TW202128321A - Manufacturing method of optical member - Google Patents

Manufacturing method of optical member Download PDF

Info

Publication number
TW202128321A
TW202128321A TW109133668A TW109133668A TW202128321A TW 202128321 A TW202128321 A TW 202128321A TW 109133668 A TW109133668 A TW 109133668A TW 109133668 A TW109133668 A TW 109133668A TW 202128321 A TW202128321 A TW 202128321A
Authority
TW
Taiwan
Prior art keywords
laminated structure
laminated
face
rotating
aforementioned
Prior art date
Application number
TW109133668A
Other languages
Chinese (zh)
Inventor
芦田丈行
内藤達也
藤井幹士
Original Assignee
日商住友化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商住友化學股份有限公司 filed Critical 日商住友化學股份有限公司
Publication of TW202128321A publication Critical patent/TW202128321A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0016Abrading

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Milling Processes (AREA)

Abstract

A manufacturing method of optical member includes a cutting step of cutting a laminated structure 2 with a pair of rotary blades b1 and b2; the laminated structure 2 includes a plurality of laminated bodies 4 which contain a plurality of optical films, wherein the laminated structure 2 is a cuboid or a cube and end faces of the laminated structure 2 are parallel to a laminated direction. The laminated structure 2 is held by a clamp 12 contacting upper and lower surfaces thereof. The rotary blade b1 is in contact with an end face f1 of the laminated structure 2, and the rotary blade b2 is in contact with the other end face f2 of the laminated structure 2. The opposite end faces f1 and f2 are cut by the rotary blades b1 and b2 at approximately the same time. In the process of cutting all the end faces of the laminated structure 2 with the rotary blades, positions where the rotary blades b1 and b2 are arranged will be changed, and the clamp 12 always does not rotate relative to a rotation axis a12 which is substantially parallel to the lamination direction of the lamination bodies 4.

Description

光學構件的製造方法 Manufacturing method of optical component

本發明係關於光學構件的製造方法。 The present invention relates to a method of manufacturing an optical member.

作為光學構件的一種的偏光板,係用於液晶顯示器、有機EL顯示器、智慧型手機、智慧型手錶或車輛的儀表板等之圖像顯示裝置。偏光板係偏光片膜及保護膜等之複數的光學膜的積層體。隨著圖像顯示裝置的精密化或小型化,偏光板的形狀及尺寸也被要求高精確度。 Polarizing plates, which are a kind of optical components, are used in image display devices such as liquid crystal displays, organic EL displays, smart phones, smart watches, or vehicle dashboards. The polarizer is a laminate of plural optical films such as a polarizer film and a protective film. With the precision or miniaturization of image display devices, the shape and size of the polarizing plate are also required to be highly accurate.

例如,日本特開2004-148419號公報揭示將彼此積層之複數的積層體所構成的積層構造體的端面(剖面)以旋轉刀切削,藉此提高各積層體的形狀及尺寸的精確度。 For example, Japanese Patent Application Laid-Open No. 2004-148419 discloses that the end face (cross section) of a laminated structure composed of a plurality of laminated bodies laminated on each other is cut with a rotary knife, thereby improving the accuracy of the shape and size of each laminated body.

當上述的積層構造體藉由旋轉刀加工時,在積層構造體於積層體之積層方向上被夾鉗(clamp)固定的狀態下,旋轉刀被抵靠於積層構造體的端面使端面被切削。為了以高精確度加工構成積層構造體的各積層體,需要精密地控制旋轉刀相對於積層構造體之端面的相對位置及相對移動速度。然而,在積層構造體之端面被切削的過程中,由於旋轉刀對於積層構 造體之端面所施加的力,在積層構造體之端面中之旋轉刀所相接的部分容易產生力矩(moment)。由於旋轉刀所施加的力或力矩,而使積層構造體的一部分或整體從預定的位置偏離,或積層構造體的一部分或整體繞著大致平行於積層體之積層方向的旋轉軸線旋轉,而使積層構造體扭歪。由於上述之積層構造體的位置偏移或扭歪,將難以精密地控制旋轉刀相對於積層構造體之端面的相對位置及相對移動速度。基於以上的理由,以使用旋轉刀之以往的切削方法而言,難以精密地切削積層構造體的端面,且難以提高各積層體之形狀及尺寸的精確度。偏光板以外的光學構件亦要依據其用途而精確地加工。 When the above-mentioned laminated structure is processed by a rotary knife, the rotary knife is pressed against the end surface of the laminated structure and the end surface is cut while the laminated structure is clamped in the direction of the laminated body. . In order to process each layered body constituting the layered structure with high accuracy, it is necessary to precisely control the relative position and relative moving speed of the rotating blade with respect to the end face of the layered structure. However, in the process of cutting the end face of the laminated structure, due to the rotary knife for the laminated structure The force exerted by the end face of the built-up body is likely to generate a moment in the part where the rotating knife meets on the end face of the laminated structure. Due to the force or moment applied by the rotating knife, a part or the whole of the laminated structure is deviated from a predetermined position, or a part or the whole of the laminated structure is rotated around a rotation axis that is substantially parallel to the direction of the laminated body. The laminated structure is twisted. Due to the positional deviation or distortion of the above-mentioned laminated structure, it is difficult to precisely control the relative position and relative movement speed of the rotating knife with respect to the end face of the laminated structure. For the above reasons, it is difficult to precisely cut the end face of the laminated structure with the conventional cutting method using the rotary blade, and it is difficult to improve the accuracy of the shape and size of each laminated body. Optical components other than polarizers must also be processed precisely according to their use.

因此,上述的技術性課題在偏光板以外之光學構件的製造上亦有可能發生。 Therefore, the above-mentioned technical problems may also occur in the manufacture of optical components other than polarizing plates.

本發明之目的係提供一種形狀及尺寸之精確度優異之光學構件的製造方法。 The object of the present invention is to provide a method for manufacturing an optical component with excellent shape and size accuracy.

本發明之一型態之光學構件的製造方法,係具備:以一對旋轉刀切削積層構造體的切削步驟;積層構造體係包含彼此積層的複數層積層體,積層體係包含彼此積層的複數層光學膜,積層構造體係大致長方體或大致立方體,積層構造體之各端面係大致平行於積層體的積層方向,積層構造體的上表面及下表面係大致垂直於積層方向,積層構造體係藉由與積層構造體之上表面和下表面相接的夾鉗所挾持,旋轉刀係沿著積層方向延伸,旋轉刀的側面係大致平行於積層構造體的端面,旋轉刀的旋轉軸線係大致平行於旋轉刀的側面,一方之旋轉刀的側面係與積層構造體之相對向之兩個端面中之一方的端面相接,另一方之旋轉刀的側面係與積層構造 體之相對向之兩個端面中之另一方的端面相接,積層構造體之相對向的二個端面係被一對旋轉刀大致同時地切削,在以旋轉刀切削積層構造體之所有端面的過程中,設置一對旋轉刀的位置會變更,且在以旋轉刀切削積層構造體之所有端面的過程中,夾鉗係始終相對於大致平行於積層方向的旋轉軸線不旋轉。 A method of manufacturing an optical member of one aspect of the present invention includes: a cutting step of cutting a laminated structure with a pair of rotating knives; Membrane, the laminated structure system is roughly rectangular parallelepiped or roughly cubic. The end faces of the laminated structure are roughly parallel to the laminated direction of the laminated body. The upper and lower surfaces of the laminated structure are roughly perpendicular to the laminated direction. The upper surface and the lower surface of the structure are held by clamps, and the rotating knife extends along the layering direction. The side surface of the rotating knife is approximately parallel to the end surface of the layered structure. The rotation axis of the rotating knife is approximately parallel to the rotating knife. The side surface of the rotary knife on one side is in contact with the end surface of one of the two opposite end surfaces of the laminated structure, and the side surface of the rotary knife on the other side is in contact with the laminated structure The other of the two opposite end faces of the body is in contact with each other. The two opposite end faces of the laminated structure are cut approximately simultaneously by a pair of rotating knives. During the process, the position where a pair of rotating knives are set is changed, and in the process of cutting all the end faces of the laminated structure with the rotary knives, the clamp system does not rotate relative to the rotation axis substantially parallel to the laminating direction.

