TW202028344A - 熱硬化性樹脂組成物 - Google Patents

熱硬化性樹脂組成物 Download PDF

Info

Publication number
TW202028344A
TW202028344A TW108134823A TW108134823A TW202028344A TW 202028344 A TW202028344 A TW 202028344A TW 108134823 A TW108134823 A TW 108134823A TW 108134823 A TW108134823 A TW 108134823A TW 202028344 A TW202028344 A TW 202028344A
Authority
TW
Taiwan
Prior art keywords
formula
resin composition
compound
thermosetting resin
group
Prior art date
Application number
TW108134823A
Other languages
English (en)
Other versions
TWI725558B (zh
Inventor
峯崎千佳
Original Assignee
日商昭和電工股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商昭和電工股份有限公司 filed Critical 日商昭和電工股份有限公司
Publication of TW202028344A publication Critical patent/TW202028344A/zh
Application granted granted Critical
Publication of TWI725558B publication Critical patent/TWI725558B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明係提供一種不損及耐熱性及成形性,低吸水性且耐回焊性為優異的熱硬化性樹脂組成物。 本發明的熱硬化性樹脂組成物,其含有聚烯基酚化合物(A)、聚馬來醯亞胺化合物(B)、液狀聚丁二烯化合物(C)及自由基起始劑(D), 液狀聚丁二烯化合物(C)具有式(1)-1所表示的構造單位
Figure 108134823-A0101-11-0001-1
、及任選的式(1)-2所表示的構造單位

