TW202102960A - 無人機巡檢系統與無人機巡檢方法 - Google Patents

無人機巡檢系統與無人機巡檢方法 Download PDF

Info

Publication number
TW202102960A
TW202102960A TW108127618A TW108127618A TW202102960A TW 202102960 A TW202102960 A TW 202102960A TW 108127618 A TW108127618 A TW 108127618A TW 108127618 A TW108127618 A TW 108127618A TW 202102960 A TW202102960 A TW 202102960A
Authority
TW
Taiwan
Prior art keywords
drone
abnormal
image
inspection
uav
Prior art date
Application number
TW108127618A
Other languages
English (en)
Inventor
李國昶
曾志能
李振昇
Original Assignee
中強光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中強光電股份有限公司 filed Critical 中強光電股份有限公司
Publication of TW202102960A publication Critical patent/TW202102960A/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0066Radiation pyrometry, e.g. infrared or optical thermometry for hot spots detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0096Radiation pyrometry, e.g. infrared or optical thermometry for measuring wires, electrical contacts or electronic systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • G01J5/485Temperature profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/25UAVs specially adapted for particular uses or applications for manufacturing or servicing
    • B64U2101/26UAVs specially adapted for particular uses or applications for manufacturing or servicing for manufacturing, inspections or repairs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Alarm Systems (AREA)

Abstract

本發明提供一種無人機巡檢系統與無人機巡檢方法。無人機從無人機巡檢系統的基地站接收巡檢指令,以對目標區域執行巡檢任務。巡檢任務包括:根據巡航路徑以第一高度飛行,並且以第一視野對目標區域獲取第一熱感應影像;反應於判定第一熱感應影像中存在溫度高於溫度門檻值且位於多個目標物的其中之一上的異常點,暫停飛行於巡航路徑,改以第二高度飛行,對異常點以第二視野擷取異常影像,並且儲存且標記異常影像,其中第二視野小於第一視野,並且第二高度小於第一高度。

