TW201925129A - 黑色矽酸鋰玻璃陶瓷 - Google Patents

黑色矽酸鋰玻璃陶瓷 Download PDF

Info

Publication number
TW201925129A
TW201925129A TW107142962A TW107142962A TW201925129A TW 201925129 A TW201925129 A TW 201925129A TW 107142962 A TW107142962 A TW 107142962A TW 107142962 A TW107142962 A TW 107142962A TW 201925129 A TW201925129 A TW 201925129A
Authority
TW
Taiwan
Prior art keywords
weight
equal
less
glass ceramic
mpa
Prior art date
Application number
TW107142962A
Other languages
English (en)
Other versions
TWI789464B (zh
Inventor
喬治哈爾西 畢歐
強 付
夏琳瑪莉 史密斯
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW201925129A publication Critical patent/TW201925129A/zh
Application granted granted Critical
Publication of TWI789464B publication Critical patent/TWI789464B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/0017Casings, cabinets or drawers for electric apparatus with operator interface units
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • H05K5/03Covers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Glass Compositions (AREA)
  • Casings For Electric Apparatus (AREA)

Abstract

茲提供一種黑色矽酸鋰玻璃陶瓷。所述玻璃陶瓷包括:作為主晶相之矽酸鋰,以及作為次晶相之葉長石、β-石英、β-鋰輝石、白矽石及磷酸鋰中之至少一者。所述玻璃陶瓷的特徵在於以下顏色座標:L*:20.0至40.0、a*:-1.0至1.0,及b*:-5.0至2.0。所述玻璃陶瓷可經離子交換。亦提供用於生產所述玻璃陶瓷之方法。

