TW201825700A - 鈷化合物、其製造及使用方法 - Google Patents

鈷化合物、其製造及使用方法 Download PDF

Info

Publication number
TW201825700A
TW201825700A TW106137661A TW106137661A TW201825700A TW 201825700 A TW201825700 A TW 201825700A TW 106137661 A TW106137661 A TW 106137661A TW 106137661 A TW106137661 A TW 106137661A TW 201825700 A TW201825700 A TW 201825700A
Authority
TW
Taiwan
Prior art keywords
cobalt
group
dicobalt hexacarbonyl
metal
film
Prior art date
Application number
TW106137661A
Other languages
English (en)
Inventor
艾倫查理 庫波
塞基烏拉底米諾維奇 伊瓦諾夫
Original Assignee
美商慧盛材料美國責任有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商慧盛材料美國責任有限公司 filed Critical 美商慧盛材料美國責任有限公司
Publication of TW201825700A publication Critical patent/TW201825700A/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/16Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本文所述係鈷化合物、鈷化合物的製程、及包括用於沉積含鈷膜(例如,鈷、氧化鈷、氮化鈷等)之鈷金屬膜前驅物的組合物。鈷前驅物化合物之範例係(炔基)二鈷六羰基化合物、鈷烯胺化合物、鈷單氮雜二烯化合物、及(官能化烷基)鈷四羰基化合物。用於沉積含金屬膜的表面之範例包括,但不限於,金屬、金屬氧化物、金屬氮化物、金屬矽化物。具有官能基諸如,胺基、腈基、亞胺基、羥基、醛基、酯基、鹵素和羧酸基的官能化配位體係用於選擇性沉積在某些表面及/或上等的膜性質,諸如均勻性、連續性及低電阻。

