紫外線等)之照射等來自外部之能量,亦不會固形化。光吸收性分散液中亦可包含不會固形化之程度之硬化性樹脂。為了與光吸收性分散液混合之硬化性樹脂之硬化而賦予之能量的種類並無限定。能量之賦予包括加熱及照射光等電磁波。例如,藉由放置(靜置)於通常之室溫(20℃~28℃)而硬化亦作為廣義之加熱而包括於能量之賦予中。光吸收性分散液不含硬化性樹脂,例如硬化性之環氧樹脂、酚樹脂、三聚氰胺樹脂、不飽和聚酯樹脂、醇酸樹脂、聚矽氧樹脂、聚胺酯樹脂、聚醯亞胺樹脂、丙烯酸樹脂、脲樹脂、及其改質體。硬化性丙烯酸樹脂包含環氧丙烯酸酯及胺酯丙烯酸酯等改質丙烯酸酯樹脂。進而,於光吸收性分散液實質上不含硬化性樹脂之情形時,至少不會產生硬化。另一方面,硬化性樹脂有時會分成本劑與硬化劑之組合、及本劑與觸媒之組合等二液以上來供給。於考慮此種具有硬化性樹脂組之情況時,於作為本發明之具體例之光吸收性分散液中包含如下系統,其不含硬化劑或觸媒,且包含本劑。
光吸收性分散液亦可包含第一膦酸及第二膦酸。包含烷基膦酸之光吸收性化合物於近紅外線區域中,於800 nm至1200 nm之波長之吸收性較高,包含芳基膦酸之光吸收性化合物之680 nm附近的波長之光之吸收性較高。光吸收性分散液包含第一膦酸及第二膦酸兩者較有意義之實例較多。光吸收性分散液中,於不含上述硬化性樹脂之溶劑中亦可包含:包含芳基膦酸與銅成分之光吸收性化合物、及包含烷基膦酸與銅成分之光吸收性化合物。
光吸收性分散液中所含之溶劑並不限定於特定之溶劑。光吸收性分散液中所含之溶劑例如為有機溶劑。光吸收性分散液中所含之溶劑並不限定於該等,可為四氫呋喃(THF)、甲苯、丙酮、乙腈、乙醯丙酮、烯丙醇、苯、苄醇、丁醇、甲基乙基酮、丁醇、表氯醇、甲酚、甲醇、乙醇、或選自該等中之兩種以上之有機溶劑之混合物。
光吸收性分散液例如具有特定之透射光譜。光吸收性分散液例如具有滿足下述(i)、(ii)、(iii)、及(iv)之透射光譜。該透射光譜例如可藉由如下方法獲得:將使波長300 nm~1600 nm之光入射至光吸收性分散液中所獲得之透射光譜,以於波長700 nm之透射率達到20%之方式標準化。 (i)波長460 nm~600 nm之範圍中之透射率之平均值T A DP(460-600)為85%以上。 (ii)於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長λ H DP(S)為380 nm~420 nm。 (iii)於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長λ H DP(L)為600 nm~650 nm。 (iv)波長725 nm~1000 nm之範圍中之透射率之平均值T A DP(725-1000)為5%~20%。
光吸收性化合物之分散液例如係藉由使光吸收性化合物以特定之濃度分散於甲苯中而製作。並且,將該分散液添加至市售之石英池(quartz cell)中而製作測定用工件,利用分光光度計測定該工件之透射光譜,減去基準線而獲得光吸收性化合物之分散液之透射光譜。進而,以於波長700 nm之透射率達到20%之方式,於測定波長範圍內將透射率標準化。再者,基準線例如係將不含光吸收性化合物之甲苯之透射光譜加入至相同之石英池中,並利用分光光度計進行測定而求出。
於光吸收性化合物之分散液之透射光譜滿足上述(i)~(iv)的條件之情形時,光吸收體或具備該光吸收體之濾光器容易滿足上述(I)~(V)之條件,上述光吸收體係使混合該分散液與各種硬化性樹脂所獲得之光吸收性組成物硬化而製作。
短波長側截止波長λ H DP(S)亦可為390 nm~410 nm。長波長側截止波長λ H DP(L)可為610 nm~640 nm,亦可為615 nm~635 nm。
光吸收性化合物之分散液之透射光譜亦可滿足下述(v)、(vi)、(vii)、及(viii)之條件。 (v)與於波長700 nm~1500 nm之透射率之最小值相對應的波長λ min DP(700-1500)處於750 nm~950 nm之範圍內。 (vi)於波長600 nm~1500 nm,透射率達到20%之波長中最大之波長與最小之波長的差λ range(20) DP(600-1500)為350 nm~600 nm。 (vii)於波長600 nm~1500 nm,透射率達到50%之波長中最大之波長與最小之波長的差λ range(50) DP(600-1500)為600 nm~750 nm。 (viii)於波長350 nm~700 nm,透射率達到50%之波長中最大之波長與最小之波長的差λ range(50) DP(350-700)為180 nm~280 nm。
於光吸收性化合物之分散液之透射光譜滿足上述(v)~(viii)的條件之情形時,光吸收體、或具備該光吸收體之濾光器更容易滿足上述(I)~(V)之條件,上述光吸收體係使混合該分散液與各種黏合劑所獲得之光吸收性組成物硬化而製作。
波長λ min DP(700-1500)可處於800 nm~900 nm之範圍內,亦可處於820 nm~880 nm之範圍內。差λ range(20) DP(600-1500)亦可為400 nm~550 nm。差λ range(50) DP(600-1500)可為620 nm~720 nm,亦可為630 nm~710 nm。差λ range(50) DP(350-700)可為190 nm~260 nm,亦可為200 nm~250 nm。
於濾光器1a中,光吸收體10之厚度並不限定於特定之厚度。其厚度例如為約200 nm或200 nm以下,對裝置之低高度化之貢獻較大。另一方面,具備基材20之濾光器1b容易具有較高之剛性或機械強度,可提供剛性之濾光器。
基材20並不限定於特定之基材。基材20例如能夠以濾光器1b滿足上述(I)~(V)之條件之方式選擇,亦能夠以進而滿足(VI)及(VII)之條件之方式選擇。基材20能夠以濾光器1b滿足上述(1-i)~(1-iv)之條件及(2-i)~(2-iv)之條件之方式選擇。
基材20之形狀並不限定於特定之形狀。如圖1B所示,基材亦可為平板狀。於該情形時,於使用基材20作為濾光器1b之支持體之情形時,容易塗佈光吸收性組成物,認為作為濾光器之通用性亦較高。另一方面,基材20可包含曲面,亦可具有凸狀或凹狀面。基材20亦可為板狀以外之形狀。例如,基材20之例為透鏡、偏光元件、稜鏡、反射元件、及繞射光柵等光學元件。該等光學元件可具有包括曲面及平面之面。進而,基材20之其他例為光電二極體及光電晶體等光電轉換元件、排列有CCD或CMOS等大量光電轉換元件之圖像感測器、或與該圖像感測器等效之圖像感測器、進而與攝像元件一體化而成之微透鏡陣列。基材20之進而另一例為攜帶用資訊終端之顯示器等顯示裝置。
基材20亦可透明。於基材20透明之情形時,光吸收體10之透射光譜容易反映至具備光吸收體10及基材20之濾光器1b之透射光譜中。於利用與該基材20相同之材料形成之厚度為3 mm之平板的透射光譜中,於波長360 nm~900 nm之範圍內透射率可為90%以上,於波長350 nm~1200 nm之範圍內透射率亦可為85%以上。此種具備透明性之基材20之典型例為玻璃基材。基材20可為鈉鈣玻璃及硼矽酸玻璃等矽酸鹽玻璃、或含有Cu及Co等著色性成分之磷酸鹽玻璃或氟磷酸鹽玻璃。含有著色性成分之磷酸鹽玻璃及氟磷酸鹽玻璃例如為紅外線吸收性玻璃,其本身具有光吸收性。於將光吸收體與紅外線吸收性玻璃之基材一併使用之情形時,可調整兩者之光吸收性及透射光譜,製作具有所需之光學特性之濾光器,濾光器之設計自由度較高。
又,基材20之典型例為樹脂基材。樹脂基材中所含之樹脂為降莰烯系樹脂等環烯烴系樹脂、聚芳酯系樹脂、丙烯酸樹脂、改質丙烯酸樹脂、聚醯亞胺樹脂、聚醚醯亞胺樹脂、聚烯烴樹脂、聚碸樹脂、聚醚碸樹脂、聚碳酸酯樹脂、或聚矽氧樹脂。樹脂與玻璃相比加工性明顯較高,成形性亦較高。因此容易準備光學元件等各種形狀之基材。
於光吸收體10或包含光吸收體10之濾光器之表面,為了減少反射率或增加特定波長之光之透射率,亦可設置抗反射膜或減少反射膜。圖1C~圖1D分別表示具備光吸收體10及抗反射膜之濾光器之一例。
於圖1C所示之濾光器1c中,於光吸收體10之一主面上配置有抗反射膜31a,且於另一主面配置有抗反射膜32a。抗反射膜31a及抗反射膜32a分別為單層結構之抗反射膜。
於圖1D所示之濾光器1d中,於光吸收體10之一主面上配置有抗反射膜31b,且於另一主面配置有抗反射膜32b。抗反射膜31b及抗反射膜32b分別為雙層結構之抗反射膜。
於圖1E所示之濾光器1e中,於光吸收體10之一主面上配置有抗反射膜31c,且於另一主面配置有抗反射膜32c。抗反射膜31c及抗反射膜32c分別為三層結構之抗反射膜。
