TW201942468A - 無脈動泵及無脈動泵的控制方法 - Google Patents

無脈動泵及無脈動泵的控制方法 Download PDF

Info

Publication number
TW201942468A
TW201942468A TW108110040A TW108110040A TW201942468A TW 201942468 A TW201942468 A TW 201942468A TW 108110040 A TW108110040 A TW 108110040A TW 108110040 A TW108110040 A TW 108110040A TW 201942468 A TW201942468 A TW 201942468A
Authority
TW
Taiwan
Prior art keywords
reciprocating
pump
pressure
pump chamber
internal pressure
Prior art date
Application number
TW108110040A
Other languages
English (en)
Other versions
TWI791800B (zh
Inventor
村越富三雄
Original Assignee
日商日機裝股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日機裝股份有限公司 filed Critical 日商日機裝股份有限公司
Publication of TW201942468A publication Critical patent/TW201942468A/zh
Application granted granted Critical
Publication of TWI791800B publication Critical patent/TWI791800B/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • F04B43/026Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel each plate-like pumping flexible member working in its own pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/005Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B13/00Pumps specially modified to deliver fixed or variable measured quantities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/06Pumps having fluid drive
    • F04B43/067Pumps having fluid drive the fluid being actuated directly by a piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/042Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/02Piston parameters
    • F04B2201/0206Length of piston stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/09Motor parameters of linear hydraulic motors
    • F04B2203/0903Position of the driving piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Pipe Accessories (AREA)

Abstract

本發明提供一種與先前相比可精度更良好地抑制脈動之無脈動泵。
複數個往復泵20、40中,於僅一台往復泵向共通噴出配管36噴出流體之單獨噴出步驟中之共通噴出配管36之配管壓力P_L,與相對於既定之往復泵20、40而與凸輪機構16之凸輪角度θ相對應地被決定之噴出步驟開始點角度θ2、θ5下的該既定往復泵20、40之泵室220、240之內壓P_OR1、P_OR2不同時,基於該壓力差ΔP,行程調整機構80以泵室220、240之內壓P_OR1、P_OR2到達配管壓力P_L之時點成為噴出步驟開始點角度θ2、θ5之方式,對連接於上述既定往復泵20、40之柱塞26、46的十字頭28、48之有效行程長度進行調整。

