TWI727091B - 含有烯丙基配位體之金屬錯合物 - Google Patents

含有烯丙基配位體之金屬錯合物 Download PDF

Info

Publication number
TWI727091B
TWI727091B TW106130712A TW106130712A TWI727091B TW I727091 B TWI727091 B TW I727091B TW 106130712 A TW106130712 A TW 106130712A TW 106130712 A TW106130712 A TW 106130712A TW I727091 B TWI727091 B TW I727091B
Authority
TW
Taiwan
Prior art keywords
metal complex
metal
independently
nickel
hydrogen
Prior art date
Application number
TW106130712A
Other languages
English (en)
Other versions
TW201819394A (zh
Inventor
奚斌
喬比 愛朵
察爾斯 得茲拉
拉維 崁卓莉亞
國 劉
Original Assignee
德商馬克專利公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商馬克專利公司 filed Critical 德商馬克專利公司
Publication of TW201819394A publication Critical patent/TW201819394A/zh
Application granted granted Critical
Publication of TWI727091B publication Critical patent/TWI727091B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F13/00Compounds containing elements of Groups 7 or 17 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/02Iron compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/406Oxides of iron group metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02249Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by combined oxidation and nitridation performed simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明提供含有經取代烯丙基配位體之金屬錯合物及使用該等金屬錯合物製備含金屬膜之方法。