於圖1F所示之濾光器1f中,於光吸收體10之一主面上配置有抗反射膜31d,且於另一主面配置有抗反射膜32d。抗反射膜31d及抗反射膜32d分別為具有三層以上之層之多層結構之抗反射膜。
於濾光器具備透明基材、及形成於該透明基材上之光吸收體10之情形時,亦可於光吸收體10之表面、及不與光吸收體10相接之透明基材之表面形成抗反射膜。
抗反射膜於能夠透過光吸收體10或具備光吸收體10之濾光器之光之波段即透射波段中,可增加光吸收體10或濾光器之透射率。透射波段於光吸收體10或具備光吸收體10之濾光器之透射光譜中,亦可為透射率達到50%以上之波長頻帶。
當於光吸收體10、具備光吸收體10之濾光器、或用以支持該等之透明之基板(例如康寧公司之D263T eco)上形成抗反射膜之情形時,使波長300 nm~1200 nm之波長之光以入射角度5°入射時的於波長400 nm~600 nm之反射率例如為1%以下,理想的是0.5%以下,更理想為0.25%以下。
當於光吸收體10、具備光吸收體10之濾光器、或用以支持該等之透明之基板上形成抗反射膜之情形時,使波長300 nm~1200 nm之波長之光以入射角度5°入射時的於波長700 nm~1200 nm之反射率之平均值例如為1%以下,理想的是0.5%以下,更理想為0.25%以下。藉此,屬於紅外線之光之一部分反射,所獲得之圖像不易產生重影或眩光。
於具備光吸收體10及抗反射膜之濾光器中,使波長300 nm~1200 nm之波長之光以入射角度50°入射時的於波長400 nm~600 nm之反射率例如為3%以下,理想的是1%以下。並且,於該濾光器中,使波長300 nm~1200 nm之波長之光以入射角度50°入射時的於波長700 nm~1200 nm之反射率之平均值例如為3%以下,理想的是1.5%以下。藉此,於對光吸收體10或具備光吸收體10之濾光器之入射角度增大之情形時,亦容易防止光之反射。
抗反射膜並不限定於特定之膜。抗反射膜例如包含選自由下述(a)、(b)、及(c)所組成之群中之至少1種層。於抗反射膜中,亦可組合2種以上之層。 (a)藉由使用包含矽之反應性材料之溶膠凝膠法形成之層 (b)藉由使用包含矽之反應性材料之溶膠凝膠法形成,進而包含微粒子之層 (c)藉由真空蒸鍍法及濺鍍等物理成膜方法形成之層
關於上述(a)及(b)之層,包含矽之反應性材料並不限定於特定之材料,該反應性材料所含之官能基亦並不限定於特定之官能基。包含矽之反應性材料理想的是包含甲基三乙氧基矽烷(MTES)等三官能矽烷、及四乙氧基矽烷(TEOS)等四官能矽烷。四官能矽烷對形成牢固且緻密之骨架之塗膜較重要。另一方面,僅利用四官能矽烷有可能產生如下等問題:不易控制反應性,缺乏孔隙率之選擇性,且容易產生裂痕。藉由除了四官能矽烷以外,還使用三官能矽烷,二氧化矽骨架之可撓性提高,孔隙率之選擇性得以改善。因此,能夠進行抗反射膜所需之折射率之調整(孔隙率之調整)。並且,亦容易抑制裂痕之產生。附屬於三官能矽烷之有機官能基原本並無特別限定。理想的是具有甲基之三官能矽烷與四官能矽烷組合而使用。其原因在於,可容易地形成均質之溶液及塗膜。三官能矽烷及四官能矽烷之量理想的是三官能矽烷之量:四官能矽烷之量=5:1~1:3之範圍。藉此,可利用三官能矽烷抑制於抗反射膜中產生裂痕,並且利用四官能矽烷形成牢固之骨架。包含矽之反應性材料亦可包含二官能矽烷。上述(a)之層之原料中亦可包含與溶膠凝膠法相關之成分以外的成分。
上述三官能矽烷並不限定於特定之矽烷。三官能矽烷例如為甲基三乙氧基矽烷、甲基三甲氧基矽烷、乙基三乙氧基矽烷、乙基三甲氧基矽烷、丙基三乙氧基矽烷、丙基三甲氧基矽烷、丁基三乙氧基矽烷、丁基三甲氧基矽烷、戊基三甲氧基矽烷、戊基三乙氧基矽烷、己基三乙氧基矽烷、及己基三甲氧基矽烷等,亦可為具有直接鍵結於矽原子(Si)之烷基之三官能矽烷。四官能矽烷並不限定於特定之矽烷。四官能矽烷例如為四乙氧基矽烷、四甲氧基矽烷、四丙氧基矽烷、四丁氧基矽烷等。
任一種矽烷化合物均藉由水解而產生包含矽醇基之矽烷化合物之水解物,進而藉由該等水解物之縮聚,三官能矽烷變為(聚)矽倍半氧烷,四官能矽烷變為二氧化矽。由於(聚)矽倍半氧烷及二氧化矽之折射率低至約1.46,故能夠形成具有較低之折射率之層。因此,包含選自由(聚)矽倍半氧烷及二氧化矽所組成之群中之至少1種的層適合作為光吸收體10或具備光吸收體10之濾光器之抗反射膜中所含之層。
於上述(a)及(b)之層之形成中,例如形成含有包含矽之反應性材料之液狀組成物之塗膜,且該塗膜可經燒成。塗膜之燒成例如於60℃~170℃之範圍、理想的是60℃~150℃之範圍、更理想為60℃~115℃之範圍內進行。
關於上述(b)之層,於包含含有矽之反應性材料、該反應性材料之水解物、或該水解物之縮聚物之層中,可包含粒子狀化合物。此種粒子狀化合物例如係包含二氧化矽、氧化鈦、氧化鋯、氧化鋁之微粒子。形成微粒子之材料之折射率例如為1.40~2.55。構成微粒子之材料理想的是二氧化矽。於包含選自由二氧化矽及(聚)矽倍半氧烷所組成之群中之至少1種之層中,該等係作為包圍微粒子之黏合劑發揮作用。因此,經由矽醇基等微粒子與黏合劑之結合力增強,可期待耐候性等可靠性之提高。
上述(b)之層中所含之微粒子可為中空微粒子。中空微粒子由於在內部具有空的空間,故其折射率容易變得非常低。中空微粒子之折射率例如為1.02~1.50。
中空微粒子之平均粒徑例如為5 nm~200 nm。中空微粒子之平均粒徑例如可藉由如下方法確定:對上述(b)之層之剖面使用光學顯微鏡、電子顯微鏡、或金屬顯微鏡等顯微鏡,測定隨機地選擇之50個以上之粒子之最大直徑,並對其最大直徑進行算術平均。
上述(b)之層之中空微粒子之含量以質量基準計,例如為5~95%。
藉由上述(b)之層包含中空微粒子,該層之折射率容易變得非常低。於上述(b)之層包含中空微粒子之情形時,(b)之層之折射率例如為1.00~1.45(其中,不含1.00)。作為中空微粒子,例如可使用日揮觸媒化成公司製造之Thrulya4110。
於包含選自由二氧化矽及(聚)矽倍半氧烷所組成之群中之至少1種之層中,若比較包含中空微粒子之情形與不含中空微粒子之情形,則於包含中空微粒子之情形時,層之折射率容易變得更低。能夠以如下方式構成抗反射膜:依序配置包含選自由二氧化矽及(聚)矽倍半氧烷所組成之群中之至少1種、及中空微粒子之層;包含選自由二氧化矽及(聚)矽倍半氧烷所組成之群中之至少1種,且不含中空微粒子之層;光吸收體10或具備光吸收體10之濾光器。於該情形時,可預計抗反射效果之提高。
上述(b)之層中所含之微粒子亦可為實心微粒子。實心微粒子之折射率例如為1.25~1.65,更適宜為1.30~1.65。於上述(b)之層包含實心微粒子之情形時,(b)之層之折射率例如為1.10~1.55。實心微粒子之平均粒徑例如為2 nm~200 nm。實心微粒子之平均粒徑例如能夠以與中空微粒子之平均粒徑同樣之方式確定。作為實心微粒子,例如可使用日產化學公司製造之Snowtex MP-2040。
上述(b)之層亦可包含具有相對較高之折射率之微粒子。藉此,(b)之層容易具有較高之折射率。於該情形時,微粒子亦可包含選自由TiO 2(氧化鈦,折射率2.33~2.55)、Ta 2O 5(氧化鉭,折射率2.16)、Nb 2O 5(氧化鈮,折射率2.33)、及Si 3N 4(氮化矽,折射率2.02)所組成之群中之至少1種材料。微粒子亦可包含2種以上之材料。於(b)之層中理想的是包含TiO 2等微粒子。於該情形時,(b)之層之折射率容易變高,例如可獲取與包含二氧化矽(SiO 2)之中空粒子之低折射率膜為對照性之高折射率膜。於(b)之層包含TiO 2微粒子之情形時,該層之折射率例如為1.50~2.30。再者,作為上述(b)之層之例,藉由相對於所含之膜之成分量,調整微粒子等之含量,而能夠控制該膜之折射率。
TiO 2微粒子之平均粒徑例如為2 nm~200 nm。TiO 2微粒子之平均粒徑例如能夠以與中空微粒子之平均粒徑同樣之方式確定。(b)之層中之TiO 2微粒子之含量以質量基準計,例如為2%~50%。作為TiO 2微粒子,例如可使用Tayca公司製造之NS405或石原產業公司製造之TTO-51A等。
上述(b)之層中所含之微粒子亦可利用矽烷偶合劑及鈦偶合劑等偶合劑,於和黏合劑或基質混合前進行表面處理。藉此,於黏合劑或基質與微粒子之間密接性或潤濕性容易提高。該等表面處理於使用TiO 2及SiO 2以外之微粒子之情形時亦有效。
例如,抗反射膜亦可組合低折射率層、中折射率層、及高折射率層而構成。低折射率層例如係包含選自由二氧化矽及(聚)矽倍半氧烷所組成之群中之至少1種,且包含中空微粒子之層。中折射率層係包含選自由二氧化矽及(聚)矽倍半氧烷所組成之群中之至少1種,且不含中空微粒子之層。高折射率層係包含選自由二氧化矽及(聚)矽倍半氧烷所組成之群中之至少1種,且包含TiO 2微粒子之層。於抗反射膜中之低折射率層、中折射率層、及高折射率層之組合中,亦可考慮各層之厚度、各層之數量、及該等層之重複圖案等條件而構成抗反射膜。