Description

熱硬化性樹脂組成物
本發明係關於熱硬化性樹脂組成物、該硬化物、使用該熱硬化性樹脂組成物的結構體的製造方法及包含該硬化物的結構體。
近年,針對使用於電子機器及產業機器的半導體封裝體,隨著電子零件的高密度積體化,而要求著高密度配線化、小型化、薄型化、高耐熱化、高散熱化等的性能。因此,即使關於屬塑膠材料的密封材,亦要求著高耐熱化。
轉移成形(transfer molding)係下述般的方法:使材料在柱塞(plunger)內加熱軟化,將經加熱軟化的材料經由閘道、澆鑄口、流道等的模具內流路而壓入到經加熱的模具凹部之中,並在模具凹部之中使其硬化。由於將材料以流動性高的狀態來注入至凹部內,故能夠以低壓力來進行成形。與需要高壓力的其他成形方法相比較,轉移成形具有不易損傷嵌入物之特徵。就轉移成形能夠進行小型化及微細加工,且生產性亦高而言,已知作為功率半導體及IC的密封成形中的代表性的成形方法。
作為轉移成形中利用的密封材,以往利用環氧-酚熱硬化性樹脂材料。但,對於近年的高耐熱化的要求,難以用以往的材料來對應。為了對應於高耐熱化的要求,而提案對樹脂系進行各種處理的密封材,例如調配大量多官能環氧樹脂的熱硬化性樹脂組成物、包含雙馬來醯亞胺、三嗪骨架、苯并噁嗪骨架、倍半矽氧烷骨架等的高耐熱性構造的熱硬化性樹脂組成物等。
專利文獻1(日本特開平11-140277號公報)記載了一種半導體密封用環氧樹脂組成物,其特徵在於將以下的(A)~(D)成分作為必需成分,(A)使分子中包含聯苯衍生物及/或萘衍生物的酚醛清漆構造的苯酚樹脂,於總苯酚樹脂量中含有30~100質量份的苯酚樹脂;(B)使分子中包含聯苯衍生物及/或萘衍生物的酚醛清漆構造的環氧樹脂,於總環氧樹脂量中為含有30~100質量份的環氧樹脂;(C)無機填充材;(D)硬化促進劑。
專利文獻2(日本特開平5-43630號公報)記載了一種芳香族雙馬來醯亞胺樹脂組成物,其係含有N,N’-(烷基取代二苯基甲烷)雙馬來醯亞胺、及來自柳醛與苯酚的縮合多元酚的聚烯丙基酚而成。
專利文獻3(日本特開平5-6869號公報)記載了一種半導體裝置,其係使用含有(A)1分子中具有2個以上的馬來醯亞胺基的馬來醯亞胺化合物、(B)具有特定的重複單位的烯丙基化苯酚樹脂及(C)硬化觸媒的樹脂組成物來將半導體元件密封而成。
專利文獻4(日本特開平6-93047號公報)記載了一種硬化性樹脂組成物,其係將馬來醯亞胺化合物、特定構造的烯基酚化合物及含有環氧基的有機矽烷化合物,以特定比率來調配而成。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開平11-140277號公報 [專利文獻2]日本特開平5-43630號公報 [專利文獻3]日本特開平5-6869號公報 [專利文獻4]日本特開平6-93047號公報
[發明所欲解決之課題]
若大幅地變更密封材中使用的樹脂系,則會有在兼顧複數的具有權衡(trade-off)關係的性能方面產生問題之情形。例如謀求密封材的高耐熱化之情形,可舉出增加環氧樹脂的官能基數來提高交聯密度(專利文獻1)、或使用馬來醯亞胺樹脂來作為其他的樹脂(專利文獻2~4)。但,若依據該等的方法則會有下述般之傾向:密封材的吸水率變高、或者起因於高交聯密度而使密封材的硬化物的彈性率變高。因此,若使用該等的密封材來實際製造半導體封裝體,則在半導體安裝時的焊錫回焊(solder reflow)條件下,有密封材所吸收的水分會蒸發,而使密封材與內部的零件剝離之虞、或者在密封材中產生裂隙之虞。得到兼顧耐熱性與耐回焊性,且具有實用成形性的密封材為非常地困難,因而強烈希望實現如此般的密封材。
本揭示記載一種不損及耐熱性及成形性,低吸水性且耐回焊性為優異的熱硬化性樹脂組成物。 [解決課題之手段]
[1].一種熱硬化性樹脂組成物,其含有聚烯基酚化合物(A)、聚馬來醯亞胺化合物(B)、液狀聚丁二烯化合物(C)及自由基起始劑(D), 前述液狀聚丁二烯化合物(C)具有式(1)-1所表示的構造單位
Figure 02_image001
、及任選的式(1)-2所表示的構造單位
Figure 02_image003
、 及任選的式(1)-1及式(1)-2所表示的構造單位以外的構造單位,將式(1)-1所表示的構造單位的每一分子的平均數設為m、將式(1)-2所表示的構造單位的每一分子的平均數設為n、將式(1)-1及式(1)-2所表示的構造單位以外的構造單位的每一分子的平均數設為w時,m/(m+n+w)=0.15~1。 [2].如[1]之熱硬化性樹脂組成物,其中,相對於前述聚烯基酚化合物(A)、前述聚馬來醯亞胺化合物(B)及前述液狀聚丁二烯化合物(C)之合計,前述液狀聚丁二烯化合物(C)的含量為5~40質量%。 [3].如[1]或[2]之熱硬化性樹脂組成物,其中,前述液狀聚丁二烯化合物(C)的數量平均分子量Mn為2000~50000。 [4].如[1]~[3]中任一項之熱硬化性樹脂組成物,其中,前述液狀聚丁二烯化合物(C)包含選自聚丁二烯、丁二烯-苯乙烯共聚物及馬來酸改質聚丁二烯之至少1種。 [5].如[1]~[4]中任一項之熱硬化性樹脂組成物,其中,前述聚烯基酚化合物(A)係具有式(2)-1所表示的構造單位
Figure 02_image005
、及任選的式(2)-2所表示的構造單位
Figure 02_image007
的聚烯基酚化合物,式(2)-1及式(2)-2中,R6 分別獨立表示氫原子、碳原子數1~5的烷基或碳原子數1~5的烷氧基,R7 分別獨立表示式(3)所表示的2-烯基,
Figure 02_image009
式(3)中,R1 、R2 、R3 、R4 及R5 分別獨立為氫原子、碳原子數1~5的烷基、碳原子數5~10的環烷基或碳原子數6~12的芳基,式(3)的*表示與構成芳香環的碳原子的鍵結部,各苯酚骨架單位的R6 及R7 可為相同或相異,Q分別獨立表示式-CR8 R9 -所表示的伸烷基、碳原子數5~10的伸環烷基、具有芳香環的二價的有機基、具有脂環式縮合環的二價的有機基或組合該等的二價的有機基,R8 及R9 分別獨立表示氫原子、碳原子數1~5的烷基、碳原子數2~6的烯基、碳原子數5~10的環烷基或碳原子數6~12的芳基。 [6].如[5]之熱硬化性樹脂組成物,其中,將式(2)-1所表示的構造單位的每一分子的平均數設為p、將式(2)-2所表示的構造單位的每一分子的平均數設為q時,p為1.1~35的實數,p+q為1.1~35的實數,q為使式:p/(p+q)的值成為0.4~1的實數。 [7].如[1]~[6]中任一項之熱硬化性樹脂組成物,其中,前述聚馬來醯亞胺化合物(B)為芳香族雙馬來醯亞胺化合物。 [8].如[1]~[7]中任一項之熱硬化性樹脂組成物,其中,前述自由基起始劑(D)為有機過氧化物。 [9].如[1]~[8]中任一項之熱硬化性樹脂組成物,其中,進而包含填充材(E)。 [10].如[9]之熱硬化性樹脂組成物,其中,前述填充材(E)係選自由二氧化矽、氧化鋁、氧化鎂、固體聚矽氧(silicone)橡膠粒子及固體橡膠粒子所成之群組之至少1種。 [11].如[9]或[10]之熱硬化性樹脂組成物,其中,相對於前述聚烯基酚化合物(A)、前述聚馬來醯亞胺化合物(B)、前述液狀聚丁二烯化合物(C)及前述自由基起始劑(D)之合計100質量份,前述填充材(E)的含量為200~1900質量份。 [12].一種如[1]~[11]中任一項之熱硬化性樹脂組成物的硬化物。 [13].一種結構體的製造方法,其係將如[1]~[11]中任一項之熱硬化性樹脂組成物進行模塑成形。 [14].一種結構體,其包含如[12]之硬化物。 [發明的效果]