Description

無脈動泵及無脈動泵的控制方法
本發明係關於一種往復泵,尤其是關於一種以噴出流量變得一定之方式控制之無脈動泵之構造。
習知,有由2台(2聯式)或3台(3聯式)往復泵構成之無脈動泵。此種無脈動泵例如具備連接於各往復泵之共通之吸入配管、共通之噴出配管。
往復泵具備往復移動之柱塞、伴隨該柱塞之進退(往復移動)而容積增減之泵室、以及連接於泵室之吸入閥及噴出閥。於柱塞後退(來向移動)時將泵室減壓,相對應地吸入閥打開而將液體導入至泵室內。若柱塞通過下死點前進(去向移動),則將泵室加壓而打開噴出閥。液體自打開之噴出閥被送至共通噴出配管。
作為各往復泵之驅動裝置,設置馬達、凸輪軸、及偏心驅動凸輪。往復泵之柱塞與偏心驅動凸輪連結,與該凸輪之旋轉相應地進退。
於2聯式之往復泵之情形時,若將偏心驅動凸輪相對於各往復泵之相位差設為180°,則一往復泵之噴出步驟與另一往復泵之噴出步驟互補地進行。
具體而言,如圖20所例示,自一往復泵噴出之流量Q1與自另一往復泵噴出之流量Q2之和成為配管流量Q_L。藉由互相之往復泵互補地作動,可獲得一定之配管流量Q_L1。
另外,如圖21所例示,於往復泵之吸入步驟結束、開始噴出步驟前期間,設置壓縮往復泵之內壓之壓縮步驟。於壓縮步驟中,對泵室內進行壓縮直至往復泵之泵室之內壓P_OR1變得與噴出處之配管壓P_L相等為止。若泵室之內壓P_OR1與配管壓P_L變得相等,則隔開兩者之噴出閥成為開放狀態。
若往復泵之噴出處之配管壓變動,則存在於原本作為壓縮步驟而設定之區間內開始噴出之情形。例如,如圖22上段所例示,於配管壓為低於既定之壓力P_L1之壓力P_L2之情形時,如下段較細之虛線所示,於較設定於壓縮步驟之終點之凸輪角度θ1、θ4靠前之凸輪角度θ0、θ3下泵室之內壓P_OR1變得與配管壓P_L2相等,於該時點開始噴出。其結果為,如下段之實線所示,產生配管流量Q_L自一定流量Q_L1急遽增大之脈動。
因此,例如於專利文獻1中,於共通配管設置壓力感測器或流量感測器,同時於泵室設置連通之排氣閥。並且於藉由感測器檢測出脈動時,利用排氣閥調整泵室之壓力而減小脈動。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本專利第3861060號公報
[發明所欲解決之問題]
然而,於檢測出脈動時,實際上脈動波形不會成為如圖22所示之形狀。於圖22中,成為以自吸入步驟切換為噴出步驟之凸輪角度θ0、θ3為起點之較尖之尖波形狀,但實際上因感測器之配置、液體之黏性、配管之膨脹等,導致如圖23所例示般,脈動波形自凸輪角度θ0、θ3起上升而成為以凸輪角度θ1、θ4為波峰之平緩之曲線形狀。如上所述,實際檢測之脈動波形與尖波形狀相比,差量值(微分值)成為較低之值,相應地,脈動檢測精度降低,其結果為有脈動抑制變得困難之虞。
因此,本發明之目的在於提供一種與先前相比可精度更良好地抑制脈動之無脈動泵。
[解決問題之手段]
本發明係關於一種無脈動泵。該無脈動泵具備驅動機構、複數個往復泵、及行程調整機構。驅動機構具備凸輪機構及複數個十字頭。凸輪機構將驅動馬達之旋轉運動轉換為往復運動。複數個十字頭藉由凸輪機構以既定之相位差進行往復移動。複數個往復泵分別具備柱塞、泵室、吸入閥、及噴出閥。柱塞係連接於十字頭,伴隨該十字頭之往復移動進行往復移動。泵室伴隨柱塞之往復移動而內壓發生變化。吸入閥將共通吸入配管與泵室連接,以泵室側作為背壓側。噴出閥將泵室與共通噴出配管連接,以共通噴出配管側作為背壓側。行程調整機構對十字頭使柱塞往復移動之有效行程長度進行調整。複數個往復泵中,於僅一台往復泵向共通噴出配管噴出流體之單獨噴出步驟中之共通噴出配管之配管壓力,與相對於既定之往復泵而與凸輪機構之凸輪角度相對應地被決定之噴出步驟開始點角度下的該既定往復泵之泵室之內壓不同時,基於該壓力差,行程調整機構以泵室之內壓達到配管壓力之時點成為噴出步驟開始點角度之方式,對連接於上述既定往復泵之柱塞的十字頭之有效行程長度進行調整。
又,於上述發明中,行程調整機構可以可沿十字頭之往復移動方向進行自由往復移動之方式將柱塞連接於十字頭。於該情形時,藉由調整自由往復移動之幅度,而調整十字頭之有效行程長度。
又,於上述發明中,行程調整機構可具備決定柱塞之自由往復移動之幅度之止動部、及使止動部沿十字頭之往復移動方向進退之調整馬達。於該情形時,基於上述既定往復泵之噴出步驟開始點角度下之泵室之內壓與單獨噴出步驟中之配管壓力之差,決定利用調整馬達之止動部之進退幅度。
又,本發明之其他例之無脈動泵具備驅動機構及複數個往復泵。驅動機構具備凸輪機構及複數個十字頭。凸輪機構將驅動馬達之旋轉運動轉換為往復運動。複數個十字頭藉由凸輪機構以既定之相位差進行往復移動。複數個往復泵分別具備柱塞、泵室、吸入閥、噴出閥、及內壓調整機構。柱塞係連接於十字頭,伴隨該十字頭之往復移動進行往復移動。泵室伴隨柱塞之往復移動而內壓發生變化。吸入閥將共通吸入配管與泵室連接,以泵室側作為背壓側。噴出閥將泵室與共通噴出配管連接,以共通噴出配管側作為背壓側。內壓調整機構可調整泵室之內壓。複數個往復泵中,於僅一台往復泵向共通噴出配管噴出流體之單獨噴出步驟中之共通噴出配管之配管壓力,與相對於既定之往復泵而與凸輪機構之凸輪角度相對應地被決定之噴出步驟開始點角度下的該既定往復泵之泵室之內壓不同時,基於該壓力差,內壓調整機構以泵室之內壓達到配管壓力之時點成為噴出步驟開始點角度之方式,對上述既定之往復泵之泵室之內壓進行調整。
又,本發明係關於一種無脈動泵之控制方法。無脈動泵具備驅動機構、複數個往復泵、及行程調整機構。驅動機構具備凸輪機構及十字頭。凸輪機構將驅動馬達之旋轉運動轉換為往復運動。複數個十字頭藉由凸輪機構以既定之相位差進行往復移動。複數個往復泵分別具備柱塞、泵室、吸入閥、及噴出閥。柱塞係連接於十字頭,伴隨該十字頭之往復移動進行往復移動。泵室伴隨柱塞之往復移動而內壓發生變化。吸入閥將共通吸入配管與泵室連接,以泵室側作為背壓側。噴出閥將泵室與共通噴出配管連接,以共通噴出配管側作為背壓側。行程調整機構對十字頭使柱塞往復移動之有效行程長度進行調整。於上述控制方法中,複數個往復泵中,於僅一台往復泵向共通噴出配管噴出流體之單獨噴出步驟中之共通噴出配管之配管壓力,與相對於既定之往復泵而與凸輪機構之凸輪角度相對應地被決定之噴出步驟開始點角度下的該既定往復泵之泵室之內壓不同時,基於該壓力差,以泵室之內壓達到配管壓力之時點成為噴出步驟開始點角度之方式,對連接於上述既定往復泵之柱塞的十字頭之有效行程長度進行調整。
又,於本發明之其他例之無脈動泵之控制方法中,無脈動泵具備驅動機構及複數個往復泵。驅動機構具備凸輪機構及複數個十字頭。凸輪機構將驅動馬達之旋轉運動轉換為往復運動。複數個十字頭藉由凸輪機構以既定之相位差進行往復移動。複數個往復泵分別具備柱塞、泵室、吸入閥、噴出閥、及內壓調整機構。柱塞係連接於十字頭,伴隨該十字頭之往復移動進行往復移動。泵室伴隨柱塞之往復移動而內壓發生變化。吸入閥將共通吸入配管與泵室連接,以泵室側作為背壓側。噴出閥將泵室與共通噴出配管連接,以共通噴出配管側作為背壓側。內壓調整機構可調整泵室之內壓。於上述控制方法中,複數個往復泵中,於僅一台往復泵向共通噴出配管噴出流體之單獨噴出步驟中之共通噴出配管之配管壓力、與相對於既定之往復泵而與凸輪機構之凸輪角度相對應地被決定之噴出步驟開始點角度下的該既定往復泵之泵室之內壓不同時,基於該壓力差,以泵室之內壓達到配管壓力之時點成為噴出步驟開始點角度之方式,對既定之往復泵之泵室之內壓進行調整。
[發明之效果]
根據本發明,可提供一種與先前相比可精度更良好地抑制脈動之無脈動泵。
<無脈動泵之構造>
以下,一面參照圖式一面對本實施形態之無脈動泵100進行說明。再者,於圖1~5、圖16、圖17中,以十字頭28、48之往復移動方向作為X軸。再者,將泵室220、240之加壓方向設為正方向。進而,取垂直於X軸之Y軸及Z軸。X-Y平面為水平面。又,Z軸為豎直軸。
本實施形態之無脈動泵100係用於要求以一定流量連續供給流體之製程。又,例如本發明之無脈動泵100可以高壓供給流體,例如可以40 MPa左右之壓力供給流體。例如本實施形態之無脈動泵係用於藥品或塗料之混合製程。
本實施形態之無脈動泵100具備驅動機構250、複數個往復泵20、40、行程調整機構80、及控制部160。
驅動機構250驅動複數個往復泵20、40。驅動機構250具備框架10、驅動馬達11、軸12、旋轉編碼器130、凸輪機構16、及十字頭28、48。
框架10支持驅動機構250內之驅動體。例如,框架10係由金屬材料構成,為中空構造。例如,於框架10內收容凸輪機構16及行程調整機構80、80。又,框架10係由基底等固定體所支持。
驅動馬達11旋轉驅動軸12。驅動馬達11只要為可等速旋轉之馬達即可,例如由變頻馬達構成。驅動馬達11之旋轉驅動力被傳遞至小徑之軸12及設置於其前端之大徑之軸13。
旋轉編碼器130檢測驅動馬達11之旋轉相位。旋轉編碼器130具備狹縫圓板131、發光元件132及受光元件133。
狹縫圓板131係嵌合於軸12上,與軸12一起旋轉。狹縫圓板131以自軸12之旋轉中心起複數條狹縫沿軸方向貫通之方式被切割為輻射狀。可以可獲得旋轉凸輪15之絕對位置(絕對角度)之方式,於複數條狹縫中例如僅切出一條形狀不同之狹縫。例如可切成與其他狹縫相比僅一條為沿周方向寬幅之狹縫之狹縫圓板131。
沿軸方向隔著狹縫圓板131之狹縫而設置發光元件132及受光元件133。受光元件133檢測狹縫圓板131對自發光元件132照射之光之遮斷/通過並將該檢測訊號發送至控制部160。如下文所述,控制部160接收來自受光元件133之檢測訊號,而求出旋轉凸輪15之旋轉相位、即凸輪角度θ。
再者,亦可於圓板面上環繞地設置突起取代狹縫圓板131、發光元件132、及受光元件133,而藉由近接感測器對其進行檢測。
凸輪機構16將驅動馬達11之旋轉運動轉換為往復運動。凸輪機構16具備軸13、旋轉凸輪15、及滾輪29、49。旋轉凸輪15係嵌合於軸13上,與軸13一起旋轉。如圖2所例示,旋轉凸輪15係形成為大致圓板形狀。旋轉凸輪15係以其圓板面不垂直於軸13之軸方向、即相對於軸13之軸方向傾斜之方式嵌合於軸13上。亦可以一體方式切削軸13及旋轉凸輪15,來代替使旋轉凸輪15嵌合於軸13上。
藉由旋轉凸輪15之圓板面相對於軸13之軸方向傾斜,連接於旋轉凸輪15之十字頭28、48根據旋轉凸輪15之旋轉相位而進退。以該十字頭28、48之進退位移、即行程X_XH1、X_XH2成為如圖7所示之波形(分佈)之方式決定旋轉凸輪15之形狀。