Description

黑色矽酸鋰玻璃陶瓷
一般而言,本說明書涉及玻璃陶瓷成分。更具體而言,本說明書涉及黑色矽酸鋰玻璃陶瓷,其可形成用於電子裝置之殼體。
可攜式電子裝置,如,智慧型電話、平板電腦及穿戴式裝置(如,舉例而言,手錶和健身追蹤器)持續變得更小且更複雜。緣此,通常用在此類可攜式電子裝置的至少一個外表面上之材料也持續變得更複雜。舉例而言,隨著可攜式電子裝置變得更小且更薄以滿足消費者需求,這些可攜式電子裝置中所用之殼體也變得更小且更薄,導致對用來形成這些組件的材料之更高性能要求。
因此,需要能展現更高性能(如,耐損壞性)和討喜的外觀之用於可攜式電子裝置之材料。
根據態樣(1),提供玻璃陶瓷。玻璃陶瓷包含:至少一種矽酸鋰晶相作為主晶相;及葉長石(petalite)、β-石英、β-鋰輝石(spodumene)、白矽石(cristobalite)及磷酸鋰中之至少一者作為次晶相。玻璃陶瓷的特徵在於以下顏色座標:L*:20.0至40.0;a*:-1.0至1.0;及b*:-5.0至2.0。
根據態樣(2),提供態樣(1)之玻璃陶瓷,其中主晶相為偏矽酸鋰(lithium metasilicate)。
根據態樣(3),提供態樣(1)或(2)之玻璃陶瓷,其中主晶相為二矽酸鋰。
根據態樣(4),提供態樣(1)至(3)中任一者之玻璃陶瓷,其中玻璃陶瓷在可見光範圍中具有小於約1%之透光度。
根據態樣(5),提供態樣(1)至(4)中任一者之玻璃陶瓷,其中玻璃陶瓷具有至少約290 MPa之環疊環強度(ring-on-ring strength)。
根據態樣(6),提供態樣(1)至(5)中任一者之玻璃陶瓷,其中玻璃陶瓷具有約0.9 MPa·m0.5 至約2.0 MPa·m0.5 之破裂韌性(fracture toughness)。
根據態樣(7),提供態樣(1)至(6)中任一者之玻璃陶瓷,其中玻璃陶瓷具有約1.0 MPa·m0.5 至約1.5 MPa·m0.5 之破裂韌性。
根據態樣(8),提供態樣(1)至(7)中任一者之玻璃陶瓷,進一步包含:約55.0重量%至約75.0重量%的SiO2 ;約2.0重量%至約20.0重量%的Al2 O3 ;0重量%至約5.0重量%的B2 O3 ;約5.0重量%至約15.0重量%的Li2 O;0重量%至約5.0重量%的Na2 O;0重量%至約4.0重量%的K2 O;0重量%至約8.0重量%的MgO;0重量%至約10.0重量%的ZnO;約0.5重量%至約5.0重量%的TiO2 ;約1.0重量%至約6.0重量%的P2 O5 ;約2.0重量%至約10.0重量%的ZrO2 ;0重量%至約0.4重量%的CeO2 ;約0.05重量%至約0.5重量%的SnO+SnO2 ;約0.1重量%至約5.0重量%的FeO+Fe2 O3 ;約0.1重量%至約5.0重量%的NiO;約0.1重量%至約5.0重量%的Co3 O4 ;0重量%至約4.0重量%的MnO+MnO2 +Mn2 O3 ;0重量%至約2.0重量%的Cr2 O3 ;0重量%至約2.0重量%的CuO;及0重量%至約2.0重量%的V2 O5
根據態樣(9),提供態樣(1)至(8)中任一者之玻璃陶瓷,進一步包含:約65.0重量%至約75.0重量%的SiO2 ;約7.0重量%至約11.0重量%的Al2 O3 ;約6.0重量%至約11.0重量%的Li2 O;約2.0重量%至約4.0重量%的TiO2 ;約1.5重量%至約2.5重量%的P2 O5 ;約2.0重量%至約4.0重量%的ZrO2 ;約1.0重量%至約4.0重量%的FeO+Fe2 O3 ;約0.5重量%至約1.5重量%的NiO;及約0.1重量%至約0.4重量%的Co3 O4
根據態樣(10),提供態樣(1)至(9)中任一者之玻璃陶瓷,其中玻璃陶瓷具有大於約50重量%之結晶度。
根據態樣(11),提供態樣(1)至(10)中任一者之玻璃陶瓷,其中玻璃陶瓷經離子交換,並包含壓縮應力層,所述壓縮應力層從玻璃陶瓷的表面延伸至壓縮深度。
根據態樣(12),提供態樣(11)之玻璃陶瓷,其中玻璃陶瓷在表面處具有至少約250 MPa之壓縮應力。
根據態樣(13),提供態樣(11)或(12)之玻璃陶瓷,其中玻璃陶瓷在表面處具有約250 MPa至約650 MPa之壓縮應力。
根據態樣(14),提供態樣(11)至(13)中任一者之玻璃陶瓷,其中所述壓縮深度為至少0.05t ,其中t 為玻璃陶瓷的厚度。
根據態樣(15),提供態樣(11)至(14)中任一者之玻璃陶瓷,其中玻璃陶瓷具有至少約900 MPa之環疊環強度。
根據態樣(16),提供了消費性電子產品。消費性電子產品包含:殼體,所述殼體包含前表面、後表面及側表面;電氣部件,至少部分地位於殼體內,電氣部件包含至少一控制器、記憶體及顯示器,所述顯示器位在殼體的前表面處或鄰近殼體的前表面;以及蓋玻璃,設置於顯示器上方。所述殼體的至少一部分包含態樣(1)至(10)中任一者之玻璃陶瓷。
根據態樣(17),提供了消費性電子產品。消費性電子產品包含:殼體,所述殼體包含前表面、後表面及側表面;電氣部件,至少部分地位於殼體內,電氣部件包含至少一控制器、記憶體及顯示器,所述顯示器位在殼體的前表面處或鄰近殼體的前表面;以及蓋玻璃,設置於顯示器上方。所述殼體的至少一部分包含態樣(11)至(15)中任一者之玻璃陶瓷。
根據態樣(18),提供了一種方法。所述方法包含以下步驟:陶瓷化(ceramming)前驅物玻璃系製品,以形成玻璃陶瓷。玻璃陶瓷包含:作為主晶相之至少一種矽酸鋰晶相;及作為次晶相之以下至少一者:葉長石、β-石英、β-鋰輝石、白矽石及磷酸鋰。玻璃陶瓷的特徵在於以下顏色座標:L*:20.0至40.0;a*:-1.0至1.0;及b*:-5.0至2.0。
根據態樣(19),提供態樣(18)之方法,其中陶瓷化發生在約500°C至約900°C之溫度下。
根據態樣(20),提供態樣(18)或(19)之方法,其中陶瓷化發生達約6小時至約16小時之時段。
根據態樣(21),提供態樣(18)至(20)中任一者之方法,進一步包含以下步驟:離子交換所述玻璃陶瓷。
根據態樣(22),提供態樣(18)至(21)中任一者之方法,其中前驅物玻璃系製品包含:約55.0重量%至約75.0重量%的SiO2 ;約2.0重量%至約20.0重量%的Al2 O3 ;0重量%至約5.0重量%的B2 O3 ;約5.0重量%至約15.0重量%的Li2 O;0重量%至約5.0重量%的Na2 O;0重量%至約4.0重量%的K2 O;0重量%至約8.0重量%的MgO;0重量%至約10.0重量%的ZnO;約0.5重量%至約5.0重量%的TiO2 ;約1.0重量%至約6.0重量%的P2 O5 ;約2.0重量%至約10.0重量%的ZrO2 ;0重量%至約0.4重量%的CeO2 ;約0.05重量%至約0.5重量%的SnO+SnO2 ;約0.1重量%至約5.0重量%的FeO+Fe2 O3 ;約0.1重量%至約5.0重量%的NiO;約0.1重量%至約5.0重量%的Co3 O4 ;0重量%至約4.0重量%的MnO+MnO2 +Mn2 O3 ;0重量%至約2.0重量%的Cr2 O3 ;0重量%至約2.0重量%的CuO;及0重量%至約2.0重量%的V2 O5
根據態樣(23),提供態樣(18)至(22)中任一者之方法,其中前驅物玻璃系製品包含:約65.0重量%至約75.0重量%的SiO2 ;約7.0重量%至約11.0重量%的Al2 O3 ;約6.0重量%至約11.0重量%的Li2 O;約2.0重量%至約4.0重量%的TiO2 ;約1.5重量%至約2.5重量%的P2 O5 ;約2.0重量%至約4.0重量%的ZrO2 ;約1.0重量%至約4.0重量%的FeO+Fe2 O3 ;約0.5重量%至約1.5重量%的NiO;及約0.1重量%至約0.4重量%的Co3 O4
根據態樣(24),提供一種玻璃。所述玻璃包含:約55.0重量%至約75.0重量%的SiO2 ;約2.0重量%至約20.0重量%的Al2 O3 ;0重量%至約5.0重量%的B2 O3 ;約5.0重量%至約15.0重量%的Li2 O;0重量%至約5.0重量%的Na2 O;0重量%至約4.0重量%的K2 O;0重量%至約8.0重量%的MgO;0重量%至約10.0重量%的ZnO;約0.5重量%至約5.0重量%的TiO2 ;約1.0重量%至約6.0重量%的P2 O5 ;約2.0重量%至約10.0重量%的ZrO2 ;0重量%至約0.4重量%的CeO2 ;約0.05重量%至約0.5重量%的SnO+SnO2 ;約0.1重量%至約5.0重量%的FeO+Fe2 O3 ;約0.1重量%至約5.0重量%的NiO;約0.1重量%至約5.0重量%的Co3 O4 ;0重量%至約4.0重量%的MnO+MnO2 +Mn2 O3 ;0重量%至約2.0重量%的Cr2 O3 ;0重量%至約2.0重量%的CuO;及0重量%至約2.0重量%的V2 O5
根據態樣(25),提供態樣(24)之玻璃,包含:約65.0重量%至約75.0重量%的SiO2 ;約7.0重量%至約11.0重量%的Al2 O3 ;約6.0重量%至約11.0重量%的Li2 O;約2.0重量%至約4.0重量%的TiO2 ;約1.5重量%至約2.5重量%的P2 O5 ;約2.0重量%至約4.0重量%的ZrO2 ;約1.0重量%至約4.0重量%的FeO+Fe2 O3 ;約0.5重量%至約1.5重量%的NiO;及約0.1重量%至約0.4重量%的Co3 O4
附加的特徵和優點將在隨後的實施方式中闡述,並且在某種程度上本案所屬技術領域中具通常知識者從詳細描述中將很容易理解該些特徵與優點,或藉由實施在此描述的實施例(包括隨後的實施方式、申請專利範圍與附圖),而能夠認識該些特徵與優點。
應瞭解,以上一般描述及以下實施方式二者描述各種實施例,且意欲提供概覽或框架以理解所請求之標的之本質與特徵。包括隨附圖式以提供對各種實施例之進一步理解,且隨附圖式併入本說明書中並組成本說明書之一部分。圖式圖示本文描述之各種實施例,且與描述一起用以解釋所請求之標的之原理及操作。
現在將參照下文詳述根據多個實施例之黑色矽酸鋰玻璃陶瓷。具體而言,所述黑色矽酸鋰玻璃陶瓷具有討喜的外觀,並展現出高強度和破裂韌性。因此,所述黑色矽酸鋰玻璃陶瓷適用作為可攜式電子裝置中之殼體。
在以下描述中,圖式中所示之全部數個視圖中,相同元件符號指示相同或對應的部分。亦應理解,除非另有說明,否則諸如「頂部」、「底部」、「向外」、「向內」等術語為方便之用詞,且並不視為限制性術語。每當將群組描述為由元素或元素之組合之群組中的至少一者構成時,應理解該群組可由任何數目之所記載元素獨立地或彼此組合地構成。除非另有說明,否則當記載時,數值之範圍包括該範圍之上限及下限以及上限與下限之間的任意範圍。如在本文中所使用,除非另有說明,否則不定冠詞「一」及對應定冠詞「該」意謂「至少一個」或「一或多個」。亦應理解,本說明書及圖式中所揭示之各種特徵可用於任一及所有組合中。
除非另有說明,本文所描述之玻璃的所有成分均以重量百分比(重量%)表示,並在氧化物基礎上提供組分。除非另有說明,所有的溫度均以攝氏度(°C)表示。
應注意到,在本文中可使用術語「實質上」及「約」來表示可能歸因於任何定量比較、值、量測或其他表示之固有之不確定程度。在本文中亦使用該等術語來表示在不導致所論述標的之基本功能變化的情況下定量表示可與所述參考不同的程度。舉例而言,「基本上不含K2 O」的玻璃是指K2 O不是主動添加或備料至玻璃內者,但可作為汙染物而以非常小的含量存在,如小於約0.01重量%的含量。如本文所用,當使用術語「約」來修飾數值時,亦揭示了確切的數值。
玻璃陶瓷含有主晶相、次晶相及殘餘玻璃相。主晶相為主要晶相,於本文界定為,以重量計,佔玻璃陶瓷的最大分量之晶相。因此,次晶相可以所佔玻璃陶瓷的重量百分比小於主晶相的重量百分比存在。
在實施例中,主晶相包括矽酸鋰。矽酸鋰可為偏矽酸鋰或二矽酸鋰。在實施例中,矽酸鋰是唯一的主晶相。
在某些實施例中,玻璃陶瓷包括次晶相,次晶相可包括以下至少一種:葉長石、β-石英、β-鋰輝石、白矽石,及磷酸鋰。如本文所用,β-鋰輝石可指稱β-鋰輝石固溶體(solid solution)。在實施例中,玻璃陶瓷含有超過一種次晶相。在某些實施例中,玻璃陶瓷中可存在額外的晶相。
在實施例中,玻璃陶瓷的整體結晶度足夠高以提供增進的機械性質(如硬度、楊氏模數和抗刮性)。如本文所用,以重量%為單位提供整體結晶度,並指稱存在於玻璃陶瓷中之所有晶相之重量%的總和。在實施例中,整體結晶度大於或等於約50重量%,如大於或等於約55重量%、大於或等於約60重量%、大於或等於約65重量%、大於或等於約70重量%、大於或等於約75重量%,或更多。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃陶瓷的整體結晶度從大於或等於約50重量%至小於或等於約75重量%,如大於或等於約55重量%至小於或等於約70重量%,或大於或等於約60重量%至小於或等於約65重量%,及介於前述值之間的所有範圍和子範圍。透過X射線繞射(X-ray diffraction;XRD)之Rietveld定量分析結果來測定玻璃陶瓷的整體結晶度。
玻璃陶瓷是不透明或透明的。在實施例中,玻璃陶瓷在可見光範圍(380 nm至760 nm)中呈現小於約10%的透光度,如小於約9%、小於約8%、小於約7%、小於約6%、小於約5%、小於約4%、小於約3%、小於約2%、小於約1%,或更小。如本文所用之透光度指的是整體透光度,並以Perkin Elmer Lambda 950 UV/Vis/NIR分光光度計,用150 mm的積分球體(integrating sphere)進行測量。將樣品安裝在球體的入口埠,以容許收集廣角散射光,且參考Spectralon反射盤位於球體的出口埠上方。相對於開放光束基線量測(open beam baseline measurement)來產生整體透光度。
在實施例中,玻璃陶瓷為黑色。玻璃陶瓷的特徵可在於以下顏色座標:L* 20.0至40.0、a* -1.0至0.5,及b* -5.0至1.0。在某些實施例中,玻璃陶瓷的L*值可從20.0至40.0,如從21.0至39.0、從22.0至38.0、從23.0至37.0、從24.0至36.0、從23.0至35.0、從25.0至34.0、從26.0至33.0、從27.0至32.0、從28.0至31.0,或從29.0至30.0%,及介於前述值之間的所有範圍和子範圍。在某些實施例中,玻璃陶瓷的a*值可從-1.0至1.0,如從-0.9至0.9、從-0.8至0.8、從-0.7至0.7、從-0.6至0.6、從-0.5至0.5、從-0.4至0.4、從-0.3至0.3、從-0.2至0.2,或從-0.1至0.1,及介於前述值之間的所有範圍和子範圍。在某些實施例中,玻璃陶瓷的b*值可從-5.0至2.0,如從-4.5至1.5、從-4.0至1.0、從-3.5至0.5、從-3.0至0.0、從-2.5至-0.5、從-2.0至-1.0,或-1.5,及介於前述值之間的所有範圍和子範圍。如本文所用,在SCI UVC條件下,使用X-rite Ci7 F02光源來測量顏色座標。