Description

無人機巡檢系統與無人機巡檢方法
本發明是有關於一種巡檢系統,且特別是有關於一種無人機巡檢系統與無人機巡檢方法。
太陽能電廠的最重要發電組件,太陽能模組(太陽能板)偶爾會因為結構劣化或是表面髒汙/遮蔽的情形發生在太陽能模組的局部區域,使得局部區域不能夠維持發電特性,並且更轉為耗電特性。如此一來,此具有耗電特性的太陽能模組的局部區域會開始產生高溫,而導致損毀(亦稱,熱斑現象)。
目前傳統上,為了檢查太陽能模組是否具有熱斑現象,會使用人工檢查的方式,檢查員使用熱像儀來檢測每一片太陽能模組,以判斷每個太陽能模組上是否具有熱斑現象。
但是,對於太陽能電廠動輒具有上千片太陽能模組,上述的傳統方法會耗費大量的時間與人力,造成了太陽能電廠維護成本的提昇。因此,如何更有效率地檢測太陽能電廠中的多片太陽能模組,為本領域相關人員所關注的焦點。
“先前技術”段落只是用來幫助了解本發明內容,因此在“先前技術”段落所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。在“先前技術”段落所揭露的內容,不代表該內容或者本發明一個或多個實施例所要解決的問題,在本發明申請前已被所屬技術領域中具有通常知識者所知曉或認知。
本發明提供一種無人機巡檢系統與無人機巡檢方法,可有效地利用無人機針對目標區域執行巡檢操作,以判斷出目標區域中發生異常的目標物,並且對應地擷取目標物的異常影像。
為達上述之一或部分或全部目的或是其他目的,本發明的一實施例提供適用於巡航目標區域的一種無人機巡檢系統,其中目標區域包括多個目標物。無人機巡檢系統包括基地站以及無人機。無人機具有定位裝置。定位裝置用以接收全球定位系統訊號以辨識無人機的座標位置。無人機從基地站接收巡檢指令,以對目標區域執行巡檢任務。在巡檢任務中,無人機根據巡航路徑以第一視野對目標區域獲取第一熱感應影像,其中無人機判斷第一熱感應影像中是否存在異常點,其中反應於判定第一熱感應影像中存在異常點,無人機暫停飛行於巡航路徑,對異常點改以第二視野擷取異常影像,並且儲存且標記異常影像。
在本發明的一實施例中,第二視野小於第一視野。
在本發明的一實施例中,無人機根據巡航路徑以第一高度飛行以對目標區域以第一視野獲取第一熱感應影像,且以第二高度飛行以對異常點以第二視野擷取異常影像,其中第一高度大於第二高度。
在本發明的一實施例中,反應於判定第一熱感應影像中存在異常點,無人機根據第一熱感應影像與全球定位系統訊號來判斷異常點是否位於多個目標物的其中之一上,反應於判定異常點位於多個目標物的其中之一上,無人機暫停飛行於巡航路徑,改以第二高度飛行。
在本發明的一實施例中,無人機判斷第一熱感應影像中存在與周邊溫差之熱影像區塊時,判定第一熱感影像存在異常點。
在本發明的一實施例中,無人機包括用以擷取異常影像的影像擷取裝置、用以獲取第一熱感應影像的熱感應影像裝置、用以辨識無人機的高度的高度計、用以與基地站建立無線連線的通訊單元以及用於管理巡檢任務與執行影像辨識操作的控制器,其中無人機與基地站經由無線連線傳輸巡檢指令與異常影像。
在本發明的一實施例中,基地站對無人機進行充電。
在本發明的一實施例中,上述的無人機巡檢系統更包括第一定位輔助裝置與第二定位輔助裝置,第一定位輔助裝置被固定地設置於基地站上或目標區域中的定位點,第二定位輔助裝置被設置在無人機上且耦接至定位裝置,第一定位輔助裝置傳輸本地定位訊號至定位裝置,並且定位裝置藉由第二定位輔助裝置接收全球定位系統訊號,定位裝置根據第一定位輔助裝置的座標位置、全球定位系統訊號與本地定位訊號,以辨識無人機的座標位置。
在本發明的一實施例中,無人機巡航目標區域,根據全球定位系統訊號與本地定位訊號定位每一個多個目標物的目標物座標位置,無人機根據目標區域的地圖資訊與多個目標物的多個目標物座標位置,將地圖資訊中的對應多個目標物的多個識別碼映射至多個目標物座標位置。
在本發明的一實施例中,在巡檢任務中,無人機根據第一熱感應影像與全球定位系統訊號、本地定位訊號來辨識異常點的座標位置,並且比對異常點的座標位置與多個目標物座標位置,以判斷異常點是否位於多個目標物的其中之一上。
在本發明的一實施例中,在巡檢任務中,反應於判定異常點位於多個目標物的中的拍攝目標物上,無人機辨識拍攝目標物的識別碼,其中當無人機到達異常點的座標位置且以第二視野對具有異常點的拍攝目標物擷取異常影像時,無人機標記拍攝目標物的識別碼至異常影像。
在本發明的一實施例中,反應於判定異常點位於多個目標物的其中之一上,在巡檢任務中,無人機暫停依據巡航路徑往前飛行,記錄當前於巡航路徑中的座標為暫停點座標,並且開始下降至第二高度,其中當到達第二高度後,無人機從暫停點座標出發,並且開始飛行至異常點的座標位置。
在本發明的一實施例中,反應於儲存且標記異常影像的運作已完成,在巡檢任務中,無人機回到第一高度,飛行至暫停點座標,並且繼續依據巡航路徑往前飛行。
在本發明的一實施例中,在對異常點以第二視野擷取異常影像的運作中,無人機以第二視野對具有異常點的拍攝目標物進行影像辨識操作,以判斷拍攝目標物是否具有異常區域,其中反應於判定拍攝目標物具有異常區域,無人機以異常區域為中心,以第二視野對異常區域擷取異常影像,其中反應於判定拍攝目標物不具有異常區域,無人機繼續依據巡航路徑往前飛行。
在本發明的一實施例中,在巡檢任務中,反應於判定異常點不位於所有目標物上,無人機以第一視野對不位於所有目標物上的異常點獲取保全影像,並且發送警示通知與保全影像至基地站。
在本發明的一實施例中,基地站接收來自對應多個目標物所設置的偵測器的異常通知與對應異常通知的異常資訊,異常通知用以指示目標區域的特定目標區域發生異常,其中基地站傳送特定巡檢指令至無人機,其中特定巡檢指令用以指示無人機對特定目標區域執行特定巡檢任務,無人機根據特定巡檢指令規劃特定巡航路徑,並且根據特定巡航路徑來執行特定巡檢任務。
本發明的一實施例提供適用於一無人機巡檢系統的巡航目標區域的一種無人機巡檢方法,其中目標區域包括多個目標物。無人機巡檢方法包括:藉由無人機,接收全球定位系統訊號以持續地辨識無人機的座標位置;藉由無人機,從無人機巡檢系統的一基地站接收巡檢指令,以對目標區域執行巡檢任務,巡檢任務包括:根據巡航路徑以第一視野對目標區域獲取第一熱感應影像;判斷第一熱感應影像中是否存在異常點;反應於判定第一熱感應影像中存在,暫停飛行於巡航路徑,對異常點改以第二視野擷取異常影像,並且儲存且標記異常影像。
在本發明的一實施例中,第二視野小於第一視野。
在本發明的一實施例中,藉由無人機,根據巡航路徑以第一高度飛行以對目標區域以第一視野獲取第一熱感應影像,且以第二高度飛行以對異常點以第二視野擷取異常影像,其中第一高度大於第二高度。
在本發明的一實施例中,藉由無人機,反應於判定第一熱感應影像中存在異常點,無人機根據第一熱感應影像與全球定位系統訊號來判斷異常點是否位於多個目標物的其中之一上,反應於判定異常點位於多個目標物的其中之一上,暫停飛行於巡航路徑,改以第二高度飛行。
在本發明的一實施例中,藉由無人機,判斷第一熱感應影像中存在與周邊溫差之熱影像區塊時,判定第一熱感影像存在異常點。
在本發明的一實施例中,無人機可執行:藉由影像擷取裝置,擷取異常影像;藉由熱感應影像裝置,獲取第一熱感應影像;藉由高度計,辨識無人機的高度;藉由通訊單元,與基地站建立無線連線,其中基地站與基地站經由無線連線傳輸巡檢指令與異常影像;以及藉由控制器,管理巡檢任務與執行影像辨識操作。
在本發明的一實施例中,基地站對無人機進行充電。
在本發明的一實施例中,無人機巡檢系統更包括第一定位輔助裝置與第二定位輔助裝置,其中第一定位輔助裝置被固定地設置於基地站上或目標區域中的定位點,第二定位輔助裝置被設置在無人機上,並且耦接至定位裝置,其中第一定位輔助裝置傳輸本地定位訊號至定位裝置,並且定位裝置藉由第二定位輔助裝置接收全球定位系統訊號,無人機巡檢方法更包括:藉由定位裝置,根據第一定位輔助裝置的座標位置、全球定位系統訊號與本地定位訊號,以辨識無人機的座標位置。
在本發明的一實施例中,藉由無人機,巡航目標區域,根據全球定位系統訊號與本地定位訊號定位每一個多個目標物的目標物座標位置;以及藉由無人機,根據目標區域的地圖資訊與多個目標物的多個目標物座標位置,將地圖資訊中的對應多個目標物的多個識別碼映射至多個目標物座標位置。
在本發明的一實施例中,根據第一熱感應影像與全球定位系統訊號來判斷異常點是否位於多個目標物的其中之一上的步驟包括:藉由無人機,根據第一熱感應影像與全球定位系統訊號、本地定位訊號來辨識異常點的座標位置,並且比對異常點的座標位置與多個目標物座標位置,以判斷異常點是否位於多個目標物的其中之一上。
在本發明的一實施例中,巡檢任務更包括:反應於判定異常點位於多個目標物中的一拍攝目標物上,藉由無人機,辨識拍攝目標物的識別碼;以及當無人機到達異常點的座標位置且以第二視野對具有異常點的拍攝目標物擷取異常影像時,藉由無人機,標記拍攝目標物的識別碼至異常影像。
在本發明的一實施例中,反應於判定異常點位於多個目標物的其中之一上,巡檢任務更包括:暫停依據巡航路徑往前飛行,記錄當前於巡航路徑中的座標為一暫停點座標,並且開始下降至第二高度;以及當到達第二高度後,從暫停點座標出發,並且開始飛行至異常點的座標位置。