滾輪29、49與十字頭28、48之進退方向正交,其旋轉軸(虛線所示)***至十字頭28、48內。滾輪29、49係分別沿十字頭28、48之進退方向而設置一對,於其等之間加入旋轉凸輪15之周緣部。
十字頭28、48藉由凸輪機構16而進行往復移動。十字頭28、48例如為沿進退方向延伸之圓柱形狀,於其前端(行進方向端部)形成有底孔28a(參照圖3)。
十字頭28、48藉由凸輪機構16而以既定之相位差進行往復動作。例如於圖1中設置有一對十字頭28、48,該等以具有180°之相位差之方式連接於旋轉凸輪15。例如十字頭28、48係隔著軸13與該軸13配置於同一平面上。
往復泵20、40係由驅動機構250驅動。往復泵20、40具備泵室220、240、柱塞26、46、吸入閥31、51、及噴出閥33、53。
柱塞26、46經由行程調整機構80、80而連接於十字頭28、48。柱塞26、46伴隨十字頭28、48之往復移動進行往復動作。如下文所述,藉由設置於柱塞26、46與十字頭28、48之間之行程調整機構80、80,於相對於十字頭28、48之往復移動有「餘隙」之狀態下將驅動力傳遞至柱塞26、46。
泵室220、240具備油壓室22、42及流體室25、45。油壓室22、42與流體室25、45係藉由可撓性之隔板23、43隔開。油壓室22、42係由泵室220、240之殼體、隔板23、43、及襯墊27、47所包圍,封入既定黏度之油。以被襯墊27、47夾住之方式於油壓室22、42中***柱塞26、46之前方部分。因此,根據柱塞26、46之進退,油壓室22、42及流體室25、45之內壓發生變化。
於流體室25、45中向共通吸入配管35及共通噴出配管36供給之流體流入流出。例如於將本實施形態之無脈動泵100用於藥品或塗料之混合製程之情形時,成為藥品或塗料之原料之液體於流體室25、45中流入流出。流體室25、45例如由耐腐蝕性之構件構成。
於流體室25、45經由吸入閥31、51而連接(連通)自共通吸入配管35分支之吸入管30、50。又,同樣地,於流體室25、45經由噴出閥33、53而連接(連通)合流於共通噴出配管36之噴出管32、52。
如上所述,根據柱塞26、46之進退,油壓室22、42之內壓發生變化。藉由可撓性之隔板23、43而與油壓室22、42隔開之流體室25、45跟隨油壓室22、42之內壓變化而其內壓發生變化。具體而言,油壓室22、42之內壓與流體室25、45之內壓相等。
吸入閥31、51係將共通吸入配管35與泵室220、240之流體室25、45連接之閥。吸入閥31、51係以泵室220、240之流體室25、45側作為背壓側。即,若流體室25、45之內壓超過共通吸入配管35之壓力,則關閉吸入閥31、51。又,若流體室25、45之內壓成為共通吸入配管35之壓力以下,則打開吸入閥31、51,共通吸入配管35之流體(液體)流入流體室25、45內。為了嚴密地取得負責吸入閥31、51之關閉/開放之壓力之平衡,於吸入閥31、51之閥體亦可不設置彈簧等賦能構件。
噴出閥33、53係將共通噴出配管36與泵室220、240之流體室25、45連接之閥。噴出閥33、53係以共通噴出配管36側作為背壓側。即,若共通噴出配管36之壓力超過流體室25、45之內壓,則關閉噴出閥33、53。又,若流體室25、45之內壓成為共通噴出配管36之壓力以上,則打開噴出閥33、53,流體室25、45內之流體被送至共通噴出配管36。為了嚴密地取得負責噴出閥33、53之關閉/開放之壓力之平衡,於噴出閥33、53之閥體亦可不設置彈簧等賦能構件。
於泵室220、240設置檢測其內壓之內壓感測器64、65。內壓感測器64、65例如係連接於油壓室22、42。如上所述,油壓室22、42之內壓P_OR1、P_OR2之內壓與流體室25、45之內壓相等,因此由內壓感測器64、65檢測出之壓力值可作為流體室25、45之內壓獲得。由內壓感測器64、65檢測出之油壓室22、42之內壓P_OR1、P_OR2被發送至控制部160。
再者,可於流體室25、45設置內壓感測器64、65,於該情形時,需根據處理流體使用耐腐蝕性之內壓感測器64、65。與此相對,於在油壓室22、42設置內壓感測器64、65之情形時,可獲得可與耐腐蝕性無關地使用內壓感測器64、65之優點。
又,於共通噴出配管36設置線壓感測器63。線壓感測器63檢測共通噴出配管之壓力(配管壓力、線壓)P_L。例如線壓感測器63可使用耐腐蝕性之壓力感測器。
再者,亦可使用內壓感測器64、65代替線壓感測器63檢測線壓P_L。如下文所述,於流體室25、45相對於共通噴出配管36開放時,流體室25、45與共通噴出配管36成為等壓。並且,流體室25、45與油壓室22、42之內壓理論上一直等壓。因此,亦可將流體室25、45之開放時之內壓或油壓室22、42之內壓作為線壓P_L而檢測出。藉此,可獲得無需於處理流體之流路上設置壓力感測器之優點。
行程調整機構80係設置於柱塞26、46之後端(與泵室220、240分開之側之端部)與十字頭28、48之前端之間。行程調整機構80對十字頭28、48使柱塞26、46往復移動之有效行程長度進行調整。如圖1、圖3所例示,行程調整機構80具備本體81、止動部82、增強構件83、盤簧84、支持環85、螺栓86、87、蝸形齒輪(worm gear)121、141、蝸輪(worm wheel)122、142、及調整馬達120、140。
圖3、圖5中例示往復泵20側之行程調整機構80之側面截面圖。再者,往復泵40側之行程調整機構80亦具有與此相同之構造。具體而言,於下述說明中,藉由將各構成之符號之十位之「2」置換為「4」,而成為對往復泵40側之行程調整機構80之構造進行說明者。
於十字頭28之前端形成沿軸方向穿孔之有底孔28a。於該有底孔28a中***柱塞26之後端部26f。又,於有底孔28a之底面28b設置增強構件83。增強構件83之前端面83a與柱塞26之後端面26d沿柱塞26之進退方向相對向。
增強構件83之直徑係以小於有底孔28a之內徑之方式形成,於增強構件83之外周設置作為賦能構件之盤簧84。盤簧84之後端抵接於有底孔28a之底面28b,前端抵接於柱塞26之擴徑部26a之後表面26c。
於較柱塞26之後端部26f靠前方處設置直徑大於後端部26f之直徑之擴徑部26a。於後端部26f嵌入盤簧84之前端,抵接於擴徑部26a之後表面26c。擴徑部26a之前表面26b與止動部82之後表面82e抵接。
止動部82係大致圓筒形狀之構件,具備圓環部82a及位於其前方之臂82b。止動部82決定柱塞26之自由往復移動之幅度。止動部82之內周面可與柱塞26之外周面滑動。具體而言,止動部82可相對於柱塞26而沿進退方向(X軸方向)及周方向滑動。
於止動部82之圓環部82a之外周面切出外螺紋82d,與於十字頭28之有底孔28a之內周面切出之內螺紋28c咬合。藉由該咬合,止動部82與十字頭28一起往復移動。
若相對於內螺紋28c旋轉外螺紋82d,則相應地止動部82與十字頭28相對移動。根據該相對移動,柱塞26之後端面26d與增強構件83之前端面83a之分開距離d發生變化。分開距離d成為自十字頭28向柱塞26傳遞往復移動之驅動力時之損耗量。換言之,分開距離d係十字頭28可沿往復移動方向自由往復移動之幅度,與無效行程長度相等。
藉由螺栓87於十字頭28之前端緊固止動部卡止部88。止動部卡止部88之側面截面係形成為鉤狀,其前端向柱塞26之中心軸側突出。藉由該突出部,防止止動部82之過度旋轉。換言之,藉由止動部卡止部88防止過度旋轉外螺紋82d而自內螺紋28c脫離。
止動部82之臂82b較圓環部82a更向徑向外側伸出。又,於其周端部形成嵌合於本體81之榫槽81a之榫82c。榫槽81a係於本體81之內周面沿其中心軸方向形成,榫82c可沿榫槽81a而沿中心軸方向、即十字頭28之進退方向進退。
又,於本體81以中心軸方向作為旋轉中心轉動時,止動部82藉由榫槽81a與榫82c之嵌合而與本體81一起轉動。藉由止動部82轉動,外螺紋82d相對於內螺紋28c旋轉,無效行程長度d發生變化。
本體81係設置於框架10之前端,可相對於框架10轉動。例如於本體81之外周面,支持環85(參照圖3)經由螺栓86而緊固於框架10。支持環85之內周面85a與本體81之外周面81b可沿其周方向滑動。
蝸輪122係固定於本體81之外周面81b而使本體81轉動。蝸輪122與蝸形齒輪121咬合,蝸形齒輪121係連接於調整馬達120(參照圖1)。調整馬達120係可正反旋轉之馬達,例如由雙向馬達構成。根據調整馬達120之旋轉驅動,蝸形齒輪121旋轉,相應地蝸輪122亦旋轉。該旋轉驅動被傳遞至本體81及止動部82,止動部82沿其往復移動方向進退。其結果為無效行程長度d發生變化。
圖3至圖4例示驅動力自十字頭28向柱塞26傳遞之製程。伴隨十字頭28之前進,止動部卡止部88及止動部82前進。另一方面,柱塞26可相對於止動部82而於進退方向滑動,又,於柱塞26之後端面26d與增強構件83之前端面83a之間設置有無效行程長度d,因此柱塞26收縮盤簧84而其前進停滯。
具體而言,於十字頭28超過下死點而前進時,經由盤簧84將驅動力傳遞至柱塞26。柱塞26前端係***至油壓室22中,隨著柱塞26之前進,柱塞26之前表面承受之壓力(內壓)增加。若該內壓超過盤簧84之彈性壓力,則盤簧84收縮。藉由該過程收縮分開距離d。
進而,參照圖4,若無效行程長度d成為0而柱塞26之後端面26d抵接於增強構件83之前端面83a,則十字頭28將柱塞26向前方推出。此後,十字頭28到達上死點、即十字頭28之位置到達最靠近泵室220之部位為止之十字頭28之行程長度成為將驅動力傳遞至柱塞26之有效行程長度。
到達上死點後,十字頭28後退。藉由該過程,盤簧84將柱塞26推向前方。藉由該推動,柱塞26之擴徑部26a之前表面26b抵接於止動部82之後表面82e。藉此,可確保無效行程長度d。十字頭28到達下死點、即最遠離泵室220之部位後,十字頭28再次前進。
具體而言,若十字頭28超過上死點,則柱塞26被油壓室22之內壓推壓而後退。隨著柱塞26之後退,油壓室22之內壓降低,最終成為與共通吸入配管35相同之壓力。此處,盤簧84之彈性壓力係以高於共通吸入配管35之配管壓之方式決定其彈簧常數等。因此,於油壓室22之內壓降低之過程中,收縮之盤簧84將柱塞26推回前方而成為伸長狀態。於該狀態下,十字頭28到達下死點。
參照圖1,控制部160控制驅動馬達11、調整馬達120、140之驅動。自內壓感測器64、65、線壓感測器63向控制部160發送各種壓力檢測值。又,自旋轉編碼器130之受光元件133接收檢測訊號,而求出旋轉凸輪15之凸輪角度θ。
