TW201712882A - P-type impurity diffusing composition, method for producing semiconductor element using same, and method for manufacturing solar cell - Google Patents

P-type impurity diffusing composition, method for producing semiconductor element using same, and method for manufacturing solar cell Download PDF

Info

Publication number
TW201712882A
TW201712882A TW105131132A TW105131132A TW201712882A TW 201712882 A TW201712882 A TW 201712882A TW 105131132 A TW105131132 A TW 105131132A TW 105131132 A TW105131132 A TW 105131132A TW 201712882 A TW201712882 A TW 201712882A
Authority
TW
Taiwan
Prior art keywords
type impurity
impurity diffusion
group
carbon atoms
diffusion composition
Prior art date
Application number
TW105131132A
Other languages
Chinese (zh)
Other versions
TWI699006B (en
Inventor
Tsuyoshi Kitada
Sachio Inaba
Yoshihiro Ikegami
Original Assignee
Toray Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries filed Critical Toray Industries
Publication of TW201712882A publication Critical patent/TW201712882A/en
Application granted granted Critical
Publication of TWI699006B publication Critical patent/TWI699006B/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The purpose of the present invention is to provide a p-type impurity diffusing composition which exhibits excellent diffusibility into semiconductor substrates, while having sufficient barrier properties against n-type impurities. In order to achieve the above-described purpose, the present invention has the following configuration. Namely, a p-type impurity diffusing composition which contains (A) a polysiloxane and (B) a p-type impurity diffusing component having an Si-O-B bond.

Description

p型不純物擴散組成物、使用其的半導體元件的製造方法及太陽電池的製造方法P-type impurity diffusion composition, method for producing semiconductor device using the same, and method for manufacturing solar cell

本發明是有關於一種用以在半導體基板中使不純物擴散的p型不純物擴散組成物、使用其的半導體元件的製造方法及太陽電池的製造方法。The present invention relates to a p-type impurity diffusion composition for diffusing impurities in a semiconductor substrate, a method for producing a semiconductor device using the same, and a method for producing a solar cell.

先前,作為在半導體基板中形成p型或n型的不純物擴散層的方法,已知有使用三溴化硼(BBr3 )作為p型不純物擴散成分且使用磷醯氯(phosphoryl chloride)(POCl3 )作為n型不純物擴散成分,並使其單個地進行氣體擴散的方法。且說,近年來,於太陽電池的製造中,為了提高生產效率等,要求一種使p型不純物擴散成分與n型不純物擴散成分同時擴散至半導體基板中而形成p型不純物擴散層及n型不純物擴散層的技術。相對於此種技術而言,無法應用所述的氣體擴散法。Previously, as a method of forming a p-type or n-type impurity diffusion layer in a semiconductor substrate, it was known to use boron tribromide (BBr 3 ) as a p-type impurity diffusion component and to use phosphoryl chloride (POCl 3 ). A method of diffusing a n-type impurity as a component and allowing the gas to diffuse individually. In recent years, in the manufacture of solar cells, in order to improve production efficiency and the like, it is required to simultaneously diffuse a p-type impurity diffusion component and an n-type impurity diffusion component into a semiconductor substrate to form a p-type impurity diffusion layer and an n-type impurity diffusion. Layer technology. The gas diffusion method described above cannot be applied with respect to such a technique.

相對於此,研究一種利用印刷方式等在半導體基板上進行不純物擴散源的圖案形成而自不純物擴散源藉由熱擴散使不純物擴散至半導體基板中的固相擴散法的應用。例如,於專利文獻1中揭示有如下方法,即,於半導體基板的表面形成第1不純物擴散劑層並進行煅燒後,形成第2不純物擴散劑層,以比煅燒溫度高的溫度對半導體基板進行加熱,並使第1不純物成分與第2不純物成分同時擴散至半導體基板。 [現有技術文獻] [專利文獻]On the other hand, an application of a solid phase diffusion method in which a pattern of an impurity diffusion source is formed on a semiconductor substrate by a printing method or the like, and impurities are diffused into a semiconductor substrate by thermal diffusion from an impurity diffusion source has been studied. For example, Patent Document 1 discloses a method in which a first impurity diffusing agent layer is formed on a surface of a semiconductor substrate and fired, and then a second impurity diffusing agent layer is formed, and the semiconductor substrate is heated at a temperature higher than a firing temperature. The first impurity component and the second impurity component are simultaneously diffused to the semiconductor substrate by heating. [Prior Art Document] [Patent Literature]

[專利文獻1]日本專利特開2014-42001號公報[Patent Document 1] Japanese Patent Laid-Open No. 2014-42001

[發明所欲解決之課題] 然而,現有的不純物擴散組成物中,於在半導體基板上對p型及n型的不純物擴散源進行圖案形成後同時進行熱擴散的情況下,有時n型不純物(例如,磷元素)混入至p型不純物擴散區域。而且,藉此有可能引起發電效率的降低,故要求防止此種混入。[Problems to be Solved by the Invention] However, in the conventional impurity diffusion composition, when p-type and n-type impurity diffusion sources are patterned on a semiconductor substrate and then thermally diffused, n-type impurities may be present. (for example, phosphorus element) is mixed into the p-type impurity diffusion region. Further, there is a possibility that the power generation efficiency is lowered, and it is required to prevent such mixing.

本發明是基於如上所述的情況而完成,其目的在於提供一種具有對半導體基板的優異的擴散性與相對於n型不純物的充分的阻擋性的p型不純物擴散組成物。 [解決課題之手段]The present invention has been made in view of the above circumstances, and an object thereof is to provide a p-type impurity diffusion composition having excellent diffusibility to a semiconductor substrate and sufficient barrier property against an n-type impurity. [Means for solving the problem]

為了解決所述課題,本發明的p型不純物擴散組成物具有以下構成。即,一種p型不純物擴散組成物,其含有(A)聚矽氧烷及(B)具有Si-O-B鍵的p型不純物擴散成分。 [發明的效果]In order to solve the above problems, the p-type impurity diffusion composition of the present invention has the following constitution. That is, a p-type impurity diffusion composition containing (A) a polysiloxane and (B) a p-type impurity diffusion component having a Si-O-B bond. [Effects of the Invention]

根據本發明,可提供一種對半導體基板的p型不純物的擴散性與相對於n型不純物的阻擋性優異的p型不純物擴散組成物。According to the present invention, it is possible to provide a p-type impurity diffusion composition which is excellent in diffusibility of a p-type impurity of a semiconductor substrate and barrier property against an n-type impurity.

本發明的p型不純物擴散組成物含有(A)聚矽氧烷及(B)具有Si-O-B鍵的p型不純物擴散成分。The p-type impurity diffusion composition of the present invention contains (A) a polysiloxane and (B) a p-type impurity diffusion component having a Si-O-B bond.

本發明的p型不純物擴散組成物被用作用以於半導體基板形成p型不純物區域的p型不純物擴散源。此時,另外即便將n型不純物擴散源設於相同的半導體基板而使p型不純物與n型不純物同時擴散(以下,當簡稱為「同時擴散」時,是指使p型不純物與n型不純物同時擴散至半導體基板中。且所謂「同時」是指「於一個步驟」)至半導體基板中,亦有可能不使n型不純物混入至p型不純物區域。其原因在於:本發明的p型不純物擴散組成物含有聚矽氧烷,其理由如以下般考慮。The p-type impurity diffusion composition of the present invention is used as a p-type impurity diffusion source for forming a p-type impurity region on a semiconductor substrate. In this case, even if the n-type impurity diffusion source is provided on the same semiconductor substrate, the p-type impurity and the n-type impurity are simultaneously diffused (hereinafter, simply referred to as "simultaneous diffusion", it means that both the p-type impurity and the n-type impurity are simultaneously Diffusion into the semiconductor substrate. The term "simultaneously" means "in one step" to the semiconductor substrate, and it is also possible that the n-type impurity is not mixed into the p-type impurity region. The reason for this is that the p-type impurity diffusion composition of the present invention contains polyoxyalkylene, and the reason is as follows.

認為n型不純物混入至p型不純物區域的一個主要原因為:自n型不純物擴散源放出至大氣中的n型不純物混入至p型不純物擴散源,其藉由固相擴散而擴散至p型不純物擴散源正下方的p型不純物區域。本發明的p型不純物擴散組成物中所含的聚矽氧烷相對於n型不純物具有高的阻擋性,故認為可防止n型不純物混入至p型不純物擴散源。One of the main reasons for the incorporation of n-type impurities into the p-type impurity region is that n-type impurities released from the n-type impurity diffusion source into the atmosphere are mixed into the p-type impurity diffusion source, which diffuses to the p-type impurity by solid phase diffusion. A p-type impurity region directly below the diffusion source. The polyoxyalkylene oxide contained in the p-type impurity diffusion composition of the present invention has high barrier property with respect to the n-type impurity, and it is considered that the incorporation of the n-type impurity into the p-type impurity diffusion source can be prevented.

如此,本發明的p型不純物擴散組成物於進行同時擴散的情況下亦可較佳地利用,當然,並不限於此種情況,可應用於將p型不純物擴散的通常情況。As described above, the p-type impurity diffusion composition of the present invention can be preferably used in the case of simultaneous diffusion. Of course, it is not limited to this case, and can be applied to a general case in which a p-type impurity is diffused.

另外,本發明的p型不純物擴散組成物藉由含有聚矽氧烷,可形成均勻的膜,獲得均勻的擴散。Further, the p-type impurity diffusion composition of the present invention can form a uniform film by containing a polyoxyalkylene to obtain uniform diffusion.

(A)聚矽氧烷 本發明中所使用的聚矽氧烷並無特別限定,較佳為使用藉由有機矽烷的縮聚而獲得的聚矽氧烷。(A) Polyoxyalkylene The polyoxyalkylene to be used in the invention is not particularly limited, and a polyoxyalkylene obtained by polycondensation of an organic decane is preferably used.

另外,聚矽氧烷的末端基為氫原子、羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基的任一者。Further, the terminal group of the polyoxyalkylene is a hydrogen atom, a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a decyloxy group having 1 to 6 carbon atoms, and a carbon number of 2 to 10. Any of the alkenyl groups.

本發明中的碳數是表示亦包括進而取代在該基上的基在內的合計的碳數。例如,經甲氧基取代的丁基的碳數為5。The carbon number in the present invention means the total carbon number which also includes the base substituted on the base. For example, the methoxy-substituted butyl has a carbon number of 5.

本發明的p型不純物擴散組成物尤佳為(A)聚矽氧烷是以下述通式(1)所表示。The p-type impurity diffusion composition of the present invention is particularly preferably (A) polyoxyalkylene represented by the following formula (1).

[化1] [Chemical 1]

式中,R1 表示碳數6~15的芳基,多個R1 可分別相同亦可不同。In the formula, R 1 represents an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 's may be the same or different.

R2 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基、碳數6~15的芳基的任一者,多個R2 可分別相同亦可不同。R 2 represents a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nonyloxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aromatic group having 6 to 15 carbon atoms. Any one of the groups may have the same or different R 2 .

R3 及R4 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基的任一者,多個R3 及R4 可分別相同亦可不同。R 3 and R 4 each represent a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nonyloxy group having 1 to 6 carbon atoms, and an alkenyl group having 2 to 10 carbon atoms. A plurality of R 3 and R 4 may be the same or different.

其中,R2 ~R4 中的羥基、碳數1~6的烷氧基、碳數1~6的醯氧基可與另外的R2 ~R4 中的羥基、碳數1~6的烷氧基、碳數1~6的醯氧基的任一者形成縮合的交聯結構。Here, the hydroxyl group in R 2 to R 4 , the alkoxy group having 1 to 6 carbon atoms, the decyloxy group having 1 to 6 carbon atoms, and the other hydroxyl group in R 2 to R 4 and the alkyl group having 1 to 6 carbon atoms Any of an oxy group and a decyloxy group having 1 to 6 carbon atoms forms a condensed crosslinked structure.

X表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基、碳數6~15的芳基的任一者,Y表示氫原子、碳數1~6的烷基、碳數1~6的醯基的任一者。X represents a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nonyloxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. Any one of Y represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a fluorenyl group having 1 to 6 carbon atoms.

n:m=95:5~25:75。n及m表示通式(1)中的各括弧內的成分的構成比率(%),且n+m=100。n: m = 95: 5 to 25: 75. n and m represent the composition ratio (%) of the components in each parenthesis in the general formula (1), and n + m = 100.

通式(1)所表示的聚矽氧烷可為嵌段共聚物,亦可為無規共聚物。The polyoxyalkylene represented by the formula (1) may be a block copolymer or a random copolymer.

藉由n為25以上,即在聚矽氧烷中包含以Si原子換算為25莫耳%以上的含有碳數6~15的芳基的單元,聚矽氧烷骨架彼此的交聯密度不會變得過高,即便為厚膜,龜裂(crack)亦進一步得到抑制。藉此,在煅燒、熱擴散步驟中變得不易產生龜裂,因此於同時擴散時可提高相對於其他不純物的阻擋性,並且可提高不純物擴散的穩定性。When n is 25 or more, that is, a unit containing a aryl group having 6 to 15 carbon atoms in terms of Si atom in terms of Si atom, the crosslinking density of the polyoxyalkylene skeletons is not It becomes too high, and even if it is a thick film, crack is further suppressed. Thereby, cracking is less likely to occur in the calcination and thermal diffusion steps, so that the barrier property against other impurities can be improved at the time of simultaneous diffusion, and the stability of diffusion of impurities can be improved.