Description

鈷化合物、其製造及使用方法 相關申請案之交互參照
本案請求2016年11月1日申請的第62/415822號美國臨時專利申請案。該臨時申請案之揭示內容在此以引用的方式將其全文併入本文。
本文所述係鈷化合物、鈷化合物的製程、及包括用於沉積含鈷膜之鈷化合物的組合物。
含鈷膜被廣泛用於半導體或電子的應用。化學氣相沉積(CVD)及原子層沉積(ALD)已被應用作為用於製造半導體裝置的薄膜之主要沉積技術。這些方法通過含金屬化合物(前驅物)的化學反應使共形膜(金屬、金屬氧化物、金屬氮化物、金屬矽化物等)能夠達成。該化學反應係發生在可包括金屬、金屬氧化物、金屬氮化物、金屬矽化物的表面上及其他表面上。
過渡金屬膜,特別是鎂、鐵、鈷及釕對於各種不 同的半導體或電子應用是重要的。例如,鈷薄膜因為其之高磁導率引起了人們的興趣。含鈷薄膜已被用作超大規模積體裝置的銅/低k阻障體、鈍化層和封蓋層。在積體電路佈線和互連線中,鈷是被考慮用於更換銅的。
在本技術領域中一些鈷膜沉積前驅物已被研究。
US 2016/0115588 A1揭露含鈷膜之形成組合物及其在膜沉積的用途。
WO 2015/127092 A1描述用於在基材上氣相沉積鈷之前驅物,諸如在積體電路的製造及薄膜產品中,在ALD及CVD製程中用於形成互連線、封蓋結構及大塊鈷導體。
US 2015/0093890 A1揭露金屬前驅物及包括分解在一積體電路裝置上的一金屬前驅物及形成來自該金屬前驅物之一金屬的方法。該金屬前驅物係選自由(炔基)二鈷六羰基化合物所組成的族群,該(炔基)二鈷六羰基化合物係由具有1至6個碳原子的直鏈或分支鏈單價烴基、單核鈷羰基亞硝醯基類、鍵結至硼、銦、鍺和錫基團其中之一的鈷羰基類、鍵結至單核或二核烯丙基的鈷羰基類、及包括氮基支撐配位基之鈷化合物所取代。
WO 2014/118748 A1描述鈷化合物、該鈷化合物之合成及鈷化合物在沉積含鈷膜的用途。
Keunwoo Lee等人(Japanese Journal of Applied Physics,2008,Vol.47,No.7,pp.5396-5399)描述藉由金屬有機化學氣相沉積(MOCVD)使用叔丁基乙炔(二鈷六羰基)(CCTBA)作為鈷前驅物及H2反應物氣體沉積鈷膜。該膜中 的碳及氧之不純物隨著氫氣分壓的增加而減少,但是在該膜中的碳量之最低量在150℃下仍為2.8原子%。增加沉積溫度會導致高的不純物含量,及一高的膜電阻率歸因於該CCTBA前驅物之過多的熱分解。
C.Georgi等人(J.Mater.Chem.C,2014,2,4676-4682)教示自(炔基)二鈷六羰基前驅物形成鈷金屬膜。然而,因為該些膜仍含有會導致高的電阻率之高程度的碳及/或氧,那些前驅物是不可取的。文獻中也未有證據可以支持沉積連續的鈷薄膜之能力。
JP2015224227描述用於生產(炔基)二鈷六羰基化合物之一通常的合成製程。(叔丁基甲基乙炔)二鈷六羰基(CCTMA)被用於產生具有低電阻率的鈷膜。然而,相對於(叔丁基乙炔)二鈷六羰基(CCTBA)的膜性質被表明沒有改善。而且,(叔丁基甲基乙炔)二鈷六羰基是一高熔點(大約160℃)固體。在前驅物遞送溫度,或更佳在室溫是液體的前驅物係更可取的。
一般而言,用於遞送高純度鈷膜的ALD和CVD前驅物中存在著有限的選擇。為了提高膜的均勻性、膜的連續性和該沉積膜的電學性能,必須開發新穎的前驅物,並為薄、高純度鈷膜和大塊鈷導體所需。
本文所述係鈷化合物(或複合物,化合物和複合物之用語係可互換的)、鈷化合物的製程、及用於沉積含鈷膜 之含鈷金屬膜前驅物的組合物。
本文所述的鈷前驅物化合物之範例包括,但不限於,(炔基)二鈷六羰基化合物、鈷烯胺化合物、鈷單氮雜二烯化合物、及(官能化烷基)鈷四羰基化合物。含鈷膜之範例包括,但不限於,鈷膜、氧化鈷膜、及氮化鈷膜。用於沉積含金屬膜的表面之範例包括,但不限於,金屬、金屬氧化物、金屬氮化物、及金屬矽化物。
對於某些應用,對於較佳的鈷膜成核及使用已知的鈷沉積前驅物所沉積的薄(1-2nm)鈷膜之較低的膜電阻率有一需求。作為一範例,對於在TaN上的較佳成核鈷膜及相對於使用已知的鈷沉積前驅物所沉積的薄鈷膜有較低的膜電阻率有一需求。
對於其他應用,對於在某些表面上的選擇性沉積有一需求。例如,在銅金屬表面相對於介電表面(例如,SiO2)之選擇性鈷膜沉積。
鈷膜成核的改善係使用具有配位體的鈷化合物達成,該些配位體具有一官能基可與諸如TaN之表面交互作用。這些官能基包括,但不限於,胺基、腈基、亞胺基、羥基、醛基、酯基和羧酸基。
選擇性沉積係藉由使用具有配位體的鈷化合物達成,該些配位體具有一官能基相對於(vs.)另外表面可選擇性地與一表面交互作用。或者,選擇性沉積係藉由使用鈷化合物相對於(vs.)另外表面選擇性地與一表面反應而達成。
該配位體官能基與表面(諸如TaN)之相互作用 可為路易士酸/鹼相互作用諸如氫鍵結之一組合。此外,該配位體官能基與表面之相互作用可為布忍斯特酸/鹼相互作用諸如去質子化之一組合。再者,配位體官能基與表面的相互作用會導致共價化學鍵斷裂及/或產生共價鍵,諸如鉭-氮鍵或鉭-氧鍵。任何這些潛在的相互作用或相互作用的組合可導致鈷前驅物對TaN表面的親和性增加。一鈷沉積前驅物對一表面相對於(vs.)一另外表面的親和性係允許其用於在一所欲表面上之選擇性沉積。此外,一鈷沉積前驅物對一表面之選擇親和性可導致所得的金屬膜的改善的膜均勻性及膜連續性。
在一具體例,於沉積期間,鈷金屬係被沉積在一金屬表面(例如,銅或鈷)上,同時無沉積發生在一介電表面(例如,SiO2)上。
在另一具體例中,在該沉積製程之後,沉積在一金屬表面(例如,銅或鈷)上的該鈷金屬膜比沉積在一介電表面(例如,SiO2)上的該鈷金屬膜較佳>50倍厚,或更佳>200倍厚。
在另一具體例中,於沉積製程期間,鈷金屬係被沉積在一金屬氮化物(例如,氮化鉭)上,同時無沉積發生在金屬表面(例如,銅或鈷)或氧化物表面(例如,SiO2)上。
在另一具體例中,在該沉積製程之後,沉積在一金屬氮化物(例如,氮化鉭)上的該鈷金屬膜比沉積在金屬表面(例如,銅或鈷)或氧化物表面(例如,SiO2)上的該鈷金屬膜較佳>50倍厚,或更佳>200倍厚。