上述(c)之層可藉由包括離子輔助蒸鍍(IAD)法之真空蒸鍍法、濺鍍法、及離子鍍覆法等物理方法形成。將該等方法統稱為蒸鍍法。只要利用蒸鍍法,即可獲得包含介電體及金屬氧化物之層作為(c)之層。藉由蒸鍍法形成之(c)之層之材料並不限定於特定之材料。(c)之層之材料例如包含選自由SiO 2、TiO 2、Ta 2O 3、SnO 2、In 2O 3、Nb 2O 5、Si 3N 4、TiN x、及MgF 2所組成之群中之至少1種無機化合物。(c)之層亦可為將選自該等無機化合物之2種以上的無機化合物以特定之比率混合而成之層。
(c)之層可具有僅由相同材料所構成之單層結構,亦可具有積層由選自上述無機化合物之不同材料(亦可為混合材料)所構成之二層以上之層所得的多層結構。於抗反射膜為多層膜之情形時,例如可藉由如下方式形成抗反射膜:對由TiO 2、Ta 2O 3、及Nb 2O 5等具有相對較高之折射率之材料或該等材料之混合物所構成之層、及由SiO 2及MgF 2等具有相對較低之折射率之材料或該等材料之混合物所構成之層,調整該等層之厚度及該等層之積層重複數,並且交替地積層。
具備光吸收體10之濾光器亦可用於環境光感測器。環境光感測器(Ambient Light Sensor)係搭載於機器,檢測機器周邊之亮度或色相等之器件。利用環境光感測器識別機器周邊之光之屬性,例如,自動地調整搭載於該機器之顯示器等顯示裝置之亮度等。環境光感測器有時亦稱為亮度感測器(Luminance Sensor)或照度感測器(Illuminance Sensor)。
圖2A係表示環境光感測器之一例之剖視圖。如圖2A所示,環境光感測器2例如具備:電路基板3、光電轉換元件4、殼體(housing)5、及濾光器1a。環境光感測器2例如檢測於具備環境光感測器2之機器周邊之光之屬性中屬於可見光區域之光的屬性。電路基板3支持環境光感測器2,並將環境光感測器2與周邊之器件電性連接。光電轉換元件4配置於電路基板3上,例如包含光電二極體或光電晶體等元件。殼體5配置於電路基板3上,且包圍光電轉換元件4之周圍。濾光器1a例如配置於光電轉換元件4之前方,並遮蔽朝向光電轉換元件4前進之光之一部分。濾光器1a例如遮蔽屬於紫外線或紅外線之光之一部分。濾光器1a係由殼體5支持。
環境光感測器可如圖2A所示,具備具有光吸收體10之濾光器,例如,亦可如圖2B所示,具備光吸收體10與光電轉換元件一體化而成之一體型光電轉換元件。圖2B所示之光電轉換元件2b具備光受光面2f、及光吸收體10。於光電轉換元件2b中,依序配置有光受光面2f及光吸收體10。光電轉換元件2b為一體型光電轉換元件。一體型光電轉換元件例如可藉由如下方式獲得:於光電轉換元件之光受光面(窗)表面,塗佈上述光吸收性組成物並使其硬化,形成光吸收體10。於使用此種光電轉換元件之情形時,無需與光電轉換元件另外使用光吸收體。只要利用此種環境光感測器,即能夠藉由光吸收體10之吸收而遮蔽可見光區域以外之例如屬於紫外線或紅外線之一部分光,作為專門檢測大致可見光區域之光之環境光感測器,環境光感測器之使用容易性能夠明顯提高。並且,亦能夠期待製品流通之供應鏈之簡化。
於光電轉換元件2b中,例如於電路基板3上依序積層有第一電極E1及光電轉換層L。並且,於光電轉換層L上配置有第二電極E2、光受光面2f、及光吸收體10。
於搭載於環境光感測器之光吸收體10或包含光吸收體10之濾光器之表面,為了降低反射率,增加特定波長之光之透射率,亦可設置抗反射膜或減少反射膜。
具備光吸收體10之濾光器亦可用於攝像裝置或相機模組。攝像裝置或相機模組例如具備圖像感測器、電路基板、透鏡系統、及具備光吸收體10之濾光器。於圖像感測器中,例如排列有CCD或CMOS等大量光電轉換元件。電路基板將圖像感測器與外部之器件電性連接。透鏡系統包含用以將源自被攝體等之光聚光於圖像感測器,並使其成像之一種或兩種以上之透鏡群。具備光吸收體10之濾光器可遮蔽屬於紫外線及紅外線之一部分光。
例如,於搭載有具備光吸收體10之濾光器之攝像裝置中,屬於紫外線及紅外線之一部分光藉由吸收而被遮蔽,且屬於可見光區域之光朝向圖像感測器而透過濾光器。於濾光器具有利用介電體多層膜等反射一部分光之功能之情形時,利用濾光器反射之光之一部分於殼體內部、配置於濾光器之前方之透鏡系統表面被反射、或該等反射光之一部分對光圈或其形狀進行投影,到達攝像元件之受光面,由此使重影及眩光等使對比度劣化之現象顯著化。另一方面,只要利用搭載有具備光吸收體10之濾光器之攝像裝置,則不易產生此種現象,且於所獲取之圖像中,重影或眩光等不易醒目。
圖3A係表示攝像裝置之一例之圖。本圖係表示攝像裝置之概略者,僅概略性地記載為了說明所需要之要素,並省略其他零件或要素。如圖3A所示,攝像裝置6a具備圖像感測器7、透鏡系統8、及濾光器1a。於攝像裝置6a中,濾光器1a例如於圖像感測器7與透鏡系統8之間,配置於圖像感測器7之正前方。濾光器之配置並不限定於圖3A所示之配置。濾光器亦可配置於作為透鏡系統8之前方之被攝體側。於該情形時,濾光器例如具備光吸收體10、及支持光吸收體10之透明介電體基板。若使用玻璃基板等剛性之基板作為透明介電體基板,則可對濾光器期待作為用以保護攝像裝置及透鏡系統免受外部傷害之保護過濾器之功能。
圖3B係表示攝像裝置之另一例之圖。攝像裝置6b係去除特別說明之部分,與攝像裝置6a同樣地構成。如圖3B所示,於攝像裝置6a中,於透鏡系統8中所含之一部分透鏡8a表面配置有光吸收體10。例如,於透鏡8a表面塗佈上述光吸收性組成物使其硬化,能夠以與透鏡8a形成界面之方式配置光吸收體10。藉此,即便不與透鏡系統8分開設置光吸收性濾光器,亦可具有透鏡系統8所需之光遮蔽性,故可期待攝像裝置之組裝或製造之顯著之簡化。亦可使一體地形成有此種光吸收體10之透鏡8a、或包含此種透鏡8a之透鏡系統流通。可於光吸收體10表面形成抗反射膜或減少反射膜。藉此,源自光吸收體10表面之反射光減少,可見光區域之透射光容易增加。於攝像裝置6b中,光吸收體10之配置並不限定於圖3B所示之配置。
於攝像裝置之透鏡系統中,有時包含二個以上之透鏡藉由將其表面彼此貼合所形成之一群透鏡。為了貼合透鏡彼此,可使用接著劑或硬化性樹脂。雖然未圖示,但於用以貼合透鏡彼此之接著劑等中亦可包含上述光吸收性組成物、上述光吸收性分散液、或上述光吸收性化合物。於該情形時,光吸收體10不易受到透鏡系統之外部環境之影響,期待光吸收體10或光吸收體10中所含之成分之保護。若以光吸收體10及透鏡之折射率大致同樣之方式選擇硬化性樹脂,則可獲得如下優點:可明顯減少於光吸收體10與透鏡之界面處之反射,無需抗反射塗層。 [實施例]
藉由實施例,更詳細地說明本發明。再者,本發明並不限定於以下之實施例。
<實施例1> 混合乙酸銅一水合物4.500 g、及四氫呋喃(THF)240 g,並攪拌3小時而獲得乙酸銅溶液。其次,於所獲得之乙酸銅溶液中添加作為磷酸酯化合物之Plysurf A208N(第一工業製藥公司製造)1.77 g並攪拌30分鐘,獲得A液。於苯基膦酸0.552 g中添加THF40 g並攪拌30分鐘,獲得B液。於4-溴苯基膦酸3.308 g中添加THF40 g並攪拌30分鐘,獲得C液。於正丁基膦酸0.588 g中添加THF40 g並攪拌30分鐘,獲得D液。於混合A液、B液、C液、及D液而獲得之混合液中,進而添加甲基三乙氧基矽烷(信越化學工業公司製造,製品名:KBE-13)6.68 g、及四乙氧基矽烷(岸田化學公司製造 特級)2.19 g並進行1分鐘攪拌,獲得E液。其次,於該E液中添加甲苯120 g後,於室溫進行1分鐘攪拌而獲得F液。將該F液添加至燒瓶中,利用油浴(東京理化器械公司製造,型號:OSB-2100)進行加熱,並且利用旋轉蒸發器(東京理化器械公司製造,型號:N-1110SF),進行脫溶劑處理。油浴之設定溫度調整為105℃。其後,自燒瓶中取出脫溶劑處理後之溶液。以上述方式獲得包含膦酸及銅成分之實施例1之光吸收性化合物之分散液(G液)。
表1中表示實施例1之光吸收性化合物及光吸收性化合物之分散液之製作中的原料及原料之添加量。表2中以物質量基準或質量基準表示光吸收性化合物之分散液中所含之膦酸、銅成分、磷酸酯之含量之比。再者,留意於實施例1之光吸收性化合物之分散液中包含光吸收體中所含之光吸收性化合物,並且不含硬化性樹脂及硬化觸媒。