另一方面,藉由n為95以下,即聚矽氧烷中的含有碳數6~15的芳基的單元以Si原子換算為95莫耳%以下,可去除擴散後的剝離殘渣。認為殘渣是有機物未完全分解·揮發而殘留的碳化物,不僅會阻礙擴散性,而且成為使與其後形成的電極的接觸電阻上升、使太陽電池的效率降低的原因。若含有碳數6~15的芳基的單元超過95莫耳%,則認為在有機成分完全分解·揮發之前組成物膜變得過於緻密而變得容易產生殘渣。On the other hand, a unit having n of 95 or less, that is, a unit having an aryl group having 6 to 15 carbon atoms in the polyaluminoxane is 95 mol% or less in terms of Si atom, and the peeling residue after diffusion can be removed. It is considered that the residue is a carbide which is not completely decomposed and volatilized by the organic matter, and not only hinders the diffusibility, but also increases the contact resistance of the electrode formed later and causes the efficiency of the solar cell to decrease. When the unit containing an aryl group having 6 to 15 carbon atoms exceeds 95 mol%, it is considered that the composition film becomes too dense and the residue is likely to be generated before the organic component is completely decomposed and volatilized.

於通式(1)所表示的聚矽氧烷的構成單元具有使四官能性或三官能性的有機矽烷縮聚而獲得的結構的情況下,R2 ~R4 中的羥基、碳數1~6的烷氧基、碳數1~6的醯氧基可與另外的R2 ~R4 中的羥基、碳數1~6的烷氧基、碳數1~6的醯氧基的任一者形成交聯結構。When the structural unit of the polyoxyalkylene represented by the formula (1) has a structure obtained by polycondensing a tetrafunctional or trifunctional organodecane, the hydroxyl group in R 2 to R 4 and the carbon number 1 to The alkoxy group of 6 or the decyloxy group having 1 to 6 carbon atoms may be any one of a hydroxyl group in the other R 2 to R 4 , an alkoxy group having 1 to 6 carbon atoms, or a decyloxy group having 1 to 6 carbon atoms. The person forms a crosslinked structure.

為了形成阻擋性更高的膜,本發明的p型不純物擴散組成物較佳為R2 及R4 表示羥基、碳數1~6的烷氧基或碳數1~6的醯氧基的任一者,R3 表示碳數1~4的烷基或碳數2~4的烯基。即,聚矽氧烷的構成單元較佳為包含使所有三官能性的有機矽烷縮聚而獲得的結構。In order to form a film having a higher barrier property, the p-type impurity diffusion composition of the present invention preferably has any of R 2 and R 4 represents a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms or a decyloxy group having 1 to 6 carbon atoms. In one case, R 3 represents an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 4 carbon atoms. That is, the constituent unit of the polyoxyalkylene preferably has a structure obtained by polycondensing all trifunctional organic decane.

就進一步提高相對於同時擴散時的其他不純物的阻擋性及p型不純物的擴散穩定性的觀點而言,p型不純物擴散組成物中所含的聚矽氧烷中的含有碳數6~15的芳基的單元更佳為35莫耳%以上,進而較佳為40莫耳%以上。另外,為了不受環境或膜厚的影響,不產生殘渣,較佳為含有碳數6~15的芳基的單元為80莫耳%以下。即,本發明的p型不純物擴散組成物尤佳為n:m=80:20~40:60。The polypyroxyne contained in the p-type impurity diffusion composition contains a carbon number of 6 to 15 from the viewpoint of further improving the barrier property against the other impurities at the time of simultaneous diffusion and the diffusion stability of the p-type impurity. The unit of the aryl group is more preferably 35 mol% or more, and still more preferably 40 mol% or more. Further, in order not to be affected by the environment or the film thickness, no residue is generated, and it is preferable that the unit containing an aryl group having 6 to 15 carbon atoms is 80 mol% or less. That is, the p-type impurity diffusion composition of the present invention is particularly preferably n: m = 80: 20 to 40: 60.

通式(1)的R1 及R2 中的碳數6~15的芳基可為未經取代物、經取代物的任一者,可根據組成物的特性進行選擇。碳數6~15的芳基的具體例可列舉:苯基、對甲苯基、間甲苯基、鄰甲苯基、對羥基苯基、對苯乙烯基、對甲氧基苯基、萘基,尤佳為苯基、對甲苯基、間甲苯基。The aryl group having 6 to 15 carbon atoms in R 1 and R 2 in the formula (1) may be either an unsubstituted or substituted group, and may be selected depending on the properties of the composition. Specific examples of the aryl group having 6 to 15 carbon atoms include a phenyl group, a p-tolyl group, an m-tolyl group, an o-tolyl group, a p-hydroxyphenyl group, a p-styryl group, a p-methoxyphenyl group, and a naphthyl group. Preferred is phenyl, p-tolyl, m-tolyl.

通式(1)的R2 ~R4 中的碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基及碳數2~10的烯基均可為未經取代物、經取代物的任一者,可根據組成物的特性進行選擇。The alkyl group having 1 to 6 carbon atoms, the alkoxy group having 1 to 6 carbon atoms, the decyloxy group having 1 to 6 carbon atoms and the alkenyl group having 2 to 10 carbon atoms in R 2 to R 4 in the formula (1) Any of the unsubstituted or substituted substances can be selected depending on the characteristics of the composition.

碳數1~6的烷基的具體例可列舉:甲基、乙基、正丙基、異丙基、正丁基、第三丁基、正己基、三氟甲基、3,3,3-三氟丙基、3-甲氧基正丙基、縮水甘油基、3-縮水甘油氧基丙基、3-胺基丙基、3-巰基丙基、3-異氰酸酯基丙基,就殘渣的方面而言,較佳為碳數4以下的甲基、乙基、正丙基、異丙基、正丁基、第三丁基。Specific examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-hexyl group, trifluoromethyl group, and 3,3,3. -Trifluoropropyl, 3-methoxy-n-propyl, glycidyl, 3-glycidoxypropyl, 3-aminopropyl, 3-mercaptopropyl, 3-isocyanatepropyl, as a residue On the other hand, a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, and a t-butyl group having a carbon number of 4 or less are preferable.

碳數1~6的烷氧基的具體例可列舉:甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、第三丁氧基。Specific examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a n-propoxy group, an isopropoxy group, a n-butoxy group, and a third butoxy group.

碳數1~6的醯氧基的具體例可列舉:乙醯氧基、丙醯氧基、丙烯醯氧基、苯甲醯氧基。Specific examples of the decyloxy group having 1 to 6 carbon atoms include an ethoxycarbonyl group, a propenyloxy group, an acryloxy group, and a benzamidine group.

碳數2~10的烯基的具體例可列舉:乙烯基、1-丙烯基、1-丁烯基、2-甲基-1-丙烯基、1,3-丁二烯基、3-甲氧基-1-丙烯基、3-丙烯醯氧基丙基、3-甲基丙烯醯氧基丙基,就殘渣的方面而言,尤佳為碳數4以下的乙烯基、1-丙烯基、1-丁烯基、2-甲基-1-丙烯基、1,3-丁二烯基、3-甲氧基-1-丙烯基。Specific examples of the alkenyl group having 2 to 10 carbon atoms include a vinyl group, a 1-propenyl group, a 1-butenyl group, a 2-methyl-1-propenyl group, a 1,3-butadienyl group, and a 3-methyl group. Oxy-1-propenyl, 3-propenyloxypropyl, 3-methylpropenyloxypropyl, in terms of residue, vinyl or 1-propenyl having a carbon number of 4 or less is particularly preferable. , 1-butenyl, 2-methyl-1-propenyl, 1,3-butadienyl, 3-methoxy-1-propenyl.

成為通式(1)的具有R1 及R2 的單元的原料的有機矽烷的較佳的具體例可列舉:苯基三甲氧基矽烷、苯基三乙氧基矽烷、對羥基苯基三甲氧基矽烷、對甲苯基三甲氧基矽烷、對苯乙烯基三甲氧基矽烷、對甲氧基苯基三甲氧基矽烷、1-萘基三甲氧基矽烷、2-萘基三甲氧基矽烷、1-萘基三乙氧基矽烷、2-萘基三乙氧基矽烷。其中,尤佳為苯基三甲氧基矽烷、對甲苯基三甲氧基矽烷、對甲氧基苯基三甲氧基矽烷。Preferable specific examples of the organic decane which is a raw material of the unit of the formula (1) having R 1 and R 2 include phenyltrimethoxydecane, phenyltriethoxydecane, and p-hydroxyphenyltrimethoxy. Basear, p-tolyltrimethoxydecane, p-styryltrimethoxydecane, p-methoxyphenyltrimethoxydecane, 1-naphthyltrimethoxynonane, 2-naphthyltrimethoxydecane, 1 -naphthyltriethoxydecane, 2-naphthyltriethoxydecane. Among them, phenyltrimethoxydecane, p-tolyltrimethoxydecane, and p-methoxyphenyltrimethoxydecane are particularly preferable.

成為通式(1)的具有R3 及R4 的單元的原料的有機矽烷的具體例可列舉:四甲氧基矽烷、四乙氧基矽烷、四乙醯氧基矽烷等四官能性有機矽烷;甲基三甲氧基矽烷、甲基三乙氧基矽烷、甲基三異丙氧基矽烷、甲基三正丁氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、乙基三異丙氧基矽烷、乙基三正丁氧基矽烷、正丙基三甲氧基矽烷、正丙基三乙氧基矽烷、正丁基三甲氧基矽烷、正丁基三乙氧基矽烷、縮水甘油基三甲氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、三氟甲基三甲氧基矽烷、三氟甲基三乙氧基矽烷、3,3,3-三氟丙基三甲氧基矽烷、3-胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、3-巰基丙基三甲氧基矽烷等三官能性有機矽烷;二甲基二甲氧基矽烷、二甲基二乙氧基矽烷、二甲基二乙醯氧基矽烷、二(正丁基)二甲氧基矽烷等二官能性有機矽烷。再者,該些有機矽烷可單獨使用,亦可組合兩種以上使用。該些有機矽烷中,就膜的緻密性、抗龜裂性、殘渣及硬化速度的方面而言,可較佳地使用三官能性有機矽烷。Specific examples of the organodecane which is a raw material of the unit having R 3 and R 4 in the formula (1) include tetrafunctional organodecane such as tetramethoxynonane, tetraethoxydecane or tetraethoxydecane. ; methyl trimethoxy decane, methyl triethoxy decane, methyl triisopropoxy decane, methyl tri-n-butoxy decane, ethyl trimethoxy decane, ethyl triethoxy decane, B Triisopropoxy decane, ethyl tri-n-butoxy decane, n-propyl trimethoxy decane, n-propyl triethoxy decane, n-butyl trimethoxy decane, n-butyl triethoxy decane , glycidyl trimethoxy decane, vinyl trimethoxy decane, vinyl triethoxy decane, trifluoromethyl trimethoxy decane, trifluoromethyl triethoxy decane, 3, 3, 3-three Trifunctional organodecane such as fluoropropyltrimethoxydecane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 3-mercaptopropyltrimethoxydecane; dimethyl Dimethoxydecane, dimethyldiethoxydecane, dimethyldiethoxydecane, di(n-butyl)dimethoxydecane, etc. Possibility of organosilane. Further, the organic decane may be used singly or in combination of two or more. Among these organic decanes, trifunctional organodecane can be preferably used in terms of film compactness, crack resistance, residue and curing rate.

通式(1)所表示的聚矽氧烷可藉由如下方式而獲得:將有機矽烷水解後,使該水解物在溶媒的存在下、或無溶媒下進行縮聚反應。水解反應的各種條件,例如酸濃度、反應溫度、反應時間等可考慮反應規模、反應容器的大小、形狀等而適宜設定,例如較佳為在溶媒中歷時1分鐘~180分鐘對有機矽烷添加酸觸媒及水後,在室溫~110℃下反應1分鐘~180分鐘。藉由在此種條件下進行水解反應,可抑制急遽的反應。The polyoxyalkylene represented by the formula (1) can be obtained by hydrolyzing the organodecane, and then subjecting the hydrolyzate to a polycondensation reaction in the presence of a solvent or without a solvent. The various conditions of the hydrolysis reaction, such as the acid concentration, the reaction temperature, the reaction time, and the like, may be appropriately set in consideration of the reaction scale, the size and shape of the reaction vessel, and the like. For example, it is preferred to add an acid to the organic decane in the solvent for 1 minute to 180 minutes. After the catalyst and water, the reaction is carried out at room temperature to 110 ° C for 1 minute to 180 minutes. By carrying out the hydrolysis reaction under such conditions, the impatient reaction can be suppressed.

水解反應較佳為在酸觸媒的存在下進行。酸觸媒可例示:鹽酸、氫溴酸、氫碘酸等鹵化氫系無機酸;硫酸、硝酸、磷酸、六氟磷酸、六氟銻酸、硼酸、四氟硼酸、鉻酸等其他無機酸;甲磺酸、乙磺酸、苯磺酸、對甲苯磺酸、三氟甲磺酸等磺酸;乙酸、檸檬酸、甲酸、葡萄糖酸、乳酸、草酸、酒石酸、丙酮酸、檸檬酸、琥珀酸、富馬酸、蘋果酸等羧酸。本發明中,就摻雜性的觀點而言,可用於製作(A)聚矽氧烷的酸觸媒較佳為儘量不含除矽、氫、碳、氧、氮以外的原子,且較佳為使用甲酸、乙酸、羧酸系的酸觸媒。其中,較佳為甲酸。The hydrolysis reaction is preferably carried out in the presence of an acid catalyst. Examples of the acid catalyst include hydrogen halide-based inorganic acids such as hydrochloric acid, hydrobromic acid, and hydroiodic acid; and other inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, hexafluorophosphoric acid, hexafluoroantimonic acid, boric acid, tetrafluoroboric acid, and chromic acid; Sulfonic acid such as methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid; acetic acid, citric acid, formic acid, gluconic acid, lactic acid, oxalic acid, tartaric acid, pyruvic acid, citric acid, succinic acid , carboxylic acid such as fumaric acid or malic acid. In the present invention, from the viewpoint of doping, the acid catalyst which can be used for the production of the (A) polyoxyalkylene is preferably as far as possible free of atoms other than hydrazine, hydrogen, carbon, oxygen, nitrogen, and is preferably. In order to use acid catalysts of formic acid, acetic acid, and carboxylic acid. Among them, formic acid is preferred.