在另一具體例中,藉由修改該鈷膜前驅物的配位 體而改變該配位體的解離能,可以實現對金屬沉積速率及/或金屬膜純度的影響。一種改變配位體解離能的方法係導入拉電子(electron-withdrawing)或推電子(electron-donating)官能基。此外,在一配位體上的官能基之大小可以改變配位體的解離能。此外,在一配位體上的官能基的數目可以改變配位體的解離能。影響配位體解離能之一範例是來自單-及二-取代(炔基)二鈷六羰基複合物之炔基配位體解離能所觀察到的變化。
在一態樣,本發明係一選自由以下所組成之族群的鈷化合物:1)(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co2(CO)6係鍵結至以下一結構:
該處X或Y每一個個別含有至少一員選自由OR、NR2、PR2及氯所組成的族群;及R、R1、R2、R3、或R4每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;2)(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co2(CO)6係鍵結至以下的一結構:
該處X含有至少一員選自由OR、NR2、PR2及氯所組成的族 群;及R、R1、R2、R3、R4或R5每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;3)(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co2(CO)6係鍵結至以下的一結構:
該處X含有至少一員選自由OR、NR2、PR2及氯所組成的族群;及R、R1或R2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;4)(官能化烯丙基)鈷三羰基化合物,具有以下結構:
該處X、Y或Z每一個個別含有至少一員包括H、OR、NR1R2、PR1R2及氯之一族群;及R、R1或R2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;及X、Y和Z之至少一個不為氫;5)(烯胺)鈷三羰基化合物,具有以下結構:
該處X由NR2所組成,及R、R1或R2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;6)(官能化烷基)二鈷四羰基具有一通式(XR)Co(CO)4,該處X含有至少一員選自由OR、NR2、PR2、F及Cl所組成之族群;及R係選自由直鏈烴、分支鏈烴及其之組合所組成的族群;及7)(官能化炔基)二鈷六羰基具有含有一伯胺官能基之單取代炔基複合物;其中該單取代炔基複合物及該(官能化炔基)二鈷六羰基係選自由以下所組成的族群:(a)N,N-二甲基炔丙胺具有一結構: 及該鈷化合物係(N,N-二甲基炔丙胺)二鈷六羰基;(b)(1,1-二甲基炔丙胺)具有一結構: 及 該鈷化合物係(1,1-二甲基炔丙胺)二鈷六羰基;(c)4-戊烯腈具有一結構: 及該鈷化合物係(4-戊烯腈)二鈷六羰基;(d)(1,1-二甲基炔丙醇)具有一結構:
及該鈷化合物係(1,1-二甲基炔丙醇)二鈷六羰基。
在另一態樣,本發明揭露合成該揭露的鈷化合物的一方法。
在又一態樣,本發明揭露使用該揭露的鈷化合物於一反應器中的一基材上沉積一鈷膜的一方法。
本發明將在其後連同後附的圖式一起說明,其中相似的元件符號表示相似的元件:圖1顯示在流動氮氣下量測的(N,N-二甲基炔丙胺)二鈷六羰基之熱重分析(TGA)資料。實線為重量對溫度。虛線是重量對溫度的一階導數。
圖2顯示在流動氮氣下量測的(1,1-二甲基炔丙醇)二鈷六羰基之熱重分析(TGA)資料。實線為重量對溫度。
圖3顯示在流動氮氣下量測的鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]之熱重分析(TGA)資料。實線為重量對溫度。
圖4顯示在60℃、流動氮氣下量測的鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]之熱重分析(TGA)資料。實線為重量對時間。
後附詳細的描述只是提供較佳示範的具體例,並未意圖限制本發明之範圍、可利用性或構造。相反地,後附之該些較佳示範的具體例的詳細描述將提供熟悉本技術的人仕能夠用於實施本發明之該些較佳示範的具體例的描述。在功能及元件的安排上各種不同的變化可被作成,而不會背離本發明之精神及範圍,如記載在後附的申請專利範圍。
在申請專利範圍中,字母可被用於確認請求的方法步驟(例如a、b和c)。這些字母係被使用以幫助參考該方法步驟並不是意圖指明所請求步驟進行的順序,除非及只有在某種程度上這樣的順序被特定地敘述在申請專利範圍中。
本文所述的是鈷化合物、用於製造鈷化合物的製程、及用於沉積含鈷膜(例如,鈷、氧化鈷、矽化鈷、氮化鈷等)之包括鈷金屬膜前驅物的組合物。
鈷前驅物化合物之範例包括,但不限於,(炔基)二鈷六羰基化合物、鈷烯胺化合物、鈷單氮雜二烯化合物及(官能化烷基)鈷四羰基化合物。
含鈷膜之範例包括,但不限於,鈷膜、氧化鈷膜、矽化鈷膜及氮化鈷膜。用於沉積含金屬膜的表面之範例包括,但不限於,金屬、金屬氧化物、金屬氮化物、金屬矽化物、氧化矽和氮化矽、及介電材料。
本發明之一態樣係具有配位體的鈷複合物,其具有能與特定的表面(例如TaN)相互作用的一官能基。這些官能基包括,但不限於,胺基、腈基、亞胺基、羥基、醛基、酯基和羧酸基。那些鈷化合物係被用於選擇性沉積在某些表面上及/或上等的膜性質諸如均勻性和連續性。
該鈷化合物之另一具體例係一(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co2(CO)6係鍵結至如下顯示的一結構: 該處X或Y每一個獨立含有至少一員選自包括OR、NR2、PR2及氯之一族群;及R、R1、R2、R3、或R4每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群。
一二取代(二官能化炔基)二鈷六羰基化合物之一範例係(μ-η22-2,5-二甲基-3-己炔-2,5-二醇)二鈷六羰基:
該鈷化合物之另一具體例係一(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co2(CO)6係鍵結至如下顯示的一結構: 該處X含有至少一員選自包括OR、NR2、PR2及氯之一族群;及R、R1、R2、R3、R4或R5每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群。