在本發明的一實施例中,反應於儲存且標記異常影像的步驟已完成,巡檢任務更包括:回到第一高度,飛行至暫停點座標,並且繼續依據巡航路徑往前飛行。
在本發明的一實施例中,對異常點以第二視野擷取異常影像的步驟包括:以第二視野對具有異常點的拍攝目標物進行影像辨識操作,以判斷拍攝目標物是否具有一異常區域;以及反應於判定拍攝目標物具有異常區域,無人機以異常區域為中心,以第二視野對異常區域擷取異常影像,反應於判定拍攝目標物不具有異常區域,繼續依據巡航路徑往前飛行。
在本發明的一實施例中,巡檢任務更包括:反應於判定異常點不位於所有目標物的其中之一上,以第一視野對不位於所有目標物上的異常點獲取保全影像,並且發送警示通知與保全影像至基地站。
在本發明的一實施例中,藉由基地站,接收來自對應多個目標物所設置的偵測器的異常通知與對應異常通知的異常資訊,其中異常通知用以指示目標區域的特定目標區域發生異常;藉由基地站,傳送特定巡檢指令至無人機,其中特定巡檢指令用以指示無人機對特定目標區域執行特定巡檢任務;以及藉由無人機,根據特定巡檢指令規劃特定巡航路徑,並且根據特定巡航路徑來執行特定巡檢任務。
基於上述,本發明實施例所提供的一種無人機巡檢系統與其所使用的無人機巡檢方法,可使無人機根據來自基地站的巡檢指令,自動地對目標區域執行巡檢任務,以第一視野於目標區域上移動,以第一視野獲取熱感應影像,以根據所獲取的熱感應影像是否存在異常點且當異常點的座標位於目標物上時,無人機用第二視野擷取包含異常點的異常影像。如此一來,目標區域上的發生異常的一或多個目標物可有效率地被發現,進而增進了目標區域上的所有目標物的安全性。
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。
圖1是根據本發明的一實施例所繪示的無人機巡檢系統1及對應的目標區域A1的示意圖。請參照圖1,無人機巡檢系統1包括基地站BS與無人機10。基地站BS可發送巡檢指令至無人機10,其中巡檢指令用以指示無人機對一目標區域A1執行一巡檢操作,以檢查目標區域A1的多個目標物是否異常。在本實施例中,無人機10初始地停靠在基地站BS上,並且在無人機10停靠在基地站BS的期間,基地站BS可對無人機10進行充電。在一實施例中,無人機巡檢系統1可還包括中控系統,中控系統例如是設置在遠端伺服器或是遠端連結的手持裝置,並同時連結基地站BS與無人機10,以接收其影像資訊或量測資訊。在一實施例中,無人機巡檢系統1可以將中控系統與基地台BS分開配置或一起配置,本發明不侷限於此。
在本實施例中,圖1例如是目標區域A1的鳥瞰示意圖。目標區域A1例如是具有多個太陽能模組的太陽能發電系統的區域,其中太陽能模組為包含太陽能薄膜或太陽能板的發電模組,也可稱為太陽能電池。太陽能發電系統具有M個太陽能板模組串列L1~LM(目標物群組),其中每一個太陽能模組串列經由多片太陽能板所串列組成,以使每片太陽能板接收太陽光的照射而產生且輸出電流。例如,太陽能模組串列L1為N個太陽能板L1(1)~L1(N)相互串聯所組成;太陽能模組串列L2為N個太陽能板L2(1)~L2(N)相互串聯所組成;太陽能模組串列LM為N個太陽能板LM(1)~LM(N)相互串聯所組成。M與N為正整數。本發明並不限定太陽能發電系統所具有的太陽能模組串列的總數量,也不限定每個太陽能模組串列的太陽能模組的總數量。此外,每個太陽能模組串列的太陽能模組的總數量可相同或不同。
每一個太陽能模組串列L1~LM分別耦接至逆變器D1~DM,以將所產生之直流電輸入至逆變器D1~DM。逆變器D1~DM將所輸入之直流電轉換為交流電,並且經由電網輸出所轉換的交流電。在一實施例中,逆變器D1~DM(亦稱,偵測器)亦可根據所接收之直流電的電力資訊(如,電流、電壓等相關資訊)來判斷對應所接收之直流電的太陽能模組串列是否發生異常。
在本實施例中,逆變器D1~DM連結至基地站BS或中控,以輸出異常通知與對應異常通知的異常資訊。異常通知用以指示對應的太陽能模組串列(亦稱,特定目標區域)發生異常。異常資訊可包括對應的太陽能模組串列的識別碼或/及所發生的異常的種類等相關資訊。例如,當太陽能模組串列L1的逆變器D1判定太陽能模組串列L1發生異常時,逆變器D1可發送異常通知與對應異常通知的異常資訊至基地站BS。在本實施例中,逆變器D1~DM連結至基地站BS的方式可為有線、無線或遠端的方式進行資料傳遞,本發明不侷限於此。在一實施例中,逆變器D1~DM還可連結至中控系統(即逆變器D1~DM可發送異常通知與對應異常通知的異常資訊至所連結的中控系統)。所述連結例如為網路連線。
在上述實施例中,逆變器用以轉換一個或多個太陽能模組串列所產生的直流電為交流電,並且逆變器可根據所接收的直流電的電力資訊來發送異常通知,以表示所連接的多個太陽能模組串列發生異常。在一實施例中,太陽能發電系統中的逆變器並不負責發送異常通知,但基地站BS亦可具備多個偵測器,其中多個偵測器可根據基地站BS所接收來自多個逆變器的交流電來判斷對應的太陽能模組串列是否發生異常。
圖2是根據本發明的一實施例所繪示的無人機巡檢系統的方塊示意圖。請參照圖2,無人機巡檢系統1包括無人機10與基地站BS,無人機巡檢系統1還包括定位輔助裝置PS1(亦稱,第一定位輔助裝置),其設置在目標區域A1中的定位點FP1或者設置於基地站BS上。基地站BS包括處理器200與耦接至處理器200的通訊單元270、儲存裝置260與電源供應單元280。
無人機10包括控制器100以及與控制器100耦接的影像擷取裝置110、熱感應影像裝置120、高度計130、飛行裝置140、定位裝置150、儲存裝置160、通訊單元170、電源供應單元180及定位輔助裝置PS2(亦稱,第二定位輔助裝置)。
影像擷取裝置110及熱感應影像裝置120用以對無人機10的目標區域區來擷取影像(例如是RGB影像或光影像)以熱感應影像。在一實施例中,影像擷取裝置110及熱感應影像裝置120例如式朝著無人機10的下方拍攝,以在無人機10飛行於目標區域A1上空時,對無人機10下方的部份的目標區域來擷取影像(RGB影像)、熱感應影像。在一實施例中,影像擷取裝置110及熱感應影像裝置120可包含鏡頭拍攝調整裝置,以調整鏡頭的拍攝角度。
在本實施例中,控制器100為具備運算能力的硬體。控制器100用以執行一或多個程式碼,以管理無人機10的整體運作。在本實施例中,控制器100,例如是一核心或多核心的中央處理單元(Central Processing Unit,CPU)、微處理器(Micro-processor)、數位訊號處理器(Digital Signal Processor,DSP)、特殊應用積體電路(Application Specific Integrated Circuits,ASIC)、可程式化邏輯裝置(Programmable Logic Device,PLD)或其他類似裝置。相似於控制器100,處理器200也為具備運算能力的硬體。處理器200用以執行一或多個程式碼,以管理基地站BS的整體運作。
通訊單元170與通訊單元270用以透過無線通訊的方式來傳輸或是接收資料,其中通訊單元170與通訊單元270可建立一網路連線NL,以使控制器100與處理器200可經由所建立的網路連線彼此傳輸資料或指令。例如,通訊單元170、270可具有一無線通訊模組(未繪示),並支援全球行動通信(Global System for Mobile Communication,GSM)系統、個人手持式電話系統(Personal Handy-phone System,PHS)、碼多重擷取(Code Division Multiple Access,CDMA)系統、無線相容認證(Wireless Fidelity,WiFi)系統、全球互通微波存取(Worldwide Interoperability for Microwave Access,WiMAX)系統、第三代無線通信技術(3G)、***無線通信技術(4G)、第五代無線通信技術(5G)、長期演進技術(Long Term Evolution, LTE)、藍芽(bluetooth)通訊技術的其中之一或其組合,且不限於此。
影像擷取裝置110用以擷取靜態影像或動態影像(亦稱,視訊),可接收控制器100的指令而擷取影像(亦稱,RGB影像或光影像)。例如,影像擷取裝置110例如是包括鏡頭、感光元件以及光圈等元件的相機。鏡頭例如是標準鏡頭、廣角鏡頭及變焦鏡頭等。感光元件例如是電荷耦合元件(Charge Coupled Device,CCD)、互補性氧化金屬半導體(Complementary Metal-Oxide Semiconductor,CMOS)元件或其他元件,鏡頭與感光元件或其組合在此皆不設限。
熱感應影像裝置120用以對物體所散發出的熱輻射進行感光成像的裝置,以輸出熱感應影像。熱感應影像裝置120例如是熱感應攝影機。熱感應影像可根據所偵測到的不同物體所散發的熱輻射的強度高低,經由對應不同溫度的顏色繪製對應不同的熱輻射強度的溫度分佈圖。物體的熱輻射強度越高,所感測到的對應溫度也會越高,並且熱感應影像裝置120會以對應較高溫度的顏色(如,較淺的顏色)來繪製對應較高熱輻射的物體的區域於熱感應影像中。換句話說,控制器100、基地站BS或中控系統可藉由所繪製的熱感應影像,可判斷出熱感應影像中具有較高溫度的區域或位置。