Description

含有烯丙基配位體之金屬錯合物
本發明技術概言之係關於包括兩個烯丙基配位體之金屬錯合物及使用此等金屬錯合物製備含金屬薄膜之方法。
使用多種前體來形成薄膜且已採用多種沈積技術。此等技術包括反應濺鍍、離子輔助沈積、溶膠-凝膠沈積、化學氣相沈積(CVD) (亦稱為金屬有機CVD或MOCVD)及原子層沈積(ALD) (亦稱為原子層磊晶)。CVD及ALD製程由於具有增強之組成控制、高膜均勻性及摻雜之有效控制之優點而使用愈來愈多。此外,CVD及ALD製程在與現代微電子裝置相關之高度非平面幾何圖形上提供優良的保形階梯覆蓋率。 CVD係其中使用前體在基板表面上形成薄膜之化學製程。在典型CVD製程中,使前體在低壓或環境壓力反應室中經過基板(例如,晶圓)之表面。前體在基板表面上反應及/或分解,從而產生所沈積材料之薄膜。揮發性副產物藉由經過反應室之氣流去除。所沈積之膜厚度可能難以控制,此乃因其取決於許多參數(例如,溫度、壓力、氣流體積及均勻性、化學消耗效應及時間)之協調。 ALD亦係用於沈積薄膜之方法。其係基於表面反應之自限制、依序、獨特膜生長技術,其可提供精確的厚度控制,並在具有不同組成之基板之表面上沈積由前體所提供材料之保形薄膜。在ALD中,在反應期間分離前體。使第一前體經過基板表面,從而在基板表面上產生單層。將任何過量未反應之前體自反應室抽出。然後使第二前體經過基板表面並與第一前體反應,從而在基板表面上形成第二單層之膜覆蓋第一個形成單層之膜。重複此循環以產生具有期望厚度之膜。 薄膜且尤其含金屬薄膜在諸如奈米技術中及半導體裝置之製造中具有多種重要應用。此等應用之實例包括場效電晶體(FET)、電容器電極、閘極電極、黏著擴散障壁及積體電路中之高折射率光學塗層、腐蝕-保護塗層、光催化自清潔玻璃塗層、可生物相容塗層、介電電容器層及閘極介電絕緣膜。介電薄膜亦用於微電子應用中,例如用於動態隨機存取記憶體(DRAM)應用之高κ介電氧化物及用於紅外檢測器及非揮發性鐵電隨機存取記憶體(NV-FeRAM)中之鐵電鈣鈦礦。微電子組件大小之持續減小已增加對改良薄膜技術之需要。 關於製備含鎳薄膜(例如,鎳金屬、氧化鎳、氮化鎳)之技術尤其受到關注。舉例而言,含鎳膜已發現在諸如觸媒、電池、記憶體裝置、顯示器、感測器以及奈米電子及微電子之領域中具有眾多實際應用。在電子應用之情形下,需要使用含鎳前體之商業可行沈積方法,該等含鎳前體具有包括揮發性、反應性及穩定性之適宜性質。然而,具有此等適宜性質之可用含鎳化合物之數目有限。舉例而言,儘管雙(烯丙基)鎳(C3 H5 )2 Ni可能具有適宜揮發性及反應性,但已知其具有極低熱穩定性且將在高於約20℃下分解。參見(例如) Quisenberry, K等人,J. Am. Chem. Soc. 2005,127 , 4376-4387及Solomon, S.等人,Dalton Trans. , 2010, 39, 2469-2483。因此,對鎳錯合物之發展存在重大關注,該等鎳錯合物具有使其適於在製備含鎳膜之氣相沈積製程中用作前體材料之性能特性。舉例而言,需要具有改良性能特性(例如,熱穩定性、蒸氣壓力及沈積速率)之鎳前體,以及自此等前體沈積薄膜之方法。
根據一個態樣,提供下式I之金屬錯合物:
Figure 02_image003
其中M係選自由以下各項組成之群:鎳、鈷、鐵、釕及錳;且R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 各自獨立地係氫或C1 -C5 -烷基。 在其他態樣中,提供下式II之金屬錯合物:
Figure 02_image005
其中M係如本文中所闡述;R1 、R2 、R3 、R7 及R8 係如本文中所闡述;且L係選自由以下各項組成之群:氫、C1 -C5 -烷基、(R11 )n Cp、NR12 R13 、3,5-R14 R15 -C3 HN2 、Si(SiR16 R17 R18 )3
Figure 02_image007
;其中Cp係環戊二烯基環,n係0-5且R11 、R12 、R13 、R14 、R15 、R16 、R17 、R18 、R19 、R20 、R21 及R22 各自獨立地係氫或C1 -C5 -烷基。 在其他態樣中,本文提供藉由氣相沈積(例如,CVD及ALD)形成含金屬膜之方法,其使用本文式I及式II之金屬錯合物。 其他實施例,包括上文所概述實施例之特定態樣將自以下詳細說明明瞭。
在闡述本發明技術之若干例示性實施例之前應理解,技術並不限於以下說明中所述之構築或方法步驟之細節。本發明技術能具有其他實施例並能以多種方式實踐或實施。亦應理解,金屬錯合物及其他化學化合物可使用具有特定立體化學之結構式在本文中加以闡釋。該等說明意欲僅作為實例,且不應解釋為將所揭示之結構限於任一特定立體化學。相反,所闡釋之結構意欲涵蓋具有指示化學式之所有此等金屬錯合物及化學化合物。 在多個態樣中,提供金屬錯合物、製取此等金屬錯合物之方法及經由氣相沈積製程使用此等金屬錯合物形成薄含金屬膜之方法。 如本文所用術語「金屬錯合物」(或更簡單地,「錯合物」)及「前體」可互換使用,且係指可用於藉由氣相沈積製程(例如,ALD或CVD)製備含金屬膜之含金屬分子或化合物。可使金屬錯合物沈積於基板或其表面上,吸附至基板或其表面,在基板或其表面上分解,遞送至基板或其表面及/或經過基板或其表面以形成含金屬膜。在一或多個實施例中,本文所揭示之金屬錯合物係鎳錯合物。 如本文所用術語「含金屬膜」不僅包括如下文所更充分定義之元素金屬膜,而且包括包含金屬連同一或多種元素之膜,例如金屬氧化物膜、金屬氮化物膜、金屬矽化物膜及諸如此類。如本文所用術語「元素金屬膜」及「純金屬膜」可互換使用,且係指由純金屬組成或基本上由其組成之膜。舉例而言,元素金屬膜可包括100%純金屬或元素金屬膜可包括至少約90%、至少約95%、至少約96%、至少約97%、至少約98%、至少約99%、至少約99.9%或至少約99.99%之純金屬連同一或多種雜質。除非上下文另外指示,否則術語「金屬膜」應解釋為意指元素金屬膜。在一些實施例中,含金屬膜係元素鎳膜。在其他實施例中,含金屬膜係氧化鎳、氮化鎳或矽化鎳膜。此等含鎳膜可自本文中所述之多種鎳錯合物製備。 如本文所用術語「氣相沈積製程」係用於指任一類型之氣相沈積技術,其包括(但不限於) CVD及ALD。在各個實施例中,CVD可採用習用(即,連續流動) CVD、液體注入CVD或光輔助CVD之形式。CVD亦可採用脈衝技術之形式,即脈衝CVD。在其他實施例中,ALD可採用習用(即,脈衝注入)ALD、液體注入ALD、光輔助ALD、電漿輔助ALD或電漿增強之ALD之形式。術語「氣相沈積製程」進一步包括Chemical Vapour Deposition: Precursors, Processes, and Applications ;Jones, A. C.;Hitchman, M. L.編輯,The Royal Society of Chemistry: Cambridge, 2009;第1章,第1-36頁中所述之多種氣相沈積技術。 術語「烷基」(單獨或與另一或多個術語組合)係指長度為1至約12個碳原子之飽和烴鏈,例如(但不限於)甲基、乙基、丙基、丁基、戊基、己基、庚基、辛基、癸基等。烷基可係直鏈或具支鏈。「烷基」意欲包含烷基之所有結構異構形式。舉例而言,如本文所用丙基涵蓋正丙基及異丙基二者;丁基涵蓋正丁基、第二丁基、異丁基及第三丁基;戊基涵蓋正戊基、第三戊基、新戊基、異戊基、第二戊基及3-戊基。此外,如本文所用「Me」係指甲基,「Et」係指乙基,「Pr」係指丙基,「i- Pr」係指異丙基,「Bu」係指丁基,「t -Bu」係指第三丁基及「Np」係指新戊基。在一些實施例中,烷基係C1 -C5 -烷基或C1 -C4 -烷基。 術語「烯丙基」係指結合至金屬中心之烯丙基(C3 H5 )配位體。如本文所用烯丙基配位體具有共振雙鍵,且烯丙基配位體之全部3個碳原子藉由π鍵結以η3 -配位結合至金屬中心。因此,本發明之錯合物係π錯合物。該等特徵二者由虛鍵表示。當烯丙基部分由一個X基團取代時,X1 基團替代烯丙基氫以成為[X1 C3 H4 ];當經兩個X基團X1 及X2 取代時,其成為[X1 X2 C3 H3 ],其中X1 及X2 相同或不同,依次類推。 術語「矽基」係指—SiZ1 Z2 Z3 基團,其中Z1 、Z2 及Z3 中之每一者獨立地選自由以下各項組成之群:氫及視情況經取代之烷基、烯基、炔基、芳基、烷氧基、芳基氧基、胺基及其組合。 術語「三烷基矽基」係指—SiZ4 Z5 Z6 自由基,其中Z5 、Z6 及Z7 係烷基,且其中Z5 、Z6 及Z7 可係相同或不同烷基。三烷基矽基之非限制性實例包括三甲基矽基(TMS)、三乙基矽基(TES)、三異丙基矽基(TIPS)及第三丁基二甲基矽基(TBDMS)。 使用金屬烯丙基錯合物沈積一些金屬(包括鎳、鈷、鐵、釕及錳)可能難以達成,此乃因對於沈積不穩定或太穩定之熱穩定性問題。本發明實施例中所揭示之有機金屬錯合物容許控制物理性質以及提供增加之穩定性及簡單高產率合成。如本文中所進一步闡述,金屬錯合物可包括空間巨大之經取代烯丙基配位體,例如矽基、三烷基矽基及/或烷基取代之烯丙基配位體,其結合至金屬中心。儘管不希望受限於任何特定理論,但據信此等經取代之烯丙基配位體(例如,三甲基矽基烯丙基)產生具有適宜揮發性及反應性以及增加熱穩定性之錯合物。此等錯合物亦可有利地呈液體形式,其在有機溶劑中具有增加之溶解度。就此而言,具有此等經取代烯丙基配位體之金屬錯合物係以多種氣相沈積製程製備薄含金屬膜之優良候選者。 因此,根據一個態樣,提供下式I之金屬錯合物:
Figure 02_image009
其中M係選自由以下各項組成之群:鎳、鈷、鐵、釕及錳;且R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 各自獨立地可係氫或C1 -C5 -烷基。 在一些實施例中,M可選自由以下各項組成之群:鎳、鈷及鐵。在其他實施例中,M可選自由以下各項組成之群:鎳、鐵、釕及錳。特定而言,M可係鎳。 R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 在每次出現時可相同或不同。舉例而言,R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 可皆係氫或皆係烷基(例如,C1 -C5 -烷基)。另外或另一選擇為,R1 、R2 、R3 、R4 、R5 及R6 可相同或不同。另外或另一選擇為,R7 、R8 、R9 及R10 可相同或不同。 在一個實施例中,式I之金屬錯合物可係均配的,即附接至金屬中心之所有配位體相同。或者,式I之金屬錯合物可係雜配的,即附接至金屬中心之配位體不同及/或附接至金屬中心之配位體之取代不同。 在一個實施例中,R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 中之最多且包括9個可各自係氫。舉例而言,R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 中之至少1個、至少2個、至少3個、至少4個、至少5個、至少6個、至少7個或至少8個可係氫。 在另一實施例中,R7 、R8 、R9 及R10 中之至少1個可係氫。另外或另一選擇為,R7 、R8 、R9 及R10 中之至少2個或至少3個可係氫。在另一實施例中,R7 、R8 、R9 及R10 可係氫。 在另一實施例中,R1 、R2 、R3 、R4 、R5 及R6 中之至少1個可係氫。另外或另一選擇為,R1 、R2 、R3 、R4 、R5 及R6 中之至少2個、至少3個、至少4個或至少5個可係氫。在另一實施例中,R1 、R2 、R3 、R4 、R5 及R6 可係氫。 在另一實施例中,R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 中之最多且包括9個各自獨立地可係烷基。舉例而言,R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 中之至少1個、至少2個、至少3個、至少4個、至少5個、至少6個、至少7個或至少8個可係烷基。 在另一實施例中,R7 、R8 、R9 及R10 中之至少一個可係烷基。另外或另一選擇為,R7 、R8 、R9 及R10 中之至少2個或至少3個可係烷基。在另一實施例中,R7 、R8 、R9 及R10 可係烷基。 在另一實施例中,R1 、R2 、R3 、R4 、R5 及R6 中之至少一個可係烷基。另外或另一選擇為,R1 、R2 、R3 、R4 、R5 及R6 中之至少1個、至少2個、至少3個、至少4個或至少5個可係烷基。在另一實施例中,R1 、R2 、R3 、R4 、R5 及R6 可係烷基。 本文所論述之烷基可係C1 -C8 -烷基、C1 -C7 -烷基、C1 -C6 -烷基、C1 -C5 -烷基、C1 -C4 -烷基、C1 -C3 -烷基、C1 -C2 -烷基或C1 -烷基。在另一實施例中,烷基係C1 -C5 -烷基、C1 -C4 -烷基、C1 -C3 -烷基、C1 -C2 -烷基或C1 -烷基。烷基可係直鏈或具支鏈。具體而言,烷基係直鏈。在另一實施例中,烷基係選自由以下各項組成之群:甲基、乙基、丙基、異丙基、丁基、異丁基、第二丁基、第三丁基、戊基及新戊基。 在一些實施例中,R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 各自獨立地可係氫或C1 -C4 -烷基。在其他實施例中,R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 各自獨立地可係氫或C1 -C3 -烷基。 在一些實施例中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係氫、甲基或乙基。在另一實施例中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係甲基或乙基。在具體實施例中,R1 、R2 、R3 、R4 、R5 及R6 可係甲基。 在另一實施例中,R7 、R8 、R9 及R10 各自獨立地可係氫、甲基或乙基。在另一實施例中,R7 、R8 、R9 及R10 各自獨立地可係氫或甲基。在具體實施例中,R7 、R8 、R9 及R10 可係氫。 在一些實施例中,R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 各自獨立地可係氫、甲基或乙基。在另一實施例中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係甲基或乙基及R7 、R8 、R9 及R10 各自獨立地可係氫、甲基或乙基。在另一實施例中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係氫、甲基或乙基且R7 、R8 、R9 及R10 各自獨立地可係氫。 在另一實施例中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係甲基或乙基及R7 、R8 、R9 及R10 各自獨立地可係氫。在具體實施例中,R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係甲基且R7 、R8 、R9 及R10 各自獨立地可係氫。 在具體實施例中,M可係鎳且R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 各自獨立地可係氫或C1 -C4 -烷基。另外或另一選擇為,M可係鎳且R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 各自獨立地可係氫或C1 -C3 -烷基。另外或另一選擇為,M可係鎳且R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 可各自獨立地係氫、甲基或乙基。 在另一實施例中,M可係鎳;R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係甲基或乙基;且R7 、R8 、R9 及R10 各自獨立地可係氫、甲基或乙基。另外或另一選擇為,M可係鎳;R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係氫、甲基或乙基;且R7 、R8 、R9 及R10 各自獨立地可係氫。另外或另一選擇為,M可係鎳;R1 、R2 、R3 、R4 、R5 及R6 各自獨立地可係甲基或乙基;且R7 、R8 、R9 及R10 各自獨立地可係氫。 在結構上對應於式I之金屬錯合物之實例顯示於1中。 1
Figure 02_image011
Figure 02_image013
Figure 02_image015
Figure 02_image017
Figure 02_image019
Figure 02_image021
Figure 02_image023
Figure 02_image025
Figure 02_image027
Figure 02_image029
Figure 02_image031
Figure 02_image033
Figure 02_image035
Figure 02_image037
Figure 02_image039
Figure 02_image041
Figure 02_image043
Figure 02_image045
Figure 02_image047
Figure 02_image049
Figure 02_image051
Figure 02_image053
Figure 02_image055