一二取代(單官能化炔基)二鈷六羰基化合物之一範例係(μ-[(2,3-η:2,3-η)-2-丁炔-1-醇)二鈷六羰基:
該鈷化合物之另一具體例係一(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co2(CO)6係鍵結至如下顯示的一結構: 該處X含有至少一員選自由OR、NR2、PR2及氯所組成的一族群;及R、R1或R2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群。
一單取代(官能化炔基)二鈷六羰基化合物之一範例係(1,1-二甲基炔丙醇)二鈷六羰基。
該鈷化合物之另一具體例係(官能化烯丙基)鈷三羰基化合物,具有以下結構:
該處X、Y或Z每一個個別含有至少一員選自包括OR、NR2、PR2及氯之一族群;及R或R2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群。
該處X、Y或Z每一個個別含有至少一員包括H、OR、NR1R2、PR1R2及氯之一族群;及R、R1或R2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;及X、Y和Z之至少一個不為氫。
該鈷化合物之又另一具體例係(烯胺)鈷三羰基化合物,具有以下結構:
該處X由NR2所組成,及R、R1或R2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群。一(烯胺)鈷三羰基化合物之一範例係鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]。
另一具體例係(官能化烷基)鈷四羰基類(XR)Co(CO)4,該處X含有至少一員包括OR、NR2、PR2、F及Cl之一族群;及R係選自由直鏈烴、分支鏈烴及其之組合所組成的一族群。(官能化烷基)鈷四羰基類之範例係(甲氧基甲基)鈷四羰基(CH3OCH2)Co(CO)4,及(三氟甲基)鈷四羰基(CF3)Co(CO)4
在該(官能化炔基)二鈷六羰基家族之系列化合物中,炔基配位體官能化能產生單-和二-取代炔基化合物。
本發明之另一具體例中,(炔基)二鈷羰基化合物係藉由官能化炔基與二鈷八羰基在一適當溶劑(例如己烷、四氫呋喃、***及甲苯)中反應合成。
例如,N,N-二甲基炔丙胺與二鈷八羰基的反應導致兩個CO配位體的取代及一個具有一橋接N,N-二甲基炔丙胺配位體之二鈷化合物的形成。該橋接N,N-二甲基炔丙胺配位體之化學結構顯示該配位體具有一叔胺基:
該所得揮發性的(N,N-二甲基炔丙胺)二鈷六羰基複合物能在60℃(20毫托)下被蒸餾以產生一暗紅色油。
含有一級胺官能基的一單取代炔基複合物之另一具體例係以使用具有以下結構的1,1-二甲基炔丙胺之一反應實現:
N,N-二甲基炔丙胺與二鈷八羰基的反應導致兩個CO配位體的取代及一個具有一橋接N,N-二甲基炔丙胺配位體之二鈷複合物的形成。該所得的(1,1-N,N-二甲基炔丙胺)二鈷六羰基複合物能被分離成一暗紅色油,其可在室溫、惰性氛圍下靜置而固化。
腈-官能化炔基複合物之一範例係合併一4-戊烯腈配位體之鈷化合物:
兩個CO配位體的取代能導致具有一橋接炔基配位體之一二鈷化合物的形成。此(4-戊烯腈)二鈷六羰基複合物具有一垂懸腈基,其可被配位於一鈷金屬中心或不配位。
一官能化炔基複合物之另一範例含有一1,1-二甲基炔丙醇配位體:
兩個CO配位體的取代能導致具有一橋接炔基配位體之一二鈷化合物的形成,詳細如參考文獻「六羰基二鈷-炔基複合物在催化性Pauson-Khand反應中作為方便的Co2(CO)8代用品」,Belanger,D等人,Tetrahedron Letter 39(1998)7641-7644。此(1,1-二甲基炔丙醇)二鈷六羰基複合物具有與含鈷膜沉積過程中的某些表面相互作用的一羥基。
在本發明的另一具體例中,具有官能化配位體的單核鈷複合物係被用作沉積含鈷膜的前驅物。
在文獻中有具有官能化配位體的單核鈷複合物之範例。例如,「來自單氮雜二烯類及Co2(CO)8在溫和條件下藉由活化二氫的假烯丙基複合物」,Beers,O.等人,Organometallics 1992,11,3886-3893之參考文獻描述使用在烯丙基配位體上之一垂懸仲胺基製備假烯丙基複合物之一合成方法:
在該仲胺基上的烷基包括異丙基和叔丁基。
另一範例在文獻「金屬羰基陰離子與α-氯烯胺類的反應之金屬羰基類VIII的有機氮衍生物」,King,R.等人, Journal of the American Chemical Society,1975,97,2702-2712中被發現。於此參考文獻中,在四氫呋喃溶劑中使用(CH3)2C=C(NC5H10)Cl處理NaCo(CO)4,蒸餾後產生一具有該報導的結構的一空氣敏感油:
另一範例在文獻「烷基鈷羰基類9.烷氧基-、矽烷氧基-及羥基-取代的甲基-及乙醯鈷羰基類,藉由氫鈷四羰基還原甲醛至甲醇」,Sisak,A.等人,Organometallics,1989,8,1096-1100中被發現。此參考文獻描述(烷氧基甲基)-、(矽烷氧基甲基)-、和(羥基甲基)鈷,和(烷氧基乙醯基)-、(矽烷氧基乙醯基)-和(羥基乙醯基)鈷四羰基類諸如(甲氧基甲基)鈷四羰基之合成。
本文所述的鈷複合物或組合物非常適合用作半導體型式微電子裝置之製造的ALD、CVD、脈衝CVD、電漿增強ALD(PEALD)或電漿增強CVD(PECVD)用的揮發性前驅物。用於本文所揭露方法之適合的沉積製程的範例包括,但不限於,循環式CVD(CCVD)、MOCVD(金屬有機CVD)、熱化學氣相沉積、電漿增強化學氣相沉積(「PECVD」)、高密度PECVD、光子輔助CVD、電漿-光子輔助(「PPECVD」)、低溫化學氣相沉積、化學輔助氣相沉積、熱燈絲化學氣相沉積、一液體聚合物前驅物的CVD、自超臨 界流體的沉積,及低能量CVD(LECVD)。於某些具體例中,該含鈷膜係經由原子層沉積(ALD)、電漿增強ALD(PEALD)或電漿增強循環式CVD(PECCVD)製程沉積。如本文所使用,「化學氣相沉積製程」一詞指的是其中一基材係暴露至一或多個揮發性前驅物,其在基材表面上反應及/或分解而產生所欲的沉積的任何製程。如本文所使用,「原子層沉積製程」指的是一自我限制(例如,沉積在每一反應循環之膜材料的量是恆定的),在不同組成的基材上沉積材料膜的順序表面化學。雖然在本文所使用的前驅物、反應劑及源有時可能被描述為「氣態的」,須理解為前驅物可以是液體或固體的,其經由直接蒸發、起泡或昇華,使用或不用一惰性氣體輸送進入反應器內。於一些情況下,該蒸發的前驅物可通過一電漿產生器。於一具體例中,該含金屬膜係使用一ALD製程沉積。於另一具體例中,該含金屬膜係使用一CCVD製程沉積。於一另外的具體例,該含金屬膜係使用一熱CVD製程沉積。如本文所使用之「反應器」一詞包括,但不限於,反應室或沉積室。