積層構造體的上表面及下表面各者可為大致長方形,大致同時被切削的二個端面可大致平行於積層構造體的上表面及下表面各者的長邊。 Each of the upper surface and the lower surface of the laminated structure may be substantially rectangular, and the two end faces that are cut substantially at the same time may be substantially parallel to the long sides of each of the upper surface and the lower surface of the laminated structure.

在切削步驟中,一對之旋轉刀可沿著積層構造體之相對向的兩個端面移動。 In the cutting step, the pair of rotating knives can move along two opposite end faces of the laminated structure.

在切削步驟中,夾鉗可沿著與積層構造體之相對向的兩個端面大致平行的方向移動。 In the cutting step, the clamp can be moved in a direction substantially parallel to the two end faces of the laminated structure facing each other.

積層體可包含至少一黏著劑層。 The laminate may include at least one adhesive layer.

旋轉刀可為端銑刀(end mill)。 The rotating knife may be an end mill.

依據本發明,係提供一種形狀及尺寸之精確度優異之光學構件的製造方法。 According to the present invention, a method for manufacturing an optical component with excellent shape and size accuracy is provided.

2:積層構造體 2: Layered structure

4:積層體 4: Layered body

6a:第一保護片 6a: The first protective sheet

6b:第二保護片 6b: The second protective sheet

8a~8e:光學膜 8a~8e: optical film

10a,10b:光學膜(黏著劑層) 10a, 10b: Optical film (adhesive layer)

12:夾鉗 12: Clamp

12a:第一研磨墊 12a: The first polishing pad

12b:第二研磨墊 12b: The second polishing pad

a1:第一旋轉刀的旋轉軸線 a1: The axis of rotation of the first rotary knife

a2:第二旋轉刀的旋轉軸線 a2: The axis of rotation of the second rotary knife

a12:大致平行於積層體之積層方向的旋轉軸線 a12: The axis of rotation roughly parallel to the stacking direction of the stack

b1:第一旋轉刀 b1: the first rotary knife

b2:第二旋轉刀 b2: second rotary knife

f1:第一端面 f1: the first end face

f2:第二端面 f2: second end face

f3:第三端面 f3: third end face

f4:第四端面 f4: the fourth end face

s1,s2:側面 s1, s2: side

tf:上表面 tf: upper surface

p1~p4:位置 p1~p4: location

uf:下表面 uf: bottom surface

圖1係積層構造體、夾鉗及旋轉刀的示意側視圖。 Fig. 1 is a schematic side view of a laminated structure, a clamp, and a rotating knife.

圖2係構成圖1所示之積層構造體之各積層體的剖面圖,圖2所示之剖面係大致平行於積層體的積層方向。 Fig. 2 is a cross-sectional view of each laminated body constituting the laminated structure shown in Fig. 1, and the cross section shown in Fig. 2 is substantially parallel to the lamination direction of the laminated body.

圖3係顯示積層構造體的上表面,和切削步驟中抵接於積層構造體之端面之旋轉刀的示意圖。 Fig. 3 is a schematic diagram showing the upper surface of the laminated structure and the rotating blade abutting on the end surface of the laminated structure in the cutting step.

圖4(a)係繞著大致平行於積層構造體之積層方向之旋轉軸線旋轉之積層構造體的俯視圖,圖4(b)係已扭歪之積層構造體的俯視圖。 Fig. 4(a) is a plan view of the laminated structure rotating about a rotation axis substantially parallel to the laminating direction of the laminated structure, and Fig. 4(b) is a plan view of the distorted laminated structure.

以下參照圖式來說明本發明的較佳實施型態。在圖式中,對於相等的構成要素係賦予相等的符號。本發明不限定於下述實施型態。各圖所示之X、Y和Z,係指彼此正交的三個座標軸。各圖中的XYZ座標軸各者所示的方向係各圖共通。 Hereinafter, the preferred embodiment of the present invention will be described with reference to the drawings. In the drawings, equal symbols are assigned to equal constituent elements. The present invention is not limited to the following embodiments. X, Y, and Z shown in each figure refer to three coordinate axes that are orthogonal to each other. The directions indicated by the XYZ coordinate axes in each figure are common to each figure.

本實施型態之光學構件的製造方法係可例如為偏光板(包含反射型偏光板)、相位差膜、亮度提升膜、附帶防眩功能的膜、附帶表面反射防止功能的膜、反射膜、半穿透反射膜或視野角補償膜的製造方法。 The manufacturing method of the optical member of this embodiment can be, for example, a polarizing plate (including a reflective polarizing plate), a retardation film, a brightness enhancement film, a film with an anti-glare function, a film with a surface reflection prevention function, a reflective film, Method for manufacturing semi-transmissive reflective film or viewing angle compensation film.

本實施型態之光學構件之製造方法的概要係如圖1至圖3所示。本實施型態之光學構件的製造方法係具備以一對旋轉刀(第一旋轉刀b1和第二旋轉刀b2)切削積層構造體2的切削步驟。在切削步驟中,積層構造體2之相對向的二個端面(第一端面f1和第二端面f2)係以一對旋轉刀大致同時(即並行地)被切削。積層構造體2及切削步驟的詳細內容係如以下所述。 The outline of the manufacturing method of the optical component of this embodiment is shown in FIGS. 1 to 3. The manufacturing method of the optical member of the present embodiment includes a cutting step of cutting the laminated structure 2 with a pair of rotating blades (the first rotating blade b1 and the second rotating blade b2). In the cutting step, the two opposite end faces (the first end face f1 and the second end face f2) of the laminated structure 2 are cut at approximately the same time (that is, in parallel) with a pair of rotating blades. The details of the laminated structure 2 and the cutting step are as follows.

積層構造體2係包含彼此積層的複數層積層體4,各積層體4係包含彼此積層的複數層光學膜。積層構造體2中之積層體4的積層方向(Z軸方向)係與各積層體4中之光學膜的積層方向相同。所謂光學膜係指構成光學構件的膜狀(層狀)構件。光學膜係可例如為選自由偏光片膜、保護膜、 黏著劑(pressure sensitive adhesive,又稱壓敏性接著劑)層、離型膜、光學補償層、硬塗(hard coat)層、接觸式感測器(touch sensor)層、帶電防止層和防污層所構成之群的至少一種膜(層)。積層構造體2的積層構造並無限定。 The laminated structure 2 includes a plurality of laminated layers 4 laminated with each other, and each laminated body 4 includes a plurality of optical films laminated with each other. The layering direction (Z-axis direction) of the layered body 4 in the layered structure 2 is the same as the layering direction of the optical film in each layered body 4. The term "optical film" refers to a film-like (layered) member constituting an optical member. The optical film system can be selected from, for example, a polarizer film, a protective film, Adhesive (pressure sensitive adhesive, also known as pressure sensitive adhesive) layer, release film, optical compensation layer, hard coat layer, touch sensor layer, charge prevention layer and antifouling At least one film (layer) of the group consisting of layers. The laminated structure of the laminated structure 2 is not limited.