在實施例中,玻璃陶瓷可具有高破裂韌性。可實現高破裂韌性至少部分地歸因於玻璃陶瓷之晶相集。在某些實施例中,玻璃陶瓷可具有大於或等於約0.9 MPa·m0.5 至小於或等於約2.0 MPa·m0.5 之破裂韌性,如大於或等於約1.0 MPa·m0.5 至小於或等於約1.9 MPa·m0.5 、大於或等於約1.1 MPa·m0.5 至小於或等於約1.8 MPa·m0.5 、大於或等於約1.2 MPa·m0.5 至小於或等於約1.7 MPa·m0.5 、大於或等於約1.3 MPa·m0.5 至小於或等於約1.6 MPa·m0.5 、大於或等於約1.4 MPa·m0.5 至小於或等於約1.5 MPa·m0.5 ,及介於前述值之間的所有範圍和子範圍。在某些實施例中,玻璃陶瓷可具有大於或等於約1.0 MPa·m0.5 至小於或等於約1.5 MPa·m0.5 之破裂韌性。如下所述,藉由人字形切槽短桿(chevron notched short bar;CNSB)法來測量破裂韌性。
在實施例中,玻璃陶瓷可具有高強度。可實現高強度至少部分地歸因於玻璃陶瓷之晶相集(crystal phase assemblage)。在某些實施例中,玻璃陶瓷具有大於或等於約290 MPa之強度,如大於或等於約300 MPa、大於或等於約310 MPa、大於或等於約320 MPa、大於或等於約330 MPa、大於或等於約340 MPa、大於或等於約350 MPa、大於或等於約360 MPa、大於或等於約370 MPa、大於或等於約380 MPa、大於或等於約390 MPa,或更大。在實施例中,玻璃陶瓷具有大於或等於約290 MPa至小於或等於約400 MPa之強度,如大於或等於約300 MPa至小於或等於約390 MPa、大於或等於約310 MPa至小於或等於約380 MPa、大於或等於約320 MPa至小於或等於約370 MPa、大於或等於約330 MPa至小於或等於約360 MPa、大於或等於約340 MPa至小於或等於約350 MPa,及由這些端點形成的任何及所有子範圍。強度是指藉由下文所述之環疊環測試(ring-on-ring test)所測量的強度。
現將描述矽酸鋰玻璃陶瓷的成分。在本文所述之玻璃陶瓷的實施例中,除非另有說明,否則構成組分(例如,SiO2 、Al2 O3 、Li2 O、Na2 O等)的濃度是根據氧化物基準而以重量百分比(重量%)給定。以下分別討論根據實施例之玻璃陶瓷的組分。應理解的是,一種組分的各種記載範圍中之任一範圍可與任何其他組分的各種記載範圍中之任一範圍單獨地組合。
在本文揭示之玻璃陶瓷的實施例中,SiO2 是最大的構成部分。SiO2 作為主要網絡成形劑並穩定網絡結構。SiO2 是形成理想的矽酸鋰晶相所必需的。純的SiO2 具有相對低的CTE且不含鹼。然而,純的SiO2 具有高熔點。因此,若玻璃陶瓷中之SiO2 濃度過高,則用來形成玻璃陶瓷之前驅物玻璃成分的可成形性可能會降低,這是因為較高的SiO2 濃度使熔化玻璃的難度提高,繼而不利地影響前驅物玻璃的可成形性。在實施例中,玻璃成分通常包含以下含量之SiO2 :大於或等於約55.0重量%,如大於或等於約56.0重量%、大於或等於約57.0重量%、大於或等於約58.0重量%、大於或等於約59.0重量%、大於或等於約60.0重量%、大於或等於約61.0重量%、大於或等於約62.0重量%、大於或等於約63.0重量%、大於或等於約64.0重量%、大於或等於約65.0重量%、大於或等於約66.0重量%、大於或等於約67.0重量%、大於或等於約68.0重量%、大於或等於約69.0重量%、大於或等於約70.0重量%、大於或等於約71.0重量%、大於或等於約72.0重量%、大於或等於約73.0重量%,或大於或等於約74.0重量%。在實施例中,玻璃成分包含以下含量之SiO2 :小於或等於約75.0重量%,如小於或等於約74.0重量%、小於或等於約73.0重量%、小於或等於約72.0重量%、or 小於或等於約71.0重量%、小於或等於約70.0重量%、小於或等於約69.0重量%、小於或等於約68.0重量%、小於或等於約67.0重量%、小於或等於約66.0重量%、小於或等於約65.0重量%、小於或等於約64.0重量%、小於或等於約63.0重量%、小於或等於約62.0重量%、小於或等於約61.0重量%、小於或等於約60.0重量%、小於或等於約59.0重量%、小於或等於約58.0重量%、小於或等於約57.0重量%,或小於或等於約56.0重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃成分包含以下含量之SiO2 :從大於或等於約55.0重量%至小於或等於約75.0重量%,如從大於或等於約56.0重量%至小於或等於約74.0重量%、從大於或等於約57.0重量%至小於或等於約73.0重量%、從大於或等於約58.0重量%至小於或等於約72.0重量%、從大於或等於約59.0重量%至小於或等於約71.0重量%、從大於或等於約60.0重量%至小於或等於約70.0重量%、從大於或等於約61.0重量%至小於或等於約69.0重量%、從大於或等於約62.0重量%至小於或等於約68.0重量%、從大於或等於約63.0重量%至小於或等於約67.0重量%、從大於或等於約64.0重量%至小於或等於約66.0重量%,或約65.0重量%,及介於前述值之間的所有範圍和子範圍。在某些實施例中,玻璃陶瓷包括以下含量之SiO2 :從大於或等於約65重量%至小於或等於約75重量%。
實施例之玻璃陶瓷可進一步包含Al2 O3 。由於Al2 O3 在玻璃成分形成之玻璃熔體中的四面體配位之故,Al2 O3 可增加用於形成玻璃陶瓷之前驅物玻璃成分的黏度,當Al2 O3 的含量過高時,會降低玻璃成分的可成形性(formability)。然而,當Al2 O3 的濃度與玻璃成分中之SiO2 的濃度及鹼金屬氧化物的濃度平衡時,Al2 O3 可降低玻璃熔體之液相線溫度,從而提高液相線黏度並增進玻璃成分與某些成形製程(如,熔合成形製程)的相容性。然而,若Al2 O3 含量過高,則可能不理想地減少玻璃陶瓷中形成之二矽酸鋰結晶的量,從而防止互鎖結構(interlocking structure)的形成。類似於SiO2 ,Al2 O3 可穩定網絡結構。在實施例中,玻璃成分通常包含以下濃度之Al2 O3 :大於或等於約2.0重量%,如大於或等於約3.0重量%、大於或等於約4.0重量%、大於或等於約5.0重量%、大於或等於約6.0重量%、大於或等於約7.0重量%、大於或等於約8.0重量%、大於或等於約9.0重量%、大於或等於約10.0重量%、大於或等於約11.0重量%、大於或等於約12.0重量%、大於或等於約13.0重量%、大於或等於約14.0重量%、大於或等於約15.0重量%、大於或等於約16.0重量%、大於或等於約17.0重量%、大於或等於約18.0重量%,或大於或等於約19.0重量%。在實施例中,玻璃成分包含以下含量之Al2 O3 :小於或等於約20.0重量%,如小於或等於約19.0重量%、小於或等於約18.0重量%、小於或等於約17.0重量%、小於或等於約16.0重量%、小於或等於約15.0重量%、小於或等於約14.0重量%、小於或等於約13.0重量%、小於或等於約12.0重量%、小於或等於約11.0重量%、小於或等於約10.0重量%、小於或等於約9.0重量%、小於或等於約8.0重量%、小於或等於約7.0重量%、小於或等於約6.0重量%、小於或等於約5.0重量%、小於或等於約4.0重量%,或小於或等於約3.0重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在其他實施例中,玻璃成分包含以下含量之Al2 O3 :從大於或等於約2.0重量%至小於或等於約20.0重量%,如從大於或等於約3.0重量%至小於或等於約19.0重量%、從大於或等於約4.0重量%至小於或等於約18.0重量%、從大於或等於約5.0重量%至小於或等於約17.0重量%、從大於或等於約6.0重量%至小於或等於約16.0重量%、從大於或等於約7.0重量%至小於或等於約15.0重量%、從大於或等於約8.0重量%至小於或等於約14.0重量%、從大於或等於約9.0重量%至小於或等於約13.0重量%、從大於或等於約10.0重量%至小於或等於約12.0重量%,或約11重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃成分包含以下含量之Al2 O3 :從大於或等於約7.0重量%至小於或等於約11.0重量%。
實施例的玻璃陶瓷可進一步包含B2 O3 。包含B2 O3 可降低玻璃成分的熔融溫度。此外,存在於三方配位態(trigonal coordination state)中之B2 O3 打開了玻璃成分的結構,使得玻璃在裂縫形成發生之前能承受某種程度的變形。在實施例中,玻璃成分含有以下含量之B2 O3 :大於或等於0重量%,如大於或等於約0.5重量%、大於或等於約1.0重量%、大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約2.5重量%、大於或等於約3.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%,或大於或等於約4.5重量%。在實施例中,玻璃成分含有以下含量之B2 O3 :小於或等於約5.0重量%,如小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%、小於或等於約2.5重量%、小於或等於約2.0重量%、小於或等於約1.5重量%、小於或等於約1.0重量%,或小於或等於約0.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃成分包含以下含量之B2 O3 :從大於或等於約0重量%至小於或等於約5.0重量%,如大於或等於約0.5重量%至小於或等於約4.5重量%、大於或等於約1.0重量%至小於或等於約4.0重量%、大於或等於約1.5重量%至小於或等於約3.5重量%、大於或等於約2.0重量%至小於或等於約3.0重量%,或約2.5重量%,及介於前述值之間的所有範圍和子範圍。
實施例的玻璃陶瓷進一步包含Li2 O。在玻璃陶瓷中添加鋰使可進行離子交換製程,並進一步降低前驅物玻璃成分的軟化點。當前驅物玻璃經陶瓷化而形成玻璃陶瓷時,Li2 O也提供形成矽酸鋰晶相所需之鋰。若Li2 O含量過高,則會使前驅物玻璃的形成變得困難。在實施例中,玻璃成分通常包含以下含量之Li2 O:大於5.0重量%,如大於或等於約5.5重量%、大於或等於約6.0重量%、大於或等於約6.5重量%、大於或等於約7.0重量%、大於或等於約7.5重量%、大於或等於約8.0重量%、大於或等於約8.5重量%、大於或等於約9.0重量%、大於或等於約9.5重量%、大於或等於約10.0重量%、大於或等於約10.5重量%、大於或等於約11.0重量%、大於或等於約11.5重量%、大於或等於約12.0重量%、大於或等於約12.5重量%、大於或等於約13.0重量%、大於或等於約13.5重量%、大於或等於約14.0重量%,或大於或等於約14.5重量%。在某些實施例中,玻璃成分包含以下含量之Li2 O:小於或等於約15.0重量%,如小於或等於約14.5重量%、小於或等於約14.0重量%、小於或等於約13.5重量%、小於或等於約13.0重量%、小於或等於約12.5重量%、小於或等於約12.0重量%、小於或等於約11.5重量%、小於或等於約11.0重量%、小於或等於約10.5重量%、小於或等於約10.0重量%、小於或等於約9.5重量%、小於或等於約9.0重量%、小於或等於約8.5重量%、小於或等於約8.0重量%、小於或等於約7.5重量%、小於或等於約7.0重量%、小於或等於約6.5重量%、小於或等於約6.0重量%,或小於或等於約5.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃成分包含以下含量之Li2 O:從大於5.0重量%至小於或等於約15.0重量%,如從大於或等於約5.5重量%至小於或等於約14.5重量%、從大於或等於約6.0重量%至小於或等於約14.0重量%、從大於或等於約6.5重量%至小於或等於約13.5重量%、從大於或等於約7.0重量%至小於或等於約13.0重量%、從大於或等於約7.5重量%至小於或等於約12.5重量%、從大於或等於約8.0重量%至小於或等於約12.0重量%、從大於或等於約8.5重量%至小於或等於約11.5重量%、從大於或等於約9.0重量%至小於或等於約11.0重量%、從大於或等於約9.5重量%至小於或等於約10.5重量%,或約10重量%,及介於前述值之間的所有範圍和子範圍。在某些實施例中,玻璃成分包含以下含量之Li2 O:從大於或等於約6.0重量%至小於或等於約11.0重量%或從大於或等於約7重量%至小於或等於約15重量%。
除了Li2 O以外,玻璃陶瓷可包括一或多種鹼金屬氧化物。鹼金屬氧化物進一步促進了玻璃陶瓷的化學強化,例如透過離子交換製程。可將玻璃陶瓷中之鹼金屬氧化物(如, Li2 O、Na2 O及K2 O還有其他鹼金屬氧化物,包括Cs2 O及Rb2 O)稱為「R2 O」,並以重量%表示R2 O的含量。在某些實施例中,玻璃陶瓷可包括鹼金屬氧化物的混合物,如Li2 O及Na2 O的組合、Li2 O及K2 O的組合,或Li2 O、Na2 O及K2 O的組合。在玻璃陶瓷中包括鹼金屬氧化物之混合物可產生更快且更有效率的離子交換。