混合聚矽氧樹脂(信越化學工業公司製造,製品名:KR-300)8.98 g、觸媒(信越化學工業公司製造,製品名:CAT-AC)0.16 g、作為三官能烷氧基矽烷之甲基三乙氧基矽烷(信越化學工業公司製造,製品名:KBE-13)6.96 g、作為四官能烷氧基矽烷之四乙氧基矽烷(岸田化學公司製造 特級)4.05 g、及作為二官能烷氧基矽烷之二甲基二乙氧基矽烷(DMDES)(信越化學工業公司製造,製品名:KBE-22)4.07 g並攪拌30分鐘,獲得作為黏合劑或基質樹脂發揮作用之液狀硬化性樹脂(H液)。
其次,混合作為光吸收性化合物之分散液之G液與硬化性樹脂之H液,並攪拌30分鐘而獲得實施例1之光吸收性組成物。表1中表示實施例1之光吸收性組成物之製作中之硬化性樹脂、硬化觸媒、烷氧基矽烷之原料及其添加量。
混合表面防污塗佈劑(大金工業公司製造,製品名:OPTOOLDSX,有效成分之濃度:20質量%)0.1 g、及含氫氟醚之溶液(3M公司製造,製品名:NOVEC7100)19.9 g,進行5分鐘攪拌而製備氟處理劑(有效成分之濃度:0.1質量%)。將該氟處理劑塗佈於具有130 mm×100 mm×0.70 mm之尺寸之硼矽酸玻璃(SCHOTT公司製造,製品名:D263 T eco)之一主面。其後,將該玻璃基板於室溫放置24小時而使氟處理劑之塗膜乾燥,其後,利用包含NOVEC7100之無塵布輕輕擦拭玻璃表面而去除多餘之氟處理劑。以上述方式製作氟處理基板。
於氟處理基板之一主面之中心部之80 mm×80 mm的範圍內,使用分注器塗佈實施例1之光吸收性組成物而形成塗膜。使所獲得之塗膜於室溫充分地乾燥後,放入至烘箱中,於室溫~85℃之範圍內充分加熱而充分地進行烷氧基矽烷之反應,並且使所含之溶劑揮發。其後,於溫度85℃及相對濕度85%之環境下將塗膜進而靜置24小時,並進行後硬化處理,使反應結束。最後,自氟處理基板剝離塗膜,獲得實施例1之光吸收體。該光吸收體於以僅利用其發揮其功能之方式使用之情形時,可用作濾光器。
(光吸收體之透射光譜及反射光譜之測定) 使用日本分光公司製造之透射光之測定配件所附屬之紫外可見近紅外分光光度計V-770,測定實施例1之光吸收體於0°、40°、50°、60°、及70°之入射角度之透射光譜。透射光譜之測定只要未特別說明,則將測定對象之周圍環境之溫度設為22~25℃而進行。進而,於紫外可見近紅外分光光度計V-770中,將配件更換為反射光之測定配件,測定實施例1之光吸收體於5°、40°、50°、60°、及70°之入射角下之反射光譜。透射光譜之測定只要未特別說明,則將測定對象之周圍環境之溫度設為22~25℃而進行。
圖5A表示實施例1之光吸收體於各入射角度之透射光譜。圖5B表示實施例1之光吸收體於各入射角度之反射光譜。表3中表示於0°之入射角度或5°之入射角度的實施例1之光吸收體之對應於上述(I)~(VII)之條件之特性。表4及表5中表示於各入射角度之特定之特性。
(光吸收性化合物之分散液之透射光譜之測定) 於實施例1之光吸收性化合物之分散液(G液)中添加適量之甲苯,製備光學特性測定用之光吸收性化合物之分散液。光學特性測定用之光吸收性化合物之分散液中之光吸收性化合物的濃度係以於光吸收性化合物之分散液之透射光譜中,波長700 nm之透射率達到20%附近之方式調整。將以上述方式製備之光學特性測定用之光吸收性化合物之分散液加入至石英池(日本分光公司製造,型號:J/1/Q/1,光程長度:1 mm,光路寬度:10 mm,外尺寸:長度3.5 mm,寬度12.5 mm,高度45 mm,容量:0.400 ml)中。使用日本分光公司製造之能夠搭載石英池之透射光的測定配件所附屬之紫外可見近紅外分光光度計V-770,測定實施例1之光吸收性化合物之分散液於0°之入射角度的一次透射光譜。透射光譜之測定只要未特別說明,則將測定對象之周圍環境之溫度設為22~25℃而進行。
進而,對僅裝滿甲苯之石英池,同樣地測定於0°之入射角度之透射光譜。自光吸收性化合物之分散液之透射光譜減去甲苯之透射光譜,算出實施例1之光吸收性化合物之分散液之二次透射光譜,其次,以於所獲得之透射光譜中,於波長700 nm之透射率達到20%之方式進行標準化,獲得最終之光吸收性化合物之分散液之透射光譜。再者,用以獲取分散液之透射光譜之測定係以波長300 nm~1600 nm之範圍為對象而進行。
圖5C表示實施例1之光吸收性化合物之分散液之透射光譜。表6中表示由光吸收性化合物之分散液之透射光譜求出之特性值。
(霧度測定) 使用霧度計(村上色彩技術研究所公司製造,製品名:HM-65L2),依據日本產業標準(JIS)K 7136:2000測定實施例1之光吸收體之霧度。表3中表示實施例1之光吸收體之霧度值(0.13%)。
(厚度測定) 使用Keyence公司製造之雷射位移計LK-H008,測定實施例1之光吸收體之厚度。表3中表示實施例1之光吸收體之厚度(192 μm)。
<實施例2> 混合乙酸銅一水合物4.500 g、及四氫呋喃(THF)240 g,並攪拌3小時而獲得乙酸銅溶液。其次,於所獲得之乙酸銅溶液中添加作為磷酸酯化合物之Plysurf A208N(第一工業製藥公司製造)1.73 g並攪拌30分鐘,獲得A液。於苯基膦酸0.572 g中添加THF40 g並攪拌30分鐘,獲得B液。於4-溴苯基膦酸3.431 g中添加THF40 g並攪拌30分鐘,獲得C液。於乙基膦酸0.410 g中添加THF40 g並攪拌30分鐘,獲得D液。於混合A液、B液、C液、及D液而獲得之混合液中,添加甲基三乙氧基矽烷(信越化學工業公司製造,製品名:KBE-13)6.93 g、及四乙氧基矽烷(岸田化學公司製造 特級)2.27 g,進而攪拌1分鐘而獲得E液。其次,於該E液中添加甲苯120 g後,於室溫進行1分鐘攪拌而獲得F液。將該F液添加至燒瓶中,利用油浴(東京理化器械公司製造,型號:OSB-2100)進行加熱,並且利用旋轉蒸發器(東京理化器械公司製造,型號:N-1110SF),進行脫溶劑處理。油浴之設定溫度調整為105℃。其後,自燒瓶中取出脫溶劑處理後之溶液。以上述方式獲得包含膦酸及銅成分之實施例2之光吸收性化合物、及實施例2之光吸收性化合物之分散液(G液)。
表1中表示實施例2之光吸收性化合物及實施例2之光吸收性化合物之分散液之製作中的原料及原料之添加量。表2中以物質量基準或質量基準表示光吸收性化合物之分散液中所含之膦酸、銅成分、磷酸酯之含量之比。此處,留意於實施例2之光吸收性化合物之分散液中包含光吸收體中所含之光吸收性化合物,且不含硬化性樹脂及硬化觸媒。
混合聚矽氧樹脂(信越化學工業公司製造,製品名:KR-300)8.98 g、觸媒(信越化學工業公司製造,製品名:CAT-AC)0.16 g、作為三官能烷氧基矽烷之甲基三乙氧基矽烷(信越化學工業公司製造,製品名:KBE-13)6.96 g、作為四官能烷氧基矽烷之四乙氧基矽烷(岸田化學公司製造 特級)4.05 g、及作為二官能烷氧基矽烷之二甲基二乙氧基矽烷(DMDES)(信越化學工業公司製造,製品名:KBE-22)4.07 g並攪拌30分鐘,獲得作為黏合劑或基質樹脂發揮作用之實施例2之液狀硬化性樹脂H。其次,混合作為包含光吸收性化合物之分散液之實施例2之G液、及硬化性樹脂H液,並攪拌30分鐘,獲得實施例2之光吸收性組成物。
表1中表示實施例2之光吸收性組成物之製作中之硬化性樹脂(基質或黏合劑)、硬化觸媒、及烷氧基矽烷之原料及原料之添加量。
於具有130 mm×100 mm×0.70 mm之尺寸之硼矽酸玻璃(SCHOTT公司製造,製品名:D263 T eco)之一主面之中心部的80 mm×80 mm之範圍內,使用分注器塗佈實施例2之光吸收性組成物而形成塗膜。使所獲得之塗膜於室溫充分地乾燥後,放入至烘箱中,於室溫~85℃之範圍內充分加熱而充分地進行烷氧基矽烷之反應,並且使所含之溶劑揮發。其後,進而於溫度85℃且相對濕度85%之環境下進而靜置24小時,並進行後硬化處理,使反應結束。實施例2之光吸收體於透明玻璃之主面上經一體化。實施例2之形成於玻璃基板之光吸收體於以僅利用其發揮其功能的方式使用之情形時,可用作濾光器。
以與實施例1同樣之方式測定實施例2之形成於玻璃基板之光吸收體之透射光譜、反射光譜、霧度值、光吸收體之厚度、及實施例2之光吸收性化合物之分散液之透射光譜。於實施例2中,光吸收體之透射光譜、反射光譜、及霧度值係對玻璃基板及光吸收體之積層體測定。
圖6表示實施例2之形成於玻璃基板之光吸收體於各入射角度之透射光譜。表3中表示於0°之入射角度或5°之入射角度的實施例2之形成於玻璃基板之光吸收體之對應於上述(I)~(VII)之條件之特性。表4及表5中表示實施例2之形成於玻璃基板之光吸收體於各入射角度的特定之特性。表3中表示實施例2之形成於玻璃基板之光吸收體的霧度值(0.13%)及實施例2之光吸收體之厚度(182 μm)。