高度計130用以偵測無人機10的高度(亦稱,海拔高度),以傳送所偵測到的對應的高度值給控制器100。高度計130例如是通過測量大氣壓得到海拔高度的裝置。高度計130例如是氣壓高度計、聲波高度計或雷達高度計,以量測無人機所在位置的高度資訊。
飛行裝置140用以接收控制器100的指示來使無人機10於三維空間中移動或飛行。控制器100可控制飛行裝置140,以讓無人機10定位於三維空間中,或前往三維空間中的任意位置。飛行裝置140至少包括至少一旋翼軸,由電動馬達提供旋翼軸多方向動能以使無人機進行移動或定位。本發明不侷限於飛行裝置,任何能使無人機10飛行或移動的裝置皆不脫離本發明的範疇。
定位裝置150例如是全球定位系統(GPS)裝置,用以接收全球定位系統(Global Positioning System,通常簡稱GPS)的全球定位信號,以對無人機10當前的座標位置進行定位。在本實施例中,定位裝置150可持續地發送所辨識的定位資訊(即,無人機10當前的座標位置)給控制器100。
儲存裝置160、260用以經由控制器100、處理器200的指示來記錄任務相關的資料,儲存裝置160例如是記錄用以執行巡檢任務/特定巡檢任務的資訊(如,異常點判斷機制、對應目標區域的地圖資訊);多個資料庫(如,影像辨識資料庫、熱感應影像資料庫、光影像資料庫)。影像辨識資料庫用以儲存對應多個太陽能模組的異常區域的影像或/及影像辨識模型。控制器100可藉由影像辨識資料庫來執行影像辨識操作,舉例而言,儲存裝置160儲存熱感應影像資料庫與光影像資料庫(RGB影像資料庫),熱感應影像資料庫可用以儲存所擷取的多個熱感應影像,光影像資料庫用以儲存所擷取的多個靜態影像或動態影像。儲存裝置160可包含任何型態的非揮發/揮發性記憶體儲存裝置。在一實施例中,儲存裝置260例如式儲存基地站BS所接收的資料(如,對應異常影像或保全影像的影像資料)以及儲存用以控制基地站BS的韌體或是軟體。
電源供應單元180用以提供且管理無人機10的電力。電源供應單元180更包括一電池。電源供應單元180可經由有線方式或無線方式來接收來自外部的電力,以對電池進行充電。
相似地,電源供應單元280用以提供且管理基地站BS的電力。電源供應單元280可接收外部電力(如,市電)。此外,電源供應單元280亦可具有電池。在本實施例中,電源供應單元280可包含充電模組,以在無人機10停靠於基地站BS時,電源供應單元280的充電模組可經由有線方式或無線方式傳輸電力至電源供應單元180。
在一實施例中,定位裝置150經由第二定位輔助裝置PS2來接收全球定位系統訊號。第一定位輔助裝置PS1自身可接收全球定位系統訊號(亦稱,本地定位訊號),並且第一定位輔助裝置PS1可經由網路連線NL傳輸本地定位訊號至定位裝置150。定位裝置150可根據第一定位輔助裝置PS1的座標位置(即,定位點FP1的座標)、所接收的全球定位系統訊號與本地定位訊號來更精細地計算出辨識當前的無人機的座標位置。更具體來說,定位裝置150可使用即時載波相位差分(Real Time Kinematic,RTK)技術,根據第一定位輔助裝置PS1的座標位置(即,定位點FP1的座標)、第二定位輔助裝置PS2所接收的全球定位系統訊號與本地定位訊號來進行即時載波相位差分處理,以獲得出釐米級的定位結果,舉例而言,第一定位輔助裝置PS1可對應RTK技術的固定端,並且第二定位輔助裝置PS2可對應RTK技術的移動端。定位結果用以表示無人機10的精細座標位置。即時載波相位差分(Real Time Kinematic,RTK)技術為本領域人員熟知的技術手段,其他細節不贅述於此。在一實施例中,第一定位輔助裝置PS1可設置於目標區域A1中的任一位置(如圖1所示)或基地站BS上。
在本實施例中,控制器100可根據當前無人機的座標位置、定位點FP1的座標位置與目標區域A1的地圖資訊來辨識出無人機10目前位於目標區域A1中的位置。在一實施例中,控制器100可從影像擷取裝置110及熱感應影像裝置120拍攝出的影像所呈現的角度,進一步輔助判定無人機10目前位於目標區域A1中的位置。
在本實施例中,無人機10可執行目標區域映射操作。在目標區域映射操作中,無人機10可巡航目標區域A1,並且根據全球定位系統訊號與本地定位訊號定位多個目標物的每一個的目標物座標位置。具體來說,無人機10可根據目標區域A1的地圖資訊來飛行至每一個多個目標物的中心點的上方,以將當前無人機10的座標位置作為每一個多個目標物的目標物座標位置,進而完成定位每一個多個目標物的座標位置。
接著,無人機10可根據目標區域A1的地圖資訊與多個目標物的多個目標物座標位置,將地圖資訊中的對應多個目標物的多個識別碼映射至多個目標物座標位置。具體來說,每當完成一個目標物的定位而獲得目標物的目標物座標位置時(此時,無人機10也在目標物的中心點的上方),無人機10可辨識出目標物的識別碼,並且將識別碼映射至所定位出的目標物座標位置。在一實施例中,無人機10可根據目標物的尺寸與對應目標物中心點的目標物座標位置,將目標物內的任意點的座標值映射至目標物的識別碼。換言之,無人機10可將目標物內的任意點位映射至目標物的識別碼。
應注意的是,上述無人機10與基地站BS各部件的運作亦可視為無人機10與基地站BS的整體運作。
圖3A是根據本發明的一實施例所繪示的無人機巡檢方法的流程圖。請參照圖3A,在步驟S31中,無人機10接收全球定位系統訊號以辨識無人機的座標位置。應注意的是,步驟S31可為週期性地被執行,即,控制器100可週期性地辨識無人機10當前的座標位置。例如,每經過若干時間,無人機10就根據所接收的全球定位系統訊號來辨識當前的座標位置。此外,座標位置可為精細座標位置,即,經由RTK技術所獲得之無人機10的座標位置。
接著,在步驟S32中,無人機10從基地站BS接收巡檢指令,以對目標區域A1執行巡檢任務。處理器200可週期性地發送巡檢指令,以使無人機10可週期性地執行巡檢任務。在一實施例中,巡檢指令更可包括下列資訊的一或多者:(1)對應目標區域A1的地圖資訊;(2)對應巡檢任務的巡航路徑的多個座標值;(3)對應巡檢任務的巡航路徑的高度(亦稱,第一高度或巡航高度);(4)用以擷取異常影像的高度(亦稱,第二高度或拍攝高度);(5) 當無人機10於巡航高度飛行時,無人機10(影像擷取裝置110或熱感應影像裝置120)的視野(亦稱,第一視野)的尺寸;以及(6)當無人機10於巡航高度飛行時,無人機10(影像擷取裝置110或熱感應影像裝置120)的第一視野所可包含的目標物的總數目。
應注意的是,無人機巡檢系統1在執行步驟31及步驟32的順序可依實際情況對調,舉例而言,若無人機10可能停靠於基地站內並為關機狀態,因此,當要進行定期或無發的巡檢任務時,無人機10可以先開機或由待機狀態轉為可使用狀態,並進行步驟S32以接收巡檢指令,以對目標區域執行巡檢任務後,再進行步驟S31以接收在接收全球定位系統訊號以持續地辨識無人機的座標位置。
接著,在步驟S33中,無人機10根據巡航路徑以第一視野對目標區域獲取第一熱感應影像。更具體來說,在一實施例中,控制器100或處理器200可根據多種資訊中的一或多者來規劃巡航路徑。多種資訊包括:(1)目標區域A1的地圖資訊,其包括對應巡檢任務的多個目標物的多個識別碼、定位點FP1的座標位置;(2)影像擷取裝置110(或熱感應影像裝置120)的規格(如,鏡頭焦距、感光元件尺寸、感光元件面積等);(3)太陽能模組的尺寸;(4)相鄰之多個太陽能模組的間距;(5)巡航高度的高度值;以及(6)對應巡航路徑的視野(亦稱,第一視野)的尺寸。當巡航路徑是已經預先規劃好(如,預先藉由處理器200來規劃),所預先規劃之巡航路徑的座標資訊可被傳送給無人機10,以讓無人機10可使用所規劃之巡航路徑來執行巡檢任務。
請參照圖4A~圖4C,其中圖4A~圖4C相似於圖1,為了說明方便,假設M等於4,N等於18,並且對應的多個目標物如圖4A~圖4C所繪示。此外,假設對應目標物L1(1)~L1(18)的識別碼為“P1”~“P18”;對應目標物L2(1)~L2(18)的識別碼為“P19”~“P36”;對應目標物L3(1)~L3(18)的識別碼為“P37”~“P54”; 對應目標物L4(1)~L4(18)的識別碼為“P55”~“P72”。目標區域A1的地圖資訊至少記錄了基地站BS、定位點FP1、目標區域A1、目標區域A1中的72個目標物及對應的多個識別碼P1~P72。
圖4A是根據本發明的一實施例所繪示的目標區域A1與對應第一視野的巡航路徑CP1的示意圖。請參照圖4A,舉例來說,假設基地站BS發送巡檢指令給無人機10,巡檢指令用以指示無人機10對目標區域A1執行巡檢任務,並且以第一視野V1飛行於巡航路徑。第一視野V1最多可容納8個目標物。控制器100可藉由上述資訊,對應地計算出巡航路徑的高度(即,第一高度),以及規劃出巡航路徑CP1。如圖4A所繪示,巡航路徑CP1的起點與終點的座標為基地站BS的座標,並且包含路徑點WP1~WP3的座標。當無人機10使用第一視野V1依據巡航路徑CP1來飛行且回到基地站BS後,無人機10應可掃描完所有的目標物P1~P72。應注意的是,本發明並不限定於上述規劃巡航路徑的方式。上述用以說明巡航路徑的規劃方式的例子為示例性,並不限定本發明。根據用以規劃巡航路徑的資訊(如,第一視野V1的尺寸、及其所包含的目標物的總數目)的不同,所規劃出的巡航路徑也會隨之不同。