玻璃陶瓷可包括Na2 O作為額外的鹼金屬氧化物。Na2 O有助於玻璃陶瓷的可離子交換性(ion exchangeability),並且還降低前驅物玻璃成分的熔點,並增進前驅物玻璃成分的可成形性(formability)。Na2 O的存在亦可縮短必要的陶瓷化處理的長度。然而,若將過多的Na2 O加入玻璃成分,則CTE可能變得過高。Na2 O也可降低玻璃陶瓷中之殘餘玻璃的黏度,這可在陶瓷化處理期間減少玻璃陶瓷中形成之裂縫。在實施例中,玻璃成分通常包含以下含量之Na2 O:大於或等於0.0重量%,如大於或等於約0.5重量%、大於或等於約1.0重量%、大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約2.5重量%、大於或等於約3.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%,或大於或等於約4.5重量%。在某些實施例中,玻璃成分包含以下含量之Na2 O:小於或等於約5.0重量%,如小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%、小於或等於約2.5重量%、小於或等於約2.0重量%、小於或等於約1.5重量%、小於或等於約1.0重量%,或小於或等於約0.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃成分包含以下含量之Na2 O:從大於或等於0.0重量%至小於或等於約5.0重量%,如從大於或等於約0.5重量%至小於或等於約4.5重量%、從大於或等於約1.0重量%至小於或等於4.0重量%、從大於或等於約1.5重量%至小於或等於約3.5重量%、從大於或等於約2.0重量%至小於或等於約3.0重量%,或約2.5重量%,及介於前述值之間的所有範圍和子範圍。
在實施例中,玻璃陶瓷可包括P2 O5 。P2 O5 作為成核劑,以產生整體成核(bulk nucleation)。若P2 O5 的濃度過低,則前驅物玻璃可能不結晶或可能經歷非所欲的表面結晶。若P2 O5 的濃度過高,則可能難以控制在成形期間冷卻時之前驅物玻璃的脫玻作用(devitrification)。玻璃陶瓷中存在的P2 O5 亦可增加玻璃陶瓷中之金屬離子的擴散度,這可提升離子交換玻璃陶瓷的效率。在實施例中,玻璃陶瓷中之P2 O5 的含量可為:大於或等於約1.0重量%,如大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約2.5重量%、大於或等於約3.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%、大於或等於約4.5重量%、大於或等於約5.0重量%,或大於或等於約5.5重量%。在實施例中,玻璃陶瓷中之P2 O5 的含量可為:小於或等於約6.0重量%,如小於或等於約5.5重量%、小於或等於約5.0重量%、小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%、小於或等於約2.5重量%、小於或等於約2.0重量%,或小於或等於約1.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃成分包含以下含量之P2 O5 :從大於或等於約1.0重量%至小於或等於約6.0重量%,如從大於或等於約1.5重量%至小於或等於約5.5重量%、從大於或等於約2.0重量%至小於或等於約5.0重量%、從大於或等於約2.5重量%至小於或等於約4.5重量%、從大於或等於約3.0重量%至小於或等於約4.0重量%,或約4.0重量%,及介於前述值之間的所有範圍和子範圍。
在實施例中,玻璃陶瓷可包括ZrO2 。ZrO2 作為前驅物玻璃成分中之網絡成形劑或中介物(intermediate)。ZrO2 可藉由減少成形期間玻璃成分的脫玻作用,來提升玻璃成分的穩定性,並降低液相溫度。添加ZrO2 亦可提升玻璃陶瓷的化學耐用性,並增加殘餘玻璃的彈性模數。在實施例中,玻璃陶瓷中之ZrO2 的含量為:大於或等於約2.0重量%,如大於或等於約2.5重量%、大於或等於約3.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%、大於或等於約4.5重量%、大於或等於約5.0重量%、大於或等於約5.5重量%、大於或等於約6.0重量%、大於或等於約6.5重量%、大於或等於約7.0重量%、大於或等於約7.5重量%、大於或等於約8.0重量%、大於或等於約8.5重量%、大於或等於約9.0重量%,或大於或等於約9.5重量%。在實施例中,玻璃陶瓷中之ZrO2 的含量為:小於或等於約10.0重量%,如小於或等於約9.5重量%、小於或等於約9.0重量%、小於或等於約8.5重量%、小於或等於約8.0重量%、小於或等於約7.5重量%、小於或等於約7.0重量%、小於或等於約6.5重量%、小於或等於約6.0重量%、小於或等於約5.5重量%、小於或等於約5.0重量%、小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%,或小於或等於約2.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃陶瓷中之ZrO2 的含量為:大於或等於約2.0重量%至小於或等於約10.0重量%,如大於或等於約2.5重量%至小於或等於約9.5重量%、大於或等於約3.0重量%至小於或等於約9.0重量%、大於或等於約3.5重量%至小於或等於約8.5重量%、大於或等於約4.0重量%至小於或等於約8.0重量%、大於或等於約4.5重量%至小於或等於約7.5重量%、大於或等於約5.0重量%至小於或等於約7.0重量%、大於或等於約5.5重量%至小於或等於約6.5重量%,或約6.0重量%,及介於前述值之間的所有範圍和子範圍。在某些實施例中,玻璃陶瓷中之ZrO2 的含量為:大於或等於約2.0重量%至小於或等於約4.0重量%。
實施例的玻璃陶瓷可進一步包含ZnO。當前驅物玻璃經陶瓷化以形成玻璃陶瓷時,前驅物玻璃中的ZnO供應了形成鋅尖晶石(gahnite)晶相所必需的鋅。ZnO亦可作為助熔劑,降低生產前驅物玻璃的成本。在玻璃陶瓷中,ZnO可作為固溶體存在於葉長石晶體中。在實施例中,玻璃成分通常包含以下濃度之ZnO:大於或等於約0.0重量%,如大於或等於約0.5重量%、大於或等於約1.0重量%、大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約2.5重量%、大於或等於約3.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%、大於或等於約4.5重量%、大於或等於約5.0重量%、大於或等於約5.5重量%、大於或等於約6.0重量%、大於或等於約6.5重量%、大於或等於約7.0重量%、大於或等於約7.5重量%、大於或等於約8.0重量%、大於或等於約8.5重量%、大於或等於約9.0重量%,或大於或等於約9.5重量%。在實施例中,玻璃成分包含以下含量之ZnO:小於或等於約10.0重量%,如小於或等於約9.5重量%、小於或等於約9.0重量%、小於或等於約8.5重量%、小於或等於約8.0重量%、小於或等於約7.5重量%、小於或等於約7.0重量%、小於或等於約6.5重量%、小於或等於約6.0重量%、小於或等於約5.5重量%、小於或等於約5.0重量%、小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%、小於或等於約2.5重量%、小於或等於約2.0重量%、小於或等於約1.5重量%、小於或等於約1.0重量%,或小於或等於約0.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃成分包含以下含量之ZnO:從大於或等於約0.0重量%至小於或等於約10.0重量%,如從大於或等於約0.5重量%至小於或等於約9.5重量%、從大於或等於約1.0重量%至小於或等於約9.0重量%、從大於或等於約1.5重量%至小於或等於約8.5重量%、從大於或等於約2.0重量%至小於或等於約8.0重量%、從大於或等於約2.5重量%至小於或等於約7.5重量%、從大於或等於約3.0重量%至小於或等於約7.0重量%、從大於或等於約3.5重量%至小於或等於約6.5重量%、從大於或等於約4.0重量%至小於或等於約6.0重量%、從大於或等於約4.5重量%至小於或等於約5.5重量%,或約5.0重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃陶瓷可實質上不含ZnO或不含ZnO。
實施例的玻璃陶瓷可進一步包含MgO。存在於玻璃中之MgO可增加彈性模數。MgO亦可作為助熔劑,降低生產前驅物玻璃的成本。在玻璃陶瓷中,MgO可作為固溶體存在於葉長石晶體中。在實施例中,玻璃陶瓷中之MgO的含量為:大於或等於約0.0重量%,如大於或等於約0.5重量%、大於或等於約1.0重量%、大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約2.5重量%、大於或等於約3.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%、大於或等於約4.5重量%、大於或等於約5.0重量%、大於或等於約5.5重量%、大於或等於約6.0重量%、大於或等於約6.5重量%、大於或等於約7.0重量%,或大於或等於約7.5重量%。在實施例中,玻璃陶瓷中之MgO的含量為:小於或等於約8.0重量%,如小於或等於約7.5重量%、小於或等於約7.0重量%、小於或等於約6.5重量%、小於或等於約6.0重量%、小於或等於約5.5重量%、小於或等於約5.0重量%、小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%、小於或等於約2.5重量%、小於或等於約2.0重量%、小於或等於約1.5重量%、小於或等於約1.0重量%,或小於或等於約0.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃陶瓷中之MgO的含量為:大於或等於約0.0重量%至小於或等於約8.0重量%,如從大於或等於約0.5重量%至小於或等於約7.5重量%、從大於或等於約1.0重量%至小於或等於約7.0重量%、從大於或等於約1.5重量%至小於或等於約6.5重量%、從大於或等於約2.0重量%至小於或等於約6.0重量%、從大於或等於約2.5重量%至小於或等於約5.5重量%、從大於或等於約3.0重量%至小於或等於約5.0重量%、從大於或等於約3.5重量%至小於或等於約4.5重量%,或約4.0重量%,及介於前述值之間的所有範圍和子範圍。
實施例的玻璃陶瓷可進一步包括TiO2 。TiO2 可作為成核劑(nucleating agent),且在某些情況中可作為染色劑。在實施例中,玻璃可包括以下含量之TiO2 :大於或等於約0.5重量%,如大於或等於約1.0重量%、大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約2.5重量%、大於或等於約3.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%,或大於或等於約4.5重量%。在實施例中,玻璃可包括以下含量之TiO2 :小於或等於約5.0重量%,如小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%,或小於或等於約2.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在其他實施例中,玻璃可包括以下含量之TiO2 :從大於或等於約0.5重量%至小於或等於約5.0重量%,如以下含量:從大於或等於約1.0重量%至小於或等於約4.5重量%、從大於或等於約1.5重量%至小於或等於約4.0重量%、從大於或等於約2.0重量%至小於或等於約3.5重量%,或從大於或等於約2.5重量%至小於或等於約3.0重量%,及介於前述值之間的所有範圍和子範圍。
在實施例中,玻璃陶瓷可視情況包括一或多種澄清劑(fining agent)。在某些實施例中,澄清劑可包括,例如,SnO+SnO2 及/或As2 O3 。在實施例中,玻璃成分中可存在以下含量之SnO+SnO2 :小於或等於0.5重量%,如從大於或等於0.05重量%至小於或等於0.5重量%、大於或等於0.1重量%至小於或等於0.4重量%,或大於或等於0.2重量%至小於或等於0.3重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃陶瓷可不含或實質上不含砷及銻中之一或二者。
玻璃陶瓷包括染色劑以產生期望的黑色和不透明度。染色劑可選自:FeO+Fe2 O3 、NiO、Co3 O4 、TiO2 、MnO+MnO2 +Mn2 O3 、Cr2 O3 、CuO,及/或V2 O5 。在某些實施例中,玻璃陶瓷包括FeO+Fe2 O3 、NiO及Co3 O4 之混合物,以實現理想的顏色空間。
在某些實施例中,玻璃包括FeO及/或Fe2 O3 ,使得以大於或等於約0.1重量%之含量包括FeO+Fe2 O3 ,如大於或等於約0.5重量%、大於或等於約1.0重量%、大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%,或大於或等於約4.5重量%。在某些實施例中,玻璃包括以下含量之FeO+Fe2 O3 :小於或等於約5.0重量%,如小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%、小於或等於約2.5重量%、小於或等於約2.0重量%、小於或等於約1.5重量%、小於或等於約1.0重量%,或小於或等於約0.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃可包括以下含量之FeO+Fe2 O3 :從大於或等於約0.1重量%至小於或等於約5.0重量%,如以下含量:從大於或等於約0.5重量%至小於或等於約4.5重量%、從大於或等於約1.0重量%至小於或等於約4.0重量%、從大於或等於約1.5重量%至小於或等於約3.5重量%、從大於或等於約2.0重量%至小於或等於約3.0重量%,或約2.5重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃可包括以下含量之FeO+Fe2 O3 :從大於或等於約1.0重量%至小於或等於約4.0重量%。