如圖1所例示,控制部160具備輸入部161、輸出部162、CPU163及記憶體164。控制部160例如由電腦構成。該等之硬體構成(假想地)構成如圖6所例示之功能區塊。
圖6示出與利用調整馬達120、140控制行程調整相關之功能區塊。控制部160具備行程調整控制部150a、150b。行程調整控制部150a、150b具備配管壓力測量部151a、151b、泵室壓力測量部152a、152b、壓力比較部153a、153b、柱塞調整部154a、154b。行程調整控制部150a、150b可互相獨立地運轉。下文對該等控制部之各功能區塊之運算內容等進行說明。
<無脈動泵之運行>
參照圖7~圖11,對本實施形態之無脈動泵100之動作進行說明。再者,為了容易說明,於圖7~圖11中將無效行程長度d設為0。即,設為十字頭28、48之往復移動驅動力係以無損耗之形式傳遞至柱塞26、46。又,驅動馬達11之驅動係設為等速旋轉。進而,於圖7~圖11中例示不產生脈動之理想運行狀態下之各種波形。
圖7例示十字頭28、48相對於旋轉凸輪15之凸輪角度θ之X軸方向之位置X_XH1、X_XH2的曲線圖。該曲線圖係於橫軸上取凸輪角度θ,於縱軸上取十字頭28、48之位置X_XH1、X_XH2。又,於縱軸上取下死點BDC及上死點TDC。如圖7之一點鏈線所示,上段與下段之曲線圖係同步。再者,如上所述,無效行程長度d=0,因此十字頭28、48之位置(行程)X_XH1、X_XH2與柱塞26、46之位置(行程)X_PG1、X_PG2相等(X_XH1=X_PG1,X_XH2=X_PG2)。
圖8例示十字頭28、48相對於凸輪角度θ之速度變化。圖8之曲線圖於橫軸上取凸輪角度θ,於縱軸上取十字頭28、48之往復移動速度V_XH1、V_XH2。縱軸之正方向設為前進方向之速度。又,圖8之上段與下段之曲線圖係同步。
圖9例示泵室220、240之內壓、更準確而言例示作為內壓感測器64、65之檢測對象之油壓室22、42相對於凸輪角度θ之壓力變化。圖9之曲線圖於橫軸上取凸輪角度θ,於縱軸上取油壓室22、42之內壓P_OR1、P_OR2。又,圖9之上段與下段之曲線圖係同步。
圖10例示十字頭28之下死點BDC至凸輪角度θ3為止之十字頭28之位置X_XH1之變化(上段)及油壓室22之內壓P_OR1之變化(下段)。圖10之上段與下段之曲線圖係同步。
圖11例示共通噴出配管36中之流量Q_L。圖11之曲線圖於橫軸上取凸輪角度θ,於縱軸上取流量Q_L。較細之虛線表示來自流體室25之流量,較粗之虛線表示來自流體室45之流量。
參照圖7,旋轉凸輪15係形成為根據其凸輪角度θ而十字頭28、48成為如圖7之曲線圖所示之位移之形狀。具體而言,如圖10上段所例示,十字頭28於下死點BDC中之凸輪角度θ1至θ1A為止以向下凸之二次函數狀位移。進而,十字頭28於凸輪角度θ1A至θ1B為止以一次函數狀(直線狀)位移,於凸輪角度θ1B至θ2為止以向上凸之二次函數狀位移。進而,十字頭28於凸輪角度θ2至θ3為止以向下凸之二次函數狀位移,於凸輪角度θ3至θ5為止以一次函數狀位移。
於凸輪角度θ5至θ6為止,十字頭28以向上凸之二次函數狀位移,於凸輪角度θ6處成為上死點TDC。此後為後退過程,於凸輪角度θ6至到達下死點之θ1為止,表現出如圖7所示之波形,並且十字頭28後退。
再者,該十字頭28、48相對於凸輪角度θ之位移(行程)之關係可於將往復泵20、40之噴出流量Q1、Q2之合計流量設為一定之條件(Q1+Q2=Const.)下任意地設定。例如關於位移,除了如圖7所示之設為一次函數及二次函數之組合以外,亦可設定各種位移態樣。又,根據十字頭28、48之位移,其速度(圖8)亦可設為各種波形。
十字頭48以與十字頭28具有180°之相位差之方式位移。於圖7~圖11中,記載凸輪角度θ1、θ2、θ3與θ4、θ5、θ6具有180°之相位差。(θ1+180°=θ4,θ2+180°=θ5,θ3+180°=θ6)。又,例如θ1=0°,θ2=30°,θ3=60°。
根據上述十字頭28、48之位移,如圖8所示,十字頭28、48之速度發生變化。再者,於圖8中記載驅動馬達11之等速旋轉下之十字頭28、48之速度變化。
如圖8上段所例示,根據圖10之θ1~θ2為止之位移分佈,於凸輪角度θ1至θ2為止,十字頭28表示台形狀之速度變化。即,於凸輪角度θ1至θ1A為止,根據向下凸之二次函數狀之位移,速度V_XH1之斜率以正一次函數狀增加。進而,於凸輪角度θ1A至θ1B為止,根據一次函數狀之位移,速度V_XH1之斜率變得一定。進而,於凸輪角度θ1B至θ2為止,根據向上凸之二次函數狀之位移,速度V_XH1之斜率以負一次函數狀減小。
於成為V_XH1=0之凸輪角度θ2至θ3為止,根據向下凸之二次函數狀之位移,速度V_XH1之斜率以正一次函數狀增加。進而,於凸輪角度θ3至θ5為止,根據一次函數狀之位移,速度V_XH1之斜率變得一定。進而,於凸輪角度θ5至達到上死點之θ6為止,根據向上凸之二次函數狀之位移,速度V_XH1之斜率以負一次函數狀減小。
參照圖9、圖10,於凸輪角度θ1至θ2,油壓室22之內壓P_OR1上升。於凸輪角度θ2處,油壓室22之內壓P_OR1變得與線壓P_L相等,噴出閥33由關閉狀態成為開放狀態。伴隨於此,流體室25之流體(液體)向共通噴出配管36噴出。
進而,此後伴隨噴出閥33之開放,於油壓室22之內壓P_OR1與線壓P_L相等之狀態下,移行至到達十字頭28之上死點TDC之凸輪角度θ6為止。若超過凸輪角度θ6,則伴隨十字頭28之後退,噴出閥33由開放狀態切換為關閉狀態,流體自流體室25向共通噴出配管36之噴出停止。
另一方面,若由噴出閥33之開放狀態切換為關閉狀態,則伴隨十字頭28之後退,油壓室22之內壓P_OR1降低。進而,若內壓P_OR1變得與共通吸入配管35等壓,則吸入閥31由關閉狀態成為開放狀態。伴隨十字頭28進一步後退,流體自共通吸入配管35被引入至流體室25內。若到達十字頭28到達下死點之凸輪角度θ1,則再次轉移至前進步驟。
關於噴出閥33成為開放狀態之凸輪角度θ2至θ6為止之區間,於凸輪角度θ2至θ3,如圖7所示,伴隨十字頭28之位移(行程)以向下凸之二次函數狀位移,如圖11之較細之虛線所示,自流體室25向共通噴出配管36噴出之流體之流量以一次函數狀增加。
進而,於凸輪角度θ2至θ5為止,十字頭28之位移成為一次函數狀,伴隨於此,自流體室25向共通噴出配管36噴出之流體之流量成為一定。再者,凸輪角度θ3至θ5為止之區間係僅藉由往復泵20將流體向共通噴出配管36噴出,成為單獨噴出步驟。進而,於凸輪角度θ5至θ6為止,十字頭28之位移(行程)以向上凸之二次函數狀位移,伴隨於此,自流體室25向共通噴出配管36噴出之流體之流量以一次函數狀減少。
於相對於十字頭28具有180°相位差之十字頭48中,於自凸輪角度θ5起經由θ1而至θ3為止之區間,噴出閥53成為開放狀態。於凸輪角度θ5至θ6為止,如圖7所示,十字頭48之位移(行程)以向下凸之二次函數狀位移,伴隨於此,如圖11之較粗之虛線所示,自流體室45向共通噴出配管36噴出之流體之流量以一次函數狀增加。
進而,自凸輪角度θ6起經由θ1而至θ2為止,十字頭48之位移成為一次函數狀,伴隨於此,自流體室45向共通噴出配管36噴出之流體之流量成為一定。再者,凸輪角度θ6至θ2為止之區間成為僅藉由往復泵40將流體向共通噴出配管36噴出之單獨噴出步驟。進而,於凸輪角度θ2至θ3為止,十字頭48之位移(行程)以向上凸之二次函數狀位移,伴隨於此,自流體室45向共通噴出配管36噴出之流體之流量以一次函數狀減少。
此處,如圖11所示,來自流體室45之流量自一定狀態起減少之區間、與來自流體室25之流量增加而達到一定狀態為止之區間,於凸輪角度θ2至θ3為止之區間重複。同樣地,來自流體室25之流量自一定狀態起減少之區間、與來自流體室45之流量增加而達到一定狀態為止之區間,於凸輪角度θ5至θ6為止之區間重複。於該等區間,自流體室25、45之兩者向共通噴出配管36供給流體。該流量Q_L與僅往復泵20向共通噴出配管36噴出流體之單獨噴出區間(θ3~θ5)及往復泵40之單獨噴出區間(θ6~θ2)中之流量Q1相等。其結果為,於全部凸輪角度下,共通噴出配管36之流量被維持為Q1,可供給無脈動之流體。
該等如圖7~圖11之波形例如係根據共通噴出配管36之線壓P_L而決定。即,預先於設計階段設定既定之線壓P_L。進而,以於凸輪角度θ2下油壓室22之內壓P_OR1到達線壓P_L、且於凸輪角度θ5下油壓室42之內壓P_OR2到達線壓P_L之方式,預先決定旋轉凸輪15之形狀。
鑒於此種特性,作為油壓室22之內壓P_OR1到達線壓P_L時之角度設定之凸輪角度θ2、及作為油壓室42之內壓P_OR2到達線壓P_L時之角度設定之凸輪角度θ5分別可稱為噴出步驟開始點角度。
再者,若將上述換言之,則十字頭28、48之下死點BDC至油壓室22、42之內壓P_OR1、P_OR2之內壓到達線壓P_L為止之區間可作為壓縮油壓室22、42之壓縮步驟。例如於將流體自共通吸入配管35引入流體室25、45中之步驟中,流體室25、45及油壓室22、42之內壓P_OR1、P_OR2下降至大氣壓左右。藉由壓縮步驟,將流體室25、45及油壓室22、42之內壓P_OR1、P_OR2提高至線壓P_L、例如40 MPa左右。
如上所述,根據共通噴出配管36之線壓P_L決定如圖7~圖11之波形(及旋轉凸輪15之形狀),因此若線壓P_L偏離作為用以實現如圖7~圖11之理想運行狀態之前提之壓力(設計基準值),則無脈動崩壞,而產生脈動。
例如圖12示出實際之線壓P_L成為低於設計基準值P_L1之P_L2之情形時之波形。於該例中,油壓室22之內壓P_OR1於作為噴出步驟開始點角度之凸輪角度θ2之前到達線壓P_L2。其結果為,於來自流體室45之噴出量為一定之期間,流體自流體室25噴出,產生超過一定流量Q1之脈動。又,於相位180°後之凸輪角度θ5、θ6亦產生同樣之脈動。
又,圖13示出實際之線壓P_L成為高於設計基準值P_L1之P_L3之情形時之波形。於該例中,油壓室22之內壓P_OR1於作為噴出步驟開始點角度之凸輪角度θ2之後到達線壓P_L3。其結果為,於超過來自流體室45之噴出量為一定之期間而流量減小之期間,開始自流體室25噴出,產生共通噴出配管36之流量Q_L自一定流量Q1***之脈動。又,於相位180°後之凸輪角度θ5、θ6亦產生同樣之脈動。