圖1及圖3所示之積層構造體2係大致長方體。惟積層構造體亦可為大致立方體。積層構造體2係具有第一端面f1、第二端面f2、第三端面f3及第四端面f4。第一端面f1和第二端面f2係彼此相對向而且大致平行。第三端面f3和第四端面f4係彼此相對向而且大致平行。第一端面f1、第二端面f2、第三端面f3及第四端面f4各者係大致平行於光學膜的積層方向(Z軸方向)。積層構造體2的上表面tf及下表面uf各者,係大致垂直於積層方向(Z軸方向)。相對向之第一端面f1及第二端面f2各者的形狀及尺寸係彼此大致相同。相對向之第三端面f3及第四端面f4各者的形狀及尺寸係彼此大致相同。上表面tf及下表面uf各者係大致長方形。第一端面f1及第二端面f2各者係大致平行於積層構造體2的上表面tf及下表面uf各者的長邊(Y軸方向)。第三端面f3及第四端面f4係分別大致平行於積層構造體2的上表面tf及下表面uf各者的短邊(X軸方向)。第一研磨墊(pad)12a係與積層構造體2的上表面tf相接,第二研磨墊12b係與積層構造體2的下表面uf相接。積層構造體2係藉由由第一研磨墊12a及第二研磨墊12b所構成之夾鉗12,在積層方向(Z軸方向)上被挾持及固定。切削步驟中所研磨之積層構造體2的各端面係從第一研磨墊12a及第二研磨墊12b之間向外側突出。 The laminated structure 2 shown in FIG. 1 and FIG. 3 is a substantially rectangular parallelepiped. However, the laminated structure can also be roughly cubic. The laminated structure 2 has a first end face f1, a second end face f2, a third end face f3, and a fourth end face f4. The first end surface f1 and the second end surface f2 are opposed to each other and are substantially parallel. The third end face f3 and the fourth end face f4 face each other and are substantially parallel. Each of the first end face f1, the second end face f2, the third end face f3, and the fourth end face f4 is substantially parallel to the stacking direction (Z-axis direction) of the optical film. Each of the upper surface tf and the lower surface uf of the laminated structure 2 is substantially perpendicular to the laminated direction (Z-axis direction). The shape and size of each of the opposing first end face f1 and the second end face f2 are substantially the same as each other. The shape and size of each of the opposing third end face f3 and fourth end face f4 are substantially the same as each other. Each of the upper surface tf and the lower surface uf is substantially rectangular. Each of the first end surface f1 and the second end surface f2 is substantially parallel to the long side (Y-axis direction) of each of the upper surface tf and the lower surface uf of the laminated structure 2. The third end face f3 and the fourth end face f4 are respectively substantially parallel to the short sides (X-axis direction) of each of the upper surface tf and the lower surface uf of the laminated structure 2. The first polishing pad (pad) 12 a is in contact with the upper surface tf of the build-up structure 2, and the second polishing pad 12 b is in contact with the lower surface uf of the build-up structure 2. The laminated structure 2 is clamped and fixed in the laminated direction (Z-axis direction) by the clamp 12 constituted by the first polishing pad 12a and the second polishing pad 12b. Each end surface of the laminated structure 2 polished in the cutting step protrudes outward from between the first polishing pad 12a and the second polishing pad 12b.

如圖1所示,積層構造體2係由第一保護片(sheet)6a、複數層積層體4及第二保護片6b所構成。複數層積層體4係在第一保護片6a及第二保護片6b之間積層。相鄰之一對積層體4係彼此未被接著而可分離。第一保 護片6a及積層體4亦可彼此未被接著而可分離。第二保護片6b及積層體4亦可彼此未被接著而可分離。第一保護片6a及第二保護片6b各者亦可為聚苯乙烯(polystyrene)等樹脂。 As shown in FIG. 1, the laminated structure 2 is comprised by the 1st protective sheet (sheet) 6a, the multiple laminated|multilayer laminated body 4, and the 2nd protective sheet 6b. The plural laminated body 4 is laminated between the first protective sheet 6a and the second protective sheet 6b. The adjacent pair of laminated bodies 4 are not attached to each other but can be separated. First insurance The protective sheet 6a and the laminated body 4 may be separable without being attached to each other. The second protective sheet 6b and the laminated body 4 may be separable without being attached to each other. Each of the first protective sheet 6a and the second protective sheet 6b may also be resin such as polystyrene.

如圖2所示,各積層體4係包含積層的複數層光學膜8a、8b、8c、8d、8e、10a及10b。積層體4的積層構造並無限定。積層體4的積層構造亦可與完成後之光學構件的積層構造相同。例如,當光學構件為偏光板時,積層體4的積層構造係可與偏光板的積層構造相同。換言之,積層體4各者亦可為偏光板。例如,光學膜8a係可為偏光片膜。光學膜8b係可為第一保護膜。光學膜8c係可為第二保護膜。光學膜10a係可為第一黏著劑層,光學膜10b係可為第二黏著劑層。換言之,積層構造體2係可包含黏著劑層作為光學膜。光學膜8d係可為第一離型膜。光學膜8e係可為第二離型膜。第一保護膜(8b)係可直接形成於偏光片膜(8a)之一方的表面。第一保護膜(8b)係可藉由紫外線硬化樹脂等接著劑而貼合於偏光片膜(8a)之一方的表面。第二保護膜(8c)係可直接形成於偏光片(8a)之另一方的表面。第二保護膜(8c)係可藉由紫外線硬化樹脂等接著劑而貼合於偏光片膜(8a)之另一方的表面。 As shown in FIG. 2, each laminated body 4 includes a plurality of laminated optical films 8a, 8b, 8c, 8d, 8e, 10a, and 10b. The laminated structure of the laminated body 4 is not limited. The laminated structure of the laminated body 4 may be the same as the laminated structure of the optical member after completion. For example, when the optical member is a polarizing plate, the layered structure of the layered body 4 may be the same as the layered structure of the polarizing plate. In other words, each of the layered bodies 4 may be a polarizing plate. For example, the optical film 8a may be a polarizer film. The optical film 8b may be a first protective film. The optical film 8c may be a second protective film. The optical film 10a may be the first adhesive layer, and the optical film 10b may be the second adhesive layer. In other words, the laminated structure 2 system may include an adhesive layer as an optical film. The optical film 8d may be a first release film. The optical film 8e may be a second release film. The first protective film (8b) can be directly formed on the surface of one of the polarizer films (8a). The first protective film (8b) can be bonded to one surface of the polarizer film (8a) with an adhesive such as ultraviolet curable resin. The second protective film (8c) can be directly formed on the other surface of the polarizer (8a). The second protective film (8c) can be bonded to the other surface of the polarizer film (8a) with an adhesive such as ultraviolet curable resin.

偏光片膜係可為經由延伸、染色及交聯等步驟所製作之膜狀的聚乙烯醇(polyvinyl alcohol)(PVA)系樹脂。偏光片膜的厚度係可例如為1μm以上50μm以下。偏光片膜的縱幅及橫幅各者係可例如為30mm以上600mm以下。積層體4的厚度係可為例如10μm以上1200μm以下。 The polarizer film can be a film-like polyvinyl alcohol (PVA) resin produced through steps such as stretching, dyeing, and crosslinking. The thickness of the polarizer film may be, for example, 1 μm or more and 50 μm or less. Each of the vertical width and the horizontal width of the polarizer film may be 30 mm or more and 600 mm or less, for example. The thickness of the layered body 4 may be, for example, 10 μm or more and 1200 μm or less.

第一保護膜及第二保護膜若為具有透光性的熱可塑性樹脂即可。構成第一保護膜及第二保護膜各者的樹脂,係可例如為鏈狀聚烯烴 (polyolefine)系樹脂、環狀烯烴聚合物(olefin polymer)系樹脂(COP系樹脂)、纖維素酯(cellulose ester)系樹脂(三醋酸纖維素(triacetyl cellulose)等)、聚酯(polyester)系樹脂、聚碳酸酯(polycarbonate)系樹脂、甲基丙烯酸(methacrylic)系樹脂、聚苯乙烯(polystyrene)系樹脂,或此等混合物或是共聚物。第一保護膜的組成係可與第二保護膜的組成相同。第一保護膜的組成亦可與第二保護膜的組成不同。第一保護膜的厚度係可為例如5μm以上90μm以下。第二保護膜的厚度亦可為例如5μm以上90μm以下。 The first protective film and the second protective film may be a thermoplastic resin having translucency. The resin constituting each of the first protective film and the second protective film may be, for example, chain polyolefin (polyolefine) resin, olefin polymer resin (COP resin), cellulose ester resin (triacetyl cellulose, etc.), polyester resin Resin, polycarbonate resin, methacrylic resin, polystyrene resin, or mixtures or copolymers of these. The composition of the first protective film may be the same as that of the second protective film. The composition of the first protective film may be different from the composition of the second protective film. The thickness of the first protective film may be, for example, 5 μm or more and 90 μm or less. The thickness of the second protective film may be, for example, 5 μm or more and 90 μm or less.