在某些實施例中,玻璃包括以下含量之NiO:大於或等於約0.1重量%,如大於或等於約0.5重量%、大於或等於約1.0重量%、大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%,或大於或等於約4.5重量%。在某些實施例中,玻璃包括以下含量之NiO:小於或等於約5.0重量%,如小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%、小於或等於約2.5重量%、小於或等於約2.0重量%、小於或等於約1.5重量%、小於或等於約1.0重量%,或小於或等於約0.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃可包括以下含量之NiO:從大於或等於約0.1重量%至小於或等於約5.0重量%,如以下含量:從大於或等於約0.5重量%至小於或等於約4.5重量%、從大於或等於約1.0重量%至小於或等於約4.0重量%、從大於或等於約1.5重量%至小於或等於約3.5重量%、從大於或等於約2.0重量%至小於或等於約3.0重量%,或約2.5重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃可包括以下含量之NiO:從大於或等於約0.5重量%至小於或等於約1.5重量%。
在某些實施例中,玻璃包括以下含量之Co3 O4 :大於或等於約0.1重量%,如大於或等於約0.5重量%、大於或等於約1.0重量%、大於或等於約1.5重量%、大於或等於約2.0重量%、大於或等於約3.5重量%、大於或等於約4.0重量%,或大於或等於約4.5重量%。在某些實施例中,玻璃包括以下含量之Co3 O4 :小於或等於約5.0重量%,如小於或等於約4.5重量%、小於或等於約4.0重量%、小於或等於約3.5重量%、小於或等於約3.0重量%、小於或等於約2.5重量%、小於或等於約2.0重量%、小於或等於約1.5重量%、小於或等於約1.0重量%,或小於或等於約0.5重量%。應理解的是,在實施例中,任何上述範圍皆可與任何其他範圍組合。在實施例中,玻璃可包括以下含量之Co3 O4 :從大於或等於約0.1重量%至小於或等於約5.0重量%,如以下含量:從大於或等於約0.5重量%至小於或等於約4.5重量%、從大於或等於約1.0重量%至小於或等於約4.0重量%、從大於或等於約1.5重量%至小於或等於約3.5重量%、從大於或等於約2.0重量%至小於或等於約3.0重量%,或約2.5重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃可包括以下含量之Co3 O4 :從大於或等於約0.1重量%至小於或等於約0.4重量%。
在實施例中,玻璃陶瓷可包括MnO、MnO2 及/或Mn2 O3 ,使得玻璃陶瓷中可包括以下含量之MnO+MnO2 +Mn2 O3 :從大於或等於0重量%至小於或等於約4.0重量%,如大於或等於約0.5重量%至小於或等於約3.5重量%、大於或等於約1.0重量%至小於或等於約3.0重量%、大於或等於約1.5重量%至小於或等於約2.5重量%,或約2.0重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃陶瓷中可包括以下含量之Cr2 O3 :從大於或等於0重量%至小於或等於約2.0重量%,如大於或等於約0.5重量%至小於或等於約1.5重量%,或約1.0重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃陶瓷中可包括以下含量之CuO:從大於或等於0重量%至小於或等於約2.0重量%,如大於或等於約0.5重量%至小於或等於約1.5重量%,或約1.0重量%,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃陶瓷中可包括以下含量之V2 O5 :從大於或等於0重量%至小於或等於約2.0重量%,如大於或等於約0.5重量%至小於或等於約1.5重量%,或約1.0重量%,及介於前述值之間的所有範圍和子範圍。
從上文可知,可藉由任何合適的方法(如,狹縫成形、浮式成形、軋延製程、熔合成形製程等等)從前驅物玻璃製品形成根據實施例之玻璃陶瓷。前驅物玻璃製品的特徵可在於其成形方式。舉例而言,前驅物玻璃製品的特徵可在於其為可浮式成形的(float-formable) (即,由浮式製程所成形)、可向下抽拉的(down-drawable),且特別是可熔合成形的(fusion-formable)或可狹槽抽拉的(slot-drawable) (即,由諸如熔合抽拉製程或狹槽抽拉製程等向下抽拉製程所形成)。
可由向下抽拉製程形成本文所述之前驅物玻璃製品的某些實施例。向下抽拉製程生產具有均勻厚度的玻璃製品,其擁有相對原始的(pristine)表面。因為玻璃製品的平均彎曲強度(flexural strength)受到表面瑕疵的量和尺寸之控制,所以具有最小接觸之原始表面可具有較高的初始強度。此外,向下抽拉之玻璃製品具有非常平坦、光滑的表面,其可用於其終端應用而無需昂貴的研磨和拋光。
可藉由狹槽抽拉製程形成本文所述之前驅物玻璃製品的某些實施例。狹槽抽拉製程與熔合抽拉製程不同。在狹槽抽拉製程中,將融化的原料玻璃提供至拉製槽。拉製槽的底部具有開口狹縫,開口狹縫帶有在狹縫長度上延伸的噴嘴。熔融玻璃流過狹縫/噴嘴,並如連續的玻璃製品一般被向下拉入退火區。
可藉由在任何合適的條件下將前驅物玻璃陶瓷化,來形成玻璃陶瓷。陶瓷化循環包括成核步驟(nucleation step)和生長步驟(growth step)。在某些實施例中,陶瓷化循環可包括在三個獨立的溫度下之三個獨立的熱處理步驟。
在實施例中,在以下溫度發生成核步驟和生長步驟(或陶瓷化步驟):大於或等於約500 °C、如大於或等於約525 °C、大於或等於約550 °C、大於或等於約575 °C、大於或等於約600 °C、大於或等於約625 °C、大於或等於約650 °C、大於或等於約675 °C、大於或等於約700 °C、大於或等於約725 °C、大於或等於約750 °C、大於或等於約775 °C、大於或等於約800 °C、大於或等於約825 °C、大於或等於約850 °C,或大於或等於約875 °C。在實施例中,在以下溫度發生成核步驟和生長步驟:從大於或等於約500 °C至小於或等於約900 °C,如大於或等於約525 °C至小於或等於約875 °C、大於或等於約550 °C至小於或等於約850 °C、大於或等於約575 °C至小於或等於約825 °C、大於或等於約600 °C至小於或等於約800 °C、大於或等於約625 °C至小於或等於約775 °C、大於或等於約650 °C至小於或等於約750 °C、大於或等於約675 °C至小於或等於約725 °C,或約700 °C,及介於前述值之間的所有範圍和子範圍。
在實施例中,陶瓷化循環的個別步驟延伸達大於或等於約1.0小時之時間段,如大於或等於約1.5小時、大於或等於約2.0小時、大於或等於約2.5小時、大於或等於約3.0小時、大於或等於約3.5小時、大於或等於約4.0小時、大於或等於約4.5小時、大於或等於約5.0小時、大於或等於約5.5小時,或大於或等於約6.0小時、大於或等於約6.5小時、大於或等於約7.0小時、大於或等於約7.5小時,或大於或等於約8.0小時。在實施例中,陶瓷化循環的個別步驟延伸達從大於或等於約1.0小時至小於或等於約8.0小時之時間段,如大於或等於約1.5小時至小於或等於約7.5小時、大於或等於約2.0小時至小於或等於約7.0小時、大於或等於約1.5小時至小於或等於約6.5小時、大於或等於約2.0小時至小於或等於約6.0小時、大於或等於約2.5小時至小於或等於約5.5小時、大於或等於約3.0小時至小於或等於約5.0小時、大於或等於約3.5小時至小於或等於約4.5小時,或約4.0小時,及介於前述值之間的所有範圍和子範圍。
在實施例中,陶瓷化循環延伸達大於或等於約1.0小時之總時間段,如大於或等於約1.5小時、大於或等於約2.0小時、大於或等於約2.5小時、大於或等於約3.0小時、大於或等於約3.5小時、大於或等於約4.0小時、大於或等於約4.5小時、大於或等於約5.0小時、大於或等於約5.5小時、或大於或等於約6.0小時、大於或等於約6.5小時、大於或等於約7.0小時、大於或等於約7.5小時、大於或等於約8.0小時、大於或等於約8.5小時、大於或等於約9.0小時、大於或等於約9.5小時、大於或等於約10.0小時、大於或等於約10.5小時、大於或等於約11.0小時、大於或等於約11.5小時、大於或等於約12.0小時、大於或等於約12.5小時、大於或等於約13.0小時、大於或等於約13.5小時、大於或等於約14.0小時、大於或等於約14.5小時、大於或等於約15.0小時,或大於或等於約15.5小時。在實施例中,陶瓷化循環延伸達從大於或等於約6小時至小於或等於約16.0小時之總時間段,如大於或等於約6.5小時至小於或等於約15.5小時、大於或等於約7.0小時至小於或等於約15.0小時、大於或等於約7.5小時至小於或等於約14.5小時、大於或等於約8.0小時至小於或等於約14.0小時、大於或等於約8.5小時至小於或等於約13.5小時、大於或等於約9.0小時至小於或等於約13.0小時、大於或等於約9.5小時至小於或等於約12.5小時、大於或等於約10.0小時至小於或等於約12.0小時、大於或等於約10.5小時至小於或等於約11.5小時,或約11.0小時,及介於前述值之間的所有範圍和子範圍。
在實施例中,在陶瓷化之前,前驅物玻璃製品及/或經成核的製品可被機械加工而形成實質上最後的幾何部分。機械加工可包括形成狹槽、孔洞及具有變化的厚度之區域。在實施例中,玻璃可具有經設計的邊緣輪廓及/或三維形狀。
在實施例中,玻璃陶瓷亦經化學強化,如藉由離子交換,以生產對於諸如,但不限於,電子裝置殼體的應用具有損傷抗性之玻璃陶瓷。請參見第1圖,玻璃陶瓷具有從表面延伸至玻璃陶瓷的壓縮深度(DOC)的處於壓縮應力下之第一區(例如,第1圖中之第一及第二壓縮層120122 ),以及從DOC向玻璃陶瓷的中心或內部區域延伸的處於拉張應力或中心張力(CT)下之第二區(例如,第1圖中之中心區130 )。如本文所用,DOC是指玻璃陶瓷內之應力從壓縮變為拉張處的深度。在DOC處,應力從正的(壓縮)應力跨越到負的(拉張)應力,並因此呈現出零的應力值。
根據本案所屬技術領域中常用的慣例,以負的(< 0)應力表示壓力或壓縮應力,且以正的(> 0)應力表示張力或拉張應力。然而,在此說明書全文中,以正值或絕對值表示CS—即, 當在本文中記載時,CS = ½CS½。在玻璃的表面處,壓縮應力(CS)可具有最大值,且CS可根據函數而隨著與表面的距離d變化。請再參見第1圖,第一壓縮層120 從第一表面110 延伸至深度d1 且第二壓縮層122 從第二表面112 延伸至深度d2 。這些區段一起界定了玻璃陶瓷100 的壓力或CS。
藉由在玻璃陶瓷之中心區(130 )中儲存的張力,可平衡兩個壓縮應力區(第1圖中之120122 )之壓縮應力。可根據離子交換處理期間被交換進入玻璃陶瓷製品內之離子的濃度分佈來估計DOC值,例如在玻璃陶瓷製品表面下方的深度處,所測得之濃度變得實質上等於玻璃陶瓷製品在離子交換處理前之濃度。
可藉由使玻璃暴露於離子交換溶液,而在玻璃陶瓷中形成壓縮應力層。在實施例中,離子交換溶液可含有熔融硝酸鹽。在某些實施例中,離子交換溶液可為熔融KNO3 、熔融NaNO3 、熔融LiNO3 或它們的組合。在實施例中,離子交換溶液可包含小於或等於約100%的熔融KNO3 ,如小於或等於約95%的熔融KNO3 、小於或等於約90%的熔融KNO3 、小於或等於約85%的熔融KNO3 、小於或等於約80%的熔融KNO3 、小於或等於約75%的熔融KNO3 、小於或等於約70%的熔融KNO3 、小於或等於約65%的熔融KNO3 、小於或等於約60%的熔融KNO3 ,或更少。在某些實施例中,離子交換溶液可包含大於或等於約20%的熔融NaNO3 ,如大於或等於約25%的熔融NaNO3 、大於或等於約30%的熔融NaNO3 、大於或等於約35%的熔融NaNO3 、大於或等於約40%的熔融NaNO3 ,或更多。在實施例中,離子交換溶液可包含約80%的熔融KNO3 及約20%的熔融NaNO3 、約75%的熔融KNO3 及約25%的熔融NaNO3 、約70%的熔融KNO3 及約30%的熔融NaNO3 、約65%的熔融KNO3 及約35%的熔融NaNO3 ,或約60%的熔融KNO3 及約40%的熔融NaNO3 ,及介於前述值之間的所有範圍和子範圍。在實施例中,離子交換溶液可為包括KNO3 、NaNO3 及LiNO3 之混合物的熔融鹽浴。在實施例中,其他鈉鹽和鉀鹽可用於離子交換溶液,如,舉例而言,亞硝酸、磷酸或硫酸鈉,或亞硝酸、磷酸或硫酸鉀。在實施例中,離子交換溶液可含有矽酸,如小於或等於約1重量%的矽酸。
可藉由以下方式使玻璃陶瓷暴露於離子交換溶液:將玻璃陶瓷浸入離子交換溶液浴中、將離子交換溶液噴塗至玻璃陶瓷上,或者將離子交換溶液物理性地施加至玻璃陶瓷。根據實施例,一旦暴露於玻璃陶瓷,離子交換溶液可處在從大於或等於400 °C至小於或等於500 °C之溫度下,如從大於或等於410 °C至小於或等於490 °C、從大於或等於420 °C至小於或等於480 °C、從大於或等於430 °C至小於或等於470 °C,或從大於或等於440 °C至小於或等於460 °C,及介於前述值之間的所有範圍和子範圍。在實施例中,玻璃陶瓷可暴露於離子交換溶液達從大於或等於4小時至小於或等於48小時之持續時間,如從大於或等於8小時至小於或等於44小時、從大於或等於12小時至小於或等於40小時、從大於或等於16小時至小於或等於36小時、從大於或等於20小時至小於或等於32小時,或從大於或等於24小時至小於或等於28小時,及介於前述值之間的所有範圍和子範圍。
可在提供改良的壓縮應力輪廓之處理條件下,於離子交換溶液中進行離子交換製程,例如在美國專利申請公開號第2016/0102011號中所揭示者,該美國專利申請案以全文引用方式併入本文。
應理解到,在進行離子交換製程之後,玻璃陶瓷的表面處之成分可能與原本形成之玻璃陶瓷(即, 在進行離子交換製程之前的玻璃陶瓷)的成分不同。這是由於原本形成之玻璃陶瓷的玻璃相中之一種類型的鹼金屬離子(如,舉例而言,Li+ 或Na+ ),分別被較大的鹼金屬離子(如,舉例而言,Na+ 或K+ )取代。然而,在實施例中,玻璃製品深度之中心處或附近之玻璃陶瓷的成分將最不受離子交換處理的影響,且可具有與所形成之玻璃陶瓷相同或實質上相同的成分。