於某些具體例中,本文所揭露之方法係藉由使用在導入該反應器之前及/或期間分離該前驅物之ALD或CCVD方法,避免該金屬前驅物之預反應。
於某些具體例中,該製程使用一還原劑。該還原劑通常以氣態導入。適合的還原劑之範例包括,但不限於,氫氣、氫電漿、遠距的氫電漿、矽烷類(即,二乙基矽烷、乙基矽烷、二甲基矽烷、苯基矽烷、矽烷、二矽烷、胺基矽 烷、氯矽烷)、硼烷類(即,硼烷、二硼烷)、氫化鋁、甲鍺烷、肼、氨或其之混合物。
本文所揭露之沉積方法可涉及一或多個清洗氣體。使用來清出未消耗的反應物及/或反應副產物的清洗氣體係未與前驅物反應的一惰性氣體。示範性的清洗氣體包括,但不限於,氬氣(Ar)、氮氣(N2)、氦氣(He)、氖氣及其之混合物。於某些具體例中,一清洗氣體諸如氬氣係以介於約10至約2000sccm之一流率,持續約0.1至10000秒被供應進入該反應器內,藉以清洗可能留在該反應器中的該未反應的材料及任何副產物。
能源可被施加至該至少一前驅物、還原劑、其他前驅物或其之組合,以引發反應及在該基材上形成該含金屬膜或塗層。如此的能源能以,但不限於,熱、電漿、脈衝電漿、螺旋波電漿、高密度電漿、感應耦合電漿、X-射線、電子束、光子、遠距電漿法及其之組合提供。於某些具體例中,一輔助性RF頻率源可被用於改良該基材表面的電漿特性。於其中該沉積涉及電漿之具體例中,該電漿產生製程可包括一直接電漿產生製程,其中電漿係直接在該反應器中產生,或可替代地,一遠距電漿產生製程,其中電漿係在該反應器外面產生及供應進入該反應器內。
該些鈷前驅物可以各種不同的方法遞送至該反應室,諸如一CVD或ALD反應器。於一具體例中,一液體遞送系統可以被使用。於一替代的具體例中,可以使用一組合的液體遞送及閃蒸製程單元諸如,例如由位於明尼蘇達州的 岸景之MSP公司製造的渦輪蒸發器可使低揮發性材料以容積遞送,其導致可重複性的輸送及沉積而無前驅物之熱分解。在此申請案中描述的前驅物組合物可有效地以DLI模式用作源反應劑以提供這些鈷前驅物之一蒸氣流進入一ALD或CVD反應器內。
於某些具體例中,這些組合物包括那些利用的烴類溶劑,由於它們能夠被乾燥至水的次-ppm程度的能力,其特別可取。可被使用在本發明之示範性的烴類溶劑包括,但不限於,甲苯、均三甲苯、枯烯(異丙基苯)、對-枯烯(4-異丙基甲苯)、1,3-二異丙基苯、辛烷、十二烷、1,2,4-三甲基環己烷、n-丁基環己烷及十氫化萘(萘烷)。本申請案之該前驅物組合物也可被儲存在不鏽鋼容器中及在其中使用。於某些具體例中,在該組合物中的該烴類溶劑係一高沸點溶劑或具有沸點100℃或更高。本申請案之該鈷前驅物組合物也可與其他適合的金屬前驅物混合,及該混合物使用來遞送同時用於一二元含金屬膜的生長的兩種金屬。
於某些具體例中,自該前驅物罐連接至反應室的氣體管線被加熱至取決於製程需要的一或多個溫度,及包括該組合物的該容器係保持在用於起泡之一或多個溫度。於其他具體例中,包括一組合物鈷前驅物係注射進入保持在用於直接液體注射的一或多個溫度之一蒸發器內。
可使用一氬氣及/或其他氣體流作為一載氣,於該前驅物脈衝期間幫助遞送至少一鈷前驅物之蒸氣至反應室。於某些具體例中,該反應室製程壓力係介於1與50托之間,較 佳介於5與20托之間。
本文所述之所有含有官能化配位體的該單核及二核鈷化合物中,該官能基具有孤對電子、酸性或鹼性質子、不飽和鍵(例如,C=O雙鍵)或促進與特定表面的相互作用的其他特徵。在不受理論限制的情況下,咸信配位體官能基與TaN表面之相互作用可為路易士酸/鹼相互作用、布忍斯特酸/鹼相互作用、及共價化學鍵的製造之一組合。
路易士酸/鹼相互作用之範例係在一個胺基或腈基上的孤對電子(路易士鹼)與在一TaN表面上的缺電子位址(路易士酸)的相互作用。路易士酸/鹼相互作用的另一範例是在TaN表面氮原子上的孤對電子(路易士鹼)與在一官能化配位體上以類似於氫鍵之一相互作用的一羥基質子(路易士酸)之相互作用。
布忍斯特酸/鹼相互作用之一範例係一羧酸官能化配位體上的酸性質子與一TaN表面上的鹼位址的相互作用,導致表面的質子化和在質子化位址與陰離子金屬複合物之間形成一個緊密的離子對。或者,氫端的TaN表面可以質子化一配位的配位體(例如,胺官能化炔基配位體)上的鹼位址。
具有一官能化配位體之金屬複合物與一表面之間的相互作用的另一範例是醛官能化配位體與TaN表面的反應,在該表面上的鉭原子與醛官能化配位體的氧原子之間形成新的共價鍵。
任何這些潛在的相互作用或相互作用的組合可 導致鈷前驅物對TaN表面的親和性增加。一鈷沉積前驅物對一表面對(vs.)一另外表面之該增加的親和性可允許用於在一所欲表面對一另外的、可得到的表面(例如,銅)之選擇性沉積。此外,一鈷沉積前驅物對一表面之選擇親和性可導致通過分解之前在該表面上的較高前驅物覆蓋之所得的金屬膜的改善的膜均勻性及膜連續性。
任何這些潛在的相互作用或相互作用的組合也會導致鈷前驅物對銅或鈷金屬表面對(vs.)其它表面(例如,SiO2)的親和性增加。例如,在一個胺基或烷氧基(路易士鹼)上的孤對電子與該金屬表面上的缺電子金屬原子的相互作用,可導致在該金屬表面上沉積鈷的選擇性。
在另一具體例中,藉由修改該鈷膜前驅物的配位體而改變該配位體的解離能,可以實現對金屬沉積速率及/或金屬膜純度的影響。一種改變配位體解離能的方法係導入拉電子或推電子官能基。拉電子基之範例包括,但不限於,腈基、酯基、羧酸基、醛基、酸氯化物、及三氟甲基。推電子基之範例包括,但不限於,叔胺基、仲胺基、伯胺基、羥基、甲氧基、烷基及三矽烷基。
在一具體例中,於沉積製程期間,鈷金屬係被沉積在一金屬表面(例如,銅或鈷)上,同時無沉積發生在一介電表面(例如,SiO2)上。