如上所述,為了防止產生脈動,必須將線壓P_L維持為設計基準值P_L1,但若如此,則難以將無脈動泵應用於線壓P_L不同之各種製程。因此,於本實施形態之無脈動泵100中,藉由執行下述所說明之行程調整控制,即便變更線壓P_L,亦可防止產生脈動。
<行程調整控制>
圖14例示本實施形態之無脈動泵100中之行程調整控制之概要。上段示出十字頭28之位置(行程)X_XH1根據凸輪角度之變化。中段示出柱塞26之位置(行程)X_PG1根據凸輪角度之變化。進而,下段示出油壓室22之內壓P_OR1根據凸輪角度之變化。再者,為十字頭48、柱塞46、及油壓室42相對於圖14之各曲線圖具有180°之相位差之曲線圖(圖示省略)。
如圖14中段所示,柱塞26之行程可藉由行程調整機構80而相對於十字頭28進行調整。中段之曲線圖例示無效行程長度d=0時之柱塞26之波形與無效行程長度d取最大值d_max時之柱塞26之波形。中段所記載之Δθ係與無效行程長度d相對應之旋轉凸輪15之旋轉角(餘隙角)。
進而,圖14之下段例示無效行程長度d=0時之油壓室22之壓力P_OR1(d=0)之波形與無效行程長度d取最大值d_max時之油壓室22之壓力P_OR1(d=d_max)之波形。
例如,最大無效行程長度d_max係根據對設置無脈動泵100之共通噴出配管36要求之壓力之幅度(壓力範圍)決定。例如以滿足以下兩個條件之方式決定最大無效行程長度d_max及旋轉凸輪15之形狀。
條件1:使無效行程長度d=0時之油壓室22、42之壓力P_OR1(d=0)、P_OR2(d=0)到達對共通噴出配管36之最大要求壓力P_Lmax之時點與噴出步驟開始點角度θ2、θ5一致。
條件2:使最大無效行程長度d=d_max時之油壓室22、42之壓力P_OR1(d=d_max)、P_OR2(d=d_max)到達對共通噴出配管36之最小要求壓力P_Lmin之時點與噴出步驟開始點角度θ2、θ5一致。因此,例如相對於共通噴出配管36之最小要求壓力P_Lmin越接近0[MPa],P_OR2(d=d_max)之起點越接近噴出步驟開始點角度θ2、θ5。
於本實施形態之行程調整控制中,例如根據線壓P_L之降低,而增加柱塞26、46之餘隙、即無效行程長度d,減少壓縮步驟量。其結果為,延遲油壓室22、42之壓力上升時機。藉此,可使油壓室22、42之內壓P_OR1、P_OR2到達線壓P_L2之時點與噴出步驟開始點角度θ2、θ5一致。
圖15例示利用行程調整控制部150a(圖6)進行之行程調整控制之流程圖。接收到無脈動泵100之起動指令,控制部160使驅動馬達11等速旋轉驅動。自旋轉編碼器130向泵室壓力測量部152a及配管壓力測量部151a發送旋轉凸輪15之凸輪角度θ。
泵室壓力測量部152a判定凸輪角度θ是否為噴出步驟開始點角度θ2(S10)。於凸輪角度θ≠θ2之情形時,泵室壓力測量部152a繼續監視凸輪角度θ(S12)。於凸輪角度θ=θ2之情形時,泵室壓力測量部152a自內壓感測器64獲得為凸輪角度θ=θ2時之油壓室22之壓力P_OR1(S14)。
繼而,配管壓力測量部151a自線壓感測器63接收線壓P_L(配管壓),並且判定凸輪角度θ是否為單獨噴出步驟(θ3~θ5、θ6~θ2)內之既定之凸輪角度θ7(θ3≦θ7≦θ5)(S16)。例如可設為θ7=350°。
於凸輪角度θ≠θ7之情形時,配管壓力測量部151a繼續監視凸輪角度θ(S18)。於凸輪角度θ=θ7之情形時,配管壓力測量部151a自線壓感測器63獲得為凸輪角度θ=θ7時之線壓P_L(S20)。再者,如上所述,於噴出閥33開放時,流體室25、油壓室22、共通噴出配管36均為等壓。因此,亦可將此時之內壓感測器64之檢測值P_OR1設為線壓P_L。同樣地,亦可將噴出閥53開放時之內壓感測器65之檢測值P_OR2設為線壓P_L。
壓力比較部153a自泵室壓力測量部152a獲得噴出步驟開始點角度θ2時之油壓室22之內壓P_OR1,自配管壓力測量部151a獲得單獨噴出步驟中之線壓P_L,並將兩者進行比較(S22)。具體而言,求出兩者之差量之絕對值,並且判定該絕對值是否超過既定之閾值D。閾值D表示使用無脈動泵100之製程中之脈動之容許限度,例如可根據客戶要求等任意設定。
若|P_OR1-P_L|為閾值D以下,則壓力比較部153a向柱塞調整部154a發送0作為差量值。另一方面,若|P_OR1-P_L|>D,則壓力比較部153a向柱塞調整部154a發送該差量值ΔP=P_OR1-P_L。
藉由柱塞調整部154a,根據差量值調整有效行程長度。首先,判定差量值ΔP之正負(S24)。於差量值為負之情形,即P_OR1<P_L之情形時,噴出步驟開始點角度θ2下之油壓室22之內壓P_OR1低於單獨噴出步驟中之線壓P_L(圖13之圖案)。於該情形時,增加(延長)有效行程長度,換言之,減小無效行程長度d(縮短自由往復移動之幅度),提前壓縮步驟之開始時點。
又,伴隨上述提前之有效行程長度之增加幅度係根據差量值之絕對值決定。例如於柱塞調整部154a中儲存相對於任意行程有效長度之油壓室22之內壓P_OR1之波形,基於上述差量值ΔP決定行程有效長度之增加幅度Δd,換言之,決定止動部82之進退幅度。進而,柱塞調整部154a基於內螺紋28c及外螺紋82d之間距或蝸形齒輪121及蝸輪122之齒數比等,生成對調整馬達120(及止動部82)之後退指令(餘隙減小指令),並將其發送至調整馬達120(S28)。後退指令例如可為脈衝訊號。藉由調整馬達120之後退驅動,止動部82後退而減小無效行程長度d。
同樣地,於差量值ΔP為正之情形,即P_OR1>P_L之情形時,噴出步驟開始點角度θ2下之油壓室22之內壓P_OR1超過單獨噴出步驟中之線壓P_L(圖12之圖案)。於該情形時,減小(縮短)有效行程長度,換言之,增加無效行程長度d(延長自由往復移動之幅度),延遲壓縮步驟之開始時點。又,伴隨上述延遲之有效行程長度之減小幅度係根據差量值之絕對值|ΔP|決定。柱塞調整部154a生成對調整馬達120(及止動部82)之前進指令(餘隙增加指令),並將其發送至調整馬達120(S26)。前進指令例如可為脈衝訊號。藉由調整馬達120之前進驅動,止動部82前進而增加無效行程長度d。
輸出前進指令(餘隙增加指令)/後退指令(餘隙減小指令)後,控制部160判定是否已輸出對無脈動泵100之停止指令(S30)。若已輸出停止指令,則本流程結束,若未輸出停止指令,則返回至步驟S10。
再者,伴隨無效行程長度d(餘隙幅度)之變化,柱塞26之上死點位置及下死點位置發生變動。例如無效行程長度d=0時之柱塞26之下死點位置與為最大無效行程長度d_max時之柱塞26之下死點位置相比更靠近驅動機構250。伴隨於此,於下死點處,進入油壓室22內部之柱塞26之體積亦為於無效行程長度d=0時與為最大無效行程長度d_max時相比較小。為了對該情況進行補償,隔板23向油壓室22側凹陷,油壓室22與流體室25成為等壓。
於上述例中,已對行程調整控制部150a之控制流程進行了說明,行程調整控制部150b亦執行同樣之控制流程。具體而言,於步驟S10中,噴出步驟開始點角度自θ2置換為θ5,於步驟S14、S22、S24中油壓室之內壓P_OR1置換為P_OR2。同樣地,於步驟S16中,對單獨噴出步驟之角度θ7增加相位差180°。
如以上所說明,本實施形態之無脈動泵100以將油壓室22、42之內壓P_OR1、P_OR2到達單獨噴出步驟中之既定角度θ7下之線壓P_L之時點設為噴出步驟開始點角度θ2、θ5之方式調整有效行程長度。藉此,例如與基於脈動波形調整有效行程長度之情形時相比,可高精度地抑制脈動。
<本實施形態之其他例之無脈動泵>
圖16例示本實施形態之其他例之無脈動泵100。標註與圖1相同之符號之構成基本為相同之構造,因此,以下適當省略說明。
於圖16之例中,卸除行程調整機構80,而將十字頭28、48與柱塞26、46直接結合。因此,理論上不會產生無效行程長度,為十字頭28之行程=柱塞26之行程。
又,於油壓室22、42設置油壓調整機構320、340(內壓調整機構)。如下文所述,油壓調整機構320、340可調整泵室220、240之內壓。即,油壓調整機構320、340可調整油壓室22、42之內壓上升之時機。具體而言,如下文所述,以使油壓室22、42之內壓P_OR1、P_OR2到達單獨噴出步驟中之既定之角度θ7下之線壓P_L之時點成為噴出步驟開始點角度θ2、θ5之方式調整壓室22、42之內壓P_OR1、P_OR2。由於調整內壓上升之時機,故而油壓調整機構320、340亦可稱為壓縮量調整機構。
再者,於圖示之關係下,圖16中係將油壓調整機構320、340安裝於往復泵20、40之側方,但不限於該形態。例如亦可將油壓調整機構320、340安裝於往復泵20、40之上方。藉此,往復泵20、40內之空氣容易進入油壓調整機構320、340中,可將未圖示之排氣機構與油壓調整機構320、340並排設置。基於此,圖17中表示將油壓調整機構320、340安裝於往復泵20、40之上方之例。
圖17例示油壓調整機構320之側面截面圖。油壓調整機構320具備轉接頭3214、活塞3216、盤簧3218、螺桿3222、聯軸器3224、驅動軸3232、減速機3212、及調整馬達3220。
再者,往復泵40側之油壓調整機構340亦具備與油壓調整機構320同樣之構造。具體而言,於下述說明中,藉由將各構成之符號之百位之「2」置換為「4」,而成為對往復泵40側之油壓調整機構340之構造進行說明者。
油壓調整機構320係安裝於作為分隔油壓室22之構件之油壓室罩3236之上方。具體而言,油壓室罩3236之上方為截面U字形狀,形成有為了收納轉接頭3214、活塞3216、螺桿3222等而於上下方向(Z軸方向)穿孔之安裝孔3236a。進而,於該安裝孔3236a之底部形成與油壓室22連通之開口3236b。
轉接頭3214係截面U字形狀之蓋構件,固定於油壓室罩3236之安裝孔3236a內。例如於轉接頭3214之外周面切出外螺紋,於安裝孔3236a之內周面切出內螺紋。藉由將兩螺紋螺合而將轉接頭3214固定於安裝孔3236a內。
於轉接頭3214之下端部(底部),與油壓室罩3236之開口3236b連通之開口3214a沿上下方向貫通。即,油壓室22內之油可流入轉接頭3214內。
於轉接頭3214之內側底部收容活塞3216。活塞3216例如為截面U字形狀,於其內部***盤簧3218。活塞3216藉由自油壓室22流入之油而被推升至上方。為了確保活塞3216與轉接頭3214之密封性,可於活塞之外周面與轉接頭3214之內周面之間夾入O環等密封構件。