Figure 02_image057
Figure 02_image059
Figure 02_image061
Figure 02_image063
在一個實施例中,提供式I之兩種或更多種有機金屬錯合物之混合物。 在另一實施例中,提供下式II之金屬錯合物:
Figure 02_image065
(II) 其中M係如本文中所闡述;R1 、R2 、R3 、R7 及R8 係如本文中所闡述;且L係選自由以下各項組成之群:氫、C1 -C5 -烷基、(R11 )n Cp、NR12 R13 、3,5-R14 R15 -C3 HN2 、Si(SiR16 R17 R18 )3
Figure 02_image067
;其中Cp係環戊二烯基環,n係0-5且R11 、R12 、R13 、R14 、R15 、R16 、R17 、R18 、R19 、R20 、R21 及R22 各自獨立地係氫或C1 -C5 -烷基。 本文所提供之金屬錯合物可用於製備含金屬膜,例如元素鎳、氧化鎳、氮化鎳及矽化鎳膜。因此,根據另一態樣,提供藉由氣相沈積製程形成含金屬膜之方法。該方法包含氣化至少一種如本文所揭示在結構上對應於式I式II或其組合之有機金屬錯合物。舉例而言,此可包括(1)氣化至少一種錯合物及(2)將至少一種錯合物遞送至基板表面或使至少一種錯合物經過基板(及/或在基板表面上分解至少一種錯合物)。 可使用多種基板用於本文所揭示之沈積方法中。舉例而言,可使如本文所揭示之金屬錯合物遞送至多種基板或其表面、經過其或在其上沈積,例如(但不限於)矽、晶體矽、Si(100)、Si(111)、氧化矽、玻璃、應變矽、絕緣體上之矽(SOI)、經摻雜之矽或氧化矽(例如,碳摻雜之氧化矽)、氮化矽、鍺、砷化鎵、鉭、氮化鉭、鋁、銅、釕、鈦、氮化鈦、鎢、氮化鎢及奈米級裝置製造製程(例如,半導體製造製程)中常見之許多其他基板。如熟習此項技術者將瞭解,可使基板暴露於預處理製程,以拋光、蝕刻、還原、氧化、羥基化、退火及/或烘烤基板表面。在一或多個實施例中,基板表面含有氫封端之表面。 在某些實施例中,可使金屬錯合物溶解於適宜溶劑(例如,烴或胺溶劑)中,以促進氣相沈積製程。適當烴溶劑包括(但不限於)脂肪族烴,例如己烷、庚烷及壬烷;芳香族烴,例如甲苯及二甲苯;以及脂肪族及環醚,例如二甘二甲醚、三甘醇二甲醚及四乙醇二甲醚。適當胺溶劑之實例包括(但不限於)辛胺及N,N -二甲基十二烷基胺。舉例而言,可使金屬錯合物溶解於甲苯中,以產生濃度為約0.05 M至約1 M之溶液。 在另一實施例中,可將至少一種金屬錯合物「純淨的」(未由載體氣體稀釋)遞送至基板表面。 在一個實施例中,氣相沈積製程係化學氣相沈積。 在另一實施例中,氣相沈積製程係原子層沈積。 ALD及CVD方法涵蓋多種類型之ALD及CVD製程,例如(但不限於)連續或脈衝注入製程、液體注入製程、光輔助製程、電漿輔助及電漿增強之製程。出於清晰之目的,本發明技術之方法特別地包括直接液體注入製程。舉例而言,在直接液體注入CVD (「DLI-CVD」)中,可使固體或液體金屬錯合物溶解於適宜溶劑中,並將自其形成之溶液注入氣化室中,作為氣化金屬錯合物之方式。然後將經氣化之金屬錯合物傳輸/遞送至基板表面。一般而言,DLI-CVD可特定地用於其中金屬錯合物顯示相對較低之揮發性或原本難以氣化之彼等情形中。 在一個實施例中,使用習用或脈衝CVD以藉由使至少一種金屬錯合物氣化及/或經過基板表面來形成含金屬膜。對於習用CVD製程,參見(例如) Smith, Donald (1995).Thin-Film Deposition: Principles and Practice .McGraw-Hill。 在一個實施例中,本文所揭示金屬錯合物之CVD生長條件包括(但不限於): a. 基板溫度:50- 200℃ b. 蒸發器溫度(金屬前體溫度):0- 70℃ c. 反應器壓力:0-10托(Torr) d. 氬或氮載體氣體流速:0 - 50 sccm e. 臭氧製程之氧流速:0 - 300 sccm f. 氫流速:0 - 50 sccm g. 運行時間:將根據期望之膜厚度變化 在另一實施例中,使用光輔助CVD以藉由使至少一種本文所揭示之金屬錯合物氣化及/或經過基板表面形成含金屬膜。 在另一實施例中,使用習用(即,脈衝注入) ALD以藉由使至少一種本文所揭示之金屬錯合物氣化及/或經過基板表面形成含金屬膜。對於習用ALD製程而言,參見(例如) George S. M.等人,J. Phys. Chem., 1996,100 , 13121-13131。 在另一實施例中,使用液體注入ALD以藉由使至少一種本文所揭示之金屬錯合物氣化及/或經過基板表面形成含金屬膜,其中與藉由起泡器抽出蒸氣相反,至少一種金屬錯合物係藉由直接液體注入遞送至反應室。對於液體注入ALD製程而言,參見(例如) Potter R. J.等人,Chem. Vap. Deposition , 2005,11 (3), 159-169。 本文所揭示金屬錯合物之ALD生長條件之實例包括(但不限於): a. 基板溫度:0- 275℃ b. 蒸發器溫度(金屬前體溫度):0 - 70℃ c. 反應器壓力:0- 10托 d. 氬或氮載體氣體流速:0 - 50 sccm e. 反應性氣體流速:0-300 sccm f. 脈衝序列(金屬錯合物/吹掃/反應性氣體/吹掃):將根據室大小變化 g. 循環數:將根據期望之膜厚度變化 在另一實施例中,使用光輔助ALD以藉由使至少一種本文所揭示之金屬錯合物氣化及/或經過基板表面形成含金屬膜。對於光輔助ALD製程而言,參見(例如)美國專利第4,581,249號。 在另一實施例中,使用電漿輔助或電漿增強之ALD以藉由使至少一種本文所揭示之金屬錯合物氣化及/或經過基板表面形成含金屬膜。 在另一實施例中,在基板表面上形成含金屬膜之方法包含:在ALD製程期間,使基板暴露於本文所述一或多個實施例之氣相金屬錯合物,使得在表面上形成包含藉由金屬中心(例如,鎳)結合至表面之金屬錯合物的層;在ALD製程期間,暴露具有經結合金屬錯合物之基板與共反應物,使得經結合金屬錯合物與共反應物之間發生交換反應,由此解離經結合金屬錯合物並在基板表面上產生元素金屬之第一層;及依序重複ALD製程及處理。 選擇反應時間、溫度及壓力,以產生金屬-表面相互作用並在基板表面上達成層。ALD反應之反應條件將基於金屬錯合物之性質選擇。沈積可在大氣壓下實施,但更常見地在減壓下實施。金屬錯合物之蒸氣壓力應足夠低以在此等應用中實用。基板溫度應足夠高以使表面上金屬原子之間之鍵保持完整,並防止氣態反應物熱分解。然而,基板溫度亦應足夠高以使源材料(即,反應物)保持呈氣相並為表面反應提供足夠活化能。適當溫度端視多個參數而定,包括所用之具體金屬錯合物及壓力。用於本文所揭示ALD沈積方法中之具體金屬錯合物之性質可使用業內已知方法評估,從而容許選擇反應之適當溫度及壓力。一般而言,較低分子量及增加配位體球轉動熵之官能基之存在導致在典型遞送溫度及增加蒸氣壓力下產生液體之熔點。 用於沈積方法中之金屬錯合物將具有針對以下之所有要求:足夠蒸氣壓力、在所選基板溫度下足夠之熱穩定性及在基板表面上產生反應而在薄膜中無不希望雜質之足夠反應性。足夠蒸氣壓力確保源化合物之分子以足夠濃度存在於基板表面上,以能夠發生完全自飽和反應。足夠之熱穩定性確保源化合物將不經受在薄膜中產生雜質之熱分解。 因此,在該等方法中所利用之本文所揭示之金屬錯合物可係液體、固體或氣態。通常,金屬錯合物在環境溫度下係液體或固體且具有足以容許將蒸氣連續傳輸至處理室之蒸氣壓力。 在一個實施例中,元素金屬、金屬氮化物、金屬氧化物或金屬矽化物膜可藉由將至少一種如本文所揭示之金屬錯合物獨立地或與共反應物組合遞送用於沈積來形成。就此而言,共反應物可獨立地或與至少一種金屬錯合物組合沈積或經遞送至或使其經過基板表面。如將易於瞭解,所用具體共反應物將決定所獲得含金屬膜之類型。此等共反應物之實例包括(但不限於)氫、氫電漿、氧、空氣、水、醇、H2 O2 、N2 O、氨、肼、硼烷、矽烷、臭氧或其中任何兩種或更多種之組合。適宜醇之實例包括(但不限於)甲醇、乙醇、丙醇、異丙醇、第三丁醇及諸如此類。適宜硼烷之實例包括(但不限於)氫化(即,還原)硼烷,例如硼烷、二硼烷、三硼烷及諸如此類。適宜矽烷之實例包括(但不限於)氫化矽烷,例如矽烷、二矽烷、三矽烷及諸如此類。適宜肼之實例包括(但不限於)肼(N2 H4 )、視情況經一或多個烷基取代之肼(即,經烷基取代之肼)(例如,甲基肼、第三丁基肼、N,N -二甲基肼或N,N' -二甲基肼)、視情況經一或多個芳基取代之肼(即,經芳基取代之肼)(例如,苯基肼)及諸如此類。 在一個實施例中,將本文所揭示之金屬錯合物以脈衝形式與含氧共反應物之脈衝交替遞送至基板表面,以提供金屬氧化物膜。此等含氧共反應物之實例包括(但不限於) H2 O、H2 O2 、O2 、臭氧、空氣、i -PrOH、t -BuOH或N2 O。 在其他實施例中,共反應物包含還原劑,例如氫。在該等實施例中,獲得元素金屬膜。