在另一實施例中,用以規劃巡航路徑的資訊不同於圖4A的巡航路徑,進而使所規劃出的巡航路徑也會不同。圖4B是根據本發明的一實施例所繪示的目標區域A1與對應另一第一視野的巡航路徑CP1’的示意圖。請參照圖4B,舉例來說,假設基地站BS發送巡檢指令給無人機10,巡檢指令用以指示無人機10對目標區域A1執行巡檢任務,並且以第一視野V1’飛行於巡航路徑CP1’。第一視野V1’最多可容納36個目標物。控制器100可藉由上述資訊,對應地計算出巡航路徑的高度(即,第一高度),以及規劃出巡航路徑CP1’。例如,巡航路徑CP1’的起點與終點的座標為基地站BS的座標,並且包含路徑點WP1’~WP2’的座標。應注意的是,在此例子中,所對應第一視野V1’的第一高度應會大於對應第一視野V1的第一高度。
圖5是根據本發明的一實施例所繪示的擷取異常影像的示意圖。請同時參照圖3與圖5,當開始執行巡檢任務時,無人機10可從基地站BS出發,並且無人機10先上升至第一高度H1。接著,無人機10依據巡航路徑CP1往前飛行(如,箭頭A51所示),同時熱感應影像裝置120以第一視野V1對目標區域A1獲取熱感應影像(亦稱,第一熱感應影像)。
每當獲取一個熱感應影像時,控制器100(或處理器200)會執行步驟S34,即,判斷所述第一熱感應影像中是否存在異常點。換言之,在無人機10依據巡航路徑CP1飛行時,無人機10會持續地獲得熱感應影像,並且去判斷所獲得之熱感應影像中是否出現異常點。在一實施例中,無人機對異常點的判斷可根據第一熱感應影像中存在與周邊溫差之熱影像區塊(例如是與周邊溫差明顯之熱影像區塊)時,判定第一熱感應影像存在異常點。
更詳細來說,當每片太陽能模組(即,目標物)因為多種因素而使太陽能模組的異常區域累積熱能時,進而使轉換的電流無法通過異常區域。也就是說,太陽能模組中,異常區域的溫度會高於可產生直流電的其他區域的溫度,異常區域則可由第一熱感應影像中發現與周邊溫差之熱影像區塊(例如是與周邊溫差明顯之熱影像區塊),而判定第一熱感應影像存在異常點。
圖6是根據本發明的一實施例所繪示的在所擷取的熱感應影像中的異常點的示意圖。請同時參照圖4A與圖6,舉例來說,假設當無人機10飛行至點N1時,無人機10獲得熱感應影像HIMG,並且發現太陽能模組P4具有異常點AP1。在此例子中,無人機10可根據所獲得之第一熱感應影像HIMG,判定第一熱感應影像HIMG存在與周邊溫差之熱影像區塊(例如是與周邊溫差明顯之熱影像區塊),因此判定第一熱感應影像HIMG存在異常點AP1。在一實施例中,無人機10可從獲得的熱感應影像HIMG發現太陽能模組P4具有溫度高於溫度門檻值的區塊,並判定為具有異常點AP1。
請再回到圖3A,在步驟S34中,反應於判定第一熱感應影像中存在異常點接續至步驟S35,無人機10根據第一熱感應影像與全球定位系統訊號來判斷異常點是否位於多個目標物的其中之一上。
具體來說,無人機10根據第一熱感應影像與全球定位系統訊號、本地定位訊號來辨識異常點AP1的座標位置,並且比對異常點AP1的座標位置與多個目標物座標位置,以判斷異常點AP1是否位於多個目標物的其中之一上。也就是說,無人機10可辨識出異常點AP1的座標位置,並且根據異常點AP1的座標位置、多個目標物座標與目標物尺寸來判斷異常點是否落於一個目標物的範圍內。若是(如,判定異常點落於多個目標物中的某個目標物的範圍內),則無人機10判定異常點位於多個目標物的其中之一(亦稱,拍攝目標物)上。
如圖6所示,接續上方的例子,無人機10可根據異常點AP1的座標位置來判定異常點AP1是落於太陽能模組P4的範圍內,即,判定異常點在多個目標物的其中之一上。反應於判定異常點AP1在多個目標物的其中之一上(步驟S35à是),流程接續至步驟S36;反應於判定異常點AP1不在所有目標物上(步驟S35à否),流程接續至步驟S38。應注意的是,在一實施例中,所述步驟S35與步驟S38可被省略。即,反應於判定所述第一熱感應影像中存在所述異常點AP1,控制器100就執行步驟S36。在一實施例中,反應於判定異常點AP1位於多個目標物的中的一拍攝目標物上,無人機10可依據目標區域的地圖資訊,以辨識拍攝目標物的識別碼。
接著,在步驟S36中,無人機10暫停飛行於巡航路徑,改以第二視野飛行。更詳細來說,無人機10暫停依據巡航路徑往前飛行,記錄當前於巡航路徑中的座標為一暫停點座標,並且開始下降至第二高度,以第二視野進行拍攝。當到達第二高度後,無人機從暫停點座標出發,並且開始飛行至異常點AP1的座標位置。在本實施例中,第二視野V2小於第一視野V1,為達成此目的,無人機巡檢系統1不以改變高度為限制,舉例而言,無人機可維持相同高度(即,第一高度)飛行,但透過調整鏡頭的焦距,改以第二視野V2進行拍攝。
舉例而言,若無人機10以改變高度的手段達成改變視野,詳細步驟描述如下。請參照圖5,假設平面PL1對應至高度H1,平面PL2對應高度H2,並且平面PL3對應高度H3(高度H3例如是對應拍攝目標物上的異常點的高度)。此外,假設基地站BS提供給無人機10停靠的平面為高度H0。在巡檢任務的一開始,無人機從高度H0上升至高度H1(如,路徑SP0所示),並且依據巡航路徑CP1往前飛行(如,箭頭A51所示)。
接續上述的例子,無人機10於為高度H1的平面PL1中飛行至點N1時,無人機10判定所獲得之第一熱感應影像HIMG存在異常點AP1且異常點AP1位於辨識碼為P4目標物上。此時,無人機10會暫停繼續於巡航路徑CP1中往前飛行,並且下降至為高度H2(如,路徑SP1所示)的平面PL2中的點N2。
更詳細來說,當無人機10暫停飛行於巡航路徑CP1,欲改以第二高度飛行時,無人機10會記錄當前於巡航路徑CP1中的點N1的座標為暫停點座標。接著,無人機10開始下降至高度H2(亦稱,第二高度)的點N2後,無人機10會根據異常點AP1的座標位置從暫停點座標出發,並且開始飛行至異常點AP1的上方的點N3(如,路徑SP2所示),即,無人機10會飛行至異常點AP1的座標位置。此外,點N2及點N3可皆為於平面PL2中,或者點N3可略高於或略低於平面PL2,以擷取適當的異常影像。
當飛行至異常點的座標位置後,接續至步驟S37,無人機10對異常點以第二視野V2擷取異常影像,並且儲存且標記異常影像,其中無人機10可透過影像擷取裝置110及熱感應影像裝置120擷取異常影像。在一實施例中,無人機10可僅透過影像擷取裝置110擷取異常影像。
請參照圖5,接續上述的例子,假設目前無人機10已經飛行至點N3。此時,無人機10會以第二視野V2,對準拍攝目標物P4上的異常點AP1的座標位置,經由影像擷取裝置110來擷取異常影像。接著,無人機可標記拍攝目標物的識別碼P4至異常影像中,已標記識別碼之異常影像可被儲存至儲存裝置160。在一實施例中,已標記識別碼之異常影像可經由通訊單元170被傳送至基地站BS。
在另一實施例中,無人機10可先執行影像辨識操作以判斷拍攝目標物是否具有異常區域,再根據判斷結果來判斷是否擷取對應異常區域的異常影像。
圖3B是根據本發明的另一實施例所繪示的擷取對應異常區域的異常影像的流程圖。請參照圖3B,在步驟S371中,無人機10以第二視野V2對具有異常點AP1的拍攝目標物P4進行影像辨識操作,以判斷所述拍攝目標物P4是否具有異常區域。反應於判定所述拍攝目標物P4具有所述異常區域(步驟S371à是),執行步驟S372;反應於判定所述拍攝目標物不具有所述異常區域(步驟S371à否),執行步驟S374。在步驟S372中,無人機10以所述異常區域為中心,以所述第二視野對所述異常區域擷取所述異常影像。在步驟S374中,無人機10繼續依據所述巡航路徑往前飛行,並且流程接續至步驟S33。
詳細來說,在此另一實施例中,無人機10以第二視野V2對具有異常點AP1的拍攝目標物P4進行影像辨識操作,以判斷拍攝目標物P4是否具有異常區域。也就是說,當飛行至異常點AP1的座標位置後,無人機10目前的視野為小於第一視野V1的第二視野V2,控制器100透過影像擷取裝置110以第二視野V2擷取一影像,並且對影像來執行影像辨識操作。
在影像辨識操作中,控制器100可藉由影像辨識資料庫來辨識當前於第二視野中的部份的拍攝目標物P4的影像中是否具有異常區域。例如,若辨識出影像中具有對應毀損事件的影像、或辨識出影像中具有對應某種異常物件的影像,控制器100可判定影像具有異常區域。毀損事件例如是太陽能模組發生破裂。異常物件例如是覆蓋於太陽能模組上的鳥糞或樹葉等其他會遮蔽陽光的物體。異常區域是以毀損事件或異常物件為中心的區域。