盤簧3218之下端抵接於活塞3216之內側底面,上端抵接於螺桿3222之下端面3222a。於油自油壓室22流入轉接頭3214內時,藉由盤簧3218之彈性力將活塞3216推向下方,防止油進入較轉接頭3214之開口3214a更上方之位置。另一方面,若油壓室22之內壓P_OR1增加而成為盤簧3218之彈性壓力以上,則盤簧3218收縮,並且活塞3216後退(上升)。如下文所述,該活塞3216之移動幅度、即行程長度d發生變化,藉此調整油壓室22之內壓(內壓上升時機)。
螺桿3222係大致圓柱形狀,被收容於轉接頭3214內。於轉接頭3214之外周面切出外螺紋3222b,與形成於轉接頭3214之內周面之內螺紋3214b螺合。藉由外螺紋3222b及內螺紋3214b之螺合,若螺桿3222旋轉,則該螺桿3222相對於轉接頭3214而沿上下方向進退。伴隨該上下方向之進退,調整活塞3216之行程長度d。
螺桿3222自調整馬達3220傳遞旋轉驅動力。具體而言,自調整馬達3220起,經由減速機3212、驅動軸3232、榫3230、聯軸器3224、及榫3226,將旋轉驅動力傳遞至螺桿3222。再者,調整馬達3220例如由雙向馬達構成。
驅動軸3232係設置於減速機3212之下端,以與螺桿3222同軸之方式配置。驅動軸3232之下端與螺桿3222之間例如設置有止動部3228。止動部3228決定螺桿3222之最大上升點,抵接於上升之螺桿3222之上端。
驅動軸3232經由榫3230而連結於聯軸器3224。聯軸器3224係設置於驅動軸3232及螺桿3222之外周之圓筒形狀之構件,與驅動軸3232一併旋轉。
於聯軸器3224之內周面形成沿上下方向切出之榫槽3224a。榫3226可於該榫槽3224a內滑動。榫3226係固定於螺桿3222,向徑向外側突出,其突出部分可滑動地嵌入榫槽3224a中。
因此,螺桿3222可相對於聯軸器3224沿上下方向相對移動,關於旋轉方向,係伴隨榫槽3224a及榫3226之嵌合關係而與聯軸器3224一起旋轉。
參照圖16、圖17,伴隨十字頭28及柱塞26之前進,油壓室22之內壓P_OR1上升。伴隨內壓P_OR1之上升,油壓調整機構320之活塞3216之下表面(前表面)受到之壓力(內壓)增加。若該內壓超過盤簧3218之彈性壓力,則盤簧3218收縮,使活塞3216上升。藉由該過程收縮行程長度d。
進而,若行程長度d成為0而活塞3216之上端面3216a抵接於螺桿3222之下端面3222a,則活塞3216停止上升,油壓室22之內壓P_OR1繼續上升。
十字頭28到達上死點後,十字頭28後退,油壓室22之內壓P_OR1降低。藉由該過程,盤簧3218將活塞3216推向下方。藉由該推動,活塞3216之下端面3216b抵接於轉接頭3214內側之底面3214c。藉此確保行程長度d。十字頭28到達下死點、即遠離泵室220之部位後,十字頭28再次前進。
圖18例示用以執行本實施形態之泵室內壓調整控制之控制部160之功能區塊。與圖6之不同點在於設置泵室內壓調整控制部350a、350b代替行程調整控制部150a、150b。並且設置活塞調整部155a、155b代替柱塞調整部154a、154b。
<泵室內壓調整控制>
圖19例示本實施形態之無脈動泵100中之泵室內壓調整控制之概要。以下對泵室內壓調整控制部350a之控制內容進行說明。圖19上段表示十字頭28之位置(行程)X_XH1根據凸輪角度之變化。下段表示油壓室22之內壓P_OR1根據凸輪角度之變化。再者,為十字頭48、柱塞46、及油壓室42相對於圖19之各曲線圖具有180°之相位差之曲線圖(圖示省略)。
若參照圖19下段,則例示活塞3216之行程長度d=0時的油壓室22之壓力P_OR1(d=0)之波形與活塞3216之行程長度d取最大值d_max時的油壓室22之壓力P_OR1(d=d_max)之波形。
例如,最大行程長度d_max係根據對設置無脈動泵100之共通噴出配管36要求之壓力之幅度(壓力範圍)決定。例如以滿足以下兩個條件之方式決定最大行程長度d_max及旋轉凸輪15之形狀。
條件1:使行程長度d=0時之油壓室22、42之壓力P_OR1(d=0)、P_OR2(d=0)到達對共通噴出配管36之最大要求壓力P_Lmax之時點與噴出步驟開始點角度θ2、θ5一致。
條件2:使最大行程長度d=d_max時之油壓室22、42之壓力P_OR1(d=d_max)、P_OR2(d=d_max)到達對共通噴出配管36之最小要求壓力P_Lmin之時點與噴出步驟開始點角度θ2、θ5一致。
於本實施形態之泵室內壓調整控制中,例如根據線壓P_L之降低,而增加活塞3216之行程長度d,減少壓縮步驟量。其結果為,延遲油壓室22、42之壓力上升時機。藉此,可使油壓室22、42之內壓P_OR1、P_OR2到達線壓P_L2之時點與噴出步驟開始點角度θ2、θ5一致。
利用控制部160進行之泵室內壓調整控制之流程圖與行程調整控制中所示之圖15相同。其中,於步驟S26、S28中,活塞調整部155a、155b分別對調整馬達3220、3420輸出前進指令(餘隙增加指令)及後退指令(餘隙減小指令)。
具體而言,於活塞調整部155a中,根據差量值調整活塞3216之行程長度d。首先,於步驟S24中判定差量值ΔP之正負,於差量值為負之情形,即P_OR1<P_L之情形時,噴出步驟開始點角度θ2下之油壓室22之內壓P_OR1低於單獨噴出步驟中之線壓P_L。於該情形時,減小行程長度d(縮短自由往復移動之幅度),提前壓縮步驟之開始時點。
又,伴隨上述提前之行程長度之增加幅度係根據差量值之絕對值決定。例如於活塞調整部155a中儲存相對於任意行程長度之油壓室22之內壓P_OR1之波形,基於上述差量值ΔP決定行程長度之增加幅度Δd,換言之,決定螺桿3222之進退幅度。進而,活塞調整部155a基於內螺紋3214b及外螺紋3222b之間距或減速機3212之減速比等,生成對調整馬達3220(及螺桿3222)之後退指令(餘隙減小指令),並將其發送至調整馬達3220(S28)。藉由調整馬達3220之後退驅動,螺桿3222後退而減小行程長度d。
同樣地,於差量值ΔP為正之情形,即P_OR1>P_L之情形時,噴出步驟開始點角度θ2下之油壓室22之內壓P_OR1超過單獨噴出步驟中之線壓P_L。於該情形時,增加行程長度d(延長自由往復移動之幅度),延遲壓縮步驟之開始時點。又,伴隨上述延遲之行程長度之減小幅度係根據差量值之絕對值|ΔP|決定。活塞調整部155a生成對調整馬達3220(及螺桿3222)之前進指令(餘隙增加指令),並將其發送至調整馬達3220(S26)。前進指令例如可為脈衝訊號。藉由調整馬達3220之前進驅動,螺桿3222前進,而增加行程長度d。
再者,上述係對泵室內壓調整控制部350a之控制流程進行說明,但泵室內壓調整控制部350b亦執行同樣之控制流程。具體而言,於步驟S10中,噴出步驟開始點角度由θ2置換為θ5,於步驟S14、S22、S24中,將油壓室之內壓P_OR1置換為P_OR2。同樣地,於步驟S16中,對單獨噴出步驟之角度θ7增加相位差180°。
如以上所說明般,本實施形態之無脈動泵100以將油壓室22、42之內壓P_OR1、P_OR2到達單獨噴出步驟中之既定角度θ7下之線壓P_L之時點設為噴出步驟開始點角度θ2、θ5之方式調整活塞3216之行程長度d。藉此,與例如進行基於脈動波形之行程長度之調整之情形相比,可高精度地抑制脈動。
11‧‧‧驅動馬達
15‧‧‧旋轉凸輪
16‧‧‧凸輪機構
20、40‧‧‧往復泵
22、42‧‧‧油壓室
23、43‧‧‧隔板
25、45‧‧‧流體室
26、46‧‧‧柱塞
28、48‧‧‧十字頭
31、51‧‧‧吸入閥
33、53‧‧‧噴出閥
35‧‧‧共通吸入配管
36‧‧‧共通噴出配管
63‧‧‧線壓感測器
64、65‧‧‧內壓感測器
80‧‧‧行程調整機構
82‧‧‧止動部
83‧‧‧增強構件
84‧‧‧盤簧
100‧‧‧無脈動泵
120、140、3220、3420‧‧‧調整馬達
121、141‧‧‧蝸形齒輪
122、142‧‧‧蝸輪
130‧‧‧旋轉編碼器
150a、150b‧‧‧行程調整控制部
151a、151b‧‧‧配管壓力測量部
152a、152b‧‧‧泵室壓力測量部
153a、153b‧‧‧壓力比較部
154a、154b‧‧‧柱塞調整部
155a、155b‧‧‧活塞調整部
160‧‧‧控制部
220、240‧‧‧泵室
250‧‧‧驅動機構
320、340‧‧‧油壓調整機構
3216、3416‧‧‧活塞
350a、350b‧‧‧泵室內壓調整控制部
圖1係表示本發明之實施形態中之無脈動泵之構成的截面圖。
圖2係表示本發明之無脈動泵之凸輪機構之一例的立體圖。
圖3係表示本發明之無脈動泵之行程調整機構之構成的截面圖,係表示壓縮衝程開始時之十字頭與柱塞之位置關係之圖。
圖4係表示圖3所示之行程調整機構之構成之截面圖,係表示壓縮衝程中十字頭與柱塞之間隙成為零之狀態之圖。
圖5係表示圖3所示之行程調整機構之構成之截面立體圖。
圖6係對控制部之區塊構成進行說明之圖。
圖7係對本發明之無脈動泵之十字頭相對於凸輪角度之位置變化進行說明的曲線圖。
圖8係對本發明之無脈動泵之十字頭相對於凸輪角度之速度變化進行說明的曲線圖。
圖9係對本發明之無脈動泵之泵室相對於凸輪角度之內壓變化進行說明的曲線圖。
圖10係對本發明之無脈動泵之壓縮步驟中的十字頭相對於凸輪角度之位置變化及泵室相對於凸輪角度之內壓變化進行說明之曲線圖。
圖11係對本發明之無脈動泵中之配管流量(無脈動時)進行說明之曲線圖。
圖12係對本發明之無脈動泵中之配管流量進行說明之曲線圖,係對產生脈動之例進行說明之曲線圖。
圖13係對本發明之無脈動泵中之配管流量進行說明之曲線圖,係對產生脈動之其他例進行說明之曲線圖。
圖14係對本發明之無脈動泵中之行程調整控制進行說明之曲線圖。
圖15係對本發明之無脈動泵中之行程調整控制進行說明之流程圖。
圖16係表示本發明之實施形態之其他例中的無脈動泵之構成之截面圖。
圖17係表示本發明之實施形態之其他例中的無脈動泵之油壓室內壓調整機構之構成之截面圖。
圖18係對本發明之實施形態之其他例中的無脈動泵之控制部之區塊構成進行說明之圖。
圖19係對本發明之實施形態之其他例中的無脈動泵之內壓調整控制進行說明之曲線圖。
圖20係對無脈動泵之動作進行說明之曲線圖。
圖21係對壓縮步驟進行說明之曲線圖。
圖22係對先前技術之無脈動泵中之配管流量進行說明之曲線圖,係對產生脈動之例進行說明之曲線圖。
圖23係對先前技術之無脈動泵中之配管流量進行說明之曲線圖,係例示產生脈動時之實際之脈動波形之曲線圖。