在特定實施例中,元素金屬膜由純金屬組成或基本上由其組成。此一純金屬膜可含有大於約80%、85%、90%、95%或98%之金屬。在甚至更特定之實施例中,元素金屬膜係鎳膜。 在其他實施例中,使用共反應物,以藉由將至少一種如本文所揭示之金屬錯合物獨立地或與共反應物(例如(但不限於)氨、肼及/或其他含氮化合物(例如,胺))組合遞送至反應室用於沈積來形成金屬氮化物膜。可使用複數種此等共反應物。在其他實施例中,金屬氮化物膜係氮化鎳膜。 在另一實施例中,可藉由氣相沈積製程形成混合金屬膜,該氣相沈積製程使至少一種如本文所揭示之金屬錯合物與第二金屬錯合物之組合(但未必同時)氣化,該第二金屬錯合物所包含之金屬不同於至少一種本文所揭示金屬錯合物之金屬。 在具體實施例中,利用本發明技術之方法用於諸如以下之應用:於基板(例如矽晶片)上用於記憶體及邏輯應用之動態隨機存取記憶體(DRAM)及互補金屬氧化物半導體(CMOS)。 可使用任一本文所揭示之金屬錯合物來製備元素金屬、金屬氧化物、金屬氮化物及/或金屬矽化物之薄膜。此等膜可用作氧化觸媒、陽極材料(例如,SOFC或LIB陽極)、導電層、感測器、擴散障壁/塗層、超導及非超導材料/塗層、摩擦學塗層及/或保護塗層。熟習此項技術者應理解,膜性質(例如,電導率)將端視多種因素而定,例如用於沈積之金屬、共反應物及/或共錯合物之存在或不存在、所產生膜之厚度、參數以及生長及隨後處理期間所採用之基板。 在熱驅動CVD製程與反應性驅動ALD製程之間存在基本差異。前體性質達成最佳性能之要求變化顯著。在CVD中,清潔熱分解錯合物以將所需物質沈積至基板上至關重要。然而,在ALD中,欲不惜任何代價避免此一熱分解。在ALD中,輸入試劑之間之反應在表面上必須迅速,導致在基板上形成目標材料。然而,在CVD中,物質之間任何此類反應皆係有害的,此乃因其在到達基板之前氣相混合,此可引起顆粒形成。一般而言,眾所周知良好CVD前體不必製得良好ALD前體,此乃因對CVD前體之熱穩定性要求放鬆。在本發明中,式I金屬錯合物具有足夠的熱穩定性及對所選共反應物之反應性以起ALD前體之作用,且其在較高溫度下亦具有清潔分解路徑,以藉助CVD製程形成期望材料。因此,藉由式I所闡述之金屬錯合物可有利地用作可用ALD及CVD前體。 另外,存在於藉由本文所述ALD及CVD方法所產生薄膜中之碳濃度可藉由使用式I金屬錯合物、特別地含鎳錯合物有效地控制。有利地,藉由調節ALD及/或CVD方法期間之溫度,薄膜中碳濃度之量可大範圍增加或減少。通常,應避免薄膜中之碳納入,此乃因其可改變膜之電導率並降低裝置性能。然而,藉由本文所述方法所產生之薄膜(例如,含鎳薄膜)中之較高碳濃度可在某些電子應用中有益地增加性能及薄膜之功能。舉例而言,在CVD期間,可在約50℃至約70℃之溫度下氣化至少一種金屬錯合物(例如,鎳錯合物),從而產生碳濃度為約1 × 1021 個原子/立方公分(原子/cm3 )至約2 × 1022 個原子/cm3 之含金屬膜。或者,在ALD期間,可在約50℃至約70℃之溫度下氣化至少一種金屬錯合物(例如,鎳錯合物),從而產生碳濃度為約5 × 1019 個原子/cm3 至約5 × 1021 個原子/cm3 之含金屬膜。具體而言,在ALD或CVD方法期間,碳濃度可隨溫度降低而增加。 本說明書通篇對「一個實施例」、「某些實施例」、「一或多個實施例」或「實施例」之提及意指結合該實施例闡述之具體特徵、結構、材料或特性包括於本發明技術之至少一個實施例中。因此,諸如「在一或多個實施例中」、「在某些實施例中」、「在一個實施例中」或「在實施例中」之片語在本說明書通篇多處之出現不一定係指本發明技術之相同實施例。另外,在一或多個實施例中,可以任一適宜方式組合具體特徵、結構、材料或特性。 儘管本文中本發明技術已參照具體實施例闡述,但應理解,該等實施例僅說明本發明技術之原理及應用。熟習此項技術者將明瞭,可在不背離本發明技術之精神或範圍的情況下對本發明技術之方法及設備作出各種修改及變化。因此,本發明技術意欲包括在隨附申請專利範圍及其等效內容之範疇內之修改及變化。因此所一般性闡述之本發明技術參照以下實例將更容易地理解,該等實例係以說明方式提供且不意欲具限制性。 本發明此外或另一選擇可包括一或多個以下實施例。 實施例1.一種在結構上對應於下式I之金屬錯合物:
Figure 02_image069
其中M係選自由以下各項組成之群:鎳、鈷、鐵、釕及錳,較佳地M係鎳;且R1 、R2 、R3 、R4 、R5 、R6 、R7 、R8 、R9 及R10 各自獨立地係氫或C1 -C5 -烷基、較佳地氫或C1 -C4 -烷基、更佳地氫、甲基或乙基。 實施例2.如實施例1之金屬錯合物,其中M係選自由以下各項組成之群:鎳、鈷、鐵、釕及錳,較佳地M係鎳;R1 、R2 、R3 、R4 、R5 及R6 各自獨立地係甲基或乙基;且R7 、R8 、R9 及R10 各自獨立地係氫、甲基或乙基,較佳地氫。 實施例3.如實施例1或2之金屬錯合物,其中R1 、R2 、R3 、R4 、R5 及R6 相同。 實施例4.如先前實施例中任一者之金屬錯合物,其中該錯合物係均配的。 實施例5.如先前實施例中任一者之金屬錯合物,其中該錯合物係:
Figure 02_image071
。 實施例6.一種在結構上對應於下式II之金屬錯合物:
Figure 02_image073
其中M係選自由以下各項組成之群:鎳、鈷、鐵、釕及錳,較佳地M係鎳;且R1 、R2 、R3 、R7 及R8 各自獨立地係氫或C1 -C5 -烷基,較佳地氫或C1 -C4 -烷基,更佳地氫、甲基或乙基。 實施例7.如實施例6之金屬錯合物,其中M係選自由以下各項組成之群:鎳、鈷、鐵、釕及錳,較佳地M係鎳;R1 、R2 及R3 各自獨立地係甲基或乙基;且R7 及R8 各自獨立地係氫、甲基或乙基、較佳地氫。 實施例8.如實施例6或7之金屬錯合物,其中R1 、R2 及R3 相同。 實施例9.如實施例6、7或8中任一者之金屬錯合物,其中錯合物係均配的。 實施例10.一種藉由氣相沈積製程形成含金屬膜之方法,該方法包含根據先前實施例中之任一者氣化至少一種金屬錯合物。 實施例11.如實施例10之方法,其中氣相沈積製程係化學氣相沈積,較佳地脈衝化學氣相沈積、連續流動化學氣相沈積及/或液體注入化學氣相沈積。 實施例12.如實施例11之方法,其中在約50℃至約70℃之溫度下氣化至少一種金屬錯合物(較佳地其中M係鎳),且含金屬膜具有約1 × 1021 個原子/立方公分至約2 × 1022 個原子/立方公分之碳濃度。 實施例13.如實施例10之方法,其中氣相沈積製程係原子層沈積,較佳地液體注入原子層沈積或電漿增強之原子層沈積。 實施例14.如實施例13之方法,其中在約50℃至約70℃之溫度下氣化至少一種金屬錯合物(較佳地其中M係鎳),且含金屬膜具有約5 × 1019 個原子/立方公分至約5 × 1021 個原子/立方公分之碳濃度。 實施例15.如實施例10、11、12、13或14中任一者之方法,其中將金屬錯合物以脈衝形式與氧源之脈衝交替遞送至基板,較佳地氧源係選自由以下各項組成之群:H2 O、H2 O2 、O2 、臭氧、空氣、i -PrOH、t -BuOH及N2 O。 實施例16.如實施例10、11、12、13、14或15中任一者之方法,其進一步包含氣化至少一種選自由以下各項組成之群之共反應物:氫、氫電漿、氧、空氣、水、氨、肼、硼烷、矽烷、臭氧及其中任何兩種或更多種之組合,較佳地至少一種共反應物係肼(例如,肼(N2 H4 )、N,N -二甲基肼)。 實施例17.如實施例10、11、12、13、14、15或16中任一者之方法,其中該方法用於DRAM或CMOS應用。 實例 除非另外註明,否則所有合成操作皆係使用用於處置業內眾所周知之空氣敏感材料之技術(例如,舒倫克技術(Schlenk techniques)),在惰性氣氛(例如,純化氮或氬)下實施。實例 1 :錯合物 1 ( -(1- 三甲基矽基烯丙基 ) (II)) (Ni(TMS- 烯丙基 )2 ) 之製備
Figure 02_image075