在實施例中,經離子交換的玻璃陶瓷製品可具有大於或等於約250 MPa之表面壓縮應力,如大於或等於約260 MPa、大於或等於約270 MPa、大於或等於約280 MPa、大於或等於約290 MPa、大於或等於約300 MPa、大於或等於約310 MPa、大於或等於約320 MPa、大於或等於約330 MPa、大於或等於約340 MPa、大於或等於約350 MPa、大於或等於約360 MPa、大於或等於約370 MPa、大於或等於約380 MPa、大於或等於約390 MPa、大於或等於約400 MPa、大於或等於約410 MPa、大於或等於約420 MPa、大於或等於約430 MPa、大於或等於約440 MPa、大於或等於約450 MPa、大於或等於約460 MPa、大於或等於約470 MPa、大於或等於約480 MPa、大於或等於約490 MPa、大於或等於約500 MPa、大於或等於約510 MPa、大於或等於約520 MPa、大於或等於約530 MPa、大於或等於約540 MPa、大於或等於約550 MPa、大於或等於約560 MPa、大於或等於約570 MPa、大於或等於約580 MPa、大於或等於約590 MPa、大於或等於約600 MPa、大於或等於約610 MPa、大於或等於約620 MPa、大於或等於約630 MPa,或大於或等於約640 MPa。在實施例中,經離子交換的玻璃陶瓷製品可具有從大於或等於約250 MPa至小於或等於約650 MPa之表面壓縮應力,如大於或等於約260 MPa至小於或等於約640 MPa、大於或等於約270 MPa至小於或等於約630 MPa、大於或等於約280 MPa至小於或等於約620 MPa、大於或等於約290 MPa至小於或等於約610 MPa、大於或等於約300 MPa至小於或等於約600 MPa、大於或等於約310 MPa至小於或等於約590 MPa、大於或等於約320 MPa至小於或等於約580 MPa、大於或等於約330 MPa至小於或等於約570 MPa、大於或等於約340 MPa至小於或等於約560 MPa、大於或等於約350 MPa至小於或等於約550 MPa、大於或等於約360 MPa至小於或等於約540 MPa、大於或等於約370 MPa至小於或等於約530 MPa、大於或等於約380 MPa至小於或等於約520 MPa、大於或等於約390 MPa至小於或等於約510 MPa、大於或等於約400 MPa至小於或等於約500 MPa、大於或等於約410 MPa至小於或等於約490 MPa、大於或等於約420 MPa至小於或等於約480 MPa、大於或等於約430 MPa至小於或等於約470 MPa、大於或等於約440 MPa至小於或等於約460 MPa,或約450 MPa,及介於前述值之間的所有範圍和子範圍。
在實施例中,經離子交換的玻璃陶瓷製品可具有大於或等於約400 µm之壓縮應力層深度(壓縮深度),如大於或等於約410 µm、大於或等於約420 µm、大於或等於約430 µm、大於或等於約440 µm、大於或等於約450 µm、大於或等於約460 µm、大於或等於約470 µm、大於或等於約480 µm、大於或等於約490 µm、大於或等於約500 µm,或更大。在實施例中,經離子交換的玻璃陶瓷製品可具有大於或等於約40 µm之壓縮深度,如大於或等於約50 µm、大於或等於約60 µm、大於或等於約70 µm、大於或等於約80 µm、大於或等於約90 µm、大於或等於約100 µm,或更大。在實施例中,壓縮深度可從大於或等於約40 µm至小於或等於500 µm,如從大於或等於約50 µm至小於或等於約480 µm、從大於或等於約60 µm至小於或等於約460 µm、從大於或等於約70 µm至小於或等於約440 µm、從大於或等於約80 µm至小於或等於約420 µm、從大於或等於約90 µm至小於或等於約400 µm、從大於或等於約100 µm至小於或等於約380 µm、從大於或等於約120 µm至小於或等於約360 µm、從大於或等於約140 µm至小於或等於約340 µm、從大於或等於約160 µm至小於或等於約320 µm、從大於或等於約180 µm至小於或等於約300 µm、從大於或等於約200 µm至小於或等於約280 µm、從大於或等於約220 µm至小於或等於約260 µm、約240 µm,及由這些端點形成的任何和所有子範圍。
在實施例中,經離子交換的玻璃陶瓷製品可具有大於或等於約0.05t 之壓縮應力層深度(壓縮深度),其中t 為玻璃陶瓷製品的厚度,如大於或等於約0.1t 、大於或等於約0.15t 、大於或等於約0.2t ,或更大。在實施例中,玻璃陶瓷製品可具有從大於或等於約0.05t 至小於或等於0.25t 之壓縮深度,其中t 為玻璃陶瓷製品的厚度,如從大於或等於約0.1t 至小於或等於0.2t ,或約0.05t ,及由這些端點形成的任何和所有子範圍。
在實施例中,經離子交換的玻璃陶瓷可具有高強度。在某些實施例中,經離子交換的玻璃陶瓷可具有大於或等於約900 MPa之強度,如大於或等於約910 MPa、大於或等於約920 MPa、大於或等於約930 MPa、大於或等於約940 MPa、大於或等於約950 MPa、大於或等於約960 MPa、大於或等於約970 MPa、大於或等於約980 MPa、大於或等於約990 MPa、大於或等於約1000 MPa,或更高。強度指的是由如下文所描述之環疊環測試所測量的強度。在實施例中,經離子交換的玻璃陶瓷具有從大於或等於約900 MPa至小於或等於約1000 MPa之強度,如大於或等於約910 MPa至小於或等於約990 MPa、大於或等於約920 MPa至小於或等於約980 MPa、大於或等於約930 MPa至小於或等於約970 MPa、大於或等於約940 MPa至小於或等於約960 MPa,或約950 MPa,及由這些端點形成的任何和所有子範圍。在實施例中,經離子交換的玻璃陶瓷具有大於或等於約700 MPa之強度。
玻璃陶瓷製品可具有合適的幾何形貌。在實施例中,玻璃陶瓷製品可具有大於或等於約0.4 mm之厚度,如大於或等於約0.5 mm、大於或等於約0.6 mm、大於或等於約0.7 mm、大於或等於約0.8 mm、大於或等於約0.9 mm、大於或等於約1.0 mm、大於或等於約1.5 mm、大於或等於約2.0 mm,或更大。在實施例中,玻璃陶瓷製品可具有從大於或等於約0.4 mm至小於或等於約2.0 mm之厚度,如從大於或等於約0.5 mm至小於或等於約1.5 mm、從大於或等於約0.6 mm至小於或等於約1.0 mm、從大於或等於約0.7 mm至小於或等於約0.9 mm,約0.8 mm,及由這些端點形成的任何和所有子範圍。在實施例中,玻璃陶瓷製品具有在從大於或等於約0.8 mm至小於或等於約1.0 mm之範圍內的厚度。
本文揭示之玻璃陶瓷製品可併入另一製品內,如具顯示器之製品(或顯示器製品) (如,消費性電子產品,包括行動電話、平板電腦、電腦、導航系統等)、建築用製品、運輸製品(如,汽車、火車、飛機、船隻等)、家電製品,或需一定耐刮性、耐磨性或上述組合的任何製品。整合有本文揭示之任何玻璃陶瓷製品之實例性製品繪示於第2A及2B圖中。具體而言,第2A及2B圖繪示消費性電子裝置200,其包括:殼體202,具有前部204、後部206和側表面208;電氣部件(未繪示),至少部份地位於殼體內或完全位於殼體內,並包括至少一控制器、記憶體及顯示器210,其中顯示器210位在殼體的前表面處或接近殼體的前表面;以及覆蓋基板212,位於殼體的前表面處或殼體的前表面上方,使得覆蓋基板212位在顯示器上方。在某些實施例中,殼體202的至少一部分可包括本文揭示之任何玻璃陶瓷製品。
實例
藉由以下實例將可進一步闡明實施例。應理解到,這些實例並不以上述實施例為限。
製備具有下表1所列示的組分(單位為重量%)之玻璃陶瓷,並根據所指示之陶瓷化循環來陶瓷化該等玻璃陶瓷。陶瓷化循環包括從室溫到成核溫度之5 °C/分鐘的斜升速率。在表1中,將陶瓷化循環的個別步驟以溫度和保持時間列在陶瓷化循環欄位的個別行中,其中各個實例中有三個不同的陶瓷化循環步驟。
1
1
1 – 接續
使用X射線繞射(XRD)分析經陶瓷化的樣品來測定玻璃陶瓷的相集合(Phase assemblage)。玻璃陶瓷的外觀是基於觀察樣品的印象。使用X-rite Ci7 F02光源在SCI UVC條件下測量顏色座標。根據標題為「Standard Practice for Measurement of Liquidus Temperature of Glass by the Gradient Furnace Method」之ASTM C829-81 (2015)來對前驅物玻璃測量液相溫度。根據標題為「Standard Practice for Measuring Viscosity of Glass Above the Softening Point」之ASTM C965-96(2012),來測量液相黏度,以測量玻璃在液相溫度下之黏度。除了使用Bubsey, R.T.等人在「Closed-Form Expressions for Crack-Mouth Displacement and Stress Intensity Factors for Chevron-Notched Short Bar and Short Rod Specimens Based on Experimental Compliance Measurements」,NASA Technical Memorandum 83796,pp. 1-30 (1992年10月)中所述之式5來計算Y*m 之外,藉由Reddy, K.P.R.等人在「Fracture Toughness Measurement of Glass and Ceramic Materials Using Chevron-Notched Specimens」,J. Am. Ceram. Soc.,71 [6],C-310-C-313 (1988)中所揭示之人字形切槽短桿(CNSB)法來測量破裂韌性值(K1C )。如下文進一步詳述般測量環疊環(RoR)強度。
以描述於下表2中之成分和陶瓷化循環來製備對照例1及2。
2
如上所述,就0.8 mm厚的樣品,測量表1之實例3和表2之對照例1及2的透光度。如第3圖所示,在可見波長範圍內,實例3之玻璃陶瓷具有小於1%之透光度。
於470 °C的溫度下,使具有1.0 mm的厚度之實例3之樣品在60重量%的KNO3 及40重量%的NaNO3 浴中進行離子交換達4小時之時間段。如下文所述,在離子交換處理之前和之後測量樣品的環疊環強度。環疊環測試之結果的Weibull作圖示於第4圖。
環疊環(ring-on-ring;RoR)測試為表面強度量測,用於測試平坦玻璃樣品,且標題為「Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature」之ASTM C1499-09(2013)用作本文描述之RoR測試方法的基礎。ASTM C1499-09的內容藉由全文引用方式併入本文。在環疊環測試之前,樣品不經過研磨。
對RoR測試而言,如第6圖所示的樣品被置於兩個不同尺寸的同心環之間,以測定等軸的抗彎強度(equibiaxial flexural strength) (即,材料在受到兩個同心環之間的彎曲時能承受的最大應力)。在RoR配置400中,由具有直徑D2的支撐環420支撐玻璃陶瓷製品410。藉由具有直徑D1之負載環430,藉由負載元(load cell) (未繪示)將力F施加至玻璃陶瓷製品的表面。
負載環和支撐環的直徑比例D1/D2可在從0.2至0.5的範圍內。在某些實施例中,D1/D2為0.5。負載環和支撐環130、120應當同心地對準到支撐環直徑D2的0.5%內。用於測試的負載元應在所選範圍內的任何負載下精確到±1%以內。在23±2°C的溫度和40±10%的相對濕度下進行測試。
對於夾具設計而言,負載環430的突出表面的半徑r在h/2 ≤ r ≤ 3h/2的範圍中,其中h是玻璃系製品410的厚度。負載環和支撐環430、420由硬度為HRc > 40的硬化鋼所製成。RoR夾具是可商業取得的。
用於RoR測試的預期失效機制是觀察源自負載環430內的表面430a之玻璃陶瓷製品410的斷裂。在此區域之外側 – 即,在負載環430和支撐環420之間 – 發生的失效從數據分析中省略。然而,由於玻璃陶瓷製品410的薄度和高強度,有時會觀察到超過樣本厚度h的½之大偏轉(deflection)。因此,觀察到來自負載環430之下的較大百分比的失效是不常見的。若沒有在環內側和環之下方的應力發展(經由應變規分析而收集)和在各樣品中的失效起源等知識,則不能精確地計算應力。因此,RoR測試聚焦於作為量測回應之失效處的峰值負載。
玻璃系製品的強度取決於表面缺陷的存在。然而,由於玻璃的強度在本質上是統計學的,存在給定尺寸的缺陷的可能性無法被精確地預測。因此,概率分佈可用作所獲得的數據的統計表示。
於430 °C下,使實例3的樣品在NaNO3 浴中進行離子交換達16小時。接著使用電子微探針來測量經離子交換樣品中之Na2 O濃度作為表面下方之深度的函數,且所得的Na2 O濃度分佈(以莫耳%為單位)示於第5圖。
除非另有說明,否則本說明書中描述的所有組成成分、關係和比例均以重量%提供。本說明書中揭示的所有範圍包括由廣泛揭示的範圍所涵蓋之任何及所有範圍和子範圍,無論是否在揭示範圍之前或之後明確說明。
對本案所屬技術領域中具通常知識者而言將顯而易見的是,可對本文所描述之實施例做出各種修改及改變而不背離所請求之標的的精神與範疇。因此,若本文所描述之各種實施例的修改及改變在隨附請求項及請求項之等效物的範疇內,則本說明書意欲涵蓋此類修改及改變。
100‧‧‧玻璃陶瓷
110‧‧‧第一表面
112‧‧‧第二表面
120‧‧‧第一壓縮層
122‧‧‧第二壓縮層
130‧‧‧中心區
200‧‧‧消費性電子裝置
202‧‧‧殼體
204‧‧‧前部
206‧‧‧後部
208‧‧‧側表面
210‧‧‧顯示器
212‧‧‧覆蓋基板
400‧‧‧RoR配置
410‧‧‧玻璃陶瓷製品
420‧‧‧支撐環
430‧‧‧負載環
430a‧‧‧表面
第1圖示意性地描繪根據本文所揭示並描繪之實施例,在表面上具有壓縮應力層之玻璃陶瓷的剖面;
第2A圖為整合有本文揭示之任何玻璃陶瓷之實例性電子裝置之平面視圖;
第2B圖為第2A圖之實例性電子裝置之透視圖;
第3圖為根據實施例之厚度為0.8 mm之玻璃陶瓷和根據對照例之厚度為0.8 mm的兩種玻璃陶瓷的透射光譜;
第4圖為根據實施例之玻璃陶瓷在離子交換處理之前和之後的環疊環(RoR)強度測試結果的Weibull作圖;
第5圖為由電子微探針測量,Na2 O的濃度(以重量%為單位)作為從根據實施例之經離子交換的玻璃陶瓷表面起算之深度的函數的作圖;
第6圖為環疊環測試設備的示意圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記)
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記)