反應於判定拍攝目標物具有異常區域,無人機10以異常區域為中心,以第二視野對異常區域擷取異常影像(步驟S372)。接著,在擷取異常影像後,無人機10可儲存且標記所述異常影像。即,經由影像辨識操作判定出異常區域後,無人機10可以第二視野V2對異常區域儲存所擷取的異常影像。接著,步驟S373中,無人機10繼續依據巡航路徑往前飛行。具體來說,無人機10可回到第一高度H1(如,路徑SP4所示),並且繼續依據巡航路徑往前飛行。
相對地,反應於判定拍攝目標物不具有異常區域,無人機10可回到第一高度H1(如,路徑SP4所示),並且繼續依據巡航路徑往前飛行(步驟S374)。
在完成異常影像的擷取(及儲存)後,流程接續至步驟S33。也就是說,在擷取且儲存異常影像的運作完成後,無人機10可回到位於第一高度H1(如,路徑SP4所示),飛行至對應暫停點座標的點N1,並且繼續依據巡航路徑CP1往前飛行(如,箭頭A52所示)。
在另一實施例中,無人機10用以飛行至對應暫停點座標的點N1的路徑可為飛行至點N3的路徑的相反路徑。例如,對應從暫停點座標飛行至異常點的座標位置的一飛行路徑(如,N1àN2àN3),無人機10可使用反向路徑(如,N3àN2àN1)來從異常點的座標位置飛行回暫停點座標。
應注意的是,在一實施例中,無人機10可直接從對應高度H1的點N1且飛行至對應高度H2的點N3(如,路徑SP3所示)。在一實施例中,無人機10可於高度H1從點N1飛行至異常點的座標位置,並且再下降至高度H2的點N3,以使以異常點AP1為中心的異常影像能以第二視野V2被擷取。
請再參考圖3A,在步驟S38中,無人機10透過影像擷取裝置110以第一視野V1對不位於所有目標物上的異常點獲取保全影像,並且發送警示通知與保全影像至基地站BS。
舉例來說,請參照圖6,假設無人機10所獲取的第一熱感應影像具有異常點AP2。在此例子中,無人機10可判定異常點AP2不在所有目標物上。接著,控制器100可指示影像擷取裝置110透過影像擷取裝置110以第一視野V1擷取影像作為保全影像。接著,無人機10發送一警示通知與保全影像至基地站BS。警示通知用以指示當前於第一視野V1中出現了溫度較高的異常點AP2,其中對應第一視野V1的RGB影像可參見保全影像。如此一來,無人機巡檢系統1亦可提供具有保全功能的警示通知,其可警示溫度高於溫度門檻值的異常物件出現於目標區域A1中。相關保全人員可利用保全影像來查看對應的部份的目標區域A1的(空拍)影像,以進一步判斷部份的目標區域A1的安全性。在一實施例中,無人機10可同時透過影像擷取裝置110以及熱感應影像裝置120以第一視野V1擷取影像作為保全影像。在一實施例中,無人機10可先分析透過影像擷取裝置110以及熱感應影像裝置120以第一視野V1擷取的保全影像,再決定是否發出具有保全功能的警示通知。在一實施例中,無人機10可先分析以第一視野V1擷取的保全影像,以發出不同種類了警示通知例如是防盜警示通知。
值得一提的是,若所獲取的第一熱感應影像同時具有在拍攝目標物上的異常點AP1與不在所有目標物上的異常點AP2,無人機10可先以第一視野V1擷取影像作為保全影像,再暫停飛行於巡航路徑CP1中,以前往對應異常點AP1的座標位置來擷取異常影像。
此外,若所獲取的第一熱感應影像具有在一或多個拍攝目標物上的多個異常點,無人機10可根據多個異常點的座標位置,來規劃異常點的拍攝順序,並且依據拍攝順序來前往對應的異常點來進行異常影像的擷取。例如,無人機10可根據多個異常點的座標位置來判斷多個異常點與當前的無人機10的座標位置的多個異常點距離,並且依據多個異常點距離來判斷拍攝順序。例如,對應最小的異常點距離的異常點的具有最前面的拍攝順序,或對應最大的異常點距離的異常點具有最前面的拍攝順序。接著,根據所判定的拍攝順序來於第二高度H2前往多個異常點以進行多個異常影像的擷取。
此外,在一實施例中,若所獲取的第一熱感應影像具有不在任何目標物上的多個異常點,無人機10可對應地直接以第一視野來擷取多個異常點的保全影像。在完成保全影像的擷取後,流程接續至步驟S33,即,無人機10繼續於高度H1依據巡航路徑CP1往前繼續飛行,並且隨著於巡航路徑CP1中的不同位置來持續地獲得對應的熱感應影像。
在本實施例中,當無人機10依據巡航路徑CP1飛回至基地站BS的座標位置後,無人機10會判定巡檢任務已經完成,並且下降且停靠至基地站BS。所儲存的已經標記的一或多個異常影像可傳送給基地站BS,以使基地站BS可進一步檢視一或多個異常影像。此外,基地站BS可根據一或多個異常影像上標記的一或多個識別碼來執行對應的清潔或維修工作於對應一或多個識別碼的太陽能模組。
值得一提的是,上述實施例所說明的巡檢任務可為週期性的。然而,除了週期性的巡檢任務之外,在一實施例中,控制器100(或處理器200)更可規劃特定巡航路徑。更詳細來說,如上述,逆變器D1~D4可進一步包含偵測器,當太陽能模組串列L1的逆變器D4的偵測器判定太陽能模組串列L4發生異常時,逆變器D4的偵測器可發送異常通知與對應異常通知的異常資訊至基地站BS。基地站BS可接收來自對應多個目標物所設置的偵測器的異常通知與對應異常通知的異常資訊。基地站BS可根據接收到的異常通知,判定是目標區域A1內的那些目標物發生異常,並發送特定巡檢指令至無人機10,以執行一特定巡檢任務。
圖4C是根據本發明的一實施例所繪示的目標區域與特定巡航路徑的示意圖。請參照圖4C,舉例來說,假設偵測器D4發送異常通知與異常資訊至基地站BS,其中異常通知指示對應偵測器D4的太陽能模組串列L4發生異常,或異常通知可指示包含太陽能模組串列L4的特定目標區域發生異常。基地站BS可根據異常通知與目標區域A1的地圖資訊,從目標區域A1中辨識出對應太陽能模組串列L4的特定目標區域及對應特定目標區域的座標位置。基地站BS可發送特定巡檢指令給無人機10,其中特定巡檢指令用以指示無人機10對特定目標區域執行特定巡檢任務。特定巡檢指令可包含對應特定目標區域的座標位置的資訊。
無人機10可根據特定巡檢指令規劃特定巡航路徑CP2,並且根據特定巡航路徑CP2來執行特定巡檢任務。假設所規劃之所述特定巡航路徑CP2的起點與終點的座標為基地站BS的座標,並且所述特定巡航路徑CP2包含路徑點WP1’’~WP2’’的座標。無人機10可依據所規劃的特定巡航路徑CP2飛行且執行特定巡檢任務,並且同時以第一視野V1’’來掃描對應太陽能模組串列L4的特定目標區域的多個目標物P55~P72,進而使無人機10嘗試找出多個目標物P55~P72中發生異常的目標物,並且對所找出的異常的目標物對應地進行異常影像的擷取。
綜上所述,本發明實施例所提供的一種無人機巡檢系統與其所使用的無人機巡檢方法,可使無人機根據來自基地站的巡檢指令,自動地對目標區域執行巡檢任務,飛行於目標區域上第一高度,以第一視野獲取熱感應影像,以根據所獲取的熱感應影像中的溫度高於門檻值且座標位於目標物上的異常點來飛行至於第二高度的異常點的座標,以用第二視野擷取對應異常點的異常影像,進而可在巡邏完目標區域後獲得發生異常的目標物的異常影像。如此一來,目標區域上的發生異常的一或多個目標物可有效率地被發現,進而增進了目標區域上的所有目標物的安全性。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。
1:無人機巡檢系統 A1:目標區域 L1、L2、L3、L4、LM:太陽能模組串列/目標物群組/特定目標區域 10:無人機 BS:基地站 D1、D2、D3、D4:逆變器 L1(1)~L1(N)、L2(1)~L2(N)、LM(1)~LM(N):目標物/太陽能板/太陽能模組 P1~P72:對應多個目標物的多個識別碼 FP1:定位點 PS1、PS2:定位輔助裝置 V1、V1’、V1’’、V2:視野 CP1、CP1’、CP2:巡航路徑 100:控制器 110:影像擷取裝置 120:熱感應影像裝置 130:高度計 140:飛行裝置 150:定位裝置 160、260:儲存裝置 200:處理器 170、270:通訊單元 180、280:電源供應單元 NL:網路連線 S31、S32、S33、S34、S35、S36、S37、S38:無人機巡檢方法的流程步驟 N1、N2、N3:點 AP1、AP2:異常點 HIMG:熱感應影像 SP0、SP1、SP2、SP3、SP4:路徑 H0、H1、H2、H3:高度 A51、A52:箭頭 PL1、PL2、PL3:平面 WP1、WP2、WP1’、WP2’、WP1’’、WP2’’:路徑點
圖1是根據本發明的一實施例所繪示的無人機巡檢系統及對應的目標區域的示意圖。 圖2是根據本發明的一實施例所繪示的無人機巡檢系統的方塊示意圖。 圖3A是根據本發明的一實施例所繪示的無人機巡檢方法的流程圖。 圖3B是根據本發明的另一實施例所繪示的擷取對應異常區域的異常影像的流程圖。 圖4A是根據本發明的一實施例所繪示的目標區域與對應第一視野的巡航路徑的示意圖。 圖4B是根據本發明的一實施例所繪示的目標區域與對應另一第一視野的巡航路徑的示意圖。 圖4C是根據本發明的一實施例所繪示的目標區域與特定巡航路徑的示意圖。 圖5是根據本發明的一實施例所繪示的擷取異常影像的示意圖。 圖6是根據本發明的一實施例所繪示的在所擷取的熱感應影像中的異常點的示意圖。
S31、S32、S33、S34、S35、S36、S37、S38:無人機巡檢方法的流程步驟