在另一具體例中,在該沉積製程之後,沉積在一金屬表面(例如,銅或鈷)上的該鈷金屬膜比沉積在一介電表面(例如,SiO2)上的該鈷金屬膜較佳>50倍厚,或更佳>200 倍厚。
在另一具體例中,於沉積製程期間,鈷金屬係被沉積在一金屬氮化物(例如,氮化鉭)上,同時無沉積發生在金屬表面(例如,銅或鈷)或氧化物表面(例如,SiO2)上。
在另一具體例中,在該沉積製程之後,沉積在一金屬氮化物(例如,氮化鉭)上的該鈷金屬膜比沉積在金屬表面(例如,銅或鈷)或氧化物表面(例如,SiO2)上的該鈷金屬膜較佳>50倍厚,或更佳>200倍厚。
工作實施例
以下實施例已顯示所揭露的鈷複合物的製造方法,及使用所揭露的鈷複合物作為鈷前驅物沉積含鈷膜。
在沉積製程中,鈷前驅物經由充滿鈷前驅物的不鏽鋼容器,藉由通過50sccm氬氣遞送至反應器室。容器溫度自30℃至60℃變化以達到該前驅物之充足的蒸氣壓。晶圓溫度自介於125℃與200℃之間變化。反應器室壓力係自5至20托變化。沉積測試係在500-1000sccm氫氣或氬氣流存在下進行。沉積時間係自20秒至20分鐘變化,用於達到不同厚度的鈷膜。
實施例1 (N,N-二甲基炔丙胺)二鈷六羰基的合成
在一通風罩中,N,N-二甲基炔丙胺(5.6克,67毫莫耳)在己烷中(50毫升)之一溶液被添加超過30分鐘至 Co2(CO)8(21.0克,61毫莫耳)在己烷中(150毫升)之一溶液中。在添加每一等分的N,N-二甲基炔丙胺溶液後,觀察到羰基的演變。所得的暗紅色/棕色溶液在室溫下被攪拌4小時。揮發物在真空下、在室溫下被去除以產生紅棕色固體。該固體在己烷(80毫升)重新溶解及通過一矽藻土545墊過濾。所得紅色溶液被蒸發至乾燥而生成暗紅色油。(N,N-二甲基炔丙胺)二鈷六羰基複合物係在真空下、60℃(20毫托)被蒸餾以產生一暗紅色油。
圖1顯示在流動氮氣下(N,N-二甲基炔丙胺)二鈷六羰基之動態TGA分析。在加熱時,重量損失在兩個階段被觀察到,在溫度<150℃時重量損失大約30%,和另外上至350℃時重量損失大約23%。該非揮發性殘留物在350℃時為37%。
實施例2 (1,1-二甲基炔丙醇)二鈷六羰基的合成
在一通風罩中,1,1-二甲基炔丙醇(5.6克,67毫莫耳)在己烷中(50毫升)之一溶液被添加超過30分鐘至Co2(CO)8(21.0克,61毫莫耳)在己烷中(150mL)之一溶液中。在添加每一等分的1,1-二甲基炔丙胺溶液時,觀察到羰基的演變。所得的暗紅色/棕色溶液在室溫下被攪拌4小時。揮發物在真空下、在室溫下被去除以產生紅棕色固體。該固體係在50℃(100毫托)被昇華以產生一暗紅色結晶產物。
圖1顯示在流動氮氣下(1,1-二甲基炔丙醇)二鈷六羰基之動態TGA分析。在加熱時,重量損失自50℃至350℃ 被觀察。該非揮發性殘留物於350℃係17.5%。
實施例3 官能化烯丙基鈷三羰基複合物之合成
Co2(CO)8(1毫莫耳)在20毫升氫飽和的四氫呋喃中之一溶液被添加至3.0毫莫耳的單氮雜二烯化合物。在20℃、1.2巴H2下攪拌24小時之後,得到含有產物之溶液。該溶液被蒸發至乾燥。該產物可使用己烷/二氯甲烷之20:1混合物作為沖提液,藉由矽膠管柱層析而被純化。該純化的產物可藉由在真空下移除溶劑而被分離。
實施例4 鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]之合成
在一氮氣手套箱,29.7克(0.74莫耳)的無水氫氧化鈉使用一烘乾的研钵和研棒研磨至粗粉末。二鈷八羰基(11.3克,33毫莫耳)被溶解攪拌在150毫升的四氫呋喃(THF)中。氫氧化鈉被添加到四氫呋喃溶液中。在室溫攪拌1小時內,形成紫色沉澱。該溶液在手套箱中使用矽藻土545墊過濾。使用一滴液漏斗,(1-氯-2-甲基丙烯醯基)二甲基胺(4克,30毫莫耳)逐滴被添加作為在60毫升的四氫呋喃之一溶液。於添加時該溶液變暗及形成黑色沉澱。所得的懸浮液在室溫下隔夜攪拌。該懸浮液使用矽藻土545墊過濾。該THF在真空下被移除以產生一小量含有黑色懸浮固體的黃/綠色油(大約5毫升)。該油在45℃、在動態真空(200毫托)下被蒸發及被 轉移至浸泡在一乾冰/丙酮浴中的一小燒瓶。3小時之後,大約1毫升的黃色油被轉移。
圖3顯示在流動氮氣下鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]之動態TGA分析。在加熱時,大部分的重量損失自50℃至125℃被觀察。該非揮發性殘留物於300℃係5.6%。
圖4顯示在流動氮氣下鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]之等溫TGA分析。在加熱至60℃時,重量損失在一段100分鐘時間被觀察。重量損失之後的該非揮發性殘留物係大約9.5%。
實施例5 使用鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]作為一鈷膜前驅物之鈷膜形成
在一沉積製程中,鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]經由充滿鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]的不鏽鋼容器,藉由通過50sccm氬氣遞送至反應器室。容器溫度自30℃至60℃變化以達到該鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]之充足的蒸氣壓。基材溫度自介於125℃與200℃之間變化。反應器室壓力係自5至20托變化。沉積測試係在500-1000sccm氫氣或氬氣流存在下進行。沉積時間係自20秒至20分鐘變化,用於達到不同厚度的鈷膜。
該基材係氧化矽、矽、氮化鉭、鈷和銅。該沉積 製程的變數被選擇以提供在一所欲的基材上選擇性沉積含鈷膜的條件。
實施例6 (1,1-二甲基炔丙醇)二鈷六羰基溶液的製備
(1,1-二甲基炔丙醇)二鈷六羰基在己烷中之溶液係藉由將(1,1-二甲基炔丙醇)二鈷六羰基溶解在己烷中,同時使用一磁性攪拌棒攪拌而被製備。大約50%重量%(1,1-二甲基炔丙醇)二鈷六羰基在己烷中之一溶液係藉由將該固體在己烷中於20℃下攪拌10分鐘而製備。
雖然本發明之原理已如上較佳具體例說明,須清楚理解此說明只是以範例方式作成,及不當作本發明的範圍之一限制。