第一黏著劑層及第二黏著劑層各者係可為由黏著劑所構成的層。第一黏著劑層及第二黏著劑層各者係可為光學用透明黏著(Optically Clear Adhesive,OCA)膜。例如,第一黏著劑層及第二黏著劑層各者係可由丙烯(acrylic)系感壓型黏著劑、橡膠系感壓型黏著劑、矽酮(silicone)系感壓型黏著劑或氨基甲酸酯(urethane)系感壓型黏著劑等黏著劑所構成。第一黏著劑層的組成係可與第二黏著劑層的組成不同。第一黏著劑層的厚度係可例如為2μm以上500μm以下。第二黏著劑層的厚度亦可例如為2μm以上500μm以下。 Each of the first adhesive layer and the second adhesive layer may be a layer composed of an adhesive. Each of the first adhesive layer and the second adhesive layer may be an optically clear adhesive (OCA) film. For example, each of the first adhesive layer and the second adhesive layer can be made of acrylic pressure sensitive adhesive, rubber pressure sensitive adhesive, silicone pressure sensitive adhesive or urethane. Urethane is composed of adhesives such as pressure-sensitive adhesives. The composition of the first adhesive layer may be different from the composition of the second adhesive layer. The thickness of the first adhesive layer may be, for example, 2 μm or more and 500 μm or less. The thickness of the second adhesive layer may also be, for example, 2 μm or more and 500 μm or less.

構成第一離型膜及第二離型膜各者的樹脂,係可與構成第一保護膜或第二保護膜之上述的樹脂相同。第一離型膜的組成係可與第二離型膜的組成相同。第一離型膜的組成亦可與第二離型膜的組成不同。第一離型膜的厚度係可例如為5μm以上200μm以下。第二離型膜的厚度亦可為例如5μm以上200μm以下。 The resin constituting each of the first release film and the second release film may be the same as the above-mentioned resin constituting the first protective film or the second protective film. The composition of the first release film may be the same as the composition of the second release film. The composition of the first release film may also be different from the composition of the second release film. The thickness of the first release film may be, for example, 5 μm or more and 200 μm or less. The thickness of the second release film may be, for example, 5 μm or more and 200 μm or less.

第一旋轉刀b1及第二旋轉刀b2各者係沿著積層體4的積層方向(Z軸方向)延伸。第一旋轉刀b1的側面s1係相對於積層構造體2的各端 面大致平行。第二旋轉刀b2的側面s2亦相對於積層構造體2的各端面大致平行。第一旋轉刀b1的旋轉軸線a1係大致平行於第一旋轉刀b1的側面s1。第二旋轉刀b2的旋轉軸線a2係大致平行於第二旋轉刀b2的側面s2。 Each of the first rotating blade b1 and the second rotating blade b2 extends along the layering direction (Z-axis direction) of the layered body 4. The side surface s1 of the first rotating knife b1 is opposite to each end of the laminated structure 2 The faces are roughly parallel. The side surface s2 of the second rotating blade b2 is also substantially parallel to each end surface of the laminated structure 2. The rotation axis a1 of the first rotating blade b1 is substantially parallel to the side surface s1 of the first rotating blade b1. The rotation axis a2 of the second rotating blade b2 is substantially parallel to the side surface s2 of the second rotating blade b2.

第一旋轉刀b1係具有形成於其側面s1的刀(刀口(edge))。藉由將繞著旋轉軸線a1旋轉之第一旋轉刀b1的側面s1抵靠於積層構造體2的端面,以切削積層構造體2的端面。第二旋轉刀b2亦具有形成於其側面s2的刀(刀口)。藉由將繞著旋轉軸線a2之第二旋轉刀b2的側面s2抵靠於積層構造體2的端面,以切削積層構造體2的端面。積層體4之積層方向(Z軸方向)上之各旋轉刀的寬度,係可為積層方向上之積層構造體2的寬度以上。 The first rotating blade b1 has a blade (edge) formed on its side surface s1. The end surface of the laminated structure 2 is cut by pressing the side surface s1 of the first rotating blade b1 rotating around the rotation axis a1 against the end surface of the laminated structure 2. The second rotating knife b2 also has a knife (knife edge) formed on its side surface s2. By pressing the side surface s2 of the second rotating blade b2 around the rotation axis a2 against the end surface of the laminated structure 2, the end surface of the laminated structure 2 is cut. The width of each rotary blade in the layering direction (Z-axis direction) of the layered body 4 may be greater than the width of the layered structure 2 in the layering direction.

第一旋轉刀b1及第二旋轉刀b2各者係可為端銑刀。然而,第一旋轉刀b1及第二旋轉刀b2各者不限定於端銑刀。例如,第一旋轉刀b1及第二旋轉刀b2各亦可為側面配置有刨刀的旋轉刀。 Each of the first rotary knife b1 and the second rotary knife b2 may be an end mill. However, each of the first rotary tool b1 and the second rotary tool b2 is not limited to an end mill. For example, each of the first rotating blade b1 and the second rotating blade b2 may be a rotating blade in which a planer blade is arranged on the side surface.

在切削步驟中,大致平行於積層構造體2之上表面tf及下表面uf各者之長邊(Y軸方向)的第一端面f1及第二端面f2各者係藉由以下的方法切削。 In the cutting step, each of the first end face f1 and the second end face f2 substantially parallel to the long sides (Y-axis direction) of each of the upper surface tf and the lower surface uf of the laminated structure 2 is cut by the following method.

如圖3(a)所示,第一旋轉刀b1的側面s1係與積層構造體2的第一端面f1相接,同時切削第一端面f1的整體。第二旋轉刀b2的側面s2係和與第一端面f1相對向的第二端面f2相接,同時切削第二端面f2的整體。 As shown in FIG. 3(a), the side surface s1 of the first rotating blade b1 is in contact with the first end surface f1 of the laminated structure 2 while cutting the entire first end surface f1. The side surface s2 of the second rotating blade b2 is in contact with the second end surface f2 facing the first end surface f1, and at the same time, the entire second end surface f2 is cut.