Claims (32)

  1. 一種無人機巡檢系統,適用於巡航一目標區域,所述目標區域包括多個目標物,所述無人機巡檢系統包括: 一基地站;以及 一無人機,具有一定位裝置,用以接收一全球定位系統訊號以辨識所述無人機的座標位置,其中所述無人機從所述基地站接收一巡檢指令,以對所述目標區域執行一巡檢任務,在所述巡檢任務中, 所述無人機根據一巡航路徑以一第一視野對所述目標區域獲取一第一熱感應影像,其中所述無人機判斷所述第一熱感應影像中是否存在一異常點, 其中反應於判定所述第一熱感應影像中存在所述異常點,所述無人機暫停飛行於所述巡航路徑,對所述異常點改以一第二視野擷取一異常影像,並且儲存且標記所述異常影像。
  2. 根據權利要求1所述的無人機巡檢系統,其中所述第二視野小於所述第一視野。
  3. 根據權利要求2所述的無人機巡檢系統,其中所述無人機根據所述巡航路徑以一第一高度飛行以對所述目標區域以所述第一視野獲取所述第一熱感應影像,且以一第二高度飛行以對所述異常點以所述第二視野擷取所述異常影像,其中所述第一高度大於所述第二高度。
  4. 根據權利要求1所述的無人機巡檢系統,其中反應於判定所述第一熱感應影像中存在所述異常點,所述無人機根據所述第一熱感應影像與所述全球定位系統訊號來判斷所述異常點是否位於所述多個目標物的其中之一上,反應於判定所述異常點位於所述多個目標物的其中之一上,所述無人機暫停飛行於所述巡航路徑,改以所述第二高度飛行。
  5. 根據權利要求1所述的無人機巡檢系統,其中所述無人機判斷所述第一熱感應影像中存在與周邊溫差之熱影像區塊時,判定所述第一熱感影像存在所述異常點。
  6. 根據權利要求1所述的無人機巡檢系統,其中所述無人機包括: 一影像擷取裝置,用以擷取所述異常影像; 一熱感應影像裝置,用以獲取所述第一熱感應影像; 一高度計,用以辨識所述無人機的高度; 一通訊單元,用以與所述基地站建立一無線連線,所述無人機與所述基地站經由所述無線連線傳輸所述巡檢指令與所述異常影像;以及 一控制器,用於管理所述巡檢任務與執行一影像辨識操作。
  7. 根據權利要求1所述的無人機巡檢系統,其中所述基地站對所述無人機進行充電。
  8. 根據權利要求1所述的無人機巡檢系統,其中所述無人機巡檢系統更包括一第一定位輔助裝置與一第二定位輔助裝置, 其中所述第一定位輔助裝置被固定地設置於所述基地站上或所述目標區域中的一定位點,所述第二定位輔助裝置被設置在所述無人機上,並且耦接至所述定位裝置, 其中所述第一定位輔助裝置傳輸一本地定位訊號至所述定位裝置,並且所述定位裝置藉由所述第二定位輔助裝置接收所述全球定位系統訊號, 其中所述定位裝置根據所述第一定位輔助裝置的座標位置、所述全球定位系統訊號與所述本地定位訊號,以辨識所述無人機的座標位置。
  9. 根據權利要求8所述的無人機巡檢系統,其中所述無人機巡航所述目標區域,根據所述全球定位系統訊號與所述本地定位訊號定位每一個所述多個目標物的目標物座標位置, 所述無人機根據所述目標區域的地圖資訊與所述多個目標物的所述多個目標物座標位置,將所述地圖資訊中的對應所述多個目標物的多個識別碼映射至所述多個目標物座標位置。
  10. 根據權利要求9所述的無人機巡檢系統,其中在所述巡檢任務中, 所述無人機根據所述第一熱感應影像與所述全球定位系統訊號、所述本地定位訊號來辨識所述異常點的座標位置,並且比對所述異常點的所述座標位置與所述多個目標物座標位置,以判斷所述異常點是否位於所述多個目標物的其中之一上。
  11. 根據權利要求9所述的無人機巡檢系統,其中在所述巡檢任務中, 反應於判定所述異常點位於所述多個目標物的中的一拍攝目標物上,所述無人機辨識所述拍攝目標物的識別碼, 當所述無人機到達所述異常點的所述座標位置且以所述第二視野對具有所述異常點的所述拍攝目標物擷取所述異常影像時,所述無人機標記所述拍攝目標物的所述識別碼至所述異常影像。
  12. 根據權利要求4所述的無人機巡檢系統,其中反應於判定所述異常點位於所述多個目標物的其中之一上,在所述巡檢任務中, 所述無人機暫停依據所述巡航路徑往前飛行,記錄當前於所述巡航路徑中的座標為一暫停點座標,並且開始下降至所述第二高度, 當到達所述第二高度後,所述無人機從所述暫停點座標出發,並且開始飛行至所述異常點的所述座標位置。
  13. 根據權利要求12所述的無人機巡檢系統,其中反應於所述儲存且標記所述異常影像的運作已完成,在所述巡檢任務中, 所述無人機回到所述第一高度,飛行至所述暫停點座標,並且繼續依據所述巡航路徑往前飛行。
  14. 根據權利要求1所述的無人機巡檢系統,其中在對所述異常點以所述第二視野擷取所述異常影像的運作中, 所述無人機以所述第二視野對具有所述異常點的一拍攝目標物進行影像辨識操作,以判斷所述拍攝目標物是否具有一異常區域, 其中反應於判定所述拍攝目標物具有所述異常區域,所述無人機以所述異常區域為中心,以所述第二視野對所述異常區域擷取所述異常影像, 其中反應於判定所述拍攝目標物不具有所述異常區域,所述無人機繼續依據所述巡航路徑往前飛行。
  15. 根據權利要求1所述的無人機巡檢系統,其中在所述巡檢任務中, 反應於判定所述異常點不位於所有目標物上,所述無人機以所述第一視野對不位於所有目標物上的所述異常點獲取一保全影像,並且發送一警示通知與所述保全影像至所述基地站。
  16. 根據權利要求1所述的無人機巡檢系統,其中所述基地站接收來自對應所述多個目標物所設置的偵測器的一異常通知與對應所述異常通知的一異常資訊,所述異常通知用以指示所述目標區域的一特定目標區域發生異常, 其中所述基地站傳送一特定巡檢指令至所述無人機,所述特定巡檢指令用以指示所述無人機對所述特定目標區域執行一特定巡檢任務, 其中所述無人機根據所述特定巡檢指令規劃一特定巡航路徑,並且根據所述特定巡航路徑來執行所述特定巡檢任務。
  17. 一種無人機巡檢方法,適用於巡航一目標區域的無人機巡檢系統,其中所述無人機巡檢系統包括一基地站以及一無人機,且所述目標區域包括多個目標物,所述無人機巡檢方法包括: 藉由所述無人機,接收一全球定位系統訊號以辨識所述無人機的座標位置; 藉由所述無人機,從所述基地站接收一巡檢指令,以對所述目標區域執行一巡檢任務,所述巡檢任務包括: 根據一巡航路徑以一第一視野對所述目標區域獲取一第一熱感應影像; 判斷所述第一熱感應影像中是否存在一異常點; 藉由所述無人機,反應於判定所述第一熱感應影像中存在所述異常點,所述無人機暫停飛行於所述巡航路徑,對所述異常點改以一第二視野擷取一異常影像,並且儲存且標記所述異常影像。
  18. 根據權利要求17所述的無人機巡檢方法,其中所述第二視野小於所述第一視野。
  19. 根據權利要求18所述的無人機巡檢方法,其中藉由所述無人機,根據所述巡航路徑以一第一高度飛行以對所述目標區域以所述第一視野獲取所述第一熱感應影像,且以一第二高度飛行以對所述異常點以所述第二視野擷取所述異常影像,其中所述第一高度大於所述第二高度。
  20. 根據權利要求17所述的無人機巡檢方法,其中藉由所述無人機,反應於判定所述第一熱感應影像中存在所述異常點,所述無人機根據所述第一熱感應影像與所述全球定位系統訊號來判斷所述異常點是否位於所述多個目標物的其中之一上,反應於判定所述異常點位於所述多個目標物的其中之一上,暫停飛行於所述巡航路徑,改以所述第二高度飛行。
  21. 根據權利要求17所述的無人機巡檢方法,其中藉由所述無人機,判斷所述第一熱感應影像中存在與周邊溫差之熱影像區塊時,判定所述第一熱感影像存在所述異常點。
  22. 根據權利要求17所述的無人機巡檢方法,所述無人機可執行: 藉由一影像擷取裝置,擷取所述異常影像; 藉由一熱感應影像裝置,獲取所述第一熱感應影像; 藉由一高度計,辨識所述無人機的高度; 藉由一通訊單元,與所述基地站建立一無線連線,其中所述基地站與所述基地站經由所述無線連線傳輸所述巡檢指令與所述異常影像;以及 藉由一控制器,管理所述巡檢任務與執行一影像辨識操作。
  23. 根據權利要求17所述的無人機巡檢方法,其中所述基地站對所述無人機進行充電。
  24. 根據權利要求17所述的無人機巡檢方法,所述無人機巡檢系統更包括一第一定位輔助裝置與一第二定位輔助裝置, 其中所述第一定位輔助裝置被固定地設置於所述基地站上或所述目標區域中的一定位點,所述第二定位輔助裝置被設置在所述無人機上,並且耦接至所述定位裝置, 其中所述第一定位輔助裝置傳輸一本地定位訊號至所述定位裝置,並且所述定位裝置藉由所述第二定位輔助裝置接收所述全球定位系統訊號,所述無人機巡檢方法更包括: 藉由所述定位裝置,根據所述第一定位輔助裝置的座標位置、所述全球定位系統訊號與所述本地定位訊號,以辨識所述無人機的座標位置。
  25. 根據權利要求24所述的無人機巡檢方法,其中藉由所述無人機,巡航所述目標區域,根據所述全球定位系統訊號與所述本地定位訊號定位每一個所述多個目標物的目標物座標位置;以及 藉由所述無人機,根據所述目標區域的地圖資訊與所述多個目標物的所述多個目標物座標位置,將所述地圖資訊中的對應所述多個目標物的多個識別碼映射至所述多個目標物座標位置。
  26. 根據權利要求25所述的無人機巡檢方法,其中所述根據所述第一熱感應影像與所述全球定位系統訊號來判斷所述異常點是否位於所述多個目標物的其中之一上的步驟包括: 藉由所述無人機,根據所述第一熱感應影像與所述全球定位系統訊號、所述本地定位訊號來辨識所述異常點的座標位置,並且比對所述異常點的所述座標位置與所述多個目標物座標位置,以判斷所述異常點是否位於所述多個目標物的其中之一上。
  27. 根據權利要求26所述的無人機巡檢方法,其中所述巡檢任務更包括: 反應於判定所述異常點位於所述多個目標物中的一拍攝目標物上,藉由所述無人機,辨識所述拍攝目標物的識別碼;以及 當所述無人機到達所述異常點的所述座標位置且以所述第二視野對具有所述異常點的所述拍攝目標物擷取所述異常影像時,藉由所述無人機,標記所述拍攝目標物的所述識別碼至所述異常影像。
  28. 根據權利要求17所述的無人機巡檢方法,其中反應於判定所述異常點位於所述多個目標物的其中之一上,所述巡檢任務更包括: 暫停依據所述巡航路徑往前飛行,記錄當前於所述巡航路徑中的座標為一暫停點座標,並且開始下降至所述第二高度;以及 當到達所述第二高度後,從所述暫停點座標出發,並且開始飛行至所述異常點的所述座標位置。
  29. 根據權利要求28所述的無人機巡檢方法,其中反應於所述儲存且標記所述異常影像的步驟已完成,所述巡檢任務更包括: 回到所述第一高度,飛行至所述暫停點座標,並且繼續依據所述巡航路徑往前飛行。
  30. 根據權利要求17所述的無人機巡檢方法,其中所述對所述異常點以所述第二視野擷取所述異常影像的步驟包括: 以所述第二視野對具有所述異常點的拍攝目標物進行影像辨識操作,以判斷所述拍攝目標物是否具有一異常區域;以及 反應於判定所述拍攝目標物具有所述異常區域,所述無人機以所述異常區域為中心,以所述第二視野對所述異常區域擷取所述異常影像, 反應於判定所述拍攝目標物不具有所述異常區域,繼續依據所述巡航路徑往前飛行。
  31. 根據權利要求17所述的無人機巡檢方法,所述巡檢任務更包括: 反應於判定所述異常點不位於所有目標物的其中之一上,所述無人機以所述第一視野對不位於所有目標物上的所述異常點獲取一保全影像,並且發送一警示通知與所述保全影像至所述基地站。
  32. 根據權利要求17所述的無人機巡檢方法,其中藉由所述基地站,接收來自對應所述多個目標物所設置的偵測器的一異常通知與對應所述異常通知的一異常資訊,其中所述異常通知用以指示所述目標區域的一特定目標區域發生異常; 藉由所述基地站,傳送一特定巡檢指令至所述無人機,其中所述特定巡檢指令用以指示所述無人機對所述特定目標區域執行一特定巡檢任務;以及 藉由所述無人機,根據所述特定巡檢指令規劃一特定巡航路徑,並且根據所述特定巡航路徑來執行所述特定巡檢任務。
TW108127618A 2019-07-10 2019-08-02 無人機巡檢系統與無人機巡檢方法 TW202102960A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910619742.5 2019-07-10
CN201910619742.5A CN112214032A (zh) 2019-07-10 2019-07-10 无人机巡检***与无人机巡检方法