Claims (6)

  1. 一種無脈動泵,其具備 驅動機構、複數個往復泵、及行程調整機構, 上述驅動機構具備: 凸輪機構,其將驅動馬達之旋轉運動轉換為往復運動;及 複數個十字頭,其藉由上述凸輪機構以既定之相位差進行往復移動, 複數個上述往復泵具備: 柱塞,其連接於上述十字頭,伴隨該十字頭之往復移動進行往復移動; 泵室,其伴隨上述柱塞之往復移動而內壓發生變化; 吸入閥,其將共通吸入配管與上述泵室連接,且以上述泵室側作為背壓側;及 噴出閥,其將上述泵室與共通噴出配管連接,且以上述共通噴出配管側作為背壓側, 上述行程調整機構係對上述十字頭使上述柱塞往復移動之有效行程長度進行調整,且 複數個上述往復泵中,於僅一台上述往復泵向上述共通噴出配管噴出流體之單獨噴出步驟中之上述共通噴出配管之配管壓力,與相對於既定之上述往復泵而與上述凸輪機構之凸輪角度相對應地被決定之噴出步驟開始點角度下的該既定往復泵之上述泵室之內壓不同時,基於該壓力差,上述行程調整機構以上述泵室之內壓到達上述配管壓力之時點成為上述噴出步驟開始點角度之方式,對連接於上述既定往復泵之上述柱塞的上述十字頭之上述有效行程長度進行調整。
  2. 如請求項1所述之無脈動泵,其中 上述行程調整機構以可沿上述十字頭之往復移動方向進行自由往復移動之方式將上述柱塞連接於上述十字頭, 藉由調整上述自由往復移動之幅度,而調整上述十字頭之上述有效行程長度。
  3. 如請求項2所述之無脈動泵,其中 上述行程調整機構具備決定上述柱塞之自由往復移動之幅度之止動部、及使上述止動部沿上述十字頭之往復移動方向進退之調整馬達, 基於上述既定往復泵之上述噴出步驟開始點角度下之上述泵室之內壓與上述單獨噴出步驟中之上述配管壓力之差,決定利用上述調整馬達之上述止動部之進退幅度。
  4. 一種無脈動泵,其具備驅動機構及複數個往復泵, 上述驅動機構具備: 凸輪機構,其將驅動馬達之旋轉運動轉換為往復運動;及 複數個十字頭,其藉由上述凸輪機構以既定之相位差進行往復移動, 複數個上述往復泵具備: 柱塞,其連接於上述十字頭,伴隨該十字頭之往復移動進行往復移動; 泵室,其伴隨上述柱塞之往復移動而內壓發生變化; 吸入閥,其將共通吸入配管與上述泵室連接,且以上述泵室側作為背壓側; 噴出閥,其將上述泵室與共通噴出配管連接,且以上述共通噴出配管側作為背壓側;及 內壓調整機構,其可調整上述泵室之內壓,且 複數個上述往復泵中,於僅一台上述往復泵向上述共通噴出配管噴出流體之單獨噴出步驟中之上述共通噴出配管之配管壓力,與相對於既定之上述往復泵而與上述凸輪機構之凸輪角度相對應地被決定之噴出步驟開始點角度下的該既定往復泵之上述泵室之內壓不同時,基於該壓力差,上述內壓調整機構以上述泵室之內壓到達上述配管壓力之時點成為上述噴出步驟開始點角度之方式,對上述既定往復泵之上述泵室之內壓進行調整。
  5. 一種無脈動泵之控制方法,上述無脈動泵具備驅動機構、複數個往復泵、及行程調整機構, 上述驅動機構具備: 凸輪機構,其將驅動馬達之旋轉運動轉換為往復運動;及 複數個十字頭,其藉由上述凸輪機構以既定之相位差進行往復移動, 複數個上述往復泵具備: 柱塞,其連接於上述十字頭,伴隨該十字頭之往復移動進行往復移動; 泵室,其伴隨上述柱塞之往復移動而內壓發生變化; 吸入閥,其將共通吸入配管與上述泵室連接,且以上述泵室側作為背壓側;及 噴出閥,其將上述泵室與共通噴出配管連接,且以上述共通噴出配管側作為背壓側, 上述行程調整機構係對上述十字頭使上述柱塞往復移動之有效行程長度進行調整, 於上述無脈動泵之控制方法中,複數個上述往復泵中,於僅一台上述往復泵向上述共通噴出配管噴出流體之單獨噴出步驟中之上述共通噴出配管之配管壓力,與相對於既定之上述往復泵而與上述凸輪機構之凸輪角度相對應地被決定之噴出步驟開始點角度下的該既定往復泵之上述泵室之內壓不同時,基於該壓力差,以上述泵室之內壓到達上述配管壓力之時點成為上述噴出步驟開始點角度之方式,對連接於上述既定往復泵之上述柱塞的上述十字頭之上述有效行程長度進行調整。
  6. 一種無脈動泵之控制方法,上述無脈動泵具備驅動機構及複數個往復泵, 上述驅動機構具備: 凸輪機構,其將驅動馬達之旋轉運動轉換為往復運動;及 複數個十字頭,其藉由上述凸輪機構以既定之相位差進行往復移動, 複數個上述往復泵具備: 柱塞,其連接於上述十字頭,伴隨該十字頭之往復移動進行往復移動; 泵室,其伴隨上述柱塞之往復移動而內壓發生變化; 吸入閥,其將共通吸入配管與上述泵室連接,且以上述泵室側作為背壓側; 噴出閥,其將上述泵室與共通噴出配管連接,且以上述共通噴出配管側作為背壓側;及 內壓調整機構,其可調整上述泵室之內壓, 於上述無脈動泵之控制方法中,複數個上述往復泵中,於僅一台上述往復泵向上述共通噴出配管噴出流體之單獨噴出步驟中之上述共通噴出配管之配管壓力,與相對於既定之上述往復泵而與上述凸輪機構之凸輪角度相對應地被決定之噴出步驟開始點角度下的該既定往復泵之上述泵室之內壓不同時,基於該壓力差,以上述泵室之內壓到達上述配管壓力之時點成為上述噴出步驟開始點角度之方式,對上述既定往復泵之上述泵室之內壓進行調整。
TW108110040A 2018-03-28 2019-03-22 無脈動泵及無脈動泵的控制方法 TWI791800B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018061702A JP6952636B2 (ja) 2018-03-28 2018-03-28 無脈動ポンプ及び無脈動ポンプの制御方法
JPJP2018-061702 2018-03-28