在切削步驟中,係大致同時地進行藉由第一旋轉刀b1切削第一端面f1及藉由第二旋轉刀b2切削第二端面f2。由於第一端面f1及第二端面f2彼此相對向,因此第一旋轉刀b1對於第一端面f1施加的壓力及第二旋轉刀b2對於第二端面f2施加的壓力容易取得平衡,且第一旋轉刀b1對於第 一端面f1施加的力矩及第二旋轉刀b2對於第二端面f2施加的力矩容易彼此抵銷,因此,積層構造體2的一部分或整體,不易在大致垂直於積層體4的積層方向(Z軸方向)的方向(XY面方向)上偏移。基於相同的理由,積層構造體2的一部分或整體,不易繞著大致平行於積層體4之積層方向(Z軸方向)的旋轉軸線a12(夾鉗的中軸線)旋轉。換言之,藉由將相對向之第一端面f1及第二端面f2大致同時地切削,抑制積層構造體2的位置偏移及扭歪。因此,可精密地控制各旋轉刀相對於積層構造體2之各端面的相對位置及相對移動速度,且可以較高的精確度切削第一端面f1及第二端面f2各者。藉由以上的機制,積層構造體2及積層體4各者的形狀及尺寸的精確度獲得提高。換言之,積層構造體2的上表面tf、下表面uf及各積層體4係以高精確度被加工。例如,第一端面f1與第二端面f2的間隔被均一地控制。此外,第一端面f1與第三端面f3的交叉角、第一端面f1與第四端面f4的交叉角、第二端面f2與第三端面f3的交叉角,及第二端面f2與第四端面f4的交叉角係被均一地控制。例如,當構成積層構造體2之積層體4的數量為100片,在積層方向(Z軸方向)上之黏著劑層之厚度相對於積層構造體2之厚度所佔之合計的比例為17%,各積層體4的厚度為190μm,切削步驟前之各積層體4之長邊的長度(Y方向上之積層體4的寬度)為155mm,切削步驟前之各積層體4之短邊的長度(X方向上之積層體4的寬度)為75mm時,切削步驟後之積層體4之短邊之長度從設計值偏移的寬度,最大為0.008mm左右,交叉角從90°偏移的幅度,最大為0.16°左右。另一方面,當第一端面f1及第二端面f2未被同時切削,第一端面f1及第二端面f2分別被一個旋轉刀切削時,積層體4之短邊 之長度從設計值偏移的寬度,最大為0.044mm左右,交叉角從90°偏移的幅度係0.29°左右。 In the cutting step, the cutting of the first end surface f1 by the first rotating blade b1 and the cutting of the second end surface f2 by the second rotating blade b2 are performed substantially simultaneously. Since the first end face f1 and the second end face f2 face each other, the pressure applied by the first rotating blade b1 to the first end face f1 and the pressure applied by the second rotating blade b2 to the second end face f2 are easily balanced, and the first rotation Knife b1 for the first The moment applied by the one end face f1 and the moment applied by the second rotating blade b2 on the second end face f2 easily cancel each other. Therefore, it is difficult for a part or the whole of the layered structure 2 to move in the layering direction (Z axis) substantially perpendicular to the layered body 4 Direction) (XY plane direction). For the same reason, a part or the whole of the laminated structure 2 is not easy to rotate about the rotation axis a12 (center axis of the clamp) substantially parallel to the laminated direction (Z-axis direction) of the laminated body 4. In other words, by cutting the opposing first end face f1 and the second end face f2 at substantially the same time, the positional deviation and distortion of the laminated structure 2 are suppressed. Therefore, the relative position and relative moving speed of each rotary knife with respect to each end surface of the laminated structure 2 can be precisely controlled, and each of the first end surface f1 and the second end surface f2 can be cut with high accuracy. With the above mechanism, the accuracy of the shape and size of each of the laminated structure 2 and the laminated body 4 is improved. In other words, the upper surface tf, the lower surface uf of the laminated structure 2 and each laminated body 4 are processed with high precision. For example, the interval between the first end face f1 and the second end face f2 is uniformly controlled. In addition, the intersection angle between the first end face f1 and the third end face f3, the intersection angle between the first end face f1 and the fourth end face f4, the intersection angle between the second end face f2 and the third end face f3, and the second end face f2 and the fourth end face The intersection angle of f4 is uniformly controlled. For example, when the number of laminates 4 constituting the laminate structure 2 is 100, the thickness of the adhesive layer in the laminate direction (Z-axis direction) relative to the thickness of the laminate structure 2 is 17%. , The thickness of each layered body 4 is 190μm, the length of the long side of each layered body 4 before the cutting step (the width of the layered body 4 in the Y direction) is 155mm, and the length of the short side of each layered body 4 before the cutting step When (the width of the laminated body 4 in the X direction) is 75mm, the width of the short side of the laminated body 4 after the cutting step is offset from the design value, the maximum is about 0.008mm, and the crossing angle is offset from 90° , The maximum is about 0.16°. On the other hand, when the first end face f1 and the second end face f2 are not cut at the same time, and the first end face f1 and the second end face f2 are each cut by a rotating knife, the short side of the laminated body 4 The width of the deviation of the length from the design value is about 0.044mm at the maximum, and the deviation of the crossing angle from 90° is about 0.29°.

在垂直於積層方向(Z軸方向)之方向(XY平面方向)上,第一端面f1及第二端面f2各者的寬度係比第三端面f3及第四端面f4各者的寬度更大。垂直於積層方向(Z軸方向)之方向(XY面方向)上之端面的寬度愈大,旋轉刀愈易於施加力矩於端面。因此,假設當寬度較大之第一端面f1及第二端面f2各者僅使用一個旋轉刀非同時地進行切削時,如圖4(a)所示,由於旋轉刀(b1)施加於積層構造體2的力F,積層構造體2的整體繞著大致平行於積層方向(Z軸方向)之旋轉軸線a12(夾鉗12的中心軸線)旋轉,積層構造體2易於從預定的位置偏移,且如圖4(b)所示,構成積層構造體2的各積層體4係繞著大致平行於積層方向(Z軸方向)之旋轉軸線a12(夾鉗12的中心軸線)旋轉,而使積層構造體2易於扭歪。尤其積層方向(Z軸方向)上之積層構造體2的中央部特別易於旋轉,且構成積層構造體2之積層體4的片數愈多,則愈易於引起積層構造體2的位置偏移及扭歪。各積層體4包含第一黏著劑層及第二黏著劑層等黏著劑層作為光學膜10a及10b時,由於黏著劑層比其他光學膜更為柔軟,因此積層構造體2易於扭歪。結果,在切削步驟中,難以精密地控制第一端面f1及第二端面f2各者的形狀,且難以以較高的精確度將積層構造體2的上表面tf、下表面uf及各積層體4加工為異形。另一方面,以本實施型態之情形而言,藉由上述的機制,即可抑制在切削寬度較大之第一端面f1及第二端面f2中之積層構造體2的位置偏移及扭歪。 In the direction (XY plane direction) perpendicular to the stacking direction (Z-axis direction), the width of each of the first end surface f1 and the second end surface f2 is larger than the width of each of the third end surface f3 and the fourth end surface f4. The greater the width of the end face in the direction (XY plane direction) perpendicular to the stacking direction (Z-axis direction), the easier it is for the rotary knife to apply torque to the end face. Therefore, it is assumed that when each of the first end face f1 and the second end face f2 with a larger width is cut non-simultaneously with only one rotating knife, as shown in Figure 4(a), since the rotating knife (b1) is applied to the laminated structure With the force F of the body 2, the whole of the laminated structure 2 rotates around the rotation axis a12 (the central axis of the clamp 12) approximately parallel to the laminated direction (Z-axis direction), and the laminated structure 2 is easily displaced from a predetermined position, And as shown in FIG. 4(b), each layered body 4 constituting the layered structure 2 is rotated about a rotation axis a12 (the center axis of the clamp 12) approximately parallel to the layering direction (Z-axis direction), so that the layered The structure 2 tends to twist. In particular, the central part of the laminated structure 2 in the laminated direction (Z axis direction) is particularly easy to rotate, and the more the number of the laminated body 4 constituting the laminated structure 2, the more likely it is to cause the positional deviation of the laminated structure 2 and wry. When each laminate 4 includes adhesive layers such as a first adhesive layer and a second adhesive layer as the optical films 10a and 10b, since the adhesive layer is softer than other optical films, the laminate structure 2 tends to distort. As a result, in the cutting step, it is difficult to precisely control the shape of each of the first end surface f1 and the second end surface f2, and it is difficult to accurately align the upper surface tf, the lower surface uf, and each layered body of the layered structure 2 with high accuracy. 4 Processed into special shapes. On the other hand, in the case of this embodiment, by the above-mentioned mechanism, the positional deviation and twisting of the laminated structure 2 in the first end face f1 and the second end face f2 with a larger cutting width can be suppressed. crooked.

由於藉由上述的機制即可抑制積層構造體2的位置偏移及扭歪,故依據本實施型態,可使構成積層構造體2之積層體4的數量增加。藉 由增加能一併切削之積層體4的數量,使得切削步驟的所需時間縮短,且使光學構件的生產力獲得提升。再者,依據本實施型態,即使構成積層構造體2的各積層體4包含黏著劑層時,亦可易於控制積層構造體2的位置偏移及扭歪。 Since the positional deviation and distortion of the laminated structure 2 can be suppressed by the above-mentioned mechanism, according to this embodiment, the number of laminated bodies 4 constituting the laminated structure 2 can be increased. borrow By increasing the number of laminated bodies 4 that can be cut together, the time required for the cutting step is shortened, and the productivity of the optical member is improved. Furthermore, according to the present embodiment, even when each layered body 4 constituting the layered structure 2 includes an adhesive layer, the positional deviation and distortion of the layered structure 2 can be easily controlled.