<實施例3> 除了將原料及原料之添加量調整為如表1以外,藉由與實施例2同樣之方法及條件,製作實施例3之光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、及形成於玻璃基板之光吸收體。藉由與實施例1同樣之方法及條件,測定實施例3之形成於玻璃基板之光吸收體之透射光譜、反射光譜、霧度值、光吸收體之厚度、及實施例3之光吸收性化合物之分散液之透射光譜。
圖7表示實施例3之光吸收體於各入射角度之透射光譜。表3中表示於0°之入射角度或5°之入射角度的實施例3之形成於玻璃基板之光吸收體之對應於上述(I)~(VII)之條件之特性。表4及表5中表示實施例3之形成於玻璃基板之光吸收體於各入射角度的特定之特性。表3中表示實施例3之形成於玻璃基板之光吸收體的霧度值(0.12%)及實施例3之光吸收體之厚度(180 μm)。
<實施例4> 除了將原料及原料之添加量調整為如表1以外,藉由與實施例2同樣之方法及條件,製作實施例4之光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、及形成於玻璃基板之光吸收體。藉由與實施例1同樣之方法及條件,測定實施例4之形成於玻璃基板之光吸收體之透射光譜、反射光譜、霧度值、光吸收體之厚度、及實施例4之光吸收性化合物之分散液之透射光譜。
圖8A表示實施例4之形成於玻璃基板之光吸收體於各入射角度之透射光譜。圖8B表示實施例4之光吸收性化合物之分散液之透射光譜。表3中表示於0°之入射角度或5°之入射角度的實施例4之形成於玻璃基板之光吸收體之對應於上述(I)~(VII)之條件之特性。表4及表5中表示實施例4之形成於玻璃基板之光吸收體於各入射角度的特定之特性。表6中表示由光吸收性化合物之分散液之透射光譜求出之特性值。表3中表示實施例4之形成於玻璃基板之光吸收體的霧度值(0.08%)及實施例4之光吸收體之厚度(171 μm)。
<實施例5~12> 除了將原料及原料之添加量調整為如表1以外,藉由與實施例1同樣之方法及條件,製作實施例5~12之光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、形成於玻璃基板之光吸收體。藉由與實施例1同樣之方法及條件,測定實施例5~12之形成於玻璃基板之光吸收體之透射光譜、反射光譜、霧度值、光吸收體之厚度、及實施例5、8、10之光吸收性化合物之分散液之透射光譜。
圖9A、圖9B、及圖9C分別表示實施例5之光吸收體於各入射角度之透射光譜、光吸收體於各入射角度之反射光譜、及光吸收性化合物之分散液之透射光譜。圖10表示實施例6之光吸收體於各入射角度之透射光譜。圖11表示實施例7之光吸收體於各入射角度之透射光譜。圖12A、圖12B、及圖12C分別表示實施例8之光吸收體於各入射角度之透射光譜、光吸收體於各入射角度之反射光譜、及光吸收性化合物之分散液之透射光譜。圖13表示實施例9之光吸收體於0°之入射角度之透射光譜。圖14A及圖14B分別表示實施例10之光吸收體於0°之入射角度的透射光譜及光吸收性化合物之分散液之透射光譜。圖15表示實施例11之光吸收體於0°之入射角度之透射光譜。圖16表示實施例12之光吸收體於0°之入射角度之透射光譜。
表3中表示於0°之入射角度或5°之入射角度的實施例5~12之光吸收體之對應於上述(I)~(VII)之條件之特性。表4及表5中表示實施例5~12之光吸收體於各入射角度之特定之特性。表6中表示由實施例5、8、及10之光吸收性化合物之分散液的透射光譜求出之特性值。表3中表示實施例5~12之光吸收體之霧度值及厚度(171 μm)。
<實施例13> 除了將原料及原料之添加量調整為如表1以外,藉由與實施例1同樣之方法及條件,製作實施例13之光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、及光吸收體。
於實施例13之光吸收體之兩主面形成抗反射膜,而獲得實施例13之濾光器。混合適量之甲基三乙氧基矽烷(MTES)、四乙氧基矽烷(TEOS)、用於水解之水、及乙醇並攪拌,製作作為抗反射膜之前驅物之抗反射膜用塗佈劑。將抗反射膜用塗佈劑塗佈於實施例13之光吸收體之兩主面。抗反射膜用塗佈劑之塗佈係對光吸收體於每一單面進行,塗佈於抗反射膜用塗佈劑之一主面後靜置,經過約1分鐘,確認到塗佈有抗反射膜用塗佈劑之面已乾燥後,對另一主面以同樣之方式塗佈抗反射膜用塗佈劑。其後,將光吸收體內靜置於恆溫槽內,於85℃之氣體環境中進行1小時之加熱處理,將多餘之溶劑及副產物蒸發而去除,於光吸收體之兩主面上設置抗反射膜。抗反射膜為多孔質,且兩主面之抗反射膜之膜厚為約180 nm。以上述方式獲得具有抗反射膜之實施例13之濾光器。
圖17A及17B分別表示實施例13之濾光器於各入射角度之透射光譜及實施例13之濾光器於各入射角度的反射光譜。該等透射光譜及反射光譜可藉由與實施例1同樣之方法及條件獲得。表3中表示於0°之入射角度或5°之入射角度的實施例13之濾光器之對應於上述(I)~(VII)之條件之特性值。表4及表5中表示實施例13之濾光器於各入射角度之特定之特性。表6中表示由實施例13之光吸收性化合物之分散液的透射光譜求出之特性值。實施例13之光吸收性化合物之分散液的透射光譜可藉由與實施例1同樣之方法及條件獲得。表3中表示實施例13之濾光器之霧度值及光吸收體之厚度。
<比較例1及2> 除了將原料及原料之添加量調整為如表1以外,藉由與實施例1同樣之方法及條件,製造比較例1及2之光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、及光吸收體。於比較例1中,芳基膦酸之含量相對於烷基膦酸之含量之比以物質量基準計為9.414,於比較例2中,芳基膦酸之含量相對於烷基膦酸之含量之比以物質量基準計為12.983。藉由與實施例1同樣之方法及條件,測定比較例1及2之光吸收體之透射光譜、反射光譜、霧度值、及厚度。
圖18及圖19分別表示比較例1及2之光吸收體於0°之入射角度之透射光譜。表3中表示於0°之入射角度或5°之入射角度的實施例13之濾光器之對應於上述(I)~(VII)之條件之特性值。表6中表示比較例1及2之光吸收體之霧度值及厚度。比較例1及2之光吸收體之霧度值分別為0.38及7.75。
<參考例1及2> 除了將原料及原料之添加量調整為如表1以外,藉由與實施例1同樣之方法及條件,製作參考例1及2之光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、及光吸收體。於參考例1及2中,芳基膦酸之含量相對於烷基膦酸之含量之比以物質量基準計為1.620。藉由與實施例1同樣之方法及條件,測定參考例1及2之光吸收體之透射光譜、反射光譜、霧度值、及厚度。
圖20A及圖21A分別表示參考例1及2之光吸收體於0°之入射角度之透射光譜。圖20B及圖21B分別表示參考例1及2之光吸收體於0°之入射角度的透射光譜之波長400 nm~500 nm之範圍中之透射光譜、及透射率相對於波長之變化率dT/dλ。於參考例1及2之光吸收體之透射光譜中,於波長420 nm~480 nm之範圍內確認到段,透射率相對於波長之變化率於波長420 nm~480 nm,0.1[%/nm]以下之最小值存在於波長440 nm~460 nm之範圍內,波長420 nm~480 nm之範圍內之透射率相對於波長之變化率之最大值與最小值的差超過0.4[%/nm]。
表3中表示於0°之入射角度或5°之入射角度的參考例1及2之濾光器之對應於上述(I)~(VII)之條件之特性值。並且,表3中表示參考例1及2之光吸收體之霧度值及厚度。參考例1及2之霧度值分別為0.14及0.16。
[表1]
   光吸收性化合物[g] 基質(黏合劑)成分[g]
乙酸銅 (無水合物) 膦酸 磷酸酯 烷氧基矽烷 聚矽氧樹脂 觸媒 烷氧基矽烷
芳基膦酸 烷基膦酸 四乙氧基矽烷 甲基三乙氧基矽烷 四乙氧基矽烷 甲基三乙氧基矽烷 二甲基二乙氧基矽烷
苯基膦酸 4-溴苯基膦酸 4-氟苯基膦酸 4-碘苯基膦酸 正丁基膦酸 乙基膦酸
實施例1 4.500 0.552 3.308 0 0 0.588 0 1.77 2.19 6.68 8.98 0.16 4.05 6.96 4.07
實施例2 4.500 0.572 3.431 0 0 0 0.410 1.73 2.27 6.93 8.98 0.16 4.05 6.96 4.07
實施例3 4.500 0.552 0 1.229 1.982 0.660 0 1.7 2.19 6.68 8.98 0.16 4.05 6.96 4.07
實施例4 4.500 0.531 0 1.184 1.909 0 0.527 1.82 2.11 6.44 8.98 0.16 4.05 6.96 4.07
實施例5 4.500 0.572 3.431 0 0 0.514 0 1.73 2.27 6.93 0 0 4.05 6.96 4.07