Claims (11)

  1. 一種玻璃陶瓷,包含: 至少一種矽酸鋰晶相作為一主晶相;以及葉長石(petalite)、β-石英、β-鋰輝石(spodumene)、白矽石(cristobalite)及磷酸鋰中之至少一者作為一次晶相,其中該玻璃陶瓷的特徵在於以下顏色座標:L*:20.0至40.0;a*:-1.0至1.0;以及b*:-5.0至2.0。
  2. 如請求項1所述之玻璃陶瓷,其中: 該玻璃陶瓷在可見光範圍中具有小於1%之一透光度;及/或大於50重量%之一結晶度。
  3. 如請求項1或2所述之玻璃陶瓷,其中該玻璃陶瓷具有以下至少一者: 至少290 MPa之一環疊環強度(ring-on-ring strength),以及 大於或等於0.9 MPa·m0.5 至小於或等於2.0 MPa·m0.5 之一破裂韌性(fracture toughness)。
  4. 如請求項1或2所述之玻璃陶瓷,其中該玻璃陶瓷係經離子交換,並包含一壓縮應力層,該壓縮應力層自該玻璃陶瓷之一表面延伸達一壓縮深度。
  5. 如請求項4所述之玻璃陶瓷,其中該玻璃陶瓷具有以下至少一者: 在該表面處之一壓縮應力大於或等於250 MPa至小於或等於650 MPa; 該壓縮深度為至少0.05t ,其中t 為玻璃陶瓷之一厚度;以及 至少900 MPa之一環疊環強度。
  6. 一種消費性電子產品,包含: 一殼體,包含一前表面、一後表面及側表面; 多個電氣部件,至少部分地位於該殼體內,該等電氣部件包含至少一控制器、一記憶體及一顯示器,該顯示器位於該殼體的該前表面處或鄰近該殼體的該前表面;以及 一蓋玻璃,設置於該顯示器上方, 其中該殼體的至少一部分包含如請求項1或5所述之玻璃陶瓷。
  7. 一種方法,包含以下步驟: 陶瓷化(ceramming)一前驅物玻璃系製品,以形成一玻璃陶瓷, 其中該玻璃陶瓷包含: 至少一種矽酸鋰晶相作為一主晶相;以及 葉長石、β-石英、β-鋰輝石、白矽石及磷酸鋰中之至少一者作為一次晶相,且 該玻璃陶瓷的特徵在於以下顏色座標: L*:20.0至40.0; a*:-1.0至1.0;以及 b*:-5.0至2.0。
  8. 如請求項7所述之方法,其中: 陶瓷化發生在大於或等於500 °C至小於或等於900 °C之一溫度下;及/或 陶瓷化發生達大於或等於6小時至小於或等於16小時之一時段。
  9. 如請求項7或8所述之方法,進一步包含以下步驟:離子交換該玻璃陶瓷。
  10. 如請求項7或8所述之方法,其中該前驅物玻璃系製品包含: 55.0重量%至75.0重量%的SiO2 ; 2.0重量%至20.0重量%的Al2 O3 ; 0重量%至5.0重量%的B2 O3 ; 5.0重量%至15.0重量%的Li2 O; 0重量%至5.0重量%的Na2 O; 0重量%至4.0重量%的K2 O; 0重量%至8.0重量%的MgO; 0重量%至10.0重量%的ZnO; 0.5重量%至5.0重量%的TiO2 ; 1.0重量%至6.0重量%的P2 O5 ; 2.0重量%至10.0重量%的ZrO2 ; 0重量%至0.4重量%的CeO2 ; 0.05重量%至0.5重量%的SnO+SnO2 ; 0.1重量%至5.0重量%的FeO+Fe2 O3 ; 0.1重量%至5.0重量%的NiO; 0.1重量%至5.0重量%的Co3 O4 ; 0重量%至4.0重量%的MnO+MnO2 +Mn2 O3 ; 0重量%至2.0重量%的Cr2 O3 ; 0重量%至2.0重量%的CuO;以及 0重量%至2.0重量%的V2 O5
  11. 一種玻璃,包含: 55.0重量%至75.0重量%的SiO2 ; 2.0重量%至20.0重量%的Al2 O3 ; 0重量%至5.0重量%的B2 O3 ; 5.0重量%至15.0重量%的Li2 O; 0重量%至5.0重量%的Na2 O; 0重量%至4.0重量%的K2 O; 0重量%至8.0重量%的MgO; 0重量%至10.0重量%的ZnO; 0.5重量%至5.0重量%的TiO2 ; 1.0重量%至6.0重量%的P2 O5 ; 2.0重量%至10.0重量%的ZrO2 ; 0重量%至0.4重量%的CeO2 ; 0.05重量%至0.5重量%的SnO+SnO2 ; 0.1重量%至5.0重量%的FeO+Fe2 O3 ; 0.1重量%至5.0重量%的NiO; 0.1重量%至5.0重量%的Co3 O4 ; 0重量%至4.0重量%的MnO+MnO2 +Mn2 O3 ; 0重量%至2.0重量%的Cr2 O3 ; 0重量%至2.0重量%的CuO;以及 0重量%至2.0重量%的V2 O5
TW107142962A 2017-11-30 2018-11-30 黑色矽酸鋰玻璃陶瓷 TWI789464B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762592715P 2017-11-30 2017-11-30
US62/592,715 2017-11-30