如圖3所示,從第一旋轉刀b1延伸的虛線及箭號,係表示切削步驟中之第一旋轉刀b1的移動路徑及移動方向。第一旋轉刀b1之移動路徑及移動方向係可相對於積層構造體2為相對性者。換言之,可為第一旋轉刀b1本身移動,亦可為積層構造體2本身移動。如圖3所示,從第二旋轉刀b2延伸的虛線及箭號,係表示切削步驟中之第二旋轉刀b2的移動路徑及移動方向。 As shown in FIG. 3, the dashed lines and arrows extending from the first rotating knife b1 indicate the moving path and moving direction of the first rotating knife b1 in the cutting step. The movement path and movement direction of the first rotating blade b1 may be relative to the laminated structure 2. In other words, the first rotating blade b1 itself may move, or the laminated structure 2 itself may move. As shown in FIG. 3, the dotted lines and arrows extending from the second rotating knife b2 indicate the moving path and moving direction of the second rotating knife b2 in the cutting step.

第二旋轉刀b2之移動路徑及移動方向係可相對於積層構造體2為相對性者。 The movement path and movement direction of the second rotating knife b2 may be relative to the laminated structure 2.

換言之,可為第二旋轉刀b2本身移動,亦可為積層構造體2本身移動。如從第一旋轉刀b1及第二旋轉刀b2各者延伸的虛線及箭號所示,在切削步驟中,第一旋轉刀b1及第二旋轉刀b2係可沿著相對向的第一端面f1及第二端面f2移動。在切削步驟中,第一旋轉刀b1及第二旋轉刀b2係可沿著相對向的第一端面f1及第二端面f2並進。藉由第一旋轉刀b1及第二旋轉刀b2並行地移動,作用於第一端面f1及第二端面f2各者上的力矩易於彼此抵銷,易於抑制積層構造體2的旋轉及扭歪。基於相同的理由,第一旋轉刀b1施加於第一端面f1的壓力,係可與第二旋轉刀b2施加於第二端面f2的壓力大致相等,而大致平行於第一端面f1之方向上之第一旋轉刀b1的移動速度,係可與大致平行於第二端面f2之方向上之第二旋轉刀b2的移動速度大致相同。 在第一端面f1及第二端面f2被切削的過程中,第一旋轉刀b1及第二旋轉刀b2的間隔係可自由地變動。藉由控制第一旋轉刀b1及第二旋轉刀b2的間隔,將第一端面f1及第二端面f2各者精密地加工。在第一端面f1及第二端面f2被切削的過程中,夾鉗12的位置係可固定。或者在第一端面f1及第二端面f2被切削的過程中,大致平行於第一端面f1及第二端面f2之方向(Y軸方向)上之第一旋轉刀b1及第二旋轉刀b2各者的位置係可固定,而夾鉗12係可沿著大致平行於第一端面f1及第二端面f2之方向(Y軸方向)移動。換言之,被夾鉗12所挾持的積層構造體2,可通過第一旋轉刀b1及第二旋轉刀b2之間。 In other words, the second rotating blade b2 itself may move, or the laminated structure 2 itself may move. As shown by the dashed lines and arrows extending from each of the first rotating knife b1 and the second rotating knife b2, in the cutting step, the first rotating knife b1 and the second rotating knife b2 can be along the first end faces facing each other. f1 and the second end face f2 move. In the cutting step, the first rotating blade b1 and the second rotating blade b2 can be moved along the first end surface f1 and the second end surface f2 that are opposite to each other. As the first rotating blade b1 and the second rotating blade b2 move in parallel, the moments acting on each of the first end face f1 and the second end face f2 can easily cancel each other, and the rotation and distortion of the laminated structure 2 can be easily suppressed. For the same reason, the pressure applied by the first rotating blade b1 to the first end surface f1 can be approximately equal to the pressure applied to the second end surface f2 by the second rotating blade b2, and is roughly parallel to the direction of the first end surface f1. The moving speed of the first rotating knife b1 can be substantially the same as the moving speed of the second rotating knife b2 in a direction substantially parallel to the second end surface f2. During the cutting of the first end face f1 and the second end face f2, the interval between the first rotating blade b1 and the second rotating blade b2 can be freely changed. By controlling the interval between the first rotating blade b1 and the second rotating blade b2, each of the first end surface f1 and the second end surface f2 is precisely processed. During the cutting process of the first end face f1 and the second end face f2, the position of the clamp 12 can be fixed. Or during the cutting process of the first end face f1 and the second end face f2, the first rotary knife b1 and the second rotary knife b2 in the direction (Y-axis direction) approximately parallel to the first end face f1 and the second end face f2 are each The position of the one can be fixed, and the clamp 12 can move along a direction (Y-axis direction) substantially parallel to the first end surface f1 and the second end surface f2. In other words, the laminated structure 2 held by the clamp 12 can pass between the first rotary knife b1 and the second rotary knife b2.

光學構件的製造方法係可更具備在切削步驟前實施的加工步驟。可藉由加工步驟來形成積層構造體2及各積層體4。加工步驟中所使用的加工手段可為衝切或切斷。加工步驟中所使用的切斷手段係可為刀具或雷射(例如CO2(二氧化碳)氣體雷射或準分子雷射(excimer laser)。 The manufacturing method of the optical member may further include a processing step performed before the cutting step. The laminated structure 2 and each laminated body 4 can be formed by processing steps. The processing means used in the processing steps can be punching or cutting. The cutting method used in the processing step can be a tool or a laser (for example, a CO 2 (carbon dioxide) gas laser or an excimer laser).

在藉由上述的旋轉刀切削積層構造體2之所有端面(第一端面f1、第二端面f2、第三端面f3及第四端面f4)之一連串的過程中,夾鉗12始終相對於大致平行於積層方向(Z軸方向)的旋轉軸線a12(夾鉗12的中心軸線)不旋轉。換言之,夾鉗12從開始積層構造體2之端面之切削的時點至所有端面之切削完成的時點為止不旋轉。惟夾鉗12亦可在積層構造體2的任一個端面均未被切削的時點旋轉。夾鉗12亦可在積層構造體2之所有端面的切削完成之後旋轉。假設夾鉗12在藉由旋轉刀切削積層構造體2之所有端面之一連串的過程中旋轉時,如圖4(b)所示,構成積層構造體2的各積層體4係與夾鉗12連動地繞著大致平行於積層方向(Z軸方向)的旋轉軸線a12(夾 鉗12的中心軸線)旋轉,而使積層構造體2易於扭歪。另一方面,當夾鉗12在藉由旋轉刀切削積層構造體2之所有端面的過程中始終不旋轉時,積層構造體2的扭歪被抑制。結果,可易於精密地控制積層構造體2之所有端面的形狀,且可以高精確度將積層構造體2的上表面tf、下表面uf及各積層體4加工為異形。 In the process of cutting all the end faces of the laminated structure 2 (the first end face f1, the second end face f2, the third end face f3, and the fourth end face f4) by the above-mentioned rotary knife, the clamp 12 is always substantially parallel to The rotation axis a12 (the center axis of the clamp 12) in the stacking direction (Z axis direction) does not rotate. In other words, the clamp 12 does not rotate from the time when the cutting of the end surface of the laminated structure 2 is started to the time when the cutting of all the end surfaces is completed. However, the clamp 12 may be rotated at a time when neither end surface of the laminated structure 2 is cut. The clamp 12 may be rotated after the cutting of all the end faces of the laminated structure 2 is completed. Assuming that the clamp 12 is rotated in the process of cutting all the end faces of the laminated structure 2 with a rotating knife, as shown in FIG. 4(b), each laminated body 4 constituting the laminated structure 2 is linked with the clamp 12 The ground around the axis of rotation a12 (clamping The center axis of the pliers 12) rotates, and the laminated structure 2 is liable to twist. On the other hand, when the clamp 12 does not rotate during the cutting of all the end faces of the laminated structure 2 with the rotating blade, the distortion of the laminated structure 2 is suppressed. As a result, the shape of all the end faces of the laminated structure 2 can be easily and precisely controlled, and the upper surface tf, the lower surface uf of the laminated structure 2 and the respective laminated bodies 4 can be processed into special shapes with high accuracy.