依據本揭示,可得到不損及耐熱性及成形性,低吸水性且耐回焊性為優異的熱硬化性樹脂組成物。使用本揭示的熱硬化性樹脂組成物,可形成高可靠性的硬化物。
[實施發明之最佳形態]
以下,對於本發明來進行詳細說明。一實施樣態的熱硬化性樹脂組成物,其包含聚烯基酚化合物(A)、聚馬來醯亞胺化合物(B)、液狀聚丁二烯化合物(C)及自由基起始劑(D)。
[聚烯基酚化合物(A)] 聚烯基酚化合物(A)係分子內具有至少2個的苯酚骨架、且形成分子內的苯酚骨架的芳香環的一部分或全部鍵結有2-烯基而成的化合物。作為2-烯基係以式(3)所表示的構造者為較佳。
Figure 02_image011
式(3)中,R1 、R2 、R3 、R4 及R5 分別獨立為氫原子、碳原子數1~5的烷基、碳原子數5~10的環烷基或碳原子數6~12的芳基。式(3)的*表示與構成芳香環的碳原子的鍵結部。
作為構成式(3)中的R1 、R2 、R3 、R4 及R5 的碳原子數1~5的烷基的具體例,可舉出甲基、乙基、n-丙基、異丙基、n-丁基、sec-丁基、tert-丁基、n-戊基等。作為碳原子數5~10的環烷基的具體例,可舉出環戊基、環己基、甲基環己基、環庚基等。作為碳原子數6~12的芳基的具體例,可舉出苯基、甲基苯基、乙基苯基、聯苯基、萘基等。式(3)所表示的2-烯基係以烯丙基(即,R1 、R2 、R3 、R4 及R5 全部為氫原子)為較佳。
作為聚烯基酚化合物的基本骨架,可舉出苯酚酚醛清漆樹脂、甲酚酚醛清漆樹脂、三苯基甲烷型苯酚樹脂、苯酚芳烷基樹脂、聯苯芳烷基苯酚樹脂、苯酚-二環戊二烯共聚物樹脂等的周知的苯酚樹脂的骨架。聚烯基酚化合物中,形成苯酚骨架的所有的全芳香環中的較佳為40~100%,又較佳為60~100%,更佳為80~100%的芳香環鍵結有2-烯基。其中,可較佳使用具有下述式(2)-1所表示的構造單位及任選的式(2)-2所表示的構造單位的聚烯基酚化合物。
Figure 02_image013
Figure 02_image015
式(2)-1及式(2)-2所表示的構造單位係構成聚烯基酚化合物為較佳的苯酚骨架單位,該等的苯酚骨架單位的鍵結順序並無特別限定。式(2)-1及式(2)-2中,R6 分別獨立為氫原子、碳原子數1~5的烷基或碳原子數1~5的烷氧基,式(2)-1中,R7 分別獨立為式(3)所表示的2-烯基。各苯酚骨架單位的R6 及R7 可為相同或相異。Q分別獨立為式-CR8 R9 -所表示的伸烷基、碳原子數5~10的伸環烷基、具有芳香環的二價的有機基、具有脂環式縮合環的二價的有機基或組合該等的二價的有機基,R8 及R9 分別獨立為氫原子、碳原子數1~5的烷基、碳原子數2~6的烯基、碳原子數5~10的環烷基或碳原子數6~12的芳基。
將式(2)-1所表示的構造單位的每一分子的平均數設為p、將式(2)-2所表示的構造單位的每一分子的平均數設為q時,較佳係p為1.1~35的實數,p+q為1.1~35的實數,q為使式:p/(p+q)的值成為0.4~1的實數。
作為構成R6 的碳原子數1~5的烷基的具體例,可舉出甲基、乙基、n-丙基、異丙基、n-丁基、sec-丁基、tert-丁基、n-戊基等。作為碳原子數1~5的烷氧基的具體例,可舉出甲氧基、乙氧基、n-丙氧基、異丙氧基、n-丁氧基、sec-丁氧基、tert-丁氧基、n-戊氧基等。
式-CR8 R9 -所表示的伸烷基的R8 及R9 中,作為碳原子數1~5的烷基的具體例,可舉出甲基、乙基、n-丙基、異丙基、n-丁基、sec-丁基、tert-丁基、n-戊基等,作為碳原子數2~6的烯基的具體例,可舉出乙烯基、烯丙基、丁烯基、戊烯基、己烯基等,作為碳原子數5~10的環烷基的具體例,可舉出環戊基、環己基、甲基環己基、環庚基等,作為碳原子數6~12的芳基的具體例,可舉出苯基、甲基苯基、乙基苯基、聯苯基、萘基等。
作為構成Q的碳原子數5~10的伸環烷基的具體例,可舉出伸環戊基、伸環己基、甲基伸環己基、伸環庚基等。作為具有芳香環的二價的有機基的具體例,可舉出伸苯基、甲伸苯基(tolylene group)、伸萘基、伸聯苯基、伸茀基、伸蒽基、伸茬基(xylylene group)、4,4-伸甲基二苯基等。具有芳香環的二價的有機基的碳原子數係可設為6~20或6~14。作為具有脂環式縮合環的二價的有機基的具體例,可舉出伸二環戊二烯基(dicyclopentadienylene group)等。具有脂環式縮合環的二價的有機基的碳原子數係可設為7~20或7~10。
Q為伸二環戊二烯基、伸苯基、甲基伸苯基、伸茬基或伸聯苯基,作為熱硬化性樹脂組成物時就硬化物的機械強度高之點而言為較佳。就聚烯基酚化合物的黏度低且對於與芳香族聚馬來醯亞胺化合物的混合為有利而言,以Q為-CH2 -為較佳。
p係較佳為1.1~35的實數,又較佳為2~30的實數,更佳為3~10的實數。p若1.1以上,則將熱硬化性樹脂組成物的硬化物放置於高溫環境時的熱分解開始溫度為適當,若為35以下,則熱硬化性樹脂組成物的黏度成為適合於成形時的加工之範圍。
p+q係較佳為1.1~35的實數,又較佳為2~30的實數,更佳為3~10的實數。p+q若為1.1以上,則將熱硬化性樹脂組成物的硬化物放置於高溫環境時的熱分解開始溫度為適當,若為35以下,則熱硬化性樹脂組成物的黏度成為適合於成形時的加工之範圍。
q係較佳為使式:p/(p+q)的值成為0.4~1的實數,又較佳為使式:p/(p+q)的值成為0.6~1的實數,更佳為使式:p/(p+q)的值成為0.8~1的實數。若式:p/(p+q)的值成為1時,q為0。即,該實施樣態中聚烯基酚化合物不包含式(2)-2所表示的構造單位。聚烯基酚化合物係可包含式(2)-1所表示的構造單位。q若為滿足上述條件的值,則可使熱硬化性樹脂組成物因應用途而具有充分的硬化性。
聚烯基酚化合物的較佳的數量平均分子量Mn為300~5000,又較佳為400~4000,更佳為500~3000。數量平均分子量Mn若為300以上,則將熱硬化性樹脂組成物的硬化物放置在高溫環境時的熱分解開始溫度為適當,若為5000以下,則熱硬化性樹脂組成物的黏度成為適合於成形時的加工之範圍。
[聚馬來醯亞胺化合物(B)] 聚馬來醯亞胺化合物(B)係具有2個以上的式(4)所表示的馬來醯亞胺基的化合物。
Figure 02_image017
式(4)中,*表示與芳香環或包含直鏈、支鏈或環狀脂肪族烴基的有機基的鍵結部。
作為聚馬來醯亞胺化合物,可舉出雙(4-馬來醯亞胺苯基)甲烷等的雙馬來醯亞胺、參(4-馬來醯亞胺苯基)甲烷等的參馬來醯亞胺、雙(3,4-二馬來醯亞胺苯基)甲烷等的肆馬來醯亞胺及聚(4-馬來醯亞胺苯乙烯)等的聚馬來醯亞胺。作為聚馬來醯亞胺化合物,可舉出芳香族聚馬來醯亞胺化合物及脂肪族聚馬來醯亞胺化合物,就所得到的硬化物的阻燃性為特別優異之點而言,以芳香族聚馬來醯亞胺化合物為較佳。