酸觸媒的較佳的含量相對於水解反應時所使用的全部有機矽烷100重量份,較佳為0.1重量份~5重量份。藉由將酸觸媒的量設為所述範圍,可容易地控制水解反應以使其必要且充分地進行。The content of the acid catalyst is preferably from 0.1 part by weight to 5 parts by weight based on 100 parts by weight of all the organic decane used in the hydrolysis reaction. By setting the amount of the acid catalyst to the above range, the hydrolysis reaction can be easily controlled to make it necessary and sufficient.

較佳為藉由有機矽烷的水解反應獲得矽烷醇後,直接在50℃以上且溶媒的沸點以下對反應液加熱1小時~100小時而進行縮聚反應。另外,為了提高聚矽氧烷的聚合度,可進行再加熱。Preferably, after the stanol is obtained by the hydrolysis reaction of the organic decane, the reaction liquid is directly heated at 50 ° C or higher and the boiling point of the solvent to carry out a polycondensation reaction for 1 hour to 100 hours. Further, in order to increase the degree of polymerization of the polyoxyalkylene, reheating can be performed.

有機矽烷的水解反應及該水解物的縮合反應中所使用的溶媒並無特別限定,可考慮樹脂組成物的穩定性、塗佈性、揮發性等而適宜選擇。另外,可組合兩種以上的溶媒,亦可在無溶媒下進行反應。溶媒的具體例可列舉:甲醇、乙醇、丙醇、異丙醇、丁醇、異丁醇、第三丁醇、1-甲氧基-2-丙醇、戊醇、4-甲基-2-戊醇、3-甲基-2-丁醇、3-甲基-3-甲氧基-1-丁醇、1-第三丁氧基-2-丙醇、二丙酮醇、松脂醇、十二酯醇(Texanol)等醇類;乙二醇、丙二醇等二醇類;乙二醇單甲醚、乙二醇單***、丙二醇單甲醚、丙二醇單***、丙二醇單丙醚、丙二醇第三丁醚、丙二醇正丁醚、乙二醇二甲醚、乙二醇二***、乙二醇二丁醚、二***、二乙二醇甲基乙基醚、二丙二醇正丁醚、二丙二醇單甲醚、二異丙醚、二正丁醚、二苯醚、二乙二醇乙基甲基醚、二乙二醇二甲醚、乙二醇單丁醚等醚類;甲基乙基酮、乙醯丙酮、甲基丙基酮、甲基丁基酮、甲基異丁基酮、二異丁基酮、環戊酮、2-庚酮、二異丁基酮、環己酮、環庚酮等酮類;二甲基甲醯胺、二甲基乙醯胺等醯胺類;乙酸異丙酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙醯乙酸乙酯、乙二醇單甲醚乙酸酯、乙二醇單***乙酸酯、二乙二醇單***乙酸酯、丙二醇單甲醚乙酸酯、3-甲氧基丁基乙酸酯、3-甲基-3-甲氧基丁基乙酸酯、丁基二甘醇乙酸酯、1,3-丁二醇二乙酸酯、乙基二甘醇乙酸酯、二丙二醇甲醚乙酸酯、乳酸甲酯、乳酸乙酯、乳酸丁酯、三乙醯基甘油等乙酸酯類;甲苯、二甲苯、己烷、環己烷、苯甲酸乙酯、萘、1,2,3,4-四氫萘等芳香族或脂肪族烴、γ-丁內酯、N-甲基-2-吡咯啶酮、N,N-二甲基咪唑啶酮、二甲基亞碸、碳酸丙二酯等。The solvent to be used in the hydrolysis reaction of the organic decane and the condensation reaction of the hydrolyzate is not particularly limited, and may be appropriately selected in consideration of stability, coatability, volatility, and the like of the resin composition. Further, two or more kinds of solvents may be combined, and the reaction may be carried out without a solvent. Specific examples of the solvent include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol, 1-methoxy-2-propanol, pentanol, and 4-methyl-2. -pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, 1-tert-butoxy-2-propanol, diacetone alcohol, rosinol, Alcohols such as Texanol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol Tributyl ether, propylene glycol n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol n-butyl ether, dipropylene glycol Ethers such as monomethyl ether, diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, ethylene glycol monobutyl ether; methyl ethyl Ketone, acetoacetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, 2-heptanone, diisobutyl ketone, cyclohexanone, Ketones such as cycloheptanone; guanamines such as dimethylformamide and dimethylacetamide Isopropyl acetate, ethyl acetate, propyl acetate, butyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, ethyl acetate, ethylene glycol monomethyl ether Acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methyl Oxybutyl butyl acetate, butyl diglycol acetate, 1,3-butylene glycol diacetate, ethyl diglycol acetate, dipropylene glycol methyl ether acetate, methyl lactate, Acetate such as ethyl lactate, butyl lactate or triethylene glycerol; aromatics such as toluene, xylene, hexane, cyclohexane, ethyl benzoate, naphthalene, 1,2,3,4-tetrahydronaphthalene Group or aliphatic hydrocarbon, γ-butyrolactone, N-methyl-2-pyrrolidone, N,N-dimethylimidazolidinone, dimethyl azine, propylene carbonate and the like.

在藉由水解反應而生成溶媒的情況下,亦可在無溶媒下使其水解。亦較佳為在反應結束後,藉由進而添加溶媒而調整為作為樹脂組成物而言適當的濃度。另外,亦可根據目的而在水解後,在加熱及/或減壓下餾出、去除適量的生成醇等,其後添加較佳的溶媒。In the case where a solvent is formed by a hydrolysis reaction, it may be hydrolyzed without a solvent. It is also preferred to adjust the concentration to be a suitable concentration as a resin composition by further adding a solvent after completion of the reaction. Further, after hydrolysis, it is also possible to distill off and remove an appropriate amount of alcohol to be formed under heating and/or reduced pressure, and then add a preferred solvent.

水解反應時所使用的溶媒的量較佳為相對於全部有機矽烷100重量份為80重量份以上且500重量份以下。藉由將溶媒的量設為所述範圍,可容易地控制水解反應以使其必要且充分地進行。另外,水解反應中所使用的水較佳為離子交換水。水的量可任意選擇,較佳為相對於Si原子1莫耳,在1.0莫耳~4.0莫耳的範圍內使用。The amount of the solvent used in the hydrolysis reaction is preferably 80 parts by weight or more and 500 parts by weight or less based on 100 parts by weight of the total of the organic decane. By setting the amount of the solvent to the above range, the hydrolysis reaction can be easily controlled to make it necessary and sufficient. Further, the water used in the hydrolysis reaction is preferably ion-exchanged water. The amount of water can be arbitrarily selected, and is preferably used in the range of 1.0 mol to 4.0 mol with respect to 1 mol of Si atom.

通式(1)所表示的聚矽氧烷較佳為藉由對R1 R2 Si(OR8 )2 所表示的有機矽烷與R3 R4 Si(OR9 )2 所表示的有機矽烷進行水解及縮聚而獲得的反應物。此處,R8 及R9 分別獨立地為氫原子、碳數1~6的烷基或碳數1~6的醯基。The polyoxyalkylene represented by the formula (1) is preferably an organodecane represented by R 1 R 2 Si(OR 8 ) 2 and an organodecane represented by R 3 R 4 Si(OR 9 ) 2 . A reactant obtained by hydrolysis and polycondensation. Here, R 8 and R 9 each independently represent a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or a fluorenyl group having 1 to 6 carbon atoms.

碳數1~6的烷基的具體例可列舉:甲基、乙基、正丙基、異丙基、正丁基、第三丁基、正己基等。碳數1~6的醯基的具體例可列舉:乙醯基、丙醯基、苯甲醯基等。Specific examples of the alkyl group having 1 to 6 carbon atoms include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, a t-butyl group, and a n-hexyl group. Specific examples of the mercapto group having 1 to 6 carbon atoms include an ethyl fluorenyl group, a propyl fluorenyl group, and a benzamidine group.

通式(1)所表示的聚矽氧烷的各單元的莫耳比可藉由水解·縮合反應時的有機矽烷的種類與添加量來調整。The molar ratio of each unit of the polyoxyalkylene represented by the formula (1) can be adjusted by the type and amount of the organic decane in the hydrolysis/condensation reaction.

關於本發明的擴散組成物中的通式(1)所表示的聚矽氧烷的含量,就提高相對於同時擴散時的其他不純物的阻擋性及p型不純物的擴散穩定性的觀點而言,較佳為於所有聚矽氧烷成分中包含60重量%以上,進而較佳為包含80重量%以上,尤佳為包含90重量%以上。The content of the polyoxyalkylene represented by the formula (1) in the diffusion composition of the present invention is improved from the viewpoint of the barrier property against other impurities at the time of simultaneous diffusion and the diffusion stability of the p-type impurity. It is preferable to contain 60% by weight or more, more preferably 80% by weight or more, and particularly preferably 90% by weight or more of all the polyoxyalkylene components.

本發明中所使用的聚矽氧烷的重量平均分子量(Mw)較佳為以藉由凝膠滲透層析法(Gel Permeation Chromatography,GPC)所測定的聚苯乙烯換算分子量計為1000以上,更佳為2000以上。藉此,抑制煅燒時的膜的收縮,獲得更緻密的膜。另外,就剝離性的方面而言,Mw的上限值較佳為小於50000,更佳為小於20000。再者,本發明中,聚矽氧烷的重量平均分子量為利用後述的方法而求出的值。The weight average molecular weight (Mw) of the polyoxyalkylene used in the present invention is preferably 1000 or more in terms of a polystyrene-equivalent molecular weight measured by Gel Permeation Chromatography (GPC). Good for 2000 or above. Thereby, shrinkage of the film at the time of calcination is suppressed, and a denser film is obtained. Further, in terms of peelability, the upper limit of Mw is preferably less than 50,000, more preferably less than 20,000. In the present invention, the weight average molecular weight of the polyoxyalkylene is a value obtained by a method described later.

聚矽氧烷較佳為20%熱分解溫度為550℃以上。藉此,於組成物中包含增稠劑等有機成分的情況下,將聚矽氧烷以外的有機成分熱分解而完全去除後,矽氧烷流動,因此可獲得更緻密且殘渣少的膜。此處,所謂20%熱分解溫度是聚矽氧烷的重量藉由熱分解而減少20%的溫度。熱分解溫度可使用熱重測定裝置(熱重量分析儀(thermogravimetric analyzer,TGA))等進行測定。The polyoxyalkylene preferably has a 20% thermal decomposition temperature of 550 ° C or higher. Therefore, when an organic component such as a thickener is contained in the composition, the organic component other than the polysiloxane is thermally decomposed and completely removed, and then the oxirane flows, so that a denser film having less residue can be obtained. Here, the 20% thermal decomposition temperature is a temperature at which the weight of the polyoxyalkylene is reduced by 20% by thermal decomposition. The thermal decomposition temperature can be measured using a thermogravimetric analyzer (thermogravimetric analyzer (TGA)) or the like.

(B)具有Si-O-B鍵的p型不純物擴散成分 本發明的具有Si-O-B鍵的p型不純物擴散成分為用以與聚矽氧烷均勻地混合並於熱擴散時使硼擴散至半導體基板中的成分。藉由具有Si-O-B鍵,可直至擴散溫度為止使硼原子固定於不純物擴散源,因此可實現穩定的擴散。(B) p-type impurity diffusion component having Si-OB bond The p-type impurity diffusion component having Si-OB bond of the present invention is used for uniformly mixing with polyaluminoxane and diffusing boron to a semiconductor substrate upon thermal diffusion. In the ingredients. By having a Si-O-B bond, the boron atom can be fixed to the impurity diffusion source up to the diffusion temperature, so that stable diffusion can be achieved.

關於包含含有Si-O-B鍵的成分,可使用X射線光電子光譜法(X-ray Photoelectron Spectroscopy,XPS)或紅外光譜法(Infrared Spectroscopy,IR)、核磁共振(Nuclear Magnetic Resonance)(B-NMR、Si-NMR)等進行分析。For the component containing the Si-OB bond, X-ray photoelectron spectroscopy (XPS) or infrared spectroscopy (IR), nuclear magnetic resonance (B-NMR, Si) can be used. - NMR) or the like was analyzed.

具有Si-O-B鍵的p型不純物擴散成分並無特別限定,較佳為使用有機矽烷與硼化合物的反應產物。The p-type impurity diffusion component having a Si—O—B bond is not particularly limited, and a reaction product of an organic decane and a boron compound is preferably used.

本發明的p型不純物擴散組成物尤佳為(B)具有Si-O-B鍵的p型不純物擴散成分包含下述通式(2)所表示的部分結構。The p-type impurity diffusion composition of the present invention is particularly preferably (B) the p-type impurity diffusion component having a Si-O-B bond includes a partial structure represented by the following formula (2).

[化2] [Chemical 2]

式中,R5 及R6 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基、碳數6~15的芳基的任一者,多個R5 及R6 可分別相同亦可不同。In the formula, R 5 and R 6 represent a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a decyloxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and carbon. In any of the 6 to 15 aryl groups, a plurality of R 5 and R 6 may be the same or different.