Publications (2)

Publication Number Publication Date
TW201942468A true TW201942468A (zh) 2019-11-01
TWI791800B TWI791800B (zh) 2023-02-11

Family

ID=68061696

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108110040A TWI791800B (zh) 2018-03-28 2019-03-22 無脈動泵及無脈動泵的控制方法

Country Status (7)

Country Link
US (1) US11486374B2 (zh)
EP (2) EP3865708B1 (zh)
JP (1) JP6952636B2 (zh)
KR (1) KR102643615B1 (zh)
CN (1) CN111936743B (zh)
TW (1) TWI791800B (zh)
WO (1) WO2019188184A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102152058B1 (ko) * 2019-11-19 2020-09-04 광성지엠(주) 멀티 주입 펌프
US20240117802A9 (en) * 2020-11-09 2024-04-11 Pdc Machines Inc. Hydraulic drive for diaphragm compressor
WO2023230240A1 (en) * 2022-05-26 2023-11-30 Schwing Bioset, Inc. Multi-piston pump diagnostic testing
CN115095626A (zh) * 2022-08-03 2022-09-23 南京信息工程大学 一种工作在阀模式的旋转型磁流变液阻尼器

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1927587A (en) * 1930-07-19 1933-09-19 Marcus L Hacker Diaphragm pump
US3809507A (en) * 1972-03-01 1974-05-07 B Baglai Nonpulsating fluid-flow pump
DE2446805A1 (de) 1974-10-01 1976-04-08 Ott Kg Lewa Pulsationsfrei arbeitende dosierpumpe
US4003679A (en) * 1975-04-02 1977-01-18 Hewlett-Packard Company High pressure pump with metering
US4171191A (en) * 1976-03-25 1979-10-16 Krueger Wallace F Apparatus for transferring metered quantities of material from one location to another
US4359312A (en) 1978-08-15 1982-11-16 Zumtobel Kg Reciprocating pump for the pulsation-free delivery of a liquid
EP0100149A1 (en) * 1982-07-05 1984-02-08 Vfp Fluid Power Limited Diaphragm pumps
JPS5970085U (ja) * 1982-11-02 1984-05-12 日本電子株式会社 ポンプ機構
JPS6067790A (ja) 1983-09-21 1985-04-18 Tokyo Rika Kikai Kk 液体クロマトグラフイ−等の高圧定量ポンプ装置
JPH0326306Y2 (zh) 1985-04-03 1991-06-06
JPS6371586A (ja) * 1986-09-12 1988-03-31 Yokogawa Electric Corp 送液装置
JP3507212B2 (ja) * 1994-08-23 2004-03-15 日機装株式会社 無脈動ポンプ
US5993174A (en) 1994-08-23 1999-11-30 Nikkiso Co., Ltd. Pulsation free pump
JP3508378B2 (ja) * 1996-03-28 2004-03-22 株式会社スギノマシン 液体加圧装置
JP2004044471A (ja) * 2002-07-11 2004-02-12 Nikkiso Co Ltd 無脈動ポンプ
JP2004108188A (ja) * 2002-09-17 2004-04-08 Nikkiso Co Ltd 無脈動ポンプ
JP4276827B2 (ja) 2002-10-18 2009-06-10 株式会社日立ハイテクノロジーズ 液体クロマトグラフ用ポンプ及びその運転方法
JP2004150402A (ja) * 2002-11-01 2004-05-27 Hitachi High-Technologies Corp 液体クロマトグラフ用ポンプ
JP3861060B2 (ja) * 2003-01-31 2006-12-20 日機装株式会社 無脈動ポンプ
JP2006052646A (ja) * 2004-08-09 2006-02-23 Reika Kogyo Kk 定量ポンプ装置
JP2007327449A (ja) * 2006-06-09 2007-12-20 Nikkiso Co Ltd 無脈動ポンプ
US7677872B2 (en) * 2007-09-07 2010-03-16 Gm Global Technology Operations, Inc. Low back-flow pulsation fuel injection pump
JP5266012B2 (ja) * 2008-10-21 2013-08-21 日機装株式会社 無脈動ポンプ
JP5624825B2 (ja) 2010-07-29 2014-11-12 株式会社日立ハイテクノロジーズ 液体クロマトグラフ用ポンプ、および液体クロマトグラフ
JP5342605B2 (ja) * 2011-06-24 2013-11-13 日機装株式会社 無脈動ポンプ
JP2013029080A (ja) * 2011-07-29 2013-02-07 Nikkiso Co Ltd 無脈動ポンプ
JP2013032738A (ja) * 2011-08-02 2013-02-14 Nikkiso Co Ltd ダイアフラムポンプ
CN108291897B (zh) 2015-11-26 2021-04-09 株式会社岛津制作所 送液装置、送液装置的送液控制方法以及送液装置的送液控制程序
JP6305480B2 (ja) 2016-09-01 2018-04-04 日機装株式会社 無脈動ポンプ
JP6313827B2 (ja) * 2016-09-07 2018-04-18 日機装株式会社 無脈動ポンプ

Also Published As

Publication number Publication date
CN111936743B (zh) 2022-05-17
EP3779190A4 (en) 2021-12-15
JP2019173634A (ja) 2019-10-10
WO2019188184A1 (ja) 2019-10-03
US11486374B2 (en) 2022-11-01
CN111936743A (zh) 2020-11-13
KR20200138236A (ko) 2020-12-09
KR102643615B1 (ko) 2024-03-05
EP3779190A1 (en) 2021-02-17
EP3779190B1 (en) 2023-05-10
TWI791800B (zh) 2023-02-11
EP3865708A1 (en) 2021-08-18
JP6952636B2 (ja) 2021-10-20
US20210025375A1 (en) 2021-01-28
EP3865708B1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
TW201942468A (zh) 無脈動泵及無脈動泵的控制方法
TWI720231B (zh) 無脈動幫浦
US20120216671A1 (en) Piston pump
US20190331100A1 (en) Adaptive control system and methods for well service pump systems
JP5342605B2 (ja) 無脈動ポンプ
JP6453865B2 (ja) 流体作動機械
US20180306179A1 (en) Zero pulsation pump
CN102207066B (zh) 一种双作用柱塞泵
US4687426A (en) Constant volume pulsation-free reciprocating pump
CN108799100B (zh) 可实现消除液压脉动的设计方法及装置
EP3048301B1 (en) Hydraulic radial piston device with improved pressure transition mechanism
CN1535358A (zh) 压缩机用活塞及其制造方法
KR101769787B1 (ko) 무편심 정량펌프
US9140244B2 (en) Piston pump with cam actuated valves
RU2813757C1 (ru) Радиально-поршневой насос
US20180209405A1 (en) Improved pulse-free metering pump and methods relating thereto
JP2001212629A (ja) バルジ加工装置
JP2006214287A (ja) 液体定量供給装置
EP3540288B1 (en) Cartridge container for lubricant, and lubricant supply system with same
JP2007321566A (ja) 無脈動ポンプ
KR101261741B1 (ko) 유체 이송 펌핑 장치
IT201800007790A1 (it) Omogeneizzatore ad alta pressione