芳香族聚馬來醯亞胺化合物係具有2個以上的式(4)所表示的馬來醯亞胺基,且該等的馬來醯亞胺基係與相同或不同的芳香環鍵結的化合物。作為芳香環的具體例,可舉出苯等的單環、萘、蒽等的縮合環等。就在硬化性樹脂組成物中良好地混合而言,聚馬來醯亞胺化合物係以芳香族雙馬來醯亞胺化合物及脂肪族雙馬來醯亞胺化合物為較佳,以芳香族雙馬來醯亞胺化合物為又較佳。作為芳香族雙馬來醯亞胺化合物的具體例,可舉出雙(4-馬來醯亞胺苯基)甲烷、雙(3-馬來醯亞胺苯基)甲烷、雙(3-甲基-4-馬來醯亞胺苯基)甲烷、雙(3,5-二甲基-4-馬來醯亞胺苯基)甲烷、雙(3-乙基-4-馬來醯亞胺苯基)甲烷、雙(3,5-二乙基-4-馬來醯亞胺苯基)甲烷、雙(3-丙基-4-馬來醯亞胺苯基)甲烷、雙(3,5-二丙基-4-馬來醯亞胺苯基)甲烷、雙(3-丁基-4-馬來醯亞胺苯基)甲烷、雙(3,5-二丁基-4-馬來醯亞胺苯基)甲烷、雙(3-乙基-4-馬來醯亞胺-5-甲基苯基)甲烷、2,2-雙(4-馬來醯亞胺苯基)丙烷、2,2-雙[4-(4-馬來醯亞胺苯氧基)苯基]丙烷、雙(4-馬來醯亞胺苯基)醚、雙(3-馬來醯亞胺苯基)醚、雙(4-馬來醯亞胺苯基)酮、雙(3-馬來醯亞胺苯基)酮、雙(4-馬來醯亞胺苯基)碸、雙(3-馬來醯亞胺苯基)碸、雙[4-(4-馬來醯亞胺苯氧基)苯基]碸、雙(4-馬來醯亞胺苯基)硫醚、雙(3-馬來醯亞胺苯基)硫醚、雙(4-馬來醯亞胺苯基)亞碸、雙(3-馬來醯亞胺苯基)亞碸、1,4-雙(4-馬來醯亞胺苯基)環己烷、1,4-二馬來醯亞胺萘、2,3-二馬來醯亞胺萘、1,5-二馬來醯亞胺萘、1,8-二馬來醯亞胺萘、2,6-二馬來醯亞胺萘、2,7-二馬來醯亞胺萘、4,4’-二馬來醯亞胺聯苯、3,3’-二馬來醯亞胺聯苯、3,4’-二馬來醯亞胺聯苯、2,5-二馬來醯亞胺-1,3-二甲苯、2,7-二馬來醯亞胺茀、9,9-雙(4-馬來醯亞胺苯基)茀、9,9-雙(4-馬來醯亞胺-3-甲基苯基)茀、9,9-雙(3-乙基-4-馬來醯亞胺苯基)茀、3,7-二馬來醯亞胺-2-甲氧基茀、9,10-二馬來醯亞胺菲、1,2-二馬來醯亞胺蒽醌、1,5-二馬來醯亞胺蒽醌、2,6-二馬來醯亞胺蒽醌、1,2-二馬來醯亞胺苯、1,3-二馬來醯亞胺苯、1,4-二馬來醯亞胺苯、1,4-雙(4-馬來醯亞胺苯基)苯、2-甲基-1,4-二馬來醯亞胺苯、2,3-二甲基-1,4-二馬來醯亞胺苯、2,5-二甲基-1,4-二馬來醯亞胺苯、2,6-二甲基-1,4-二馬來醯亞胺苯、4-乙基-1,3-二馬來醯亞胺苯、5-乙基-1,3-二馬來醯亞胺苯、4,6-二甲基-1,3-二馬來醯亞胺苯、2,4,6-三甲基-1,3-二馬來醯亞胺苯、2,3,5,6-四甲基-1,4-二馬來醯亞胺苯、4-甲基-1,3-二馬來醯亞胺苯等。作為脂肪族雙馬來醯亞胺化合物的具體例,可舉出雙(4-馬來醯亞胺環己基)甲烷、雙(3-馬來醯亞胺環己基)甲烷等。其中,以雙(4-馬來醯亞胺苯基)甲烷及2,2-雙[4-(4-馬來醯亞胺苯氧基)苯基]丙烷為較佳。作為市售品,可舉例如BMI(商品名、大和化成工業股份有限公司製)系列等。
將聚馬來醯亞胺化合物(B)設為100質量份時,聚烯基酚化合物(A)的調配量係以設為5~200質量份為較佳,以設為10~150質量份為又較佳,以設為20~130質量份更佳。上述調配量若為5質量份以上,則成形時的流動性更良好。另一方面,上述調配量若為200質量份以下,則硬化物的耐熱性更良好。
[液狀聚丁二烯化合物(C)] 液狀聚丁二烯化合物(C)包含式(1)-1所表示的構造單位,
Figure 02_image019
且液狀聚丁二烯化合物僅包含式(1)-1所表示的構造單位時,在一分子中包含2個以上的式(1)-1所表示的構造單位。本揭示中,所謂的「液狀」係指在40℃聚丁二烯化合物具有流動性之意。例如使用布氏黏度計型黏度計,以溫度40℃、轉軸RV-1、旋轉數10min-1 的條件來進行測定時,液狀聚丁二烯化合物的黏度係較佳為2~100Pa∙s,又較佳為5~40Pa∙s,更佳為5~30Pa∙s。
液狀聚丁二烯化合物可進而包含式(1)-2所表示的構造單位。該實施樣態中,在一分子中包含合計為2個以上的式(1)-1所表示的構造單位及式(1)-2所表示的構造單位。
Figure 02_image021
液狀聚丁二烯化合物可進而包含式(1)-1及式(1)-2所表示的構造單位以外的構造單位。式(1)-1及式(1)-2所表示的構造單位以外的構造單位,可以是源自能夠與丁二烯進行共聚合的單體。作為能夠與丁二烯進行共聚合的單體,可舉例如苯乙烯、馬來酸及馬來酸酐、丙烯酸、甲基丙烯酸、降莰烯、二環戊二烯、N-乙烯基-2-吡咯啶酮、丙烯腈、以及丁烯、丙烯等的不飽和脂肪族化合物。能夠與丁二烯進行共聚合的單體的分子量,較佳為40~600,又較佳為60~200,更佳為80~150。
作為式(1)-1及式(1)-2所表示的構造單位以外的構造單位,可舉例如式(1)-3、(1)-4及式(1)-5的構造單位。藉由包含式(1)-3的構造單位,可控制與其他的樹脂的相溶性。藉由包含式(1)-4或式(1)-5的構造單位,可控制硬化速度、或將材料硬化時與不同材料的密著性。
Figure 02_image023
Figure 02_image025
Figure 02_image027
一實施樣態中,將式(1)-1所表示的構造單位的每一分子的平均數設為m、將式(1)-2所表示的構造單位的每一分子的平均數設為n、將式(1)-1及式(1)-2所表示的構造單位以外的構造單位的每一分子的平均數設為w時,m/(m+n+w)為0.15~1。m/(m+n+w)係以0.5~1為較佳,以0.8~1為又較佳。m/(m+n+w)若為0.15以上,則與液狀聚丁二烯化合物的聚烯基酚化合物(A)或聚馬來醯亞胺化合物(B)的反應性為良好,可將液狀聚丁二烯化合物吸收至硬化物中。藉此,可抑制液狀聚丁二烯化合物對成形後的硬化物表面的滲出。
w/(m+n+w)係以0~0.5為較佳,以0~0.35為又較佳,以0~0.2更佳。
一實施樣態中,液狀聚丁二烯化合物係包含選自聚丁二烯、丁二烯-苯乙烯共聚物及馬來酸改質聚丁二烯之至少1種。馬來酸改質聚丁二烯係包含酸酐基、羧基或此等兩者。羧基係可以是鹽或酯的形態。
作為鍵結於液狀聚丁二烯化合物的上述構造單位的末端基,可舉例如氫原子、甲基、乙基、n-丙基、異丙基、n-丁基、異丁基、sec-丁基、tert-丁基等的碳原子數1~4的烷基、羥基、羧基、及胺基。就吸水率之觀點而言,末端基係以氫原子或碳原子數1~4的烷基為較佳。
關於液狀聚丁二烯化合物的含量,可因應用途適當決定。可以[液狀聚丁二烯化合物(C)/聚烯基酚化合物(A)+聚馬來醯亞胺化合物(B)+液狀聚丁二烯化合物(C)]的比率,較佳為5~40質量%,又較佳為10~20質量%之方式來決定液狀聚丁二烯化合物的含量。液狀聚丁二烯化合物的比率若為5質量%以上,則可減低材料的吸水率,並提升耐回焊性。液狀聚丁二烯化合物的比率若為40質量%以下,則適當調節成形前的熱硬化性樹脂組成物的熔點或軟化點,可提升操作性,並可抑制硬化後的液狀聚丁二烯化合物的滲出。
關於液狀聚丁二烯化合物的分子量,可因應用途適當決定。液狀聚丁二烯化合物的數量平均分子量Mn,較佳為2000~50000,又較佳為2000~35000,更佳為2000~27000。液狀聚丁二烯化合物的數量平均分子量Mn若為2000以上,則變容易將成形前的熱硬化性樹脂組成物的熔點或軟化點保持在室溫以上,而可提升熱硬化性樹脂組成物的操作性。又,液狀聚丁二烯化合物的數量平均分子量Mn若為2000以上,則可將熱硬化性樹脂組成物的成形及硬化中的液狀聚丁二烯化合物對於聚烯基酚化合物(A)或聚馬來醯亞胺化合物(B)的擴散分離速度減緩至抑制液狀聚丁二烯化合物對硬化物表面的滲出的程度,藉此可改善成形物的外觀或熱硬化性樹脂組成物的成形性。液狀聚丁二烯化合物的數量平均分子量Mn若為50000以下,則可使熱硬化性樹脂組成物的成形時的黏度設成為適當的範圍,於成形及硬化時間內可將材料填充至模具內部。