通式(2)的R5 及R6 中的碳數1~6的烷氧基、碳數1~6的醯氧基均可為未經取代物、經取代物的任一者,可根據組成物的特性進行選擇。The alkoxy group having 1 to 6 carbon atoms and the decyloxy group having 1 to 6 carbon atoms in R 5 and R 6 in the formula (2) may be either an unsubstituted or substituted group, and may be The characteristics of the composition are selected.

碳數1~6的烷基的具體例可列舉:甲基、乙基、正丙基、異丙基、正丁基、第三丁基、正己基、三氟甲基、3,3,3-三氟丙基、3-甲氧基正丙基、縮水甘油基、3-縮水甘油氧基丙基、3-胺基丙基、3-巰基丙基、3-異氰酸酯基丙基,就殘渣的方面而言,較佳為碳數4以下的甲基、乙基、正丙基、異丙基、正丁基、第三丁基。Specific examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-hexyl group, trifluoromethyl group, and 3,3,3. -Trifluoropropyl, 3-methoxy-n-propyl, glycidyl, 3-glycidoxypropyl, 3-aminopropyl, 3-mercaptopropyl, 3-isocyanatepropyl, as a residue On the other hand, a methyl group, an ethyl group, a n-propyl group, an isopropyl group, an n-butyl group, and a t-butyl group having a carbon number of 4 or less are preferable.

碳數1~6的烷氧基的具體例可列舉:甲氧基、乙氧基、正丙氧基、異丙氧基、正丁氧基、第三丁氧基。Specific examples of the alkoxy group having 1 to 6 carbon atoms include a methoxy group, an ethoxy group, a n-propoxy group, an isopropoxy group, a n-butoxy group, and a third butoxy group.

碳數1~6的醯氧基的具體例可列舉:乙醯氧基、丙醯氧基、丙烯醯氧基、苯甲醯氧基。Specific examples of the decyloxy group having 1 to 6 carbon atoms include an ethoxycarbonyl group, a propenyloxy group, an acryloxy group, and a benzamidine group.

碳數2~10的烯基的具體例可列舉:乙烯基、1-丙烯基、1-丁烯基、2-甲基-1-丙烯基、1,3-丁二烯基、3-甲氧基-1-丙烯基、3-丙烯醯氧基丙基、3-甲基丙烯醯氧基丙基,就殘渣的方面而言,尤佳為碳數4以下的乙烯基、1-丙烯基、1-丁烯基、2-甲基-1-丙烯基、1,3-丁二烯基、3-甲氧基-1-丙烯基。Specific examples of the alkenyl group having 2 to 10 carbon atoms include a vinyl group, a 1-propenyl group, a 1-butenyl group, a 2-methyl-1-propenyl group, a 1,3-butadienyl group, and a 3-methyl group. Oxy-1-propenyl, 3-propenyloxypropyl, 3-methylpropenyloxypropyl, in terms of residue, vinyl or 1-propenyl having a carbon number of 4 or less is particularly preferable. , 1-butenyl, 2-methyl-1-propenyl, 1,3-butadienyl, 3-methoxy-1-propenyl.

碳數6~15的芳基可為未經取代物、經取代物的任一者,可根據組成物的特性進行選擇。碳數6~15的芳基的具體例可列舉:苯基、對甲苯基、間甲苯基、鄰甲苯基、對羥基苯基、對苯乙烯基、對甲氧基苯基、萘基,尤佳為苯基、對甲苯基、間甲苯基。The aryl group having 6 to 15 carbon atoms may be either an unsubstituted or substituted one, and may be selected depending on the characteristics of the composition. Specific examples of the aryl group having 6 to 15 carbon atoms include a phenyl group, a p-tolyl group, an m-tolyl group, an o-tolyl group, a p-hydroxyphenyl group, a p-styryl group, a p-methoxyphenyl group, and a naphthyl group. Preferred is phenyl, p-tolyl, m-tolyl.

包含通式(2)所表示的部分結構的化合物較佳為使有機矽烷與硼化合物在溶媒的存在下、或無溶媒下進行縮聚反應而獲得者。The compound having a partial structure represented by the formula (2) is preferably obtained by subjecting an organodecane to a polycondensation reaction in the presence of a solvent or a solvent without a solvent.

成為包含通式(2)所表示的部分結構的化合物的具有R5 及R6 的單元的原料的有機矽烷的具體例中,四官能的有機矽烷可列舉:四甲氧基矽烷、四乙氧基矽烷、四丙氧基矽烷、四丁氧基矽烷等。In a specific example of the organic decane which is a raw material of the unit having R 5 and R 6 which is a compound having a partial structure represented by the formula (2), the tetrafunctional organodecane may be exemplified by tetramethoxy decane or tetraethoxy hydride. Alkane, tetrapropoxydecane, tetrabutoxydecane, and the like.

另外,三官能有機矽烷可列舉:甲基三甲氧基矽烷、甲基三乙氧基矽烷、甲基三異丙氧基矽烷、甲基三正丁氧基矽烷、乙基三甲氧基矽烷、乙基三乙氧基矽烷、乙基三異丙氧基矽烷、乙基三正丁氧基矽烷、正丙基三甲氧基矽烷、正丙基三乙氧基矽烷、正丁基三甲氧基矽烷、正丁基三乙氧基矽烷、縮水甘油基三甲氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙氧基矽烷、三氟甲基三甲氧基矽烷、三氟甲基三乙氧基矽烷、3,3,3-三氟丙基三甲氧基矽烷、3-胺基丙基三甲氧基矽烷、3-胺基丙基三乙氧基矽烷、3-巰基丙基三甲氧基矽烷、苯基三甲氧基矽烷、苯基三乙氧基矽烷、對羥基苯基三甲氧基矽烷、對甲苯基三甲氧基矽烷、對苯乙烯基三甲氧基矽烷、對甲氧基苯基三甲氧基矽烷、1-萘基三甲氧基矽烷、2-萘基三甲氧基矽烷、1-萘基三乙氧基矽烷、2-萘基三乙氧基矽烷。Further, examples of the trifunctional organodecane include methyltrimethoxydecane, methyltriethoxydecane, methyltriisopropoxydecane, methyltri-n-butoxydecane, ethyltrimethoxydecane, and B. Triethoxy decane, ethyl triisopropoxy decane, ethyl tri-n-butoxy decane, n-propyl trimethoxy decane, n-propyl triethoxy decane, n-butyl trimethoxy decane, n-Butyl triethoxy decane, glycidyl trimethoxy decane, vinyl trimethoxy decane, vinyl triethoxy decane, trifluoromethyl trimethoxy decane, trifluoromethyl triethoxy decane , 3,3,3-trifluoropropyltrimethoxydecane, 3-aminopropyltrimethoxydecane, 3-aminopropyltriethoxydecane, 3-mercaptopropyltrimethoxydecane, benzene Trimethoxy decane, phenyl triethoxy decane, p-hydroxyphenyl trimethoxy decane, p-tolyl trimethoxy decane, p-styryl trimethoxy decane, p-methoxyphenyl trimethoxy decane , 1-naphthyltrimethoxydecane, 2-naphthyltrimethoxynonane, 1-naphthyltriethoxydecane, 2-naphthyltriethoxylate Silane.

另外,二官能有機矽烷可列舉:二甲基二甲氧基矽烷、二甲基二乙氧基矽烷、二甲基二丙氧基矽烷、二乙基二甲氧基矽烷、二乙基二乙氧基矽烷、二乙基二丙氧基矽烷、二丙基二甲氧基矽烷、二丙基二乙氧基矽烷、二丁基二甲氧基矽烷、二丁基二乙氧基矽烷、二丁基二丙氧基矽烷、二苯基二甲氧基矽烷、二苯基二乙氧基矽烷、二苯基二丙氧基矽烷、苯基甲基二甲氧基矽烷   等。Further, the difunctional organodecane may, for example, be dimethyldimethoxydecane, dimethyldiethoxydecane, dimethyldipropoxydecane, diethyldimethoxydecane or diethyldiethylamine. Oxy decane, diethyl dipropoxy decane, dipropyl dimethoxy decane, dipropyl diethoxy decane, dibutyl dimethoxy decane, dibutyl diethoxy decane, two Butyldipropoxydecane, diphenyldimethoxydecane, diphenyldiethoxydecane, diphenyldipropoxydecane, phenylmethyldimethoxydecane, and the like.

其中,可較佳地使用甲基三甲氧基矽烷、苯基三甲氧基矽烷、二甲基二甲氧基矽烷、二苯基二甲氧基矽烷。再者,該些有機矽烷可單獨使用,亦可組合兩種以上使用。Among them, methyltrimethoxydecane, phenyltrimethoxydecane, dimethyldimethoxydecane, and diphenyldimethoxydecane can be preferably used. Further, the organic decane may be used singly or in combination of two or more.

為了形成相對於n型不純物的阻擋性更高的膜,本發明的p型不純物擴散組成物較佳為R5 表示碳數1~6的烷基或碳數6~15的芳基的任一者,R6 表示羥基、碳數1~6的烷氧基或碳數1~6的醯氧基的任一者。即,所述有機矽烷較佳為三官能有機矽烷。In order to form a film having a higher barrier property with respect to the n-type impurity, the p-type impurity diffusion composition of the present invention preferably has any of R 5 represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 15 carbon atoms. R 6 represents any one of a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms or a nonyloxy group having 1 to 6 carbon atoms. That is, the organodecane is preferably a trifunctional organodecane.

就分別進一步提高擴散組成物的保存穩定性、相對於同時擴散時的其他不純物的阻擋性、及p型不純物的擴散穩定性的觀點而言,本發明的p型不純物擴散組成物較佳為R5 中的碳數1~6的烷基與碳數6~15的芳基的莫耳比為碳數1~6的烷基:碳數6~15的芳基=95:5~5:95。所述莫耳比更佳為碳數1~6的烷基:碳數6~15的芳基=80:20~20:80。The p-type impurity diffusion composition of the present invention is preferably R from the viewpoint of further improving the storage stability of the diffusion composition, the barrier property against other impurities during simultaneous diffusion, and the diffusion stability of the p-type impurity. 5 carbon atoms in the alkyl group and an aryl group having a carbon number of 6 to 15 molar ratio of 1 to 6 carbon atoms is an alkyl group having 1 to 6: an aryl group having a carbon number of 6 to 15 = 95: 5 to 5: 95 . The molar ratio is more preferably an alkyl group having 1 to 6 carbon atoms: an aryl group having 6 to 15 carbon atoms = 80:20 to 20:80.

當R5 中的碳數6~15的芳基的莫耳比為5%以上時,更佳為20%以上時,於本發明的p型不純物擴散組成物進行煅燒時,(B)成分可提高聚矽氧烷的回流(reflow)效果。藉此,認為由本發明的p型不純物擴散組成物獲得的膜變得更緻密,抗龜裂性提高,從而相對於n型不純物的阻擋性進一步提高。此處,所謂聚矽氧烷的回流效果,是指於煅燒時黏合劑等有機物發生分解而於膜中產生空隙的情況下,聚矽氧烷流動並填埋所述空隙而形成緻密膜的效果。When the molar ratio of the aryl group having 6 to 15 carbon atoms in R 5 is 5% or more, more preferably 20% or more, when the p-type impurity diffusion composition of the present invention is calcined, the component (B) may be used. Improve the reflow effect of polyoxyalkylene. Thereby, it is considered that the film obtained from the p-type impurity diffusion composition of the present invention becomes denser, the crack resistance is improved, and the barrier property against the n-type impurity is further improved. Here, the recirculation effect of the polysiloxane is an effect of forming a dense film by flowing a polyoxane and filling the voids when a porous material such as a binder is decomposed during firing to cause voids in the film. .

另外,當R5 中的碳數6~15的芳基的莫耳比為95%以下時,更佳為80%以下時,可去除擴散後的剝離殘渣。認為殘渣是有機物未完全分解·揮發而殘留的碳化物,不僅會阻礙擴散性,而且成為使與其後形成的電極的接觸電阻上升、使太陽電池的效率降低的原因。若碳數6~15的芳基的比率超過95%,更佳為超過80%,則認為在有機成分完全分解·揮發之前組成物膜變得過於緻密而變得容易產生殘渣。Further, when the molar ratio of the aryl group having 6 to 15 carbon atoms in R 5 is 95% or less, more preferably 80% or less, the peeling residue after diffusion can be removed. It is considered that the residue is a carbide which is not completely decomposed and volatilized by the organic matter, and not only hinders the diffusibility, but also increases the contact resistance of the electrode formed later and causes the efficiency of the solar cell to decrease. When the ratio of the aryl group having 6 to 15 carbon atoms is more than 95%, and more preferably more than 80%, it is considered that the composition film becomes too dense and the residue is likely to be generated before the organic component is completely decomposed and volatilized.

通式(2)中的R5 中的碳數1~6的烷基與碳數6~15的芳基的莫耳比可藉由縮聚反應時的有機矽烷的種類與添加量來調整。The molar ratio of the alkyl group having 1 to 6 carbon atoms and the aryl group having 6 to 15 carbon atoms in R 5 in the formula (2) can be adjusted by the type and amount of the organic decane in the polycondensation reaction.

成為包含通式(2)所表示的部分結構且具有Si-O-B鍵的p型不純物擴散成分的原料的硼化合物可列舉:硼酸、三氧化二硼、硼酸三甲酯、硼酸三乙酯、硼酸三丙酯、硼酸三丁酯等藉由水解等生成硼酸者。其中,可較佳地使用硼酸。Examples of the boron compound which is a raw material containing a p-type impurity diffusion component having a partial structure represented by the general formula (2) and having a Si-OB bond include boric acid, boron trioxide, trimethyl borate, triethyl borate, and boric acid. A tripropyl acrylate, a tributyl borate or the like which generates boric acid by hydrolysis or the like. Among them, boric acid can be preferably used.