Publications (1)

Publication Number Publication Date
TW202102960A true TW202102960A (zh) 2021-01-16

Family

ID=74048045

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108127618A TW202102960A (zh) 2019-07-10 2019-08-02 無人機巡檢系統與無人機巡檢方法

Country Status (3)

Country Link
US (1) US20210009266A1 (zh)
CN (1) CN112214032A (zh)
TW (1) TW202102960A (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112818816B (zh) * 2021-01-27 2024-03-01 杭州海康威视数字技术股份有限公司 一种温度检测方法、装置及设备
CN113093783B (zh) * 2021-02-23 2023-09-12 广东工贸职业技术学院 一种无人机的拍摄控制方法及装置
CN113038426B (zh) * 2021-02-27 2022-07-22 吉林大学 车联网安全检测***以及方法
CN113093796A (zh) * 2021-03-31 2021-07-09 河海大学 一种大坝无人机群自主巡检智能控制***
CN113110579B (zh) * 2021-04-16 2021-12-14 深圳市艾赛克科技有限公司 基于热辐射的无人机巡检方法、装置、无人机及存储介质
KR20230054165A (ko) * 2021-10-15 2023-04-24 한화에어로스페이스 주식회사 감시 시스템에서 표적을 연동을 이용하여 표적을 탐지하기 위한 장치 및 방법
CN114063641B (zh) * 2021-10-19 2024-04-16 深圳市优必选科技股份有限公司 机器人巡逻方法、巡逻机器人及计算机可读存储介质
CN113989853A (zh) * 2021-11-16 2022-01-28 中国联合网络通信集团有限公司 文物保护区异常状态识别方法、装置、终端设备及介质
CN114185363B (zh) * 2021-12-09 2024-04-05 国网江苏省电力有限公司泰州供电分公司 一种基于5g链路的电力巡检无人机多机综合管理***
CN114035614B (zh) * 2022-01-10 2022-05-17 成都奥伦达科技有限公司 基于先验信息的无人机自主巡检方法、***及存储介质
WO2023250005A1 (en) * 2022-06-23 2023-12-28 Boston Dynamics, Inc. A mobile robot system for automated asset inspection
CN115202404B (zh) * 2022-09-15 2022-12-02 广东容祺智能科技有限公司 基于无人机的光伏发电组维护巡检方法
CN116139428B (zh) * 2023-02-28 2023-09-15 生态环境部南京环境科学研究所 一种基于森林生态***损害的预警方法
CN116627180B (zh) * 2023-07-24 2023-11-07 贵州博睿科讯科技发展有限公司 一种无人机巡飞规划方法、装置、电子设备及存储介质
CN116700357B (zh) * 2023-08-07 2023-12-22 国网安徽省电力有限公司合肥供电公司 一种架空输电线路无人机编队智能巡检方法
CN117237881B (zh) * 2023-11-16 2024-02-02 合肥中科类脑智能技术有限公司 三跨塔的绝缘子异常监测方法及装置、计算机设备
CN117830954A (zh) * 2024-01-11 2024-04-05 北京朝阳环境集团有限公司 基于图像识别的异常识别方法、装置及设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170187993A1 (en) * 2015-12-29 2017-06-29 Echostar Technologies L.L.C. Unmanned aerial vehicle integration with home automation systems
US20170285092A1 (en) * 2016-03-31 2017-10-05 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Directional unmanned aerial vehicle (uav) localization of power line ultraviolet corona using point detectors
US10189567B2 (en) * 2016-06-09 2019-01-29 Skycatch, Inc. Identifying camera position of a UAV in flight utilizing real time kinematic satellite navigation
CN107015560A (zh) * 2017-03-02 2017-08-04 浙江大学 一种基于无人机的光伏阵列的巡检方法
WO2019041191A1 (zh) * 2017-08-30 2019-03-07 深圳市大疆创新科技有限公司 一种检测光伏板的方法、地面站、控制设备及无人机
CN108318040A (zh) * 2018-02-06 2018-07-24 贵州电网有限责任公司 一种面向输电线路巡检的多旋翼航迹规划***和方法
CN108390645A (zh) * 2018-02-11 2018-08-10 同济大学 基于无人机和热成像技术的光伏板故障定位方法
US10776672B2 (en) * 2018-04-25 2020-09-15 Avigilon Corporation Sensor fusion for monitoring an object-of-interest in a region
CN208675191U (zh) * 2018-09-25 2019-03-29 三峡大学 基于功率波动监测的光伏热斑效应检测***
CN109187558A (zh) * 2018-10-10 2019-01-11 中南大学 一种基于无人机的光伏电站自动巡检***
KR20200025996A (ko) * 2019-01-22 2020-03-10 (주)메타파스 무인 비행체를 이용한 태양광 패널 관리 시스템 및 방법
CN109961157B (zh) * 2019-04-03 2020-05-12 内蒙古盛越新能源有限公司 太阳能光伏发电***的巡检方法及***

Also Published As

Publication number Publication date
US20210009266A1 (en) 2021-01-14
CN112214032A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
TW202102960A (zh) 無人機巡檢系統與無人機巡檢方法
US11884418B2 (en) Control device, control method, and flight vehicle device
US11378458B2 (en) Airborne inspection systems and methods
EP3437016B1 (en) Combining depth and thermal information for object detection and avoidance
US20220077820A1 (en) Method and system for soar photovoltaic power station monitoring
CN104843176B (zh) 一种用于桥梁隧道自动巡检旋翼无人机***及导航方法
WO2018195955A1 (zh) 一种基于飞行器的设施检测方法及控制设备
US11756158B2 (en) Information processing device, information processing method, information processing program, image processing device, and image processing system for associating position information with captured images
JP2017215239A (ja) 太陽電池検査システム
US10725479B2 (en) Aerial vehicle landing method, aerial vehicle, and computer readable storage medium
KR102217549B1 (ko) 태양광 발전 모듈 모니터링 방법 및 시스템
US20230133036A1 (en) Photovoltaic panel management system
CN110554422B (zh) 基于多旋翼无人机飞行式核素识别仪的全人工智能化***
TW202116622A (zh) 利用無人機群飛執行機場跑道及場區周邊的巡檢方法
WO2020225979A1 (ja) 情報処理装置、情報処理方法、プログラム、及び情報処理システム
KR20190123095A (ko) 드론 기반의 전방위 열화상 이미지 처리 방법 및 이를 위한 열화상 이미지 처리 시스템
US20190377945A1 (en) System, method, and program for detecting abnormality
WO2018158820A1 (ja) 距離算出システム、方法及びプログラム
WO2021145141A1 (ja) 検査システム及び検査方法
CN209820522U (zh) 一种基于小型无人机的作物干旱预警巡测***
CN107610082B (zh) 一种较高空间分辨率区域地表温度无人机获取装置及***
US11722791B2 (en) Ranging device, image processing device and method
JP2024519280A (ja) 航空機を使用した太陽光発電デバイスの自動イメージング、および、それを実施するための航空機の自動飛行
CN115712124A (zh) 基于激光雷达的电力设施无人机及巡检方法
JP2019178958A (ja) 無人飛行機及び相対反射率の算出方法