[自由基起始劑(D)] 藉由於熱硬化性樹脂組成物中調配自由基起始劑(D),可促進熱硬化性樹脂組成物的硬化。作為自由基起始劑,可舉例如光自由基起始劑、熱自由基起始劑等。自由基起始劑係較佳為熱自由基起始劑。作為熱自由基起始劑,可舉出有機過氧化物。有機過氧化物係以10小時半衰期溫度為100~170℃的有機過氧化物為較佳,具體而言可舉出過氧化二異丙苯、2,5-二甲基-2,5-二(tert-丁基過氧化)己烷、tert-丁基過氧化異丙苯、二-tert-丁基過氧化物、1,1,3,3-四甲基丁基氫過氧化物、及異丙苯氫過氧化物。相對於聚烯基酚化合物(A)、聚馬來醯亞胺化合物(B)及液狀聚丁二烯化合物(C)之合計100質量份,自由基起始劑的較佳的使用量為0.01~10質量份,又較佳為0.05~7.5質量份,更佳為0.1~5質量份。自由基起始劑的使用量若為0.01質量份以上,則充分地進行硬化反應,若為10質量份以下,則熱硬化性樹脂組成物的保存穩定性更良好。
[填充材(E)] 熱硬化性樹脂組成物可進而包含填充材(E)。填充材的種類並無特別限制,可舉出固體聚矽氧橡膠粒子、固體橡膠粒子、聚矽氧粉末等的有機填充材、二氧化矽、氧化鋁、氧化鎂、氮化硼等的無機填充材等,可依據用途適當選擇。一實施樣態中,填充材係選自由二氧化矽、氧化鋁、氧化鎂、固體聚矽氧橡膠粒子及固體橡膠粒子所成之群組之至少1種。
例如,將熱硬化性樹脂組成物使用於半導體密封用途時,為了得到熱膨脹係數低的硬化物,以調配屬絕緣性的無機填充材為較佳。無機填充材並無特別限定,可使用周知者。作為無機填充材,具體而言可舉出非晶質二氧化矽、結晶性二氧化矽等的二氧化矽、氧化鋁、氮化硼、氮化鋁、氮化矽等的粒子。就低黏度化之觀點而言,以真球狀的非晶質二氧化矽為宜。無機填充材係可以是利用矽烷偶合劑等來施予表面處理者、亦可以是未施予表面處理。
填充材的平均粒徑係以0.1~30μm為較佳,以最大粒徑為100μm以下,特別是以75μm以下者為又較佳。若平均粒徑在該範圍,則熱硬化性樹脂組成物的黏度於使用時為適當,對於狹窄間距配線部或狹窄間隙部的注入性亦為適當。於此,所謂的平均粒徑係指藉由雷射繞射散射式粒度分布測定裝置所測定的體積累積粒徑D50
熱硬化性樹脂組成物的填充材的含量,可因應用途適當決定。相對於聚烯基酚化合物(A)、聚馬來醯亞胺化合物(B)、液狀聚丁二烯化合物(C)及自由基起始劑(D)之合計100質量份,熱硬化性樹脂組成物的填充材的含量係較佳為200~1900質量份,又較佳為300~1000質量份,更佳為300~600質量份。
作為其他的添加劑亦能夠將偶合劑、消泡劑、著色劑、螢光體、改質劑、調平劑、光擴散劑、阻燃劑、接著賦予劑、脫模劑等,調配至熱硬化性樹脂組成物中。例如就改良接著性之觀點而言,亦可調配偶合劑。偶合劑並無特別限定,可舉例如乙烯基三乙氧基矽烷、乙烯基三甲氧基矽烷、3-環氧丙氧基丙基三甲氧基矽烷、γ-甲基丙烯醯氧基丙基三甲氧基矽烷、γ-胺基丙基三甲氧基矽烷、N-苯基-3-胺基丙基三甲氧基矽烷等的矽烷偶合劑等。偶合劑係可單獨使用、亦可並用2種以上。熱硬化性樹脂組成物中的偶合劑的調配量係以0.1~5質量%為較佳。上述調配量若為0.1質量%以上,則充分發揮偶合劑的效果,若為5質量%以下時,則熔融黏度、硬化物的吸濕性及強度更良好。
[熱硬化性樹脂組成物的調製方法] 熱硬化性樹脂組成物的調製方法,若為能夠將聚烯基酚化合物(A)、聚馬來醯亞胺化合物(B)、液狀聚丁二烯化合物(C)、自由基起始劑(D)及其他的任意成分均勻地混合及分散即可,並無特別限定。預先使聚烯基酚化合物(A)、聚馬來醯亞胺化合物(B)及液狀聚丁二烯化合物(C)熔融混合,之後再加入自由基起始劑(D)及任意的添加劑的方法,由於各材料可均勻地混合故較佳。
各成分的混合方法並無特別限定。以指定的調配比例,將各成分投入至反應容器、球磨機、雙輥磨機、三輥磨機、旋轉式混合機、雙軸混合機、分散型攪拌翼、單軸或雙軸(同方向或不同方向)擠壓機、揉合機等的混合機中,藉由攪拌或混練而可混合。在實驗規模中,由於旋轉式混合機可容易地變更攪拌條件,故較佳,工業上就生產性之觀點而言,以雙軸混合機為較佳。各混合機係可適當變更攪拌條件來使用。
進行熱硬化性樹脂組成物的粉末化時,若為樹脂不會因為作業步驟所產生的熱而熔融的方法即可,並無特別限定,若為少量,則使用瑪瑙研缽之方法為簡便。利用市售的粉碎機時,於粉碎時所產生的熱量為少者,由於抑制混合物的熔融故較佳。關於粉末的粒徑,以設為1mm以下為較佳。
[結構體的製作方法] 熱硬化性樹脂組成物係可藉由加熱來使其熔融。將已熔融的熱硬化性樹脂組成物成形為任意的較佳的形狀,因應所需使其硬化並脫模,藉此可製作結構體。作為結構體的製作方法係模塑(molding)成形,特別以轉移成形及壓縮成形為較佳。作為轉移成形中的較佳的條件,例如尺寸為10mm×75mm×3mm厚的模具時,可將頂板及模具的溫度設為170~190℃、將保持壓力設為50~150kg/cm2 及將保持時間設為1.5~10分鐘。作為壓縮成形中的較佳的條件,例如尺寸為100mm×75mm×3mm厚的模具時,可將頂板及模具的溫度設為170~190℃、將成形壓力設為5~20MPa及將加壓時間設為1.5~10分鐘。
[硬化物的製作方法] 熱硬化性樹脂組成物係可藉由加熱來使其硬化。硬化溫度係較佳為130~300℃,又較佳為150~230℃,更佳為150~200℃。硬化溫度若為130℃以上,則可使硬化前的熱硬化性樹脂組成物充分熔融,而容易地填充至模具中,且硬化後的脫模亦為容易。硬化溫度若為300℃以下,則可避免材料的熱劣化或揮發。加熱時間係可因應熱硬化性樹脂組成物及硬化溫度適當變更,但就生產性之觀點而言,以0.1~24小時為較佳。該加熱亦可分成多次來進行。特別是要求高硬化度時,不以過高的溫度使其硬化,而是例如隨著硬化之進行使其昇溫,以將最終的硬化溫度設為250℃以下為較佳,以設為230℃以下為又較佳。
[硬化物的用途] 熱硬化性樹脂組成物的硬化物可使用在例如半導體密封材、預浸體、層間絕緣樹脂、阻焊劑、晶粒貼合(die attach)等的用途。 [實施例]
以下,基於實施例及比較例來具體地說明本發明,但本發明並非被限定於該實施例中。
實施例及比較例中使用的分析方法及特性評估方法係如下述般。
[特性評估方法] [分子量] GPC的測定條件係如下述般。 裝置名:JASCO LC-2000 plus(日本分光股份有限公司製) 管柱:Shodex(註冊商標)LF-804(昭和電工股份有限公司製) 移動相:四氫呋喃 流速:1.0mL/min 檢測器:JASCO RI-2031 plus(日本分光股份有限公司製) 溫度:40℃ 利用以上述測定條件,使用聚苯乙烯的標準物質所製成的校正曲線來算出數量平均分子量Mn及重量平均分子量Mw。
[聚合度] 聚合度P係將藉由GPC所算出的數量平均分子量設為Mn、將聚烯基酚化合物的重複構造的分子量設為M時,以下述的公式來求得。 P=Mn/M [玻璃轉移溫度(Tg)] 使用轉移成形機,以模具溫度180℃、保持壓力100kg/cm2 、及保持時間3分鐘的條件來成形熱硬化性樹脂組成物,製作5mm×5mm×5mm的玻璃轉移溫度測定用的試片。將試片以200℃加熱5小時使其後硬化後,藉由熱機械測定(TMA)來進行測定。使用SII NanoTechnology股份有限公司製TMA/SS6100熱機械分析裝置,以溫度範圍30~300℃、昇溫速度5℃/分鐘、荷重20.0mN的條件,使用試片來進行測定,並將線膨脹係數的位移點的溫度設為Tg。