如上所述,在藉由旋轉刀切削積層構造體2之所有端面的過程中,夾鉗12始終不旋轉。因此,在藉由旋轉刀切削積層構造體2之所有端面的過程中,第一旋轉刀b1及第二旋轉刀b2各者所設置的位置係自如地變更。例如,圖3所示之位置p1、p2、p3及p4為在切削步驟中第一旋轉刀b1及第二旋轉刀b2各者所設置的位置。位置p1係第一端面f1與第四端面f4相交之角部。位置p2係第二端面f2與第四端面f4相交之角部。位置p3係第一端面f1與第三端面f3相交之角部。位置p4係第二端面f2與第三端面f3相交之角部。只要相對向的兩個端面被一對旋轉刀大致同時切削,則並不限定第一旋轉刀b1及第二旋轉刀b2各者所設置的位置。只要相對向的兩個端面被一對旋轉刀大致同時切削,亦不限定第一端面f1、第二端面f2、第三端面f3與第四端面f4的切削順序,且亦不限定各端面與切削各端面之旋轉刀的組合。 As described above, in the process of cutting all the end faces of the laminated structure 2 with the rotating blade, the clamp 12 does not rotate at all. Therefore, in the process of cutting all the end faces of the laminated structure 2 with the rotating blade, the position where each of the first rotating blade b1 and the second rotating blade b2 is set can be freely changed. For example, the positions p1, p2, p3, and p4 shown in FIG. 3 are the positions where each of the first rotary knife b1 and the second rotary knife b2 is set in the cutting step. The position p1 is the corner where the first end face f1 and the fourth end face f4 intersect. The position p2 is the corner where the second end face f2 and the fourth end face f4 intersect. The position p3 is the corner where the first end face f1 and the third end face f3 intersect. The position p4 is the corner where the second end face f2 and the third end face f3 intersect. As long as the two opposite end faces are cut by a pair of rotating blades substantially simultaneously, the position where each of the first rotating blade b1 and the second rotating blade b2 is provided is not limited. As long as the two opposite end faces are cut roughly at the same time by a pair of rotating knives, the cutting order of the first end face f1, the second end face f2, the third end face f3 and the fourth end face f4 is not limited, and the cutting order of each end face and cutting is also not limited. The combination of rotating knives on each end face.

例如,大致平行於積層構造體2的上表面tf及下表面uf各者的短邊(X軸方向)之第三端面f3及第四端面f4,係與第一端面f1及第二端面f2同樣地,可以一對旋轉刀(第一旋轉刀b1及第二旋轉刀b2)大致同時(即並行地)被切削。例如,第一旋轉刀b1可設置於位置p3,第二旋轉刀b2可設置於位置p1,第二旋轉刀b2可與從位置p3往位置p4之第一旋轉刀b1的移動並行地從位置p1往位置p2移動。 For example, the third end face f3 and the fourth end face f4 approximately parallel to the short sides (X-axis direction) of each of the upper surface tf and the lower surface uf of the laminated structure 2 are the same as the first end surface f1 and the second end surface f2 Ground, a pair of rotating blades (the first rotating blade b1 and the second rotating blade b2) can be cut substantially simultaneously (that is, in parallel). For example, the first rotating knife b1 can be set at the position p3, the second rotating knife b2 can be set at the position p1, and the second rotating knife b2 can be moved from the position p1 in parallel with the movement of the first rotating knife b1 from the position p3 to the position p4. Move to position p2.

第三端面f3及第四端面f4各者可使用第一旋轉刀b1或第二旋轉刀b2而非同時地被切削。例如,在切削步驟的開始時點,第一旋轉刀b1可設置於位置p2,第四端面f4可藉由從位置p2往位置p1移動之第一旋轉刀b1而被切削。在切削第四端面f4之後,可將第一旋轉刀b1設置在位置p1,且可將第二旋轉刀b2設置在位置p2。而且,可大致同時地進行藉由第一旋轉刀b1切削第一端面f1及藉由第二旋轉刀b2切削第二端面f2。在同時切削第一端面f1及第二端面f2之後,可將第一旋轉刀b1設置在位置p3,第三端面f3可藉由從位置p3往位置p4移動之第一旋轉刀b1而被切削。 Each of the third end face f3 and the fourth end face f4 may be cut using the first rotating blade b1 or the second rotating blade b2 instead of being simultaneously cut. For example, at the beginning of the cutting step, the first rotating knife b1 can be set at the position p2, and the fourth end surface f4 can be cut by the first rotating knife b1 moving from the position p2 to the position p1. After cutting the fourth end face f4, the first rotating knife b1 may be set at the position p1, and the second rotating knife b2 may be set at the position p2. Furthermore, the cutting of the first end surface f1 by the first rotating blade b1 and the cutting of the second end surface f2 by the second rotating blade b2 can be performed substantially simultaneously. After cutting the first end surface f1 and the second end surface f2 at the same time, the first rotating knife b1 can be set at the position p3, and the third end surface f3 can be cut by the first rotating knife b1 moving from the position p3 to the position p4.

在切削步驟中,亦可除了第一旋轉刀b1或第二旋轉刀b2還使用其他的旋轉刀。換言之,在切削步驟中可使用三個以上的旋轉刀。 In the cutting step, other rotating blades may be used in addition to the first rotating blade b1 or the second rotating blade b2. In other words, more than three rotating knives can be used in the cutting step.

光學構件的製造方法亦可更具備形成在積層體4的積層方向上貫通積層構造體2之孔的步驟。亦可在上述之切削步驟前,形成貫通積層構造體2的孔。亦可在上述之切削步驟後,形成貫通積層構造體2的孔。形成貫通積層構造體2之孔的手段,可為衝切裝置、鑽頭(drill)等旋轉刀或雷射。雷射係可例如為CO2氣體雷射或準分子雷射。貫通積層構造體2之孔的內壁,係可藉由上述的第一旋轉刀b1或第二旋轉刀b2切削。 The method of manufacturing the optical member may further include a step of forming a hole penetrating the multilayer structure 2 in the layering direction of the layered body 4. Before the above-mentioned cutting step, a hole penetrating through the build-up structure 2 may be formed. After the above-mentioned cutting step, a hole penetrating the laminated structure 2 may be formed. The means for forming the hole penetrating the laminated structure 2 may be a rotary knife such as a punching device, a drill, or a laser. The laser system can be, for example, a CO 2 gas laser or an excimer laser. The inner wall of the hole penetrating the laminated structure 2 can be cut by the above-mentioned first rotary knife b1 or the second rotary knife b2.

光學構件的製造方法係亦可具備:在切削步驟之後,將從積層體4的積層方向(Z軸方向)觀察之積層構造體2的四個角部中之至少一個角部藉由第一旋轉刀b1或第二旋轉刀b2予以倒角的步驟。被倒角後之角部係例如可為曲面。 The manufacturing method of the optical member may include: after the cutting step, at least one of the four corners of the laminated structure 2 viewed from the laminated direction (Z-axis direction) of the laminated body 4 is rotated by the first The step of chamfering with the knife b1 or the second rotating knife b2. The corners after being chamfered may be curved surfaces, for example.

光學構件的製造方法係可更具備:在切削步驟之後,在積層構造體2的四個端面中之至少一個端面,形成朝積層體4的積層方向(Z軸方 向)延伸之缺口部(凹坑)的步驟。例如,缺口部係可形成於寬度較窄之第三端面f3及第四端面f4中之至少一者之端面。從積層體4的積層方向(Z軸方向)觀察之缺口部的形狀並無限定。從積層體4的積層方向(Z軸方向)觀察之缺口部的形狀係例如可為大致長方形或大致正方形之四角形、三角形、其他多角形、或半圓、半橢圓、或其他曲線。 The manufacturing method of the optical member may further comprise: after the cutting step, at least one of the four end faces of the laminated structure 2 is formed facing the laminated direction (Z-axis direction) of the laminated structure 4 To) the step of extending the notch (pit). For example, the notch may be formed on the end surface of at least one of the narrow third end surface f3 and the fourth end surface f4. The shape of the notch as viewed from the layering direction (Z-axis direction) of the layered body 4 is not limited. The shape of the notch viewed from the layering direction (Z axis direction) of the layered body 4 may be, for example, a substantially rectangular or substantially square quadrangular shape, a triangle, other polygons, or a semicircle, a semiellipse, or other curved lines.