Publications (2)

Publication Number Publication Date
TW201925129A true TW201925129A (zh) 2019-07-01
TWI789464B TWI789464B (zh) 2023-01-11

Family

ID=64734175

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142962A TWI789464B (zh) 2017-11-30 2018-11-30 黑色矽酸鋰玻璃陶瓷

Country Status (7)

Country Link
US (2) US10723649B2 (zh)
EP (1) EP3717423B1 (zh)
JP (1) JP7262461B2 (zh)
KR (1) KR20200087863A (zh)
CN (1) CN111615501A (zh)
TW (1) TWI789464B (zh)
WO (1) WO2019108823A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981206A (zh) * 2019-12-20 2020-04-10 深圳市东丽华科技有限公司 一种多晶核复合透明玻璃陶瓷及其制备方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202334051A (zh) 2014-10-08 2023-09-01 美商康寧公司 具有葉長石及矽酸鋰結構的高強度玻璃陶瓷
US11680009B2 (en) * 2017-12-01 2023-06-20 Cdgm Glass Co., Ltd Glass-ceramic and substrate thereof
CN111099825B (zh) 2018-10-26 2021-02-02 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
EP3887332A1 (en) 2018-11-30 2021-10-06 Corning Incorporated Black beta-spodumene lithium silicate glass ceramics
EP3936484B1 (en) * 2019-03-06 2024-04-17 Ohara, Inc. Crystallized glass article
US11390558B2 (en) * 2019-05-29 2022-07-19 Corning Incorporated Colored glass-ceramics having petalite and lithium silicate structures
JPWO2020261711A1 (zh) * 2019-06-26 2020-12-30
CN110636158A (zh) * 2019-09-12 2019-12-31 华为技术有限公司 一种中框、后盖及其制备方法和电子设备
DE102020001776A1 (de) 2020-03-17 2021-09-23 Hagen Schray Erzeugnis mit Lithiumsilikat und Verfahren mit einem Quenchingschritt
CN111732343B (zh) * 2020-07-09 2022-07-08 万津实业(赤壁)有限公司 强化玻璃制品及其制备方法、电子设备
JP2023538795A (ja) * 2020-07-28 2023-09-12 グロク・ホールディング・ベー・フェー ガラス-セラミック組成物、物品、及びそれを作製する方法
US20220317340A1 (en) * 2021-04-01 2022-10-06 Corning Incorporated Transparent glass-ceramic articles with retained strength and display devices with the same
KR102642739B1 (ko) * 2021-07-26 2024-03-04 주식회사 하스 글라스 세라믹 기판의 제조방법 및 이로부터 제조된 글라스 세라믹 기판
WO2023154507A1 (en) * 2022-02-14 2023-08-17 Corning Incorporated Precursor glasses and glass-ceramics comprising a crystalline phase having a jeffbenite crystalline structure
US11851367B1 (en) 2022-02-14 2023-12-26 Corning Incorporated Precursor glasses and glass-ceramics comprising a crystalline phase having a jeffbenite crystalline structure
US11964907B2 (en) 2022-02-14 2024-04-23 Corning Incorporated Glasses and glass-ceramics, and method of making the same
WO2024004965A1 (ja) * 2022-06-30 2024-01-04 Agc株式会社 結晶化ガラス、化学強化ガラス及び結晶化ガラスの製造方法
WO2024143174A1 (ja) * 2022-12-28 2024-07-04 株式会社オハラ 無機組成物物品

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3681097A (en) 1970-08-19 1972-08-01 Corning Glass Works Low expansion zinc petalite-beta quartz glass-ceramic articles
US5070044A (en) 1991-01-28 1991-12-03 Corning Incorporated Brightly colored canasite glass-ceramics
US5173453A (en) 1991-10-09 1992-12-22 Corning Incorporated Variably translucent glass-ceramic article and method for making
JP2516553B2 (ja) * 1993-05-19 1996-07-24 株式会社オハラ 磁気ディスク用結晶化ガラスおよびその製造方法
US5512520A (en) 1994-11-14 1996-04-30 Corning Incorporated Ivory color in opaque glass-ceramic
US6383645B1 (en) * 1998-03-23 2002-05-07 Kabushiki Kaisha Ohara Glass-ceramic substrate for an information storage medium
JP3457910B2 (ja) 1998-03-23 2003-10-20 株式会社オハラ 情報記憶媒体用ガラスセラミックス基板
JP2001148114A (ja) 1999-11-19 2001-05-29 Ohara Inc 情報磁気記憶媒体用ガラスセラミックス基板。
DE10134374B4 (de) 2001-07-14 2008-07-24 Schott Ag Kochfeld mit einer Glaskeramikplatte als Kochfläche und Verfahren zur Herstellung der Glaskeramikplatte
JP4266095B2 (ja) * 2002-03-05 2009-05-20 株式会社オハラ ガラスセラミックス
US7796977B2 (en) 2002-11-18 2010-09-14 Research In Motion Limited Voice mailbox configuration methods and apparatus for mobile communication devices
US7476633B2 (en) 2006-03-31 2009-01-13 Eurokera β-spodumene glass-ceramic materials and process for making the same
CN107010838B (zh) * 2011-04-20 2020-04-21 斯特劳曼控股公司 制备玻璃-陶瓷体的方法
JP5599474B2 (ja) 2011-07-15 2014-10-01 旭硝子株式会社 結晶化ガラス筐体
US8664130B2 (en) 2012-04-13 2014-03-04 Corning Incorporated White, opaque β-spodumene/rutile glass-ceramic articles and methods for making the same
CN107973530B (zh) * 2012-08-28 2022-03-01 康宁股份有限公司 有色和不透明玻璃-陶瓷,相关的可着色和可陶瓷化玻璃,和相关方法
FR3002532B1 (fr) * 2013-02-28 2015-02-27 Eurokera Vitroceramique du type aluminosilicate de lithium contenant une solution solide de beta-spodumene
US9701573B2 (en) * 2013-09-06 2017-07-11 Corning Incorporated High strength glass-ceramics having lithium disilicate and beta-spodumene structures
US9878940B2 (en) 2014-02-21 2018-01-30 Corning Incorporated Low crystallinity glass-ceramics
TW202334051A (zh) 2014-10-08 2023-09-01 美商康寧公司 具有葉長石及矽酸鋰結構的高強度玻璃陶瓷
KR20200126017A (ko) 2014-10-08 2020-11-05 코닝 인코포레이티드 금속 산화물 농도 구배를 포함한 유리 및 유리 세라믹
CN107915412A (zh) 2017-12-01 2018-04-17 成都光明光电股份有限公司 微晶玻璃及其基板
EP3887332A1 (en) * 2018-11-30 2021-10-06 Corning Incorporated Black beta-spodumene lithium silicate glass ceramics

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110981206A (zh) * 2019-12-20 2020-04-10 深圳市东丽华科技有限公司 一种多晶核复合透明玻璃陶瓷及其制备方法
WO2021121404A1 (zh) * 2019-12-20 2021-06-24 重庆鑫景特种玻璃有限公司 一种多晶核复合透明玻璃陶瓷及其制备方法
CN110981206B (zh) * 2019-12-20 2022-04-05 重庆鑫景特种玻璃有限公司 一种多晶核复合透明玻璃陶瓷及其制备方法

Also Published As

Publication number Publication date
TWI789464B (zh) 2023-01-11
US20190161395A1 (en) 2019-05-30
US11161776B2 (en) 2021-11-02
JP2021505503A (ja) 2021-02-18
US20200354263A1 (en) 2020-11-12
EP3717423B1 (en) 2023-08-23
US10723649B2 (en) 2020-07-28
CN111615501A (zh) 2020-09-01
WO2019108823A1 (en) 2019-06-06
JP7262461B2 (ja) 2023-04-21
EP3717423A1 (en) 2020-10-07
KR20200087863A (ko) 2020-07-21

Similar Documents

Publication Publication Date Title
TWI789464B (zh) 黑色矽酸鋰玻璃陶瓷
JP6778290B2 (ja) 二ケイ酸リチウム及びβ‐スポジュメン構造を有する高強度ガラスセラミック
TWI794347B (zh) 具高硬度和模數之可離子交換透明鋅尖晶石-尖晶石玻璃陶瓷
US11390558B2 (en) Colored glass-ceramics having petalite and lithium silicate structures
US11352291B2 (en) Black beta-spodumene lithium silicate glass ceramics
KR20160048973A (ko) 이온 교환 가능한 유리, 유리-세라믹 및 이의 제조방법
KR20230095089A (ko) 개선된 기계적 내구성을 갖는 상 분리가능한 유리 조성물
US11708299B2 (en) Transparent beta-quartz glass ceramics
US11358897B2 (en) Black b-spodumene glass ceramics with an optimized color package
TW202328019A (zh) 透明β鋰輝石玻璃陶瓷