Claims (15)

  1. 一種於一反應器中的一具有一第一表面的基材上沉積一含鈷膜的方法,包括:提供該基材至該反應器;提供一鈷前驅物至該反應器;使該鈷前驅物與該基材接觸;及在該基材上形成該鈷膜;其中該鈷前驅物係選自由以下所組成之族群:1)(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co 2(CO) 6係鍵結至以下一結構: 該處X或Y每一個個別含有至少一員選自由OR、NR 2、PR 2及氯所組成的族群;及R、R 1、R 2、R 3、或R 4每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;2)(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co 2(CO) 6係鍵結至以下的一結構: 該處X含有至少一員選自由OR、NR 2、PR 2及氯所組成的族群;及R、R 1、R 2、R 3、R 4或R 5每一個係個別選自由氫、直 鏈烴、分支鏈烴及其之組合所組成的族群;3)(官能化炔基)二鈷六羰基化合物,該處二鈷六羰基Co 2(CO) 6係鍵結至以下的一結構: 該處X含有至少一員選自由OR、NR 2、PR 2及氯所組成的族群;及R、R 1或R 2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;4)(官能化烯丙基)鈷三羰基化合物,具有以下結構: 該處X、Y或Z每一個個別含有至少一員包括H、OR、NR 1R 2、PR 1R 2及氯之一族群;及R、R 1或R 2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;及X、Y和Z之至少一個不為氫;5)(烯胺)鈷三羰基化合物,具有以下結構: 該處X由NR 2所組成,及R、R 1或R 2每一個係個別選自由氫、直鏈烴、分支鏈烴及其之組合所組成的族群;6)(官能化烷基)二鈷四羰基具有一通式(XR)Co(CO) 4,該處X含有至少一員選自由OR、NR 2、PR 2、F及Cl所組成之族群;及R係選自由直鏈烴、分支鏈烴及其之組合所組成的族群;及7)(官能化炔基)二鈷六羰基具有含有一伯胺官能基之單取代炔基複合物;其中該單取代炔基複合物及該(官能化炔基)二鈷六羰基係選自由以下所組成的族群:(a)N,N-二甲基炔丙胺具有一結構: 及該鈷化合物係(N,N-二甲基炔丙胺)二鈷六羰基;(b)(1,1-二甲基炔丙胺)具有一結構: 及該鈷化合物係(1,1-二甲基炔丙胺)二鈷六羰基;(c)4-戊烯腈具有一結構: 及該鈷化合物係(4-戊烯腈)二鈷六羰基;(d)(1,1-二甲基炔丙醇)具有一結構: 及該鈷化合物係(1,1-二甲基炔丙醇)二鈷六羰基。
  2. 如請求項1的方法,其中該1)的鈷前驅物係(μ-η 22-2,5-二甲基-3-己炔-2,5-二醇)二鈷六羰基:
  3. 如請求項1的方法,其中該2)的鈷前驅物係(μ-[(2,3-η:2,3-η)-2-丁炔-1-醇)二鈷六羰基:
  4. 如請求項1的方法,其中該3)的鈷前驅物係(1,1-二甲基炔丙醇)二鈷六羰基。
  5. 如請求項1的方法,其中該5)的鈷前驅物係鈷三羰基[N-甲基-N-[(1,2-η)-2-甲基-1-亞丙烯基]]。
  6. 如請求項1的方法,其中該6)的鈷前驅物係選自(甲氧基甲基)鈷四羰基(CH 3OCH 2)Co(CO) 4,及(三氟甲基)鈷四羰基(CF 3)Co(CO) 4所組成的族群。
  7. 如請求項1的方法,其中鈷前驅物係(1,1-二甲基炔丙醇)二鈷六羰基。
  8. 如請求項1的方法,其中該基材係選自矽、氧化矽、PVD氮化鉭、銅、鈷金屬氮化物及其組合所組成的族群。
  9. 如請求項1的方法,其中該含鈷膜係選自鈷膜、氧化鈷膜、矽化鈷膜、氮化鈷及其組合所組成的族群。
  10. 如請求項1之方法,其中該鈷膜係通過選自由熱CVD、熱ALD、電漿增強ALD(PEALD)、電漿增強化學氣相沉積(PECVD)、及電漿增強循環式化學氣相沉積(PECCVD)所組成的族群中的一方法所沉積。
  11. 如請求項1之方法,其中該基材具有一第一表面及一第二表面;且 (1)該鈷膜係被沉積在該第一表面上且沒有沉積發生在該第二表面上;或 (2)被沉積在該第一表面上的含鈷膜的厚度係被沉積在該第二表面上的含鈷膜的厚度的50倍以上。
  12. 如請求項11之方法,其中該第一表面係一金屬表面;及該第二表面係一介電表面。
  13. 如請求項12之方法,其中該金屬係銅或鈷;及該第二表面係SiO 2
  14. 如請求項11之方法,其中該第一表面係一金屬氮化物;及該第二表面係一金屬表面或一介電表面。
  15. 如請求項14之方法,其中該第一表面係氮化鉭;及該第二表面係選自銅、鈷、SiO 2及其組合所組成的族群。
TW106137661A 2016-11-01 2017-10-31 鈷化合物、其製造及使用方法 TW201825700A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662415822P 2016-11-01 2016-11-01
US62/415,822 2016-11-01
US15/792,092 US20180135174A1 (en) 2016-11-01 2017-10-24 Cobalt compounds, method of making and method of use thereof
US15/792,092 2017-10-24