[熱分解溫度(Td)] 將使用轉移成形機,以模具溫度180℃、保持壓力100kg/cm2 、及保持時間3分鐘的條件可成形熱硬化性樹脂組成物的試片以200℃、5小時進行後硬化。使用金剛石銼,將所得到的硬化物進行粉末化後,使用SII NanoTechnology股份有限公司製TG-DTA/SS6000熱重量示差熱分析裝置,以溫度範圍50~450℃、昇溫速度10℃/分鐘來進行加熱並測定重量減少曲線。在所得到的重量減少曲線中,將根據JIS K 7120:1987所記載之一階段質量減少時的開始溫度T1 而得到的溫度設為熱分解溫度Td。
[彎曲強度及彎曲彈性率] 使用轉移成形機,以模具溫度180℃、保持壓力100kg/cm2 、及保持時間3分鐘的條件來成形熱硬化性樹脂組成物而製作100mm×10mm×4mm的彎曲試片。以200℃、5小時進行後硬化後,根據JIS K 7171:2016,於保持在室溫23℃的恆溫室中,使用萬能試驗機(STROGRAPH、東洋精機製作所股份有限公司製)來進行3點彎曲試驗,將以位移速度2mm來移動時的斷裂強度設為彎曲強度,將初期的位移-應力的斜率設為彎曲彈性率。
[吸水率] 使用轉移成形機,以與上述彎曲試片相同的條件來製作50mm×50mm×3mm的試片,並以200℃、5小時進行後硬化。將在試驗之前以50℃使其乾燥24小時後的樣品的質量利用精密天秤求出為W1、將在121℃飽和水蒸氣條件下放置24小時後的樣品的質量利用精密天秤求出為W2,並計算以(W2-W1)/W1所求得的值為吸水率。
[外觀不良(滲出)] 使用轉移成形機,以模具溫度180℃、保持壓力100kg/cm2 、及保持時間3分鐘的條件來成形熱硬化性樹脂組成物,目視觀察取出所得到的成形物後的模具及成形物。將模具沒有霧狀、且未發現沒有硬化而滲出至成形物的表面上的樹脂的情形,評估為良好,除此以外評估為不良。
[耐回焊] 素材為壓延無氧銅(C1020)且外部尺寸寬52mm、長38mm、厚度為0.5mm,並使用基部在中央以長寬18mm存在的導線架。對齊導線架的中央進行,以長30mm、寬30mm、厚度3mm的外部尺寸將基部包圍的密封。使用轉移成形機,以模具溫度180℃、保持壓力100kg/cm2 、及保持時間3分鐘的條件來成形熱硬化性樹脂組成物,並將所得到的試片以200℃、5小時進行後硬化。接下來,根據IPC/JEDEC J-STD-020D的等級3的條件,使用Malcom股份有限公司製回焊模擬器SRS-1來進行回焊試驗。
將耐回焊試驗前後的樣品,使用超音波檢測成像裝置(本多電子股份有限公司製HA-60A),來觀察含有無氧銅的導線架與熱硬化性樹脂組成物的硬化物之界面的剝離狀況。準備N=5的在耐回焊試驗前沒有剝離的樣品,將試驗後N=4以上的沒有剝離者評估為優良,將N=2以上的沒有剝離者評估為良,將低於此者評估為不良。
[原材料] [聚烯丙基酚化合物(A)] ∙BRG-APO(式(2)-1的R6 =氫原子、Q=-CR8 R9 -、R8 及R9 =氫原子、式(3)的R1 ~R5 =氫原子) 使用苯酚酚醛清漆樹脂Shonol(註冊商標)BRG-556及BRG-558(Aica工業股份有限公司)的1:1混合物,來製造將酚性羥基的鄰或對位予以烯丙基化的樹脂(羥基當量154、數量平均分子量Mn1000、重量平均分子量Mw3000、聚合度6.6、p=6.6、q=0)。製造方法係參考日本特開2016-28129號公報的實施例3。 ∙HE100C-APO(式(2)-1及式(2)-2的R6 =氫原子、式(3)的R1 ~R5 =氫原子、Q=p-伸茬基) 使用苯酚芳烷基樹脂HE100C-10-15(AIR WATER公司),來製造將酚性羥基的鄰位或對位予以烯丙基化的樹脂(羥基當量222、數量平均分子量Mn900、重量平均分子量Mw1900、聚合度4.0、p=3.8、q=0.2)。製造方法係參考日本特開2016-28129號公報的實施例1。
[芳香族雙馬來醯亞胺化合物(B)] ∙BMI-4000(2,2-雙[4-(4-馬來醯亞胺苯氧基)苯基]丙烷、大和化成工業股份有限公司) ∙BMI-1100H(雙(4-馬來醯亞胺苯基)甲烷、大和化成工業股份有限公司)
[液狀聚丁二烯化合物(C)] ∙Kuraprene(註冊商標)LBR305(數量平均分子量Mn26000、m/(m+n+w)=0.2(w=0)、Kuraray股份有限公製) ∙B3000(數量平均分子量Mn3200、m/(m+n+w)=1(w=0)、日本曹達股份有限公司製) ∙Kuraprene(註冊商標)LBR352(數量平均分子量Mn9700、m/(m+n+w)=0.7(w=0)、Kuraray股份有限公製) ∙Ricon(商標)100(數量平均分子量Mn4500、m/(m+n+w)=0.53、w/(m+n+w)=0.25(苯乙烯比率25%)、CRAY VALLEY公司製) ∙Ricon(商標)131MA5(數量平均分子量Mn4700、m/(m+n+w)=0.26、馬來酸改質比率2(馬來酸基/分鐘子鏈)、w/(m+n+w)=0.02、CRAY VALLEY公司製)
[自由基起始劑(D)] ∙PERCUMYL(註冊商標)D(過氧化二異丙苯、日油股份有限公司)
[填充材(E)] ∙將二氧化矽填充料MSR2212(球狀二氧化矽、平均粒徑22.7μm、股份有限公司龍森製)使用矽烷偶合劑KBM-603(信越化學工業股份有限公司製)0.5質量%來進行處理。
作為其他的樹脂,使用以下之聚異戊二烯、環氧樹脂、苯酚樹脂及液狀聚丁二烯化合物。 ∙Kuraprene(註冊商標)KL-10(數量平均分子量Mn10000、1,2-異戊二烯比率20%、Kuraray股份有限公製) ∙Kuraprene(註冊商標)LIR-30(數量平均分子量Mn28000、1,2-異戊二烯比率20%、Kuraray股份有限公製) ∙甲酚酚醛清漆型環氧樹脂EPICLON(註冊商標)N-680(DIC股份有限公司製) ∙苯酚樹脂Shonol (註冊商標)BRG-558(Aica工業股份有限公司) ∙Polyoil110(數量平均分子量Mn1600、m/(m+n+w)= 0.01(w=0)、日本Zeon股份有限公司製)
[熱硬化性樹脂組成物的製造] 實施例1 混合30質量份的BRG-APO、55質量份的BMI-4000、15質量份的LBR305、作為自由基起始劑的1.5質量份的PERCUMYLD、作為填充材的400質量份的以KBM-603進行偶合劑處理的MSR2212,並進行熔融混練(以東洋精機製作所股份有限公司製雙輥(輥徑8英寸)、110℃、10分鐘)。以室溫(25℃)放置冷卻1小時並固化之後,藉由使用攪拌混合器(Osaka Chemical股份有限公司製、型號WB-1、25℃、30秒)來進行粉碎,藉此得到粉末狀的熱硬化性樹脂組成物。使用藉由打錠機(富士藥品機械股份有限公司製),將所得到的熱硬化性樹脂組成物緊壓成錠狀者,並利用轉移成形機來進行成形,進行前述之各試片的製作及評估。
實施例2~8、比較例1~4 除了將成分的種類及量如表1般變更以外,與實施例1相同地進行熱硬化性樹脂組成物的製造及其評估。
Figure 02_image029
Figure 02_image031
實施例1~8的熱分解溫度、彎曲彈性率、吸水率皆為良好,滲出及耐回焊性亦為良好。另一方面,比較例1及4,於轉移成形時,對於模具等的貼附及成形品的沾黏為嚴重,而無法成形。比較例2及3,於測定熱分解溫度之際觀察到二個的反曲點(inflection point)。第一個反曲點分別為346℃及338℃,而遠低於實施例,液狀橡膠成分不會與屬其他的樹脂成分的BMI-4000及BRG-APO相互地進行反應及硬化,而觀察到材料整體的耐熱性降低的情形。