較佳為相對於硼化合物1莫耳而使用1莫耳以上的有機矽烷。藉此可獲得於包含聚矽氧烷的溶液中的充分的溶解性,並且可直至擴散溫度為止使硼原子固定於不純物擴散組成物膜中,因此可實現穩定的擴散。It is preferred to use 1 mole or more of organic decane with respect to the boron compound 1 mole. Thereby, sufficient solubility in the solution containing polysiloxane can be obtained, and boron atoms can be fixed in the film of the impurity diffusion composition up to the diffusion temperature, so that stable diffusion can be achieved.

包含通式(2)所表示的部分結構且具有Si-O-B鍵的p型不純物擴散成分較佳為下述通式(3)所表示者。The p-type impurity diffusion component containing a partial structure represented by the formula (2) and having a Si—O—B bond is preferably represented by the following formula (3).

[化3] [Chemical 3]

通式(3)中的R5 、R6 的定義如上所述。I表示2以上的整數,較佳為2~10。藉此,可直至擴散溫度為止使硼原子進一步固定於不純物擴散組成物膜中,因此可實現穩定的擴散。The definitions of R 5 and R 6 in the formula (3) are as described above. I represents an integer of 2 or more, preferably 2 to 10. Thereby, the boron atom can be further fixed to the impurity diffusion composition film up to the diffusion temperature, so that stable diffusion can be achieved.

通式(3)所表示的具有Si-O-B鍵的p型不純物擴散成分具有末端基的情況下的末端基並無特別限定,較佳為選自由氫原子、羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基所組成的群組中的基。The terminal group in the case where the p-type impurity diffusion component having a Si-OB bond represented by the formula (3) has a terminal group is not particularly limited, and is preferably selected from a hydrogen atom, a hydroxyl group, and an alkyl group having 1 to 6 carbon atoms. a group in the group consisting of a group having 1 to 6 carbon atoms, an alkyl group having 1 to 6 carbon atoms, and an alkenyl group having 2 to 10 carbon atoms.

通式(3)所表示的具有Si-O-B鍵的p型不純物擴散成分中,通式(3)的括弧內的結構單元可分別藉由頭對尾鍵(head-to-tail鍵)鍵結,亦可藉由頭對頭鍵(head-to-head鍵)鍵結。In the p-type impurity diffusion component having a Si-OB bond represented by the general formula (3), the structural unit in the parentheses of the general formula (3) can be bonded by a head-to-tail bond, respectively. It can also be bonded by a head-to-head key.

另外,具有Si-O-B鍵的p型不純物擴散成分亦可包含下述通式(4)所表示的部分結構。Further, the p-type impurity diffusion component having a Si—O—B bond may also include a partial structure represented by the following formula (4).

[化4] [Chemical 4]

通式(4)中的R5 、R6 的定義如上所述。R7 表示氫原子、碳數1~6的烷基的任一者。多個R7 可分別相同亦可不同。k表示1以上的整數,較佳為2~10。藉此,可直至擴散溫度為止使硼原子進一步固定於不純物擴散組成物膜中,因此可實現穩定的擴散。The definitions of R 5 and R 6 in the formula (4) are as described above. R 7 represents any one of a hydrogen atom and an alkyl group having 1 to 6 carbon atoms. A plurality of R 7 may be the same or different. k represents an integer of 1 or more, preferably 2 to 10. Thereby, the boron atom can be further fixed to the impurity diffusion composition film up to the diffusion temperature, so that stable diffusion can be achieved.

通式(4)所表示的部分結構中,通式(4)的括弧內的結構單元可分別藉由頭對尾鍵(head-to-tail鍵)鍵結,亦可藉由頭對頭鍵(head-to-head鍵)鍵結。In the partial structure represented by the general formula (4), the structural units in the parentheses of the general formula (4) may be bonded by a head-to-tail bond, respectively, or by a head-to-head bond ( Head-to-head key).

碳數1~6的烷基的具體例可列舉:甲基、乙基、正丙基、異丙基、正丁基、第三丁基、正己基、三氟甲基、3,3,3-三氟丙基、3-甲氧基正丙基、縮水甘油基、3-縮水甘油氧基丙基、3-胺基丙基、3-巰基丙基、3-異氰酸酯基丙基。Specific examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-hexyl group, trifluoromethyl group, and 3,3,3. -Trifluoropropyl, 3-methoxy-n-propyl, glycidyl, 3-glycidoxypropyl, 3-aminopropyl, 3-mercaptopropyl, 3-isocyanatepropyl.

有機矽烷與硼化合物的縮聚反應的各種條件,例如反應溫度、反應時間等可考慮反應規模、反應容器的大小、形狀等而適宜設定,例如較佳為將有機矽烷與硼化合物混合後,在室溫~110℃下反應1分鐘~180分鐘。就擴散均勻性的觀點而言,包含通式(2)所表示的部分結構的化合物較佳為以液體狀態取出,亦較佳為在反應結束後,藉由進而添加溶媒而調整為作為組成物而言適當的濃度。Various conditions of the polycondensation reaction of the organic decane and the boron compound, for example, the reaction temperature, the reaction time, and the like, may be appropriately set in consideration of the reaction scale, the size and shape of the reaction vessel, and the like. For example, it is preferred to mix the organodecane with the boron compound in the chamber. The reaction is carried out at a temperature of -110 ° C for 1 minute to 180 minutes. From the viewpoint of the uniformity of diffusion, the compound having a partial structure represented by the formula (2) is preferably taken out in a liquid state, and it is also preferred to adjust the composition to a composition by further adding a solvent after completion of the reaction. The appropriate concentration.

有機矽烷與硼化合物的縮聚反應中所使用的溶媒並無特別限定,可考慮樹脂組成物的穩定性、塗佈性、揮發性等而適宜選擇。另外,可組合兩種以上的溶媒,亦可在無溶媒下進行反應。The solvent to be used in the polycondensation reaction of the organic decane and the boron compound is not particularly limited, and may be appropriately selected in consideration of stability, coatability, volatility, and the like of the resin composition. Further, two or more kinds of solvents may be combined, and the reaction may be carried out without a solvent.

溶媒的具體例可列舉:甲醇、乙醇、丙醇、異丙醇、丁醇、異丁醇、第三丁醇、1-甲氧基-2-丙醇、戊醇、4-甲基-2-戊醇、3-甲基-2-丁醇、3-甲基-3-甲氧基-1-丁醇、1-第三丁氧基-2-丙醇、二丙酮醇、松脂醇、十二酯醇等醇類;乙二醇、丙二醇等二醇類; 乙二醇單甲醚、乙二醇單***、丙二醇單甲醚、丙二醇單***、丙二醇單丙醚、丙二醇第三丁醚、丙二醇正丁醚、乙二醇二甲醚、乙二醇二***、乙二醇二丁醚、二***、二乙二醇甲基乙基醚、二丙二醇正丁醚、二丙二醇單甲醚、二異丙醚、二正丁醚、二苯醚、二乙二醇乙基甲基醚、二乙二醇二甲醚、乙二醇單丁醚等醚類; 甲基乙基酮、乙醯丙酮、甲基丙基酮、甲基丁基酮、甲基異丁基酮、二異丁基酮、環戊酮、2-庚酮、二異丁基酮、環己酮、環庚酮等酮類; 二甲基甲醯胺、二甲基乙醯胺等醯胺類; 乙酸異丙酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、乙酸正丙酯、乙酸異丙酯、乙酸正丁酯、乙酸異丁酯、乙醯乙酸乙酯、乙二醇單甲醚乙酸酯、乙二醇單***乙酸酯、二乙二醇單***乙酸酯、丙二醇單甲醚乙酸酯、3-甲氧基丁基乙酸酯、3-甲基-3-甲氧基丁基乙酸酯、丁基二甘醇乙酸酯、1,3-丁二醇二乙酸酯、乙基二甘醇乙酸酯、二丙二醇甲醚乙酸酯、乳酸甲酯、乳酸乙酯、乳酸丁酯、三乙醯基甘油等乙酸酯類; 甲苯、二甲苯、己烷、環己烷、苯甲酸乙酯、萘、1,2,3,4-四氫萘等芳香族或脂肪族烴; γ-丁內酯、N-甲基-2-吡咯啶酮、N,N-二甲基咪唑啶酮、二甲基亞碸、碳酸丙二酯等。Specific examples of the solvent include methanol, ethanol, propanol, isopropanol, butanol, isobutanol, tert-butanol, 1-methoxy-2-propanol, pentanol, and 4-methyl-2. -pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, 1-tert-butoxy-2-propanol, diacetone alcohol, rosinol, Alcohols such as dodecyl alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol tert-butyl ether , propylene glycol n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol n-butyl ether, dipropylene glycol monomethyl ether , ethers such as diisopropyl ether, di-n-butyl ether, diphenyl ether, diethylene glycol ethyl methyl ether, diethylene glycol dimethyl ether, ethylene glycol monobutyl ether; methyl ethyl ketone, B醯Acetone, methyl propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, 2-heptanone, diisobutyl ketone, cyclohexanone, cycloheptanone Ketones; guanamines such as dimethylformamide and dimethylacetamide; acetic acid Isopropyl ester, ethyl acetate, propyl acetate, butyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, ethyl acetate, ethylene glycol monomethyl ether acetate Ester, ethylene glycol monoethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxy Butyl acetate, butyl diglycol acetate, 1,3-butylene glycol diacetate, ethyl diglycol acetate, dipropylene glycol methyl ether acetate, methyl lactate, lactate B An ester such as an ester, butyl lactate or triethylene glycerol; an aromatic or the like such as toluene, xylene, hexane, cyclohexane, ethyl benzoate, naphthalene or 1,2,3,4-tetrahydronaphthalene; Aliphatic hydrocarbon; γ-butyrolactone, N-methyl-2-pyrrolidone, N,N-dimethylimidazolidinone, dimethyl azine, propylene carbonate and the like.

p型不純物擴散組成物中所含的Si成分的SiO2 換算質量與p型不純物擴散組成物中所含的不純物原子質量的質量比較佳為SiO2 :不純物原子=99:1~30:70的範圍。藉由將所述質量比設為所述範圍,可獲得優異的摻雜性能。所述質量比進而較佳為95:5~40:60的範圍,最佳為90:10~50:50的範圍。此處,所謂Si成分的SiO2 換算質量是將組成物中的Si成分的含量換算為SiO2 的質量所得的值。該質量比可利用感應耦合電漿(Inductively Coupled Plasma,ICP)發光分析、螢光X射線分析等無機分析而算出。The mass of the Si component contained in the p-type impurity diffusion composition is preferably SiO 2 : impurity atom = 99:1 to 30:70 in terms of the mass of the SiO 2 equivalent mass of the impurity component contained in the p-type impurity diffusion composition. range. By setting the mass ratio to the range, excellent doping performance can be obtained. The mass ratio is further preferably in the range of 95:5 to 40:60, and most preferably in the range of 90:10 to 50:50. Here, the SiO 2 equivalent mass of the Si component is a value obtained by converting the content of the Si component in the composition into the mass of SiO 2 . This mass ratio can be calculated by inorganic analysis such as inductively coupled plasma (ICP) luminescence analysis or fluorescent X-ray analysis.

(溶劑) 本發明的p型不純物擴散組成物較佳為包含溶劑。溶劑可無特別限制地使用,但就進一步提高利用絲網印刷法或旋轉塗佈印刷法等的情況下的印刷性的觀點而言,較佳為沸點為100℃以上的溶劑。若沸點為100℃以上,則例如在絲網印刷法中所使用的印刷版印刷p型不純物擴散組成物時,可抑制p型不純物擴散組成物在印刷版上乾燥而黏著。(Solvent) The p-type impurity diffusion composition of the present invention preferably contains a solvent. The solvent is not particularly limited, but a solvent having a boiling point of 100 ° C or higher is preferred from the viewpoint of further improving the printability in the case of a screen printing method, a spin coating method, or the like. When the boiling point is 100 ° C or more, for example, when the p-type impurity diffusion composition is printed on a printing plate used in the screen printing method, the p-type impurity diffusion composition can be prevented from drying and adhering to the printing plate.

沸點為100℃以上的溶劑的含量較佳為相對於溶劑的總量為20重量%以上。沸點100℃以上的溶媒可例示:二乙二醇甲基乙基醚(沸點176℃)、乙二醇單***乙酸酯(沸點156.4℃)、乙二醇單甲醚乙酸酯(沸點145℃)、乳酸甲酯(沸點145℃)、乳酸乙酯(沸點155℃)、二丙酮醇(沸點169℃)、丙二醇單甲醚乙酸酯(沸點145℃)、3-甲氧基-3-甲基-1-丁醇(沸點174℃)、二丙二醇單甲醚(沸點188℃)、二丙二醇正丁醚(沸點229℃)、γ-丁內酯(沸點204℃)、二乙二醇單***乙酸酯(沸點217℃)、丁基二甘醇乙酸酯(沸點246℃)、乙醯乙酸乙酯(沸點181℃)、N-甲基-2-吡咯啶酮(沸點204℃)、N,N-二甲基咪唑啶酮(沸點226℃)、二丙二醇甲醚乙酸酯(沸點213℃)、1,3-丁二醇二乙酸酯(沸點232℃)、二異丁基酮(沸點168℃)、丙二醇第三丁醚(沸點151℃)、丙二醇正丁醚(沸點170℃)、乙醯丙酮(沸點140℃)、二乙二醇單丁醚(沸點171℃)、二乙二醇單丁醚乙酸酯(沸點245℃)。The content of the solvent having a boiling point of 100 ° C or higher is preferably 20% by weight or more based on the total amount of the solvent. The solvent having a boiling point of 100 ° C or more can be exemplified by diethylene glycol methyl ethyl ether (boiling point: 176 ° C), ethylene glycol monoethyl ether acetate (boiling point: 156.4 ° C), ethylene glycol monomethyl ether acetate (boiling point 145). °C), methyl lactate (boiling point 145 ° C), ethyl lactate (boiling point 155 ° C), diacetone alcohol (boiling point 169 ° C), propylene glycol monomethyl ether acetate (boiling point 145 ° C), 3-methoxy-3 -Methyl-1-butanol (boiling point 174 ° C), dipropylene glycol monomethyl ether (boiling point 188 ° C), dipropylene glycol n-butyl ether (boiling point 229 ° C), γ-butyrolactone (boiling point 204 ° C), diethylene Alcohol monoethyl ether acetate (boiling point 217 ° C), butyl diglycol acetate (boiling point 246 ° C), ethyl acetate (boiling point 181 ° C), N-methyl-2-pyrrolidone (boiling point 204 °C), N,N-dimethylimidazolidinone (boiling point 226 ° C), dipropylene glycol methyl ether acetate (boiling point 213 ° C), 1,3-butylene glycol diacetate (boiling point 232 ° C), two Isobutyl ketone (boiling point 168 ° C), propylene glycol tert-butyl ether (boiling point 151 ° C), propylene glycol n-butyl ether (boiling point 170 ° C), acetamidine acetone (boiling point 140 ° C), diethylene glycol monobutyl ether (boiling point 17 1 ° C), diethylene glycol monobutyl ether acetate (boiling point 245 ° C).