步驟 1 K- 三甲基矽基烯丙基之製備 向500 mL舒倫克燒瓶裝填烯丙基三甲基矽烷(26.0 g, 230 mmol)及200 mL無水己烷,以形成溶液。將溶液冷卻至-78℃,並在-78℃下逐滴添加正丁基鋰於己烷中之1.6 M溶液(143.75 mL, 230 mmol),以形成反應混合物。反應混合物轉變為淺黃色。在-78℃下攪拌約30分鐘後,使反應混合物升溫至室溫(約18℃至約25℃),並再攪拌4至5小時以形成淺黃色澄清溶液。在N2 下將第三丁醇鉀(33.6 g, 299 mmol)添加至溶液,將其在室溫下攪拌過夜(約6小時至約12小時)。形成淺黃色沈澱物。藉助燒結漏斗在手套箱中過濾沈澱物,藉由戊烷洗滌若干次並乾燥過夜(約6小時至約12小時),且獲得灰白色(淺黃色)產物K-三甲基矽基烯丙基,其中產量為33 g且藉由1 H NMR於C6 D6 中進行表徵。步驟 2 向500 mL舒倫克燒瓶裝填NiBr2 ·1,2-二甲氧基乙烷(10 g, 32.4 mmol)及150 mL無水四氫呋喃(THF)。在-78℃下逐滴添加100 mL K-三甲基矽基烯丙基之THF溶液(10 g, 65.8 mmol),以形成反應混合物。使反應混合物緩慢升溫至室溫(約18℃至約25℃),並在N2 下攪拌過夜(約6小時至約12小時)。去除溶劑後,藉由戊烷萃取殘餘物。去除戊烷生成呈深棕色液體形式之粗產物(7.3 g, 75.5%)。在80℃下且在1.5托下實施粗產物之蒸餾,以產生6 g呈橙色液體形式之Ni(TMS-烯丙基)2 (62.1%)。測定C12 H26 Si2 Ni之元素分析:C,50.54;H,9.19。實驗值:C,47.88;H,8.91。 對Ni(TMS-烯丙基)2 實施熱重分析(TGA),且結果提供於圖1中。TGA數據係在高達600℃下在以10℃/min之加熱速率、在大氣壓下利用N2 作為載體氣體獲得。在填充氬之手套箱內實施TGA取樣以避免空氣接觸。如圖1中所顯示,Ni(TMS-烯丙基)2 展現單一失重(約80%),其在約60℃下開始且在約300℃下結束。實例 2 NiO Ni 膜之 ALD 生長及脈衝 CVD 生長 一般方法 將Ni(TMS-烯丙基)2 在不銹鋼起泡器中加熱至50℃,或在抽蒸氣安瓿中加熱至60℃-70℃,使用氮作為載體氣體將其遞送至ALD/CVD反應器中並藉由ALD或脈衝CVD沈積。在室溫下自氧氣原位生成臭氧(O3 ),並藉助針閥將其遞送至ALD/CVD反應器中作為共反應物。監測O3 濃度並維持在約200 g/m3 。當用於厚度量測(XPS (X-射線光電子光譜法)及SIMS (二次離子質譜術)分析)時,所用基板係:具有14-17Ǻ範圍內厚天然SiO2 層之矽晶片;或當用於電阻率量測時,係約1 kÅ厚之熱SiO2 。在室溫下藉助針閥自不銹鋼安瓿遞送H2 O。藉助針閥自壓縮氣體鋼瓶遞送其他氣態共反應物H2 、NH3 、N2 O或O2 。使用光學橢圓偏光計用沈積態膜進行厚度及光學性質量測,且使用四點探針進行薄片電阻量測。在所選試樣之多個膜厚度下實施XPS及SIMS元素分析。將NiO膜之表面層濺射出或去除後獲得報告之XPS及SIMS數據,以分析實質上不含可因空氣暴露而存在之表面污染物之膜。實例 2a :在 H2 下、在 NH3 下及在無共反應物下之 ALD 生長 使用20 sccm之氮作為載體氣體將Ni(TMS-烯丙基)2 遞送至ALD/CVD反應器中,並自起泡器以脈衝方式輸送5秒、隨後10-20秒吹掃,並在自200℃至275℃之多個溫度下、在沒有共反應物或具有還原氣體H2 或NH3 之5-10秒脈衝下沈積多達280個循環,且隨後使用20 sccm之氮吹掃10-20秒。在卸載之前,在氮吹掃下將沈積態膜在反應器中冷卻至約50℃。沈積厚度高達約580 Å之膜。將生長速率/循環數據繪製在圖1中。獲得具有多個電阻率之導電膜。在250℃下不使用共反應物時,自沈積態膜達成270-920 µΩ-cm範圍內之低電阻率。 如圖1所顯示,Ni(TMS-烯丙基)2 之TGA熱分解溫度係約160℃。實例 2b :在 H2 O 共反應物下之 ALD 生長 使用10-20 sccm之氮作為載體氣體將Ni(TMS-烯丙基)2 遞送至ALD/CVD反應器中,自蒸氣抽出安瓿以脈衝方式輸送1-2秒,隨後吹掃8-15秒,然後1秒H2 O之脈衝及15-17秒吹掃,及在137℃至268℃之溫度下沈積多達400個循環。生長速率/循環在約180℃或更低下幾乎為0且隨沈積溫度增加而迅速增加,此遵循與如圖2中所示無共反應物製程相似之趨勢。藉由XPS分析所選膜以測定其組成,如表格1中所顯示。225℃-沈積膜與246℃-沈積膜之XPS揭示,如藉由其結合能所測定,其主要係Ni金屬,以及一些NiO且≤ 6% Si雜質,但無碳或氮。表格 1 :使用 H2 O 作為共反應物,以 ALD 模式沈積之膜之 XPS 數據
Figure 106130712-A0304-0001
實例 2c :在 N2 O O2 共反應物下之 ALD 生長 使用20 sccm之氮作為載體氣體將Ni(TMS-烯丙基)2 遞送至ALD/CVD反應器中,自起泡器以脈衝方式輸送5秒及隨後11秒吹掃,然後藉助針閥10秒N2 O或O2 之脈衝,吹掃14秒並在175℃下沈積達300個循環。亦將生長速率/循環(約≤ 0.05Å/循環)繪製在圖2中。其與約180℃下之H2 O製程相似,其指示在175℃下由該等氧化劑所致之較小熱分解或最小氧化。實例 2d :在 O3 共反應物下之 ALD 生長 使用20 sccm之氮作為載體氣體將Ni(TMS-烯丙基)2 遞送至ALD/CVD反應器中,自起泡器脈衝5秒並隨後吹掃20-30秒,然後藉助針閥進行臭氧之脈衝10秒,吹掃14秒並在100-225℃下沈積,多達275個循環。將飽和溫度-依賴性生長速率/循環數據繪製於圖3中。觀測到約125℃至約200℃之ALD窗口,其中生長速率幾乎係約1.5 Å/循環之常數,顯著高於來自許多其他Ni前體者(≤1 Å/循環),例如Ni(acac)2 、Ni(thd)2 及Ni(EtCp)2 。參見Varun Sharma, Master Thesis 「Evaluation of Novel Metalorganic Precursors for Atomic Layer Deposition of Nickel-based Thin Films」, Technische Univerisität Dresden, 2015,第15頁。由於前體在ALD/CVD反應器中之接觸時間極短,故ALD窗口之上限高於TGA熱分解溫度(約160℃),且亦與圖1中所顯示Si基板上之熱分解數據一致。 將所選ALD NiO膜之XPS數據繪製於圖4中。自Ni(TMS-烯丙基)2 及臭氧所沈積膜之Ni/O比率隨沈積溫度之變化指示當在100-125℃下沈積時,接近化學計量NiO膜(Ni/O=1)。與沈積溫度具有相反趨勢之膜中具有少量Si及C。如自O3 之降低氧化能力所預計,C濃度隨沈積溫度降低而增加。另一方面,在ALD窗口中NiO中之Si濃度隨溫度升高而上升,且在≥ 225℃下亦高於來自H2 O製程之NiO中所發現者,如表格1中所列示,其中該製程主要係熱分解。實例 2e :脈衝 CVD 在脈衝CVD製程中,使用30 sccm之氮作為載體氣體將Ni(TMS-烯丙基)2 遞送至ALD/CVD反應器中,自起泡器脈衝3秒,隨後在120-220 mTorr分壓下在臭氧之連續流動中吹掃12秒且在60-200℃下沈積多達200次脈衝。使用相同劑量之Ni(TMS-烯丙基)2 之NiO之生長速率隨沈積溫度降低而迅速增加,如圖5中所顯示,其可能係因前體在基板表面上之吸附增加。在60℃下生長速率之下降可能係因在此溫度下Ni(TMS-烯丙基)2 與O3 之間降低之反應性。實例 2f ALDNiO 膜與脈衝 CVD NiO 膜之比較 藉由橢圓偏光術測定藉由ALD及脈衝CVD所沈積之NiO膜在633 nm下折射率n(633)之實部,並在圖6中比較該等值。尤其在較高溫度下之趨勢存在差異。當在ALD窗口內在≥ 125℃下沈積時,ALD NiO膜具有顯著較高之n(633),而脈衝CVD膜之n(633)與ALD製程相比較低且變化較小。如圖7中所顯示之SIMS分析結果揭示ALD NiO與脈衝CVD NiO之間碳濃度之較大差異。 本說明書中所提及之所有公開案、專利申請案、頒發之專利及其他文件在本文中皆以引用方式併入,如同指示每一個別公開案、專利申請案、頒發之專利或其他文件特定地及個別地以引用方式全部併入一般。文中所含以引用方式併入之定義經排除至使得其與本發明中之定義相矛盾之程度。 詞語「包含(comprise、comprises及comprising)」意欲以囊括方式而非以排他方式解釋。
圖1係熱重分析(TGA)數據之圖示,其展現失重%對雙-(1-三甲基矽基烯丙基)鎳(II) (Ni(TMS-烯丙基)2 )之溫度。 圖2圖解說明在沈積Ni(TMS-烯丙基)2 時,ALD生長速率/循環在無共反應物下及在多種還原及氧化共反應物下對沈積溫度之依賴性。 圖3圖解說明自Ni(TMS-烯丙基)2 與臭氧所沈積之ALD生長之NiO膜之生長速率對沈積溫度之依賴性。 圖4圖解說明自Ni(TMS-烯丙基)2 與臭氧沈積之ALD所生長NiO膜之化學組成對沈積溫度之依賴性。 圖5圖解說明自Ni(TMS-烯丙基)2 與臭氧沈積之脈衝CVD所生長NiO膜之平均生長速率對沈積溫度之依賴性。 圖6圖解說明自Ni(TMS-烯丙基)2 沈積之ALD NiO膜及脈衝CVD NiO膜之折射率之實部隨沈積溫度變化之比較。 圖7圖解說明由SIMS分析所得之自Ni(TMS-烯丙基)2 沈積之ALD NiO膜及脈衝CVD NiO膜中之碳濃度隨沈積溫度變化之比較。
Figure 106130712-A0101-11-0001-1