Claims (14)

  1. 一種熱硬化性樹脂組成物,其含有聚烯基酚化合物(A)、聚馬來醯亞胺化合物(B)、液狀聚丁二烯化合物(C)及自由基起始劑(D), 前述液狀聚丁二烯化合物(C)具有式(1)-1所表示的構造單位
    Figure 03_image001
    、及任選的式(1)-2所表示的構造單位
    Figure 03_image003
    、及任選的式(1)-1及式(1)-2所表示的構造單位以外的構造單位,將式(1)-1所表示的構造單位的每一分子的平均數設為m、將式(1)-2所表示的構造單位的每一分子的平均數設為n、將式(1)-1及式(1)-2所表示的構造單位以外的構造單位的每一分子的平均數設為w時,m/(m+n+w)=0.15~1。
  2. 如請求項1之熱硬化性樹脂組成物,其中,相對於前述聚烯基酚化合物(A)、前述聚馬來醯亞胺化合物(B)及前述液狀聚丁二烯化合物(C)之合計,前述液狀聚丁二烯化合物(C)的含量為5~40質量%。
  3. 如請求項1或2之熱硬化性樹脂組成物,其中,前述液狀聚丁二烯化合物(C)的數量平均分子量Mn為2000~50000。
  4. 如請求項1或2之熱硬化性樹脂組成物,其中,前述液狀聚丁二烯化合物(C)包含選自聚丁二烯、丁二烯-苯乙烯共聚物及馬來酸改質聚丁二烯之至少1種。
  5. 如請求項1或2之熱硬化性樹脂組成物,其中,前述聚烯基酚化合物(A)係具有式(2)-1所表示的構造單位
    Figure 03_image005
    、及任選的式(2)-2所表示的構造單位
    Figure 03_image007
    的聚烯基酚化合物,式(2)-1及式(2)-2中,R6 分別獨立表示氫原子、碳原子數1~5的烷基或碳原子數1~5的烷氧基,R7 分別獨立表示式(3)所表示的2-烯基,
    Figure 03_image009
    式(3)中,R1 、R2 、R3 、R4 及R5 分別獨立為氫原子、碳原子數1~5的烷基、碳原子數5~10的環烷基或碳原子數6~12的芳基,式(3)的*表示與構成芳香環的碳原子的鍵結部,各苯酚骨架單位的R6 及R7 可為相同或相異,Q分別獨立表示式-CR8 R9 -所表示的伸烷基、碳原子數5~10的伸環烷基、具有芳香環的二價的有機基、具有脂環式縮合環的二價的有機基或組合該等的二價的有機基,R8 及R9 分別獨立表示氫原子、碳原子數1~5的烷基、碳原子數2~6的烯基、碳原子數5~10的環烷基或碳原子數6~12的芳基。
  6. 如請求項5之熱硬化性樹脂組成物,其中,將式(2)-1所表示的構造單位的每一分子的平均數設為p、將式(2)-2所表示的構造單位的每一分子的平均數設為q時,p為1.1~35的實數,p+q為1.1~35的實數,q為使式:p/(p+q)的值成為0.4~1的實數。
  7. 如請求項1或2之熱硬化性樹脂組成物,其中,前述聚馬來醯亞胺化合物(B)為芳香族雙馬來醯亞胺化合物。
  8. 如請求項1或2之熱硬化性樹脂組成物,其中,前述自由基起始劑(D)為有機過氧化物。
  9. 如請求項1或2之熱硬化性樹脂組成物,其中,進而包含填充材(E)。
  10. 如請求項9之熱硬化性樹脂組成物,其中,前述填充材(E)係選自由二氧化矽、氧化鋁、氧化鎂、固體聚矽氧橡膠粒子及固體橡膠粒子所成之群組之至少1種。
  11. 如請求項9之熱硬化性樹脂組成物,其中,相對於前述聚烯基酚化合物(A)、前述聚馬來醯亞胺化合物(B)、前述液狀聚丁二烯化合物(C)及前述自由基起始劑(D)之合計100質量份,前述填充材(E)的含量為200~1900質量份。
  12. 一種如請求項1~11中任一項之熱硬化性樹脂組成物的硬化物。
  13. 一種結構體的製造方法,其係將如請求項1~11中任一項之熱硬化性樹脂組成物進行模塑成形。
  14. 一種結構體,其包含如請求項12之硬化物。
TW108134823A 2019-01-24 2019-09-26 熱硬化性樹脂組成物 TWI725558B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019010424 2019-01-24
JP2019-010424 2019-01-24