實施例6 4.500 0.572 3.431 0 0 0.514 0 1.73 2.27 6.03 3.59 0.16 4.05 6.96 4.07
實施例7 4.500 0.572 3.431 0 0 0.514 0 1.73 2.27 6.93 12.57 0.44 0 0 4.65
實施例8 4.500 0.592 3.554 0 0 0.441 0 1.69 2.35 7.18 8.98 0.16 4.05 6.96 4.07
實施例9 4.500 0.613 3.676 0 0 0.368 0 1.65 2.44 7.43 8.98 0.16 4.05 6.96 4.07
實施例10 4.500 0.511 3.064 0 0 0.735 0 1.86 2.03 6.19 8.98 0.16 4.05 6.96 4.07
實施例11 4.500 0.585 3.508 0 0 0.468 0 1.71 2.32 7.09 8.98 0.16 4.05 6.96 4.07
實施例12 4.500 0.602 3.615 0 0 0.404 0 1.67 2.40 7.31 8.98 0.16 4.05 6.96 4.07
實施例13 4.500 0.552 3.308 0 0 0.588 0 1.77 2.19 6.68 8.98 0.16 4.05 6.96 4.07
比較例1 4.500 0.634 3.799 0 0 0.294 0 1.61 2.52 7.67 8.98 0.16 4.05 6.96 4.07
比較例2 4.500 0.654 3.921 0 0 0.220 0 1.57 2.60 7.92 8.98 0.16 4.05 6.96 4.07
參考例1 4.500 0.409 2.451 0 0 1.102 0 2.06 1.62 4.95 8.98 0.16 4.05 6.96 4.07
參考例2 4.500 0.409 2.451 0 0 1.102 0 2.06 1.62 4.95 8.98 0.16 4.05 6.96 4.07
[表2]
   芳基膦酸相對於烷基膦酸之含量比 (莫耳基準) 芳基膦酸相對於銅成分之含量比 (莫耳基準) 烷基膦酸相對於銅成分之含量比 (莫耳基準) 全部膦酸相對於銅成分之含量比 (莫耳基準) 芳基膦酸相對於磷酸酯之含量比 (質量基準) 烷基膦酸相對於磷酸酯之含量比 (質量基準) 膦酸相對於磷酸酯之含量比 (質量基準) 磷酸酯相對於銅成分之含量比 (質量基準)
實施例1 4.098 0.774 0.189 0.963 2.181 0.332 2.513 1.236  
實施例2 4.857 0.803 0.165 0.968 2.314 0.237 2.551 1.208  
實施例3 3.651 0.774 0.212 0.986 2.214 0.388 2.602 1.187  
實施例4 3.509 0.746 0.212 0.958 1.991 0.290 2.281 1.271  
實施例5 4.862 0.803 0.165 0.968 2.314 0.297 2.611 1.208  
實施例6 4.862 0.803 0.165 0.968 2.314 0.297 2.611 1.208  
實施例7 4.862 0.803 0.165 0.968 2.314 0.297 2.611 1.208  
實施例8 5.869 0.831 0.142 0.973 2.453 0.261 2.714 1.180  
實施例9 7.276 0.860 0.118 0.978 2.599 0.223 2.822 1.152  
實施例10 3.037 0.717 0.236 0.953 1.922 0.395 2.317 1.299  
實施例11 5.460 0.821 0.150 0.971 2.394 0.274 2.667 1.194  
實施例12 6.516 0.846 0.130 0.975 2.525 0.242 2.767 1.166  
實施例13 4.098 0.774 0.189 0.963 2.181 0.332 2.513 1.236  
比較例1 9.414 0.889 0.094 0.984 2.753 0.183 2.936 1.124  
比較例2 12.983 0.918 0.071 0.988 2.914 0.140 3.054 1.096  
參考例1 1.620 0.574 0.354 0.928 1.388 0.535 1.923 1.438  
參考例2 1.620 0.574 0.354 0.928 1.388 0.535 1.923 1.438  
[表3]
   (I) (II) (III) (IV) (V) (VI) (VII) 霧度值[%] 膜厚[μm]
於波長460 nm~600 nm之透射率之平均值[%] 短波長側截止波長[nm] 長波長側截止波長[nm] 於波長300 nm~380 nm之透射率之平均值[%] 於波長750 nm~1100 nm之透射率之平均值[%] 於波長300 nm~400 nm之反射率之最大值[%] 於波長700 nm~1200 nm之反射率之最大值[%]
H A
實施例1 87.3 406 643 0.1 0.1 5.1 4.1 0.13 192
實施例2 87.2 405 641 0.1 0.1 5.3 4.2 0.13 182
實施例3 87.5 404 645 0.1 0.1 5.4 4.2 0.12 180
實施例4 87.2 402 650 0.2 0.2 5.5 4.2 0.08 171
實施例5 85.7 409 633 0.1 0.1 4.8 3.7 0.14 161
實施例6 85.8 409 634 0.1 0.1 5.0 3.9 0.14 174
實施例7 87.5 404 642 0.1 0.2 5.4 4.2 0.12 169
實施例8 88.0 404 642 0.1 0.4 5.4 4.3 0.12 164
實施例9 86.3 407 633 0.1 0.3 5.1 4.3 0.12 193
實施例10 87.1 401 656 0.2 0.1 5.7 4.2 0.11 157
實施例11 87.4 405 639 0.1 0.2 5.4 4.2 0.13 181
實施例12 87.0 406 636 0.1 0.3 5.2 4.2 0.10 186
實施例13 95.2 403 642 0.1 0.1 0.1 0.3 0.14 201
比較例1 85.6 410 626 0.1 0.2       0.38 250
比較例2 82.1 407 633 0.1 1.3       7.75 183
參考例1 86.5 397 678 0.7 0.1       0.14 186
參考例2 85.0 402 670 0.3 0.1       0.16 235
[表4]
   於波長460 nm~600 nm之透射率之平均值[%] 短波長側截止波長[nm] 長波長側截止波長[nm] 於波長300 nm~380 nm之透射率之平均值[%]
入射角度 40° 50° 60° 70° 40° 50° 60° 70° 40° 50° 60° 70° 40° 50° 60° 70°
實施例1 87.3 85.9 83.9 79.3 65.9 406 408 409 412 420 643 641 638 634 621 0.1 0.1 0.1 0.1 0.2
實施例2 87.2 85.6 83.7 78.9 67.5 405 407 408 411 418 641 638 636 631 620 0.1 0.1 0.1 0.1 0.1
實施例3 87.5 85.8 83.6 78.7 66.8 404 406 407 410 417 645 642 639 635 623 0.1 0.1 0.1 0.1 0.1
實施例4 87.2 85.5 83.5 78.4 65.3 402 405 406 409 418 650 647 644 639 625 0.2 0.1 0.1 0.1 0.2
實施例5 85.7 84.9 83.2 78.6 66.3 409 411 412 415 424 633 631 629 625 614 0.1 0.1 0.1 0.1 0.1
實施例6 85.8 84.8 83.2 78.5 63.2 409 411 412 415 427 634 631 629 625 610 0.1 0.1 0.1 0.1 0.1
實施例7 87.5 86.0 84.0 79.3 67.4 404 406 407 410 417 642 639 637 633 621 0.1 0.1 0.1 0.1 0.1