另外,沸點低於100℃的溶媒的具體例可列舉:甲醇、乙醇、丙醇、異丙醇、第三丁醇等醇類;二***、二異丙醚等醚類;甲基乙基酮等酮類;乙酸異丙酯、乙酸乙酯、乙酸丙酯、乙酸正丙酯、3-甲基-3-甲氧基丁基乙酸酯等乙酸酯類;己烷、環己烷等脂肪族烴等。Further, specific examples of the solvent having a boiling point of less than 100 ° C include alcohols such as methanol, ethanol, propanol, isopropanol, and third butanol; ethers such as diethyl ether and diisopropyl ether; and methyl ethyl ketone; Ketones; acetates such as isopropyl acetate, ethyl acetate, propyl acetate, n-propyl acetate, 3-methyl-3-methoxybutyl acetate; fats such as hexane and cyclohexane Hydrocarbons, etc.

(界面活性劑) 本發明的p型不純物擴散組成物亦可含有界面活性劑。藉由含有界面活性劑,塗佈不均得到改善而可獲得均勻的塗佈膜。界面活性劑可較佳地使用氟系界面活性劑、或矽酮系界面活性劑。(Surfactant) The p-type impurity diffusion composition of the present invention may further contain a surfactant. By containing a surfactant, coating unevenness is improved, and a uniform coating film can be obtained. As the surfactant, a fluorine-based surfactant or an anthrone-based surfactant can be preferably used.

氟系界面活性劑的具體例可列舉包含如下在末端、主鏈及側鏈的至少任一部位具有氟烷基或氟伸烷基的化合物的氟系界面活性劑:1,1,2,2-四氟辛基(1,1,2,2-四氟丙基)醚、1,1,2,2-四氟辛基己基醚、八乙二醇二(1,1,2,2-四氟丁基)醚、六乙二醇(1,1,2,2,3,3-六氟戊基)醚、八丙二醇二(1,1,2,2-四氟丁基)醚、六丙二醇二(1,1,2,2,3,3-六氟戊基)醚、全氟十二烷基磺酸鈉、1,1,2,2,8,8,9,9,10,10-十氟十二烷、1,1,2,2,3,3-六氟癸烷、N-[3-(全氟辛烷磺醯胺)丙基]-N,N'-二甲基-N-羧基亞甲基銨甜菜鹼、全氟烷基磺醯胺丙基三甲基銨鹽、全氟烷基-N-乙基磺醯基甘胺酸鹽、磷酸雙(N-全氟辛基磺醯基-N-乙基胺基乙酯)、單全氟烷基乙基磷酸酯等。另外,市售品有Megafac F142D、Megafac F172、Megafac F173、Megafac F183、Megafac F444、Megafac F475、Megafac F477(以上為大日本油墨化學工業(Dainippon Ink And Chemicals)股份有限公司製造)、Eftop EF301、Eftop 303、Eftop 352(新秋田化成股份有限公司製造)、Fluorad FC-430、Fluorad FC-431(住友3M股份有限公司製造)、AsahiGuard AG710、Surflon S-382、Surflon SC-101、Surflon SC-102、Surflon SC-103、Surflon SC-104、Surflon SC-105、Surflon SC-106(旭硝子股份有限公司製造)、BM-1000、BM-1100(裕商股份有限公司製造)、NBX-15、FTX-218、DFX-218(尼歐斯(Neos)股份有限公司製造)等氟系界面活性劑。Specific examples of the fluorine-based surfactant include fluorine-based surfactants having a compound having a fluoroalkyl group or a fluoroalkyl group in at least one of a terminal group, a main chain and a side chain: 1, 1, 2, 2 - tetrafluorooctyl (1,1,2,2-tetrafluoropropyl)ether, 1,1,2,2-tetrafluorooctylhexyl ether, octaethylene glycol di(1,1,2,2- Tetrafluorobutyl)ether, hexaethylene glycol (1,1,2,2,3,3-hexafluoropentyl)ether, octapropylene glycol bis(1,1,2,2-tetrafluorobutyl)ether, Hexapropylene glycol di(1,1,2,2,3,3-hexafluoropentyl)ether, sodium perfluorododecylsulfonate, 1,1,2,2,8,8,9,9,10 , 10-decafluorododecane, 1,1,2,2,3,3-hexafluorodecane, N-[3-(perfluorooctanesulfonamide)propyl]-N,N'-di Methyl-N-carboxymethylene ammonium betaine, perfluoroalkylsulfonamidopropyltrimethylammonium salt, perfluoroalkyl-N-ethylsulfonylglycine, phosphoric acid double (N- Perfluorooctylsulfonyl-N-ethylaminoethyl ester, monoperfluoroalkylethyl phosphate, and the like. In addition, commercially available products include Megafac F142D, Megafac F172, Megafac F173, Megafac F183, Megafac F444, Megafac F475, Megafac F477 (above manufactured by Dainippon Ink And Chemicals Co., Ltd.), Eftop EF301, Eftop 303, Eftop 352 (manufactured by New Akita Chemical Co., Ltd.), Fluorad FC-430, Fluorad FC-431 (manufactured by Sumitomo 3M Co., Ltd.), AsahiGuard AG710, Surflon S-382, Surflon SC-101, Surflon SC-102, Surflon SC-103, Surflon SC-104, Surflon SC-105, Surflon SC-106 (manufactured by Asahi Glass Co., Ltd.), BM-1000, BM-1100 (manufactured by Yushang Co., Ltd.), NBX-15, FTX-218 A fluorine-based surfactant such as DFX-218 (manufactured by Neos Co., Ltd.).

矽酮系界面活性劑的市售品可列舉:SH28PA、SH7PA、SH21PA、SH30PA、ST94PA(以上為東麗道康寧(Toray Dow Corning)股份有限公司製造)、BYK067A、BYK310、BYK322、BYK331、BYK333、BYK355(以上為日本畢克化學(BYK-Chemie Japan)股份有限公司製造)等。Commercial products of an anthrone-based surfactant include SH28PA, SH7PA, SH21PA, SH30PA, and ST94PA (above, manufactured by Toray Dow Corning Co., Ltd.), BYK067A, BYK310, BYK322, BYK331, BYK333, and BYK355. (The above is manufactured by BYK-Chemie Japan Co., Ltd.) and the like.

在含有的情況下,界面活性劑的含量較佳為在p型不純物擴散組成物中為0.0001重量%~1重量%。In the case of containing, the content of the surfactant is preferably 0.0001% by weight to 1% by weight in the p-type impurity diffusion composition.

(增稠劑) 為了調整黏度,本發明的p型不純物擴散組成物較佳為含有增稠劑。藉此,可利用絲網印刷等印刷法以更精密的圖案進行塗佈。作為增稠劑,在有機系中,可列舉:纖維素、纖維素衍生物、澱粉、澱粉衍生物、聚乙烯基吡咯啶酮、聚乙酸乙烯酯、聚乙烯醇、聚乙烯丁醛(polyvinyl butyral)、聚胺基甲酸酯樹脂、聚脲樹脂、聚醯亞胺樹脂、聚醯胺樹脂、環氧樹脂、聚苯乙烯系樹脂、聚酯樹脂、合成橡膠、天然橡膠、聚丙烯酸、各種丙烯酸系樹脂、聚乙二醇、聚環氧乙烷、聚丙二醇、聚環氧丙烷、矽油(silicone oil)、海藻酸鈉、三仙膠(xanthan gum)系多糖類、結蘭膠(gellan gum)系多糖類、瓜爾膠(guar gum)系多糖類、卡拉膠(carrageenan)系多糖類、刺槐豆膠(locust bean gum)系多糖類、羧基乙烯基聚合物、氫化蓖麻油系、氫化蓖麻油系與脂肪酸醯胺蠟系、特殊脂肪酸系、氧化聚乙烯系、氧化聚乙烯系與醯胺系的混合物、脂肪酸系多元羧酸、長鏈聚胺基醯胺與磷酸的鹽、特殊改質聚醯胺系等。(Thickener) In order to adjust the viscosity, the p-type impurity diffusion composition of the present invention preferably contains a thickener. Thereby, the coating can be performed in a more precise pattern by a printing method such as screen printing. As the thickener, examples of the organic system include cellulose, cellulose derivatives, starch, starch derivatives, polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol, and polyvinyl butyral (polyvinyl butyral). ), polyurethane resin, polyurea resin, polyimide resin, polyamide resin, epoxy resin, polystyrene resin, polyester resin, synthetic rubber, natural rubber, polyacrylic acid, various acrylics Resin, polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, silicone oil, sodium alginate, xanthan gum polysaccharide, gellan gum Polysaccharides, guar gum polysaccharides, carrageenan polysaccharides, locust bean gum polysaccharides, carboxyvinyl polymers, hydrogenated castor oils, hydrogenated castor oil And fatty acid amide wax, special fatty acid, oxidized polyethylene, oxidized polyethylene and amide series, fatty acid polycarboxylic acid, long-chain polyamine amide and phosphate salt, special modified poly醯Department and so on.

在無機系中,可例示:膨潤土、蒙脫石、鎂蒙脫石、鐵蒙脫石、鐵鎂蒙脫石、貝得石、鋁貝得石、皂石、鋁皂石、合成鋰皂石、矽酸鋁、矽酸鋁鎂、有機水輝石、微粒子氧化矽、膠體氧化鋁、碳酸鈣等。該些可組合多種而使用。In the inorganic system, examples thereof include bentonite, montmorillonite, magnesium montmorillonite, iron montmorillonite, iron-magnesium montmorillonite, beidellite, aluminum beidellite, saponite, aluminosilicate, and laponite. , aluminum niobate, aluminum magnesium niobate, organic hectorite, fine particles of cerium oxide, colloidal alumina, calcium carbonate and the like. These can be used in combination.

另外,作為市售品,纖維素系增稠劑有1110、1120、1130、1140、1150、1160、1170、1180、1190、2200、2260、2280、2450(以上為大賽璐精細化工(Daicel FineChem)股份有限公司製造)。Further, as a commercial product, cellulose thickeners are 1110, 1120, 1130, 1140, 1150, 1160, 1170, 1180, 1190, 2200, 2260, 2280, 2450 (above is Daicel FineChem) Manufacturing company).

多糖類系增稠劑有Viscarin PC209、Viscarin PC389、SeaKem XP8012(以上為FMC化學股份有限公司製造)、CAM-H、GJ-182、SV-300、LS-20、LS-30、XGT、XGK-D、G-100、LG-10(均為三菱商事股份有限公司)等。Polysaccharide thickeners include Viscarin PC209, Viscarin PC389, SeaKem XP8012 (above manufactured by FMC Chemical Co., Ltd.), CAM-H, GJ-182, SV-300, LS-20, LS-30, XGT, XGK- D, G-100, LG-10 (all are Mitsubishi Corporation) and so on.

丙烯酸系增稠劑有#2434T、KC-7000、KC-1700P(以上為共榮社化學股份有限公司製造)、AC-10LHPK、AC-10SHP、845H、PW-120(以上為東亞合成股份有限公司製造)等。Acrylic thickeners are #2434T, KC-7000, KC-1700P (above is manufactured by Kyoeisha Chemical Co., Ltd.), AC-10LHPK, AC-10SHP, 845H, PW-120 (above is East Asia Synthetic Co., Ltd.) Manufacturing) and so on.

氫化蓖麻油系增稠劑有Disparlon 308、NAMLONT-206(以上為楠本化成股份有限公司製造)、T-20SF、T-75F(以上為伊藤製油股份有限公司製造)等。Hydrogenated castor oil thickeners include Disparlon 308, NAMLONT-206 (above, manufactured by Nanben Chemical Co., Ltd.), T-20SF, T-75F (above, manufactured by Ito Oil Co., Ltd.), and the like.