Publications (2)

Publication Number Publication Date
TW202028344A true TW202028344A (zh) 2020-08-01
TWI725558B TWI725558B (zh) 2021-04-21

Family

ID=71736309

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108134823A TWI725558B (zh) 2019-01-24 2019-09-26 熱硬化性樹脂組成物

Country Status (6)

Country Link
US (1) US20220112373A1 (zh)
JP (1) JP7363821B2 (zh)
CN (1) CN113316597A (zh)
DE (1) DE112019006725T5 (zh)
TW (1) TWI725558B (zh)
WO (1) WO2020152906A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI819784B (zh) * 2022-09-08 2023-10-21 台燿科技股份有限公司 無溶劑之樹脂組合物及其應用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163609A1 (ja) * 2021-01-27 2022-08-04 太陽インキ製造株式会社 樹脂組成物、樹脂付き金属箔、硬化物、金属ベース基板および電子部品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298720A (en) * 1979-07-23 1981-11-03 Mitsui Toatsu Chemicals Incorporated Thermosetting resin composition from maleimide compound and alkenyl phenol
FR2462458B1 (fr) * 1979-07-31 1986-03-14 Mitsui Toatsu Chemicals Composition de resine thermodurcissable a base de maleimides
US4701517A (en) * 1986-03-13 1987-10-20 Hercules Incorporated Vinyl aromatic/terpene/phenol terpolymer
JPH04292617A (ja) * 1991-03-20 1992-10-16 Fujitsu Ltd マレイミド樹脂組成物
JPH05247169A (ja) * 1992-03-09 1993-09-24 Hitachi Cable Ltd ポリウレタン樹脂組成物
JPH07268076A (ja) * 1994-03-31 1995-10-17 Sumitomo Chem Co Ltd 熱硬化性樹脂組成物および電子部品
JPH07326635A (ja) * 1994-05-31 1995-12-12 Hitachi Chem Co Ltd 接着剤および半導体装置
US7160946B2 (en) * 2004-04-01 2007-01-09 National Starch And Chemical Investment Holding Corporation Method to improve high temperature cohesive strength with adhesive having multi-phase system
JP5000126B2 (ja) * 2005-11-15 2012-08-15 リンテック株式会社 剥離剤組成物および剥離材
JP2014114368A (ja) * 2012-12-10 2014-06-26 Toho Tenax Co Ltd 熱硬化性ビスマレイミド系樹脂組成物及びプリプレグ並びにそれらの製造方法
KR102159419B1 (ko) * 2013-09-30 2020-09-24 주식회사 쿠라레 수지 조성물, 이것을 경화시킨 경화물 및 이 수지 조성물을 함유하는 광학용 점착제
JP6494444B2 (ja) 2014-07-08 2019-04-03 昭和電工株式会社 ポリアルケニルフェノール化合物の製造方法
KR101900268B1 (ko) * 2014-12-25 2018-09-19 쇼와 덴코 가부시키가이샤 열경화성 수지 조성물
KR101964618B1 (ko) * 2014-12-25 2019-04-02 쇼와 덴코 가부시키가이샤 열경화성 수지 조성물
JP6903915B2 (ja) * 2015-01-16 2021-07-14 昭和電工マテリアルズ株式会社 熱硬化性樹脂組成物、層間絶縁用樹脂フィルム、複合フィルム、プリント配線板及びその製造方法
WO2017170844A1 (ja) * 2016-04-01 2017-10-05 日本化薬株式会社 熱硬化性樹脂組成物、プリプレグ及びその硬化物
WO2018193850A1 (ja) * 2017-04-19 2018-10-25 昭和電工株式会社 硬化性樹脂組成物、その硬化物、及びその硬化物を含む構造体
KR102187507B1 (ko) * 2017-04-19 2020-12-07 쇼와 덴코 가부시키가이샤 경화성 수지 조성물, 그 경화물, 및 그 경화물을 포함하는 구조체

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI819784B (zh) * 2022-09-08 2023-10-21 台燿科技股份有限公司 無溶劑之樹脂組合物及其應用

Also Published As

Publication number Publication date
JPWO2020152906A1 (ja) 2021-12-02
JP7363821B2 (ja) 2023-10-18
WO2020152906A1 (ja) 2020-07-30
CN113316597A (zh) 2021-08-27
US20220112373A1 (en) 2022-04-14
DE112019006725T5 (de) 2021-10-07
TWI725558B (zh) 2021-04-21

Similar Documents

Publication Publication Date Title
EP3862390B1 (en) Resin composition, substrate-attached film, metal/resin laminated body and semiconductor device
KR101900268B1 (ko) 열경화성 수지 조성물
TWI693250B (zh) 組成物、環氧樹脂固化劑、環氧樹脂組成物、熱固化性組成物、固化物、半導體裝置以及層間絕緣材料
JP7153635B2 (ja) 硬化性樹脂組成物、その硬化物、及びその硬化物を含む構造体
JP6832938B2 (ja) 硬化性樹脂混合物及び硬化性樹脂組成物の製造方法
TWI725558B (zh) 熱硬化性樹脂組成物
CN114644810B (zh) 一种高温快速固化、低应力的环氧树脂组合物及其制备方法
TW202030255A (zh) 樹脂組成物及其製造方法、清漆、積層板、印刷配線基板以及成形品
JP2009001638A (ja) 成形用樹脂組成物、成形品および半導体パッケージ
JP6771369B2 (ja) 熱硬化性樹脂組成物
JP7351297B2 (ja) 半導体封止材料用熱硬化性樹脂組成物、半導体封止材料、及び半導体装置
TWI747338B (zh) 熱硬化性樹脂組成物、其硬化物及包含該硬化物之構造體
KR20210040771A (ko) 경화성 수지 조성물, 그 경화물 및 상기 경화물을 포함하는 구조체
WO2021240879A1 (ja) 熱硬化性樹脂組成物
WO2021240878A1 (ja) 熱硬化性樹脂組成物
JP2023070490A (ja) 熱硬化性組成物
Huang et al. Phthalonitrile/Epoxy Copolymers Endowing Molding Compounds with High T g, Low CTE, and Intrinsic Flame Retardancy
JP2002275357A (ja) エポキシ系樹脂組成物
WO2020070531A1 (ja) 硬化性樹脂組成物、その硬化物、該硬化性樹脂組成物を用いた構造体の製造方法、及び該硬化物を含む構造体
TW202406988A (zh) 順丁烯二醯亞胺樹脂、樹脂組成物、固化物、片材、積層體、及印刷配線板
JPH03100015A (ja) 半導体封止用エポキシ樹脂組成物
JPH0453811A (ja) 熱硬化性樹脂組成物
JPS63202048A (ja) 半導体装置
JPH03170524A (ja) 硬化性エポキシ樹脂組成物
JPH04108850A (ja) 硬化性エポキシ樹脂組成物