Claims (37)

  1. 一種金屬錯合物,其在結構上對應於式I:
    Figure 106130712-A0305-02-0032-1
    其中M係選自由以下各項組成之群:鎳、鈷、鐵、釕及錳;且R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫或C1-C5-烷基。
  2. 如請求項1之金屬錯合物,其中R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫或C1-C4-烷基。
  3. 如請求項1之金屬錯合物,其中R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫、甲基或乙基。
  4. 如請求項1之金屬錯合物,其中R1、R2、R3、R4、R5及R6各自獨立地係甲基或乙基;且R7、R8、R9及R10各自獨立地係氫、甲基或乙基。
  5. 如請求項1之金屬錯合物,其中R1、R2、R3、R4、R5及R6各自獨立地係甲基或乙基;且R7、R8、R9及R10各自獨立地係氫。
  6. 如請求項1之金屬錯合物,其中M係鎳;且R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫或C1-C4-烷基。
  7. 如請求項1之金屬錯合物,其中M係鎳;且R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫、甲基或乙基。
  8. 如請求項1之金屬錯合物,其中M係鎳;R1、R2、R3、R4、R5及R6各自獨立地係甲基或乙基;且R7、R8、R9及R10各自獨立地係氫。
  9. 如請求項1至8中任一項之金屬錯合物,其中R1、R2、R3、R4、R5及R6係相同。
  10. 如請求項1至8中任一項之金屬錯合物,其中該錯合物係均配的。
  11. 如請求項1至8中任一項之金屬錯合物,其中該錯合物係:
    Figure 106130712-A0305-02-0033-3
  12. 一種藉由氣相沈積製程形成含金屬膜之方法,該方法包含氣化至少一種金屬錯合物及將該至少一種金屬錯合物遞送至基板表面,其中該至少一種金屬錯合物在結構上對應於式I之金屬錯合物:
    Figure 106130712-A0305-02-0034-2
    其中M係選自由以下各項組成之群:鎳、鈷、鐵、釕及錳;且R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫或C1-C5-烷基。
  13. 如請求項12之方法,其中R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫或C1-C4-烷基。
  14. 如請求項12之方法,其中R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫、甲基或乙基。
  15. 如請求項12之方法,其中R1、R2、R3、R4、R5及R6各自獨立地係甲 基或乙基;且R7、R8、R9及R10各自獨立地係氫、甲基或乙基。
  16. 如請求項12之方法,其中R1、R2、R3、R4、R5及R6各自獨立地係甲基或乙基;且R7、R8、R9及R10各自獨立地係氫。
  17. 如請求項12之方法,其中M係鎳;且R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫或C1-C4-烷基。
  18. 如請求項12之方法,其中M係鎳;且R1、R2、R3、R4、R5、R6、R7、R8、R9及R10各自獨立地係氫、甲基或乙基。
  19. 如請求項12之方法,其中M係鎳;R1、R2、R3、R4、R5及R6各自獨立地係甲基或乙基;且R7、R8、R9及R10各自獨立地係氫。
  20. 如請求項12之方法,其中R1、R2、R3、R4、R5及R6係相同。
  21. 如請求項12之方法,其中該錯合物係均配的。
  22. 如請求項12之方法,其中該錯合物係:
    Figure 106130712-A0305-02-0035-4
  23. 如請求項12至22中任一項之方法,其中該氣相沈積製程係化學氣相沈積。
  24. 如請求項23之方法,其中該化學氣相沈積係脈衝化學氣相沈積或連續流動化學氣相沈積。
  25. 如請求項23之方法,其中該化學氣相沈積係液體注入化學氣相沈積。
  26. 如請求項23之方法,其中在50℃至70℃之溫度下氣化該至少一種金屬錯合物,且該含金屬膜具有1×1021個原子/立方公分至2×1022個原子/立方公分之碳濃度。
  27. 如請求項26之方法,其中M係鎳。
  28. 如請求項12至22中任一項之方法,其中該氣相沈積製程係原子層沈積。
  29. 如請求項28之方法,其中該原子層沈積係液體注入原子層沈積或電漿增強之原子層沈積。
  30. 如請求項28之方法,其中在50℃至70℃之溫度下氣化該至少一種金 屬錯合物,且該含金屬膜具有5×1019個原子/立方公分至5×1021個原子/立方公分之碳濃度。
  31. 如請求項30之方法,其中M係鎳。
  32. 如請求項12至22中任一項之方法,其中將該金屬錯合物以脈衝形式與氧源之脈衝交替遞送至基板。
  33. 如請求項32之方法,其中該氧源係選自由以下各項組成之群:H2O、H2O2、O2、臭氧、空氣、i-PrOH、t-BuOH及N2O。
  34. 如請求項12至22中任一項之方法,其進一步包含氣化至少一種選自由以下各項組成之群之共反應物:氫、氫電漿、氧、空氣、水、氨、肼、硼烷、矽烷、臭氧及其任何兩種或更多種之組合。
  35. 如請求項34之方法,其中該至少一種共反應物係肼。
  36. 如請求項35之方法,其中該肼係肼(N2H4)或N,N-二甲基肼。
  37. 如請求項12至22中任一項之方法,其中該方法係用於DRAM或CMOS應用。
TW106130712A 2016-09-09 2017-09-08 含有烯丙基配位體之金屬錯合物 TWI727091B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662385356P 2016-09-09 2016-09-09
US62/385,356 2016-09-09