Publications (1)

Publication Number Publication Date
TW201825700A true TW201825700A (zh) 2018-07-16

Family

ID=62076511

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106137661A TW201825700A (zh) 2016-11-01 2017-10-31 鈷化合物、其製造及使用方法

Country Status (8)

Country Link
US (1) US20180135174A1 (zh)
EP (1) EP3535434A4 (zh)
JP (1) JP2019535900A (zh)
KR (1) KR20190064678A (zh)
CN (1) CN110023534A (zh)
SG (1) SG11201903896SA (zh)
TW (1) TW201825700A (zh)
WO (1) WO2018085257A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180134738A1 (en) * 2016-11-01 2018-05-17 Versum Materials Us, Llc Disubstituted alkyne dicobalt hexacarbonyl compounds, method of making and method of use thereof
KR102275419B1 (ko) * 2016-11-23 2021-07-09 엔테그리스, 아이엔씨. 코발트의 화학적 증착을 위한 할로알키닐 디코발트 헥사카보닐 전구체
US20180340255A1 (en) * 2017-05-26 2018-11-29 Applied Materials, Inc. Cobalt Oxide Film Deposition
CN109609927A (zh) * 2019-01-24 2019-04-12 复旦大学 一种碳氮掺杂的金属钴薄膜、其制备方法及用途
KR102517801B1 (ko) 2020-11-24 2023-04-03 조선대학교산학협력단 심전도를 이용한 개인 식별 정보 생성방법 및 그 개인 식별 정보를 이용한 개인 식별 방법
KR20240024499A (ko) 2022-08-17 2024-02-26 한국화학연구원 신규한 유기코발트 화합물, 이의 제조방법 및 이를 이용하여 박막을 제조하는 방법

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051641B2 (en) * 2001-07-25 2015-06-09 Applied Materials, Inc. Cobalt deposition on barrier surfaces
KR100485386B1 (ko) * 2003-04-08 2005-04-27 삼성전자주식회사 금속막 증착용 조성물 및 이를 이용한 금속막 형성 방법
WO2008142653A2 (en) * 2007-05-21 2008-11-27 L'air Liquide-Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude New cobalt precursors for semiconductor applications
US20090269507A1 (en) * 2008-04-29 2009-10-29 Sang-Ho Yu Selective cobalt deposition on copper surfaces
JP2010084215A (ja) * 2008-10-02 2010-04-15 Jsr Corp コバルト膜の形成方法
WO2014052316A1 (en) * 2012-09-25 2014-04-03 Advanced Technology Materials, Inc. Cobalt precursors for low temperature ald or cvd of cobalt-based thin films
US9385033B2 (en) * 2013-09-27 2016-07-05 Intel Corporation Method of forming a metal from a cobalt metal precursor
JP2015224227A (ja) * 2014-05-28 2015-12-14 宇部興産株式会社 (アセチレン)ジコバルトヘキサカルボニル化合物の製造方法
KR102487441B1 (ko) * 2014-09-14 2023-01-12 엔테그리스, 아이엔씨. 구리 및 유전체 상의 코발트 침착 선택성

Also Published As

Publication number Publication date
EP3535434A4 (en) 2020-08-05
US20180135174A1 (en) 2018-05-17
SG11201903896SA (en) 2019-05-30
EP3535434A1 (en) 2019-09-11
JP2019535900A (ja) 2019-12-12
KR20190064678A (ko) 2019-06-10
WO2018085257A1 (en) 2018-05-11
CN110023534A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
TW201825700A (zh) 鈷化合物、其製造及使用方法
US20090208670A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
US20080248648A1 (en) Deposition precursors for semiconductor applications
US20090205538A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
CN110615746B (zh) 双(二氮杂二烯)钴化合物及其制备方法和使用方法
JP2009510074A (ja) 有機金属化合物及びその使用方法
US20090203928A1 (en) Organometallic compounds, processes for the preparation thereof and methods of use thereof
CN112219258A (zh) 旋涂金属化
JP6730243B2 (ja) 二置換アルキンジコバルトヘキサカルボニル化合物、その製造方法、及びその使用方法
US10290540B2 (en) Disubstituted alkyne dicobalt hexacarbonyl compounds, method of making and method of use thereof
TWI727091B (zh) 含有烯丙基配位體之金屬錯合物
TWI672390B (zh) 二取代炔基二鈷六羰基化合物、其製造及使用方法
KR102592166B1 (ko) 이치환된 알킨 디코발트 헥사카보닐 화합물들, 이를 제조하는 방법, 및 이의 사용 방법
Blakeney Synthesis Of Volatile And Thermally Stable Aluminum Hydride Complexes And Their Use In Atomic Layer Deposition Of Metal Thin Films
JP2009057618A (ja) 銅含有薄膜及びその製造法
JP2010059471A (ja) ルテニウム微粒子及びその製造法、並びにルテニウム微粒子を下層金属膜とした金属含有薄膜の製造方法
JP2009057617A (ja) 金属含有薄膜及びその製造法