氧化聚乙烯系增稠劑有D-10A、D-120、D-120-10、D-1100、DS-525、DS-313(以上為伊藤製油股份有限公司製造)、Disparlon 4200-20、Disparlon PF-911、Disparlon PF-930、Disparlon 4401-25X、Disparlon NS-30、Disparlon NS-5010、Disparlon NS-5025、Disparlon NS-5810、Disparlon NS-5210、Disparlon NS-5310(以上為楠本化成股份有限公司製造)、Flownon SA-300、Flownon SA-300H(以上為共榮社化學股份有限公司製造)、PEO-1、PEO-3(以上為住友精化股份有限公司製造)等。Oxidized polyethylene thickeners are D-10A, D-120, D-120-10, D-1100, DS-525, DS-313 (above manufactured by Ito Oil Co., Ltd.), Disparlon 4200-20, Disparlon PF-911, Disparlon PF-930, Disparlon 4401-25X, Disparlon NS-30, Disparlon NS-5010, Disparlon NS-5025, Disparlon NS-5810, Disparlon NS-5210, Disparlon NS-5310 (above is Nanben Chemical Co., Ltd.) The company manufactures), Flownon SA-300, Flownon SA-300H (above is manufactured by Kyoeisha Chemical Co., Ltd.), PEO-1, PEO-3 (above, manufactured by Sumitomo Seika Co., Ltd.).

醯胺系增稠劑有T-250F、T-550F、T-850F、T-1700、T-1800、T-2000(以上為伊藤製油股份有限公司製造)、Disparlon 6500、Disparlon 6300、Disparlon 6650、Disparlon 6700、Disparlon 3900EF(以上為楠本化成股份有限公司製造)、Talen 7200、Talen 7500、Talen 8200、Talen 8300、Talen 8700、Talen 8900、Talen KY-2000、Talen KU-700、Talen M-1020、Talen VA-780、Talen VA-750B、Talen 2450、Flownon SD-700、Flownon SDR-80、Flownon EC-121(以上為共榮社化學股份有限公司製造)等。The guanamine thickeners are T-250F, T-550F, T-850F, T-1700, T-1800, T-2000 (above manufactured by Ito Oil Co., Ltd.), Disparlon 6500, Disparlon 6300, Disparlon 6650, Disparlon 6700, Disparlon 3900EF (above manufactured by Nanben Chemical Co., Ltd.), Talen 7200, Talen 7500, Talen 8200, Talen 8300, Talen 8700, Talen 8900, Talen KY-2000, Talen KU-700, Talen M-1020, Talen VA-780, Talen VA-750B, Talen 2450, Flownon SD-700, Flownon SDR-80, Flownon EC-121 (the above is manufactured by Kyoeisha Chemical Co., Ltd.), and the like.

膨潤土系增稠劑有Bengel、Bengel HV、Bengel HVP、Bengel F、Bengel FW、Bengel Bright 11、Bengel A、Bengel W-100、Bengel W-100U、Bengel W-300U、Bengel SH、MultiBen、S-Ben、S-Ben C、S-Ben E、S-Ben W、S-Ben P、S-Ben WX、Organite、Organite D(以上為禾菌(Hojun)股份有限公司製造)等。Bentonite thickeners are Bengel, Bengel HV, Bengel HVP, Bengel F, Bengel FW, Bengel Bright 11, Bengel A, Bengel W-100, Bengel W-100U, Bengel W-300U, Bengel SH, MultiBen, S-Ben , S-Ben C, S-Ben E, S-Ben W, S-Ben P, S-Ben WX, Organite, Organite D (above, manufactured by Hojun Co., Ltd.).

微粒子氧化矽系增稠劑有AEROSIL R972、AEROSIL R974、AEROSIL NY50、AEROSIL RY200S、AEROSIL RY200、AEROSIL RX50、AEROSIL NAX50、AEROSIL RX200、AEROSIL RX300、AEROSIL VPNKC130、AEROSIL R805、AEROSIL R104、AEROSIL R711、AEROSIL OX50、AEROSIL 50、AEROSIL 90G、AEROSIL 130、AEROSIL 200、AEROSIL 300、AEROSIL 380(以上為日本艾羅西爾(Aerosil)股份有限公司製造)、WACKER HDK S13、WACKER HDK V15、WACKER HDK N20、WACKER HDK N20P、WACKER HDK T30、WACKER HDK T40、WACKER HDK H15、WACKER HDK H18、WACKER HDK H20、WACKER HDK H30(以上為旭化成股份有限公司製造)等。Microparticle cerium oxide thickeners include AEROSIL R972, AEROSIL R974, AEROSIL NY50, AEROSIL RY200S, AEROSIL RY200, AEROSIL RX50, AEROSIL NAX50, AEROSIL RX200, AEROSIL RX300, AEROSIL VPNKC130, AEROSIL R805, AEROSIL R104, AEROSIL R711, AEROSIL OX50, AEROSIL 50, AEROSIL 90G, AEROSIL 130, AEROSIL 200, AEROSIL 300, AEROSIL 380 (above is manufactured by Aerosil Co., Ltd.), WACKER HDK S13, WACKER HDK V15, WACKER HDK N20, WACKER HDK N20P, WACKER HDK T30, WACKER HDK T40, WACKER HDK H15, WACKER HDK H18, WACKER HDK H20, WACKER HDK H30 (above, manufactured by Asahi Kasei Co., Ltd.).

就形成緻密膜或減少殘渣的方面而言,增稠劑較佳為90%熱分解溫度為400℃以下。具體而言,較佳為聚乙二醇、聚環氧乙烷、聚丙二醇、聚環氧丙烷、各種丙烯酸酯系樹脂,其中,更佳為聚環氧乙烷、聚環氧丙烷或丙烯酸酯系樹脂。就保存穩定性的方面而言,尤佳為丙烯酸酯系樹脂。此處,所謂90%熱分解溫度是增稠劑的重量因熱分解而減少90%的溫度。熱分解溫度可使用熱重測定裝置(TGA)等進行測定。The thickener preferably has a 90% thermal decomposition temperature of 400 ° C or less in terms of forming a dense film or reducing residue. Specifically, polyethylene glycol, polyethylene oxide, polypropylene glycol, polypropylene oxide, and various acrylate resins are preferable, and more preferably polyethylene oxide, polypropylene oxide or acrylate. Resin. In terms of storage stability, an acrylate resin is particularly preferred. Here, the 90% thermal decomposition temperature is a temperature at which the weight of the thickener is reduced by 90% due to thermal decomposition. The thermal decomposition temperature can be measured using a thermogravimetric measuring device (TGA) or the like.

丙烯酸酯系樹脂可列舉:聚甲基丙烯酸甲酯、聚甲基丙烯酸乙酯、聚甲基丙烯酸丙酯、聚甲基丙烯酸丁酯、聚丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸丙酯、聚丙烯酸丁酯、聚甲基丙烯酸羥基乙酯、聚甲基丙烯酸苄酯、聚甲基丙烯酸縮水甘油酯等聚丙烯酸酯及該些的共聚物。在共聚物的情況下,所述丙烯酸酯成分只要以聚合比率計為60 mol%以上即可,作為其他共聚合成分,可將聚丙烯酸、聚苯乙烯等可進行乙烯基聚合的成分共聚合。Examples of the acrylate-based resin include polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, and polypropyl acrylate. Polyacrylates such as polybutyl acrylate, polyhydroxyethyl methacrylate, polybenzyl methacrylate, polyglycidyl methacrylate, and copolymers thereof. In the case of the copolymer, the acrylate component may be 60 mol% or more in terms of a polymerization ratio, and as the other copolymer component, a component which can be vinyl-polymerized such as polyacrylic acid or polystyrene may be copolymerized.

另外,關於聚環氧乙烷、聚環氧丙烷,亦較佳為該兩種的共聚物。丙烯酸酯系樹脂、聚環氧乙烷、聚環氧丙烷均是重量平均分子量10萬以上者的增稠效果高,故而較佳。Further, as for the polyethylene oxide and the polypropylene oxide, a copolymer of the two is also preferable. The acrylate resin, polyethylene oxide, and polypropylene oxide are preferably those having a weight average molecular weight of 100,000 or more and having a high thickening effect.

該些增稠劑的含量較佳為在p型不純物擴散組成物中為3重量%以上且20重量%以下。藉由為該範圍,可獲得充分的黏度調整效果,同時可形成緻密的膜。The content of the thickener is preferably 3% by weight or more and 20% by weight or less in the p-type impurity-diffusing composition. By this range, a sufficient viscosity adjustment effect can be obtained, and at the same time, a dense film can be formed.

對本發明的p型不純物擴散組成物的黏度並無限制,可根據印刷法、膜厚進行適宜變更。The viscosity of the p-type impurity diffusion composition of the present invention is not limited, and can be appropriately changed depending on the printing method and the film thickness.

本發明的p型不純物擴散組成物的固體成分濃度並無特別限制,較佳的範圍是1重量%以上且90重量%以下。若低於本濃度範圍,則塗佈膜厚變得過薄,不易獲得所需的摻雜性,若高於本濃度範圍,則保存穩定性降低。The solid content concentration of the p-type impurity diffusion composition of the present invention is not particularly limited, and a preferred range is 1% by weight or more and 90% by weight or less. When the concentration is lower than the concentration range, the coating film thickness becomes too thin, and the desired doping property is not easily obtained. When the concentration is higher than the concentration range, the storage stability is lowered.

(半導體元件的製造方法) 對使用本發明的p型不純物擴散組成物的不純物擴散層的形成方法及利用其的半導體元件的製造方法進行說明。(Manufacturing Method of Semiconductor Element) A method of forming an impurity diffusion layer using the p-type impurity diffusion composition of the present invention and a method of manufacturing a semiconductor element using the same will be described.

本發明的半導體元件的製造方法的第一態樣為如下半導體元件的製造方法,其包括:在半導體基板上塗佈本發明的p型不純物擴散組成物而形成p型不純物擴散組成物膜的步驟;及使p型不純物自所述p型不純物擴散組成物膜擴散而形成p型不純物擴散層的步驟。A first aspect of the method for producing a semiconductor device of the present invention is a method for producing a semiconductor device, comprising the steps of: coating a p-type impurity diffusion composition of the present invention on a semiconductor substrate to form a p-type impurity diffusion composition film; And a step of diffusing the p-type impurity from the p-type impurity diffusion composition film to form a p-type impurity diffusion layer.

另外,本發明的半導體元件的製造方法的第二態樣為如下半導體元件的製造方法,其包括:在半導體基板上塗佈n型不純物擴散組成物而形成n型不純物擴散組成物膜的步驟;於所述步驟後塗佈本發明的p型不純物擴散組成物而形成p型不純物擴散組成物膜的步驟;及藉由對該半導體基板進行加熱而同時形成n型不純物擴散層與p型不純物擴散層的步驟。Further, a second aspect of the method for fabricating a semiconductor device of the present invention is a method for producing a semiconductor device, comprising: a step of coating an n-type impurity diffusion composition on a semiconductor substrate to form an n-type impurity diffusion composition film; a step of forming a p-type impurity diffusion composition film by applying the p-type impurity diffusion composition of the present invention after the step; and simultaneously forming an n-type impurity diffusion layer and a p-type impurity diffusion by heating the semiconductor substrate The steps of the layer.

另外,本發明的半導體元件的製造方法的第三態樣為如下半導體元件的製造方法,其包括:在半導體基板的其中一個面上塗佈本發明的p型不純物擴散組成物而形成p型不純物擴散組成物膜的步驟;在所述半導體基板的另一個面上塗佈n型不純物擴散組成物而形成n型不純物擴散組成物膜的步驟;及藉由對該半導體基板進行加熱而同時形成p型不純物擴散層與n型不純物擴散層的步驟。Further, a third aspect of the method of manufacturing a semiconductor device of the present invention is a method of manufacturing a semiconductor device comprising: applying a p-type impurity diffusion composition of the present invention to one surface of a semiconductor substrate to form a p-type impurity. a step of diffusing a composition film; a step of coating an n-type impurity diffusion composition on the other surface of the semiconductor substrate to form an n-type impurity diffusion composition film; and simultaneously forming a p by heating the semiconductor substrate A step of a type impurity diffusion layer and an n-type impurity diffusion layer.

以下,使用圖式對可應用於該些半導體元件的製造方法的不純物擴散層的形成方法進行說明。再者,均為一例,可應用於本發明的半導體元件的製造方法的方法並不限於該些。Hereinafter, a method of forming an impurity diffusion layer which can be applied to the method of manufacturing the semiconductor elements will be described using a drawing. Furthermore, as an example, the method applicable to the method of manufacturing a semiconductor device of the present invention is not limited to these.

圖1(a)~圖1(c)表示將本發明的p型不純物擴散組成物塗佈於半導體基板上,然後使p型不純物擴散至半導體基板上而形成不純物擴散層的方法。1(a) to 1(c) show a method in which a p-type impurity diffusion composition of the present invention is applied onto a semiconductor substrate, and then a p-type impurity is diffused onto the semiconductor substrate to form an impurity diffusion layer.

首先,如圖1(a)所示,在半導體基板1上形成p型不純物擴散組成物膜2。First, as shown in FIG. 1(a), a p-type impurity diffusion composition film 2 is formed on the semiconductor substrate 1.

半導體基板1例如可列舉不純物濃度為1015 atoms/cm3 ~1016 atoms/cm3 的n型單晶矽、多晶矽、及混合有如鍺、碳等其他元素的結晶矽基板。亦可使用p型結晶矽或矽以外的半導體。半導體基板1較佳為厚度為50 μm~300 μm、外形為一邊為100 mm~250 mm的大致四邊形。另外,為了去除切片損傷(slice damage)或自然氧化膜,較佳為預先利用氫氟酸溶液或鹼溶液等對表面進行蝕刻。Examples of the semiconductor substrate 1 include n-type single crystal germanium having an impurity concentration of 10 15 atoms/cm 3 to 10 16 atoms/cm 3 , polycrystalline germanium, and a crystalline germanium substrate in which other elements such as germanium or carbon are mixed. A p-type crystal germanium or a semiconductor other than germanium can also be used. The semiconductor substrate 1 is preferably a substantially quadrangular shape having a thickness of 50 μm to 300 μm and an outer shape of 100 mm to 250 mm. Further, in order to remove slice damage or a natural oxide film, it is preferred to etch the surface in advance using a hydrofluoric acid solution or an alkali solution.