Publications (2)

Publication Number Publication Date
TW201819394A TW201819394A (zh) 2018-06-01
TWI727091B true TWI727091B (zh) 2021-05-11

Family

ID=59811301

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106130712A TWI727091B (zh) 2016-09-09 2017-09-08 含有烯丙基配位體之金屬錯合物

Country Status (8)

Country Link
US (1) US10723749B2 (zh)
EP (1) EP3510038B1 (zh)
JP (2) JP6773896B2 (zh)
KR (1) KR102030104B1 (zh)
CN (1) CN109803974B (zh)
IL (1) IL265052B (zh)
TW (1) TWI727091B (zh)
WO (1) WO2018046391A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102030104B1 (ko) * 2016-09-09 2019-10-08 메르크 파텐트 게엠베하 알릴 리간드를 포함하는 금속 착화합물
TWI745704B (zh) * 2019-06-21 2021-11-11 國立陽明交通大學 氧化鎳晶片、其製備方法及用途
JP7259609B2 (ja) * 2019-07-17 2023-04-18 株式会社デンソー 半導体装置
KR20210034953A (ko) * 2019-09-23 2021-03-31 삼성전자주식회사 발광소자, 발광소자의 제조 방법과 표시 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240190A1 (en) * 2002-12-03 2006-10-26 Jsr Corporation Ruthenium compound and process for producing a metal ruthenium film
US20100286423A1 (en) * 2007-12-25 2010-11-11 Showa Denko K.K. Nickel-containing film-forming material and process for producing nickel-containing film
US20140030436A1 (en) * 2012-07-25 2014-01-30 Applied Materials, Inc. Methods for Producing Nickel-Containing Films

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07107190B2 (ja) 1984-03-30 1995-11-15 キヤノン株式会社 光化学気相成長方法
KR101159073B1 (ko) * 2005-09-23 2012-06-25 삼성전자주식회사 새로운 유기금속 전구체 물질 및 이를 이용한 금속박막의제조방법
US20130168614A1 (en) * 2011-12-29 2013-07-04 L'Air Liquide Société Anonyme pour ''Etude et l'Exploitation des Procédés Georges Claude Nickel allyl amidinate precursors for deposition of nickel-containing films
WO2015065823A1 (en) * 2013-10-28 2015-05-07 Sigma-Aldrich Co. Llc Metal complexes containing amidoimine ligands
JP6471371B2 (ja) * 2014-03-13 2019-02-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung モリブデンシルシクロペンタジエニル錯体、シリルアリル錯体、及び、薄膜堆積におけるその使用
KR102030104B1 (ko) * 2016-09-09 2019-10-08 메르크 파텐트 게엠베하 알릴 리간드를 포함하는 금속 착화합물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240190A1 (en) * 2002-12-03 2006-10-26 Jsr Corporation Ruthenium compound and process for producing a metal ruthenium film
US20100286423A1 (en) * 2007-12-25 2010-11-11 Showa Denko K.K. Nickel-containing film-forming material and process for producing nickel-containing film
US20140030436A1 (en) * 2012-07-25 2014-01-30 Applied Materials, Inc. Methods for Producing Nickel-Containing Films

Also Published As

Publication number Publication date
CN109803974A (zh) 2019-05-24
EP3510038A1 (en) 2019-07-17
US10723749B2 (en) 2020-07-28
WO2018046391A1 (en) 2018-03-15
US20190359640A1 (en) 2019-11-28
JP2019529403A (ja) 2019-10-17
CN109803974B (zh) 2023-04-14
JP6773896B2 (ja) 2020-10-21
TW201819394A (zh) 2018-06-01
IL265052B (en) 2021-02-28
EP3510038B1 (en) 2021-02-17
JP2020189841A (ja) 2020-11-26
KR102030104B1 (ko) 2019-10-08
KR20190040354A (ko) 2019-04-17
IL265052A (en) 2019-03-31

Similar Documents

Publication Publication Date Title
US10914001B2 (en) Volatile dihydropyrazinly and dihydropyrazine metal complexes
TWI660958B (zh) 鉬矽烷基環戊二烯基及矽烷基烯丙基錯合物及彼等於薄膜沉積之用途
TWI727091B (zh) 含有烯丙基配位體之金屬錯合物
KR102638657B1 (ko) 사이클로펜타디에닐 리간드를 포함하는 금속 착화합물
KR100900272B1 (ko) 금속 박막 또는 세라믹 박막 증착용 유기 금속 전구체 화합물 및 이를 이용한 박막 제조 방법
WO2018086730A9 (en) Metal complexes containing cyclopentadienyl ligands
KR20210031492A (ko) 금속 또는 반금속-함유 필름의 제조 방법
KR20160062675A (ko) 신규 니켈-비스베타케토이미네이트 전구체 및 이를 이용한 니켈 함유 필름 증착방법