經過以上之步驟的積層構造體2係可作為一個積層光學膜來使用。構成經過以上之步驟之積層構造體2的各積層體4係可作為光學構件來使用。 The laminated structure 2 after the above steps can be used as a laminated optical film. Each laminated body 4 constituting the laminated structure 2 after the above steps can be used as an optical member.

[產業上之可利用性] [Industrial availability]

藉由本發明之製造方法所獲得的光學構件係可利用於液晶顯示器、有機EL顯示器、智慧型手機、智慧型手錶或車輛的儀表板等圖像顯示裝置。 The optical components obtained by the manufacturing method of the present invention can be used in image display devices such as liquid crystal displays, organic EL displays, smart phones, smart watches, or vehicle dashboards.

2:積層構造體 2: Layered structure

a12:大致平行於積層體之積層方向的旋轉軸線 a12: The axis of rotation roughly parallel to the stacking direction of the stack

b1:第一旋轉刀 b1: the first rotary knife

b2:第二旋轉刀 b2: second rotary knife

f1:第一端面 f1: the first end face

f2:第二端面 f2: second end face

f3:第三端面 f3: third end face

f4:第四端面 f4: the fourth end face

s1,s2:側面 s1, s2: side

tf:上表面 tf: upper surface

p1~p4:位置 p1~p4: location

Claims (6)

一種光學構件的製造方法,係具備: A method for manufacturing optical components, including: 以一對旋轉刀切削積層構造體的切削步驟; The cutting step of cutting the laminated structure with a pair of rotating knives; 前述積層構造體係包含彼此積層的複數層積層體, The aforementioned layered structure system includes a plurality of layered layers stacked on each other, 前述積層體係包含彼此積層的複數層光學膜, The aforementioned laminated system includes a plurality of optical films laminated on each other, 前述積層構造體係大致長方體或大致立方體, The aforementioned layered structure system is roughly rectangular parallelepiped or roughly cubic, 前述積層構造體之各端面係大致平行於前述積層體的積層方向, Each end surface of the aforementioned laminated structure is approximately parallel to the laminated direction of the aforementioned laminated body, 前述積層構造體的上表面及下表面係大致垂直於前述積層方向, The upper surface and the lower surface of the aforementioned laminated structure are substantially perpendicular to the aforementioned laminated direction, 前述積層構造體係藉由與前述積層構造體之前述上表面和前述下表面相接的夾鉗所挾持, The layered structure system is held by clamps that are in contact with the upper surface and the lower surface of the layered structure, 前述旋轉刀係沿著前述積層方向延伸, The aforementioned rotating knife system extends along the aforementioned stacking direction, 前述旋轉刀的側面係大致平行於前述積層構造體的前述端面, The side surface of the rotating blade is approximately parallel to the end surface of the laminated structure, 前述旋轉刀的旋轉軸線係大致平行於前述旋轉刀的側面, The rotation axis of the aforementioned rotary knife is approximately parallel to the side surface of the aforementioned rotary knife, 一方之前述旋轉刀的前述側面係與前述積層構造體之相對向之兩個前述端面中之一方的前述端面相接, The side surface of one of the rotating blades is in contact with the end surface of one of the two facing end surfaces of the laminated structure, 另一方之前述旋轉刀的前述側面係與前述積層構造體之相對向之兩個前述端面中之另一方的前述端面相接, The side surface of the other rotating knife is in contact with the other end surface of the two facing end surfaces of the laminated structure, 前述積層構造體之相對向的二個前述端面係被一對前述旋轉刀大致同時地切削, The two opposing end faces of the laminated structure are cut substantially simultaneously by a pair of the rotating blades, 在以前述旋轉刀切削前述積層構造體之所有端面的過程中,設置一對前述旋轉刀的位置會變更,且 In the process of cutting all the end faces of the laminated structure with the rotary knife, the position where the pair of rotary knives are installed is changed, and 在以前述旋轉刀切削前述積層構造體之所有端面的過程中,前述夾鉗係始終相對於大致平行於前述積層方向的旋轉軸線不旋轉。 In the process of cutting all the end faces of the laminated structure with the rotary blade, the clamp system does not always rotate with respect to a rotation axis substantially parallel to the laminated direction. 如請求項1所述之光學構件的製造方法,其中, The method of manufacturing an optical member according to claim 1, wherein: 前述積層構造體的前述上表面及前述下表面各者係大致長方形, Each of the upper surface and the lower surface of the laminated structure is substantially rectangular, 大致同時被切削的二個前述端面係大致平行於前述積層構造體的前述上表面及前述下表面各者的長邊。 The two end faces that are cut substantially at the same time are substantially parallel to the long sides of each of the upper surface and the lower surface of the laminated structure. 如請求項1或2所述之光學構件的製造方法,其中,在前述切削步驟中,前述一對之前述旋轉刀係沿著前述積層構造體之相對向的兩個前述端面移動。 The method of manufacturing an optical member according to claim 1 or 2, wherein in the cutting step, the pair of the rotary blades move along the two end faces of the laminated structure in the opposing direction. 如請求項1至3中任一項所述之光學構件的製造方法,其中,在前述切削步驟中,前述夾鉗係沿著與前述積層構造體之相對向的兩個前述端面大致平行的方向移動。 The method of manufacturing an optical member according to any one of claims 1 to 3, wherein, in the cutting step, the clamp is along a direction substantially parallel to the two end faces of the laminated structure facing each other move. 如請求項1至4中任一項所述之光學構件的製造方法,其中,前述積層體係包含至少一黏著劑層。 The method for manufacturing an optical member according to any one of claims 1 to 4, wherein the layered system includes at least one adhesive layer. 如請求項1至5中任一項所述之光學構件的製造方法,其中,前述旋轉刀係端銑刀。 The method of manufacturing an optical member according to any one of claims 1 to 5, wherein the rotary cutter is an end mill.
TW109133668A 2019-10-15 2020-09-28 Manufacturing method of optical member TW202128321A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-188479 2019-10-15
JP2019188479A JP7335126B2 (en) 2019-10-15 2019-10-15 Method for manufacturing optical member

Publications (1)

Publication Number Publication Date
TW202128321A true TW202128321A (en) 2021-08-01

Family

ID=75403259

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109133668A TW202128321A (en) 2019-10-15 2020-09-28 Manufacturing method of optical member

Country Status (4)

Country Link
JP (1) JP7335126B2 (en)
KR (1) KR20210044706A (en)
CN (1) CN112658342A (en)
TW (1) TW202128321A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7335125B2 (en) * 2019-10-15 2023-08-29 住友化学株式会社 Method for manufacturing optical member
CN116583367A (en) 2021-03-31 2023-08-11 住友重机械工业株式会社 Control device for injection molding machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013200376A (en) 2012-03-23 2013-10-03 Sumitomo Chemical Co Ltd Method for manufacturing end face processed polarizing plate
JP6612294B2 (en) 2017-07-20 2019-11-27 住友化学株式会社 Cutting device and method of manufacturing polarizing plate

Also Published As

Publication number Publication date
CN112658342A (en) 2021-04-16
KR20210044706A (en) 2021-04-23
JP2021062448A (en) 2021-04-22
JP7335126B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
CN109844582B (en) Polarizing plate, and image display device
TW202128321A (en) Manufacturing method of optical member
JP2007187781A (en) Method for manufacturing optical film product
JP6721645B2 (en) Optical film
KR102652292B1 (en) Method for manufacturing optical laminate with cutting adhesive layer
TWI830879B (en) Method for producing cutting-processed film
TW202128320A (en) Manufacturing method of optical member
CN112005143B (en) Optical laminate, optical laminate with protective glass, method for producing optical laminate with protective glass, and image display device with protective glass
JP2020067653A (en) Optical laminate body with cover glass and image display device with cover glass
JP7284141B2 (en) Polarizer
WO2019198617A1 (en) Method for manufacturing machined optical laminate with hard coat layer
WO2020162116A1 (en) Method for manufacturing optical film
TWI842838B (en) Polarizing plate
JP7213834B2 (en) Method for processing end face of laminate and method for manufacturing end face processed film
KR102390821B1 (en) Optical laminate with cover glass and image display device with cover glass
JP6896446B2 (en) Display panel manufacturing method