亦可在半導體基板1的受光面形成保護膜。該保護膜可應用藉由化學氣相沈積(Chemical Vapor Deposition,CVD)法或旋塗玻璃(Spin-on glass,SOG)法等方法進行製膜的氧化矽或氮化矽等公知的保護膜。A protective film may be formed on the light receiving surface of the semiconductor substrate 1. As the protective film, a known protective film such as ruthenium oxide or tantalum nitride which is formed by a chemical vapor deposition (CVD) method or a spin-on glass (SOG) method can be applied.

p型不純物擴散組成物的塗佈方法例如可列舉:旋轉塗佈法、絲網印刷法、噴墨印刷法、狹縫塗佈法、噴霧塗佈法、凸版印刷法、凹版印刷法等。Examples of the coating method of the p-type impurity diffusion composition include a spin coating method, a screen printing method, an inkjet printing method, a slit coating method, a spray coating method, a relief printing method, and a gravure printing method.

利用該些方法形成塗佈膜後,較佳為將p型不純物擴散組成物膜2利用加熱板(hot plate)、烘箱(oven)等,在50℃~200℃的範圍內乾燥30秒鐘~30分鐘。就p型不純物的擴散性的觀點而言,乾燥後的p型不純物擴散組成物膜2的膜厚較佳為100 nm以上,就蝕刻後的殘渣的觀點而言,較佳為3 μm以下。After forming the coating film by these methods, it is preferable to dry the p-type impurity diffusion composition film 2 by using a hot plate, an oven, or the like in the range of 50 ° C to 200 ° C for 30 seconds. 30 minutes. The film thickness of the p-type impurity diffusion composition film 2 after drying is preferably 100 nm or more from the viewpoint of the diffusibility of the p-type impurity, and is preferably 3 μm or less from the viewpoint of the residue after the etching.

其次,如圖1(b)所示,使p型不純物擴散至半導體基板1中而形成p型不純物擴散層3。p型不純物的擴散方法可利用公知的熱擴散方法,例如可使用電加熱、紅外加熱、雷射加熱、微波加熱等方法。Next, as shown in FIG. 1(b), the p-type impurity is diffused into the semiconductor substrate 1 to form the p-type impurity diffusion layer 3. A method of diffusing p-type impurities can be carried out by a known thermal diffusion method, and for example, electric heating, infrared heating, laser heating, microwave heating, or the like can be used.

熱擴散的時間及溫度可以獲得不純物擴散濃度、擴散深度等所需的擴散特性的方式適宜設定。例如,藉由在800℃以上且1200℃以下加熱擴散1分鐘~120分鐘,可形成表面不純物濃度為1019 atoms/cm3 ~1021 atoms/cm3 的p型不純物擴散層。The time and temperature of thermal diffusion can be suitably set in such a manner that the diffusion characteristics required for the diffusion concentration and diffusion depth of the impurity can be obtained. For example, by heating and diffusing at 800 ° C or more and 1200 ° C or less for 1 minute to 120 minutes, a p-type impurity diffusion layer having a surface impurity concentration of 10 19 atoms/cm 3 to 10 21 atoms/cm 3 can be formed.

擴散環境並無特別限定,可在大氣中進行,亦可使用氮氣、氬氣等惰性氣體並適宜控制環境中的氧量等進行。就縮短擴散時間的觀點而言,較佳為使環境中的氧濃度為3%以下。另外,亦可視需要在擴散前在200℃~850℃的範圍內進行煅燒。The diffusion environment is not particularly limited, and it can be carried out in the air, or an inert gas such as nitrogen or argon can be used, and the amount of oxygen in the environment can be appropriately controlled. From the viewpoint of shortening the diffusion time, it is preferred to set the oxygen concentration in the environment to 3% or less. Further, it is also possible to carry out calcination in the range of 200 ° C to 850 ° C before the diffusion.

其次,如圖1(c)所示,藉由公知的蝕刻法,將形成於半導體基板1的表面的p型不純物擴散組成物膜2去除。用於蝕刻的材料並無特別限定,較佳為例如包含氟化氫、銨、磷酸、硫酸、硝酸中的至少一種作為蝕刻成分且包含水或有機溶劑等作為所述以外的成分的材料。藉由以上步驟,可在半導體基板上形成p型的不純物擴散層。Next, as shown in FIG. 1(c), the p-type impurity diffusion composition film 2 formed on the surface of the semiconductor substrate 1 is removed by a known etching method. The material to be used for the etching is not particularly limited, and for example, a material containing at least one of hydrogen fluoride, ammonium, phosphoric acid, sulfuric acid, and nitric acid as an etching component and containing water or an organic solvent as a component other than the above is preferable. By the above steps, a p-type impurity diffusion layer can be formed on the semiconductor substrate.

圖2(a)~圖2(e)表示不純物擴散層的形成方法,其特徵在於包括:於半導體基板上塗佈n型不純物擴散組成物,而使n型不純物自n型不純物擴散組成物擴散至半導體基板的步驟;及以所述n型不純物擴散組成物作為遮罩,於所述半導體基板上塗佈p型不純物並使其擴散的步驟。2(a) to 2(e) show a method of forming an impurity diffusion layer, comprising: coating an n-type impurity diffusion composition on a semiconductor substrate, and diffusing an n-type impurity from the n-type impurity diffusion composition; a step of forming a semiconductor substrate; and a step of coating the semiconductor substrate with a p-type impurity and diffusing the n-type impurity diffusion composition as a mask.

另外,圖3(f)~圖3(h)是以背面接合型太陽電池的製造方法為例對利用所述不純物擴散層的太陽電池的製造方法進行說明。In addition, FIG. 3(f) to FIG. 3(h) illustrate a method of manufacturing a solar cell using the impurity diffusion layer as an example of a method of manufacturing a back junction type solar cell.

首先,如圖2(a)所示,在半導體基板1上形成n型不純物擴散組成物膜4。First, as shown in FIG. 2(a), an n-type impurity diffusion composition film 4 is formed on the semiconductor substrate 1.

n型不純物擴散組成物膜4的形成方法例如可列舉:絲網印刷法、噴墨印刷法、狹縫塗佈法、噴霧塗佈法、凸版印刷法、凹版印刷法等。利用該些方法形成塗佈膜後,較佳為將n型不純物擴散組成物膜4利用加熱板、烘箱等,在50℃~200℃的範圍內乾燥30秒鐘~30分鐘。若考慮對p型不純物的遮罩性,則乾燥後的n型不純物擴散組成物膜4的膜厚較佳為200 nm以上,就抗龜裂性的觀點而言,較佳為5 μm以下。Examples of the method for forming the n-type impurity diffusion composition film 4 include a screen printing method, an inkjet printing method, a slit coating method, a spray coating method, a relief printing method, and a gravure printing method. After the coating film is formed by these methods, the n-type impurity diffusion composition film 4 is preferably dried in a range of 50 to 200 ° C for 30 seconds to 30 minutes using a hot plate or an oven. When the masking property of the p-type impurity is considered, the film thickness of the n-type impurity diffusion composition film 4 after drying is preferably 200 nm or more, and is preferably 5 μm or less from the viewpoint of crack resistance.

其次,如圖2(b)所示,使n型不純物擴散組成物膜4中的n型不純物擴散至半導體基板1中而形成n型不純物擴散層5。n型不純物的擴散方法可利用公知的熱擴散方法,例如可使用電加熱、紅外加熱、雷射加熱、微波加熱等方法。Next, as shown in FIG. 2(b), the n-type impurity in the n-type impurity diffusion composition film 4 is diffused into the semiconductor substrate 1 to form the n-type impurity diffusion layer 5. The diffusion method of the n-type impurity can be carried out by a known thermal diffusion method, and for example, electric heating, infrared heating, laser heating, microwave heating or the like can be used.

熱擴散的時間及溫度可以獲得不純物擴散濃度、擴散深度等所需的擴散特性的方式適宜設定。例如,藉由在800℃以上且1200℃以下加熱擴散1分鐘~120分鐘,可形成表面不純物濃度為1019 atoms/cm3 ~1021 atoms/cm3 的n型不純物擴散層。The time and temperature of thermal diffusion can be suitably set in such a manner that the diffusion characteristics required for the diffusion concentration and diffusion depth of the impurity can be obtained. For example, by heating and diffusing at 800 ° C or higher and 1200 ° C or lower for 1 minute to 120 minutes, an n-type impurity diffusion layer having a surface impurity concentration of 10 19 atoms/cm 3 to 10 21 atoms/cm 3 can be formed.

擴散環境並無特別限定,可在大氣中進行,亦可使用氮氣、氬氣等惰性氣體並適宜控制環境中的氧量等進行。就縮短擴散時間的觀點而言,較佳為使環境中的氧濃度為3%以下。另外,亦可視需要在擴散前在200℃~850℃的範圍內進行煅燒。The diffusion environment is not particularly limited, and it can be carried out in the air, or an inert gas such as nitrogen or argon can be used, and the amount of oxygen in the environment can be appropriately controlled. From the viewpoint of shortening the diffusion time, it is preferred to set the oxygen concentration in the environment to 3% or less. Further, it is also possible to carry out calcination in the range of 200 ° C to 850 ° C before the diffusion.

使n型不純物擴散至半導體基板1後,可藉由利用氫氟酸等公知的蝕刻液的剝離而將n型不純物擴散組成物膜4剝離。其後,可對形成n型不純物擴散層後的半導體基板進行p型不純物擴散組成物的塗佈及p型不純物的擴散,亦可如以下所說明般,不剝離n型不純物擴散組成物膜4而進行p型不純物擴散組成物的印刷及p型不純物的擴散,就減少步驟數的觀點而言較佳。After the n-type impurity is diffused to the semiconductor substrate 1, the n-type impurity diffusion composition film 4 can be peeled off by peeling off a known etching liquid such as hydrofluoric acid. Thereafter, the p-type impurity diffusion composition and the p-type impurity may be diffused on the semiconductor substrate on which the n-type impurity diffusion layer is formed, and the n-type impurity diffusion composition film 4 may not be peeled off as described below. Further, printing of the p-type impurity diffusion composition and diffusion of the p-type impurity are preferable from the viewpoint of reducing the number of steps.

在n型不純物的擴散後,視需要對n型不純物擴散組成物膜4進行煅燒,然後如圖2(c)所示,以n型不純物擴散組成物膜4作為遮罩而塗佈本發明的p型不純物擴散組成物。在該情況下,如圖2(c)所示,可在整個面形成p型不純物擴散組成物膜2,亦可僅在無n型不純物擴散組成物膜4的部分形成。另外,亦可以p型不純物擴散組成物膜2的一部分與n型不純物擴散組成物膜4重疊的方式進行塗佈。After the diffusion of the n-type impurity, the n-type impurity diffusion composition film 4 is calcined as needed, and then the n-type impurity diffusion composition film 4 is coated as a mask as shown in FIG. 2(c). A p-type impurity diffusion composition. In this case, as shown in FIG. 2(c), the p-type impurity diffusion composition film 2 may be formed on the entire surface, or may be formed only in a portion where the n-type impurity is not diffused from the composition film 4. Further, a part of the p-type impurity diffusion composition film 2 may be applied so as to overlap the n-type impurity diffusion composition film 4.

p型不純物擴散組成物的塗佈方法例如可列舉:旋轉塗佈法、絲網印刷法、噴墨印刷法、狹縫塗佈法、噴霧塗佈法、凸版印刷法、凹版印刷法等。Examples of the coating method of the p-type impurity diffusion composition include a spin coating method, a screen printing method, an inkjet printing method, a slit coating method, a spray coating method, a relief printing method, and a gravure printing method.

利用該些方法形成塗佈膜後,較佳為將p型不純物擴散組成物膜2利用加熱板、烘箱等,在50℃~200℃的範圍內乾燥30秒鐘~30分鐘。就p型不純物的擴散性的觀點而言,乾燥後的p型不純物擴散組成物膜2的膜厚較佳為100 nm以上,就蝕刻後的殘渣的觀點而言,較佳為3 μm以下。After the coating film is formed by these methods, the p-type impurity diffusion composition film 2 is preferably dried in a range of 50 to 200 ° C for 30 seconds to 30 minutes using a hot plate or an oven. The film thickness of the p-type impurity diffusion composition film 2 after drying is preferably 100 nm or more from the viewpoint of the diffusibility of the p-type impurity, and is preferably 3 μm or less from the viewpoint of the residue after the etching.

其次,如圖2(d)所示,以煅燒後的n型不純物擴散組成物膜4作為遮罩層,使p型不純物擴散組成物膜2擴散至半導體基板1而形成p型不純物擴散層3。p型不純物的擴散方法可利用公知的熱擴散方法,例如可使用電加熱、紅外加熱、雷射加熱、微波加熱等方法。Next, as shown in FIG. 2(d), the n-type impurity diffusion composition film 4 after calcination is used as a mask layer, and the p-type impurity diffusion composition film 2 is diffused to the semiconductor substrate 1 to form a p-type impurity diffusion layer 3. . A method of diffusing p-type impurities can be carried out by a known thermal diffusion method, and for example, electric heating, infrared heating, laser heating, microwave heating, or the like can be used.

熱擴散的時間及溫度可以獲得不純物擴散濃度、擴散深度等所需的擴散特性的方式適宜設定。例如,藉由在800℃以上且1200℃以下加熱擴散1分鐘~120分鐘,可形成表面不純物濃度為1019 atoms/cm3 ~1021 atoms/cm3 的p型不純物擴散層。The time and temperature of thermal diffusion can be suitably set in such a manner that the diffusion characteristics required for the diffusion