實施例8 88.0 86.4 84.5 79.4 66.9 404 406 407 410 417 642 639 637 632 620 0.1 0.1 0.1 0.1 0.1
實施例13 95.2 94.0 92.3 88.9 78.3 403 405 406 408 410 642 639 637 633 626 0.1 0.1 0.1 0.1 0.1
   於波長750 nm~1100 nm之透射率之平均值[%] 於波長300 nm~400 nm之反射率之最大值[%] 於波長700 nm~1200 nm之反射率之最大值[%]   
入射角度 40° 50° 60° 70° 40° 50° 60° 70° 40° 50° 60° 70°
實施例1 0.1 0.1 0.1 0.1 0.2 5.1 5.6 6.9 9.9 21.2 4.1 4.6 5.8 8.8 17.4
實施例2 0.1 0.1 0.1 0.1 0.1 5.3 5.9 7.1 10.5 22.4 4.2 4.8 6.0 9.3 18.0
實施例3 0.1 0.1 0.1 0.1 0.1 5.4 6.0 7.3 10.7 22.7 4.2 4.8 6.1 9.2 18.0
實施例4 0.2 0.1 0.1 0.1 0.1 5.5 6.0 7.3 10.7 23.1 4.2 4.6 5.9 9.0 17.9
實施例5 0.1 0.1 0.1 0.1 0.1 4.8 5.4 6.6 9.8 20.2 3.7 4.3 5.5 8.6 17.3
實施例6 0.1 0.1 0.1 0.1 0.1 5.0 5.5 6.8 9.9 20.3 3.9 4.5 5.6 8.8 17.3
實施例7 0.2 0.1 0.1 0.1 0.1 5.4 5.9 7.2 10.5 22.0 4.2 4.8 6.0 9.2 17.2
實施例8 0.4 0.3 0.3 0.2 0.2 5.3 5.9 7.2 10.6 22.7 4.2 4.8 6.0 9.2 18.2
實施例13 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.5 1.3 10.9 0.3 0.5 1.4 5.0 14.3
[表5]
  
實施例1 2 4 6 14 3 5 9 22
實施例2 2 4 6 13 3 5 9 20
實施例3 2 4 6 14 3 5 10 22
實施例4 2 4 6 16 3 6 11 25
實施例5 2 3 6 15 2 4 8 19
實施例6 2 3 6 18 2 4 8 23
實施例7 2 4 6 13 3 5 9 21
實施例8 2 3 6 13 3 5 10 22
實施例13 2 3 4 7 3 5 8 16
[表6]
   於波長460 nm~600 nm之透射率之平均值[%] 於波長725 nm~1000 nm之透射率之最大值[%] 短波長側截止波長[nm] 長波長側截止波長[nm] 於波長350 nm~450 nm之透射率為20%之波長[nm] 於波長700 nm~1500 nm之透射率之最小值[%] 於波長700 nm~1500 nm之透射率之最小值之波長[nm] 透射率為20%以下之吸收帶[nm] 透射率為50%以下之吸收帶[nm] 透射率為50%以上之透射帶[nm]
實施例1 90.6 15.6 397 626 384 5.3 850 461 666 229
實施例4 89.9 16.0 396 623 383 5.7 850 461 669 227
實施例5 89.9 15.5 399 628 385 5.9 850 439 652 229
實施例8 89.9 15.7 399 627 385 6.7 849 421 643 228
實施例10 90.7 14.6 397 627 385 2.4 850 522 703 230
1a、1b、1c、1d、1e、1f:濾光器 2a:環境光感測器 2b:光電轉換元件 2f:光受光面 6a、6b:攝像裝置 10:光吸收體
[圖1A]圖1A係表示本發明之濾光器之一例的剖視圖。 [圖1B]圖1B係表示本發明之濾光器之另一例的剖視圖。 [圖1C]圖1C係表示本發明之濾光器之進而另一例的剖視圖。 [圖1D]圖1D係表示本發明之濾光器之進而另一例的剖視圖。 [圖1E]圖1E係表示本發明之濾光器之進而另一例的剖視圖。 [圖1F]圖1F係表示本發明之濾光器之進而另一例的剖視圖。 [圖2A]圖2A係表示本發明之環境光感測器之一例的剖視圖。 [圖2B]圖2B係表示本發明之光電轉換元件之一例的剖視圖。 [圖3A]圖3A係表示本發明之攝像裝置之一例之圖。 [圖3B]圖3B係表示本發明之攝像裝置之另一例之圖。 [圖4]圖4係表示圖1B所示之基材之透射光譜之一例的曲線圖。 [圖5A]圖5A係表示實施例1之光吸收體於各入射角度之透射光譜的曲線圖。 [圖5B]圖5B係表示實施例1之光吸收體於各入射角度之反射光譜的曲線圖。 [圖5C]圖5C係表示實施例1之光吸收性化合物之分散液之透射光譜的曲線圖。 [圖6]圖6係表示實施例2之光吸收體於各入射角度之透射光譜的曲線圖。 [圖7]圖7係表示實施例3之光吸收體於各入射角度之透射光譜的曲線圖。 [圖8A]圖8A係表示實施例4之光吸收體於各入射角度之透射光譜的曲線圖。 [圖8B]圖8B係表示實施例4之光吸收性化合物之分散液之透射光譜的曲線圖。 [圖9A]圖9A係表示實施例5之光吸收體於各入射角度之透射光譜的曲線圖。 [圖9B]圖9B係表示實施例5之光吸收體於各入射角度之反射光譜的曲線圖。 [圖9C]圖9C係表示實施例5之光吸收性化合物之分散液之透射光譜的曲線圖。 [圖10]圖10係表示實施例6之光吸收體於各入射角度之透射光譜的曲線圖。 [圖11]圖11係表示實施例7之光吸收體於各入射角度之透射光譜的曲線圖。 [圖12A]圖12A係表示實施例8之光吸收體於各入射角度之透射光譜的曲線圖。 [圖12B]圖12B係表示實施例8之光吸收體於各入射角度之反射光譜的曲線圖。 [圖12C]圖12C係表示實施例8之光吸收性化合物之分散液之透射光譜的曲線圖。 [圖13]圖13係表示實施例9之光吸收體於各入射角度之反射光譜的曲線圖。 [圖14A]圖14A係表示實施例10之光吸收體於0°之入射角度之透射光譜的曲線圖。 [圖14B]圖14B係表示實施例10之光吸收性化合物之分散液之透射光譜的曲線圖。 [圖15]圖15係表示實施例11之光吸收體於0°之入射角度之透射光譜的曲線圖。 [圖16]圖16係表示實施例12之光吸收體於0°之入射角度之透射光譜的曲線圖。 [圖17A]圖17A係表示實施例13之濾光器於各入射角度之透射光譜的曲線圖。 [圖17B]圖17B係表示實施例13之濾光器於各入射角度之反射光譜的曲線圖。 [圖18]圖18係表示比較例1之光吸收體於0°之入射角度之透射光譜的曲線圖。 [圖19]圖19係表示比較例2之光吸收體於0°之入射角度之透射光譜的曲線圖。 [圖20A]圖20A係表示參考例1之光吸收體於0°之入射角度之透射光譜的曲線圖。 [圖20B]圖20B係表示參考例1之光吸收體於0°之入射角度之透射光譜及相對於波長之透射率之變化率的曲線圖。 [圖21A]圖21A係表示參考例1之光吸收體於0°之入射角度之透射光譜的曲線圖。 [圖21B]圖21B係表示參考例1之光吸收體於0°之入射角度之透射光譜及相對於波長之透射率之變化率的曲線圖。
1a:濾光器
10:光吸收體

Claims (21)

  1. 一種光吸收體,其於0°之入射角度,具有滿足下述(I)、(II)、(III)、(IV)、及(V)之條件之透射光譜,且 具有未達0.20%之霧度, (I)波長460 nm~600 nm之範圍中之透射率之平均值為75%以上; (II)於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長為390 nm~450 nm; (III)於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長為600 nm~680 nm; (IV)波長300 nm~380 nm之範圍中之透射率之平均值為1.2%以下; (V)波長750 nm~1100 nm之範圍中之透射率之平均值為1.2%以下。
  2. 如請求項1之光吸收體,其包含:銅成分、 下述式(a)所表示之第一膦酸、及 下述式(b)所表示之第二膦酸,且 下述式(a)中,R 1為烷基或烷基中之至少1個氫原子被取代為鹵素原子之鹵化烷基, 下述式(b)中,R 2為芳基或芳基中之至少1個氫原子被取代為鹵素原子、硝基、或羥基之改質芳基,
  3. 如請求項2之光吸收體,其中,上述第二膦酸之含量相對於上述第一膦酸之含量之比以物質量基準計為1.8~9。
  4. 如請求項3之光吸收體,其中,上述第一膦酸之含量及上述第二膦酸之含量之和相對於上述銅成分之含量的比以物質量基準計為0.3~3。
  5. 如請求項4之光吸收體,其中,上述第一膦酸之含量相對於上述銅成分之含量之比以物質量基準計為0.05~0.8,且 上述第二膦酸之含量相對於上述銅成分之含量之比以物質量基準計為0.2~1.5。
  6. 一種光吸收性化合物,其包含: 第一光吸收性化合物,其包含銅成分、及下述式(a)所表示之第一膦酸;及 第二光吸收性化合物,其包含銅成分、及下述式(b)所表示之第二膦酸;且 下述式(a)中,R 1為烷基或烷基中之至少1個氫原子被取代為鹵素原子之鹵化烷基, 下述式(b)中,R 2為芳基或芳基中之至少1個氫原子被取代為鹵素原子、硝基、或羥基之改質芳基, 上述光吸收性化合物之分散液之透射光譜滿足下述(i)、(ii)、(iii)、及(iv)之條件, (i)波長460 nm~600 nm之範圍中之透射率之平均值為85%以上; (ii)於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長為380 nm~420 nm; (iii)於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長為600 nm~650 nm; (iv)波長725 nm~1000 nm之範圍中之透射率之平均值為5%~20%;
  7. 如請求項6之光吸收性化合物,其中,上述第二膦酸之含量相對於上述第一膦酸之含量之比以物質量基準計為1.8~9。
  8. 如請求項7之光吸收性化合物,其中,上述第一膦酸之含量及上述第二膦酸之含量之和相對於上述銅成分之含量的比以物質量基準計為0.3~3。
  9. 如請求項8之光吸收性化合物,其中,上述第一膦酸之含量相對於上述銅成分之含量之比以物質量基準計為0.05~0.8,且 上述第二膦酸之含量相對於上述銅成分之含量之比以物質量基準計為0.2~1.5。
  10. 一種光吸收性化合物之分散液,其特徵在於包含光吸收性化合物、 溶劑、及 烷氧基矽烷或烷氧基矽烷之水解物,且 上述光吸收性化合物包含:第一光吸收性化合物,其包含銅成分、及下述式(a)所表示之第一膦酸;及第二光吸收性化合物,其包含銅成分、及下述式(b)所表示之第二膦酸; 下述式(a)中,R 1為烷基或烷基中之至少1個氫原子被取代為鹵素原子之鹵化烷基, 下述式(b)中,R 2為芳基或芳基中之至少1個氫原子被取代為鹵素原子、硝基、或羥基之改質芳基,
  11. 如請求項10之光吸收性化合物之分散液,其中,上述第二膦酸之含量相對於上述第一膦酸之含量之比以物質量基準計為1.8~9。
  12. 如請求項10之光吸收性化合物之分散液,其滿足下述(i)、(ii)、(iii)、及(iv)之條件: (i)波長460 nm~600 nm之範圍中之透射率之平均值為85%以上; (ii)於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長為380 nm~420 nm; (iii)於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長為600 nm~650 nm; (iv)波長725 nm~1000 nm之範圍中之透射率之平均值為5%~20%。
  13. 如請求項10之光吸收性化合物之分散液,其實質上不含硬化性樹脂。
  14. 一種光吸收性組成物,其具備:第一光吸收性化合物,其包含銅成分、及下述式(a)所表示之第一膦酸; 第二光吸收性化合物,其包含銅成分、及下述式(b)所表示之第二膦酸; 溶劑;及 黏合劑;且 下述式(a)中,R 1為烷基或烷基中之至少1個氫原子被取代為鹵素原子之鹵化烷基, 下述式(b)中,R 2為芳基或芳基中之至少1個氫原子被取代為鹵素原子、硝基、或羥基之改質芳基, 上述第二膦酸之含量相對於上述第一膦酸之含量之比以物質量基準計為1.8~9,
  15. 如請求項14之光吸收性組成物,其中,上述第一膦酸之含量及上述第二膦酸之含量之和相對於上述銅成分之含量的比以物質量基準計為0.3~3。
  16. 如請求項15之光吸收性組成物,其中,上述第一膦酸之含量相對於上述銅成分之含量之比以物質量基準計為0.05~0.8,且 上述第二膦酸之含量相對於上述銅成分之含量之比以物質量基準計為0.2~1.5。
  17. 如請求項14至16中任一項之光吸收性組成物,其中,作為上述光吸收性組成物之硬化物之光吸收體於0°之入射角度,具有滿足下述(I)、(II)、(III)、(IV)、及(V)之條件之透射光譜,且 具有未達0.20%之霧度, (I)波長460 nm~600 nm之範圍中之透射率之平均值為75%以上; (II)於波長350 nm~450 nm之範圍中透射率達到50%之短波長側截止波長為390 nm~450 nm; (III)於波長600 nm~700 nm之範圍中透射率達到50%之長波長側截止波長為600 nm~680 nm; (IV)波長300 nm~380 nm之範圍中之透射率之平均值為1.2%以下; (V)波長750 nm~1100 nm之範圍中之透射率之平均值為1.2%以下。
  18. 一種濾光器,其具備請求項1至5中任一項之光吸收體。
  19. 一種光電轉換元件,其具備光受光面、及請求項1至5中任一項之光吸收體,且 上述光受光面及上述光吸收體係依序配置。
  20. 一種環境光感測器,其具備請求項18之濾光器。
  21. 一種攝像裝置,其具備請求項18之濾光器。
TW112120845A 2022-06-24 2023-06-05 光吸收體、光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、濾光器、光電轉換元件、環境光感測器、及攝像裝置 TW202419904A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022-102208 2022-06-24

Publications (1)

Publication Number Publication Date
TW202419904A true TW202419904A (zh) 2024-05-16

Family

ID=

Similar Documents

Publication Publication Date Title
TWI741195B (zh) 濾光器
TWI636128B (zh) 紅外線吸收性組成物、截斷紅外線之濾光器、及攝影光學系統
TWI739011B (zh) 濾光器、相機模組及附相機之資訊終端
TWI771532B (zh) 濾光器及攝像裝置
JP2014203044A (ja) 赤外線カットフィルタおよび撮像装置
JP6783966B2 (ja) 光学フィルタ
KR20240008967A (ko) 광학 필터 및 촬상 장치
CN112654901B (zh) 滤光片用液态组合物及滤光片
KR20200074118A (ko) 광흡수성 조성물 및 광학 필터
TW202419904A (zh) 光吸收體、光吸收性化合物、光吸收性化合物之分散液、光吸收性組成物、濾光器、光電轉換元件、環境光感測器、及攝像裝置
WO2023248738A1 (ja) 光吸収体、光吸収性化合物、光吸収性化合物の分散液、光吸収性組成物、光学フィルタ、光電変換素子、環境光センサ、及び撮像装置
WO2024048254A1 (ja) 光吸収性組成物、光吸収体、光学フィルタ、環境光センサ、撮像装置、光吸収性組成物の製造方法、及び光吸収体の製造方法
TW202417898A (zh) 光吸收性組成物、光吸收體、濾光器、環境光感測器、攝像裝置、光吸收性組成物之製造方法、及光吸收體之製造方法
WO2023074746A1 (ja) 光学素子および撮像装置
WO2023095312A1 (ja) 光吸収体、光吸収体付物品、撮像装置、及び光吸収性組成物
WO2022080105A1 (ja) 光学フィルタ、光学装置、及び光吸収性組成物
KR20240095223A (ko) 광학 소자 및 촬상 장치
WO2023162864A1 (ja) 光学フィルタ、光吸収性組成物、光学フィルタを製造する方法、センシング装置、及びセンシング方法
TW202321373A (zh) 光吸收體、附光吸收體之物品、攝像裝置、及光吸收性組成物
JP6545780B2 (ja) 光学フィルタ及びカメラ付き情報端末
JP2021124569A (ja) 光吸収性組成物、光吸収膜、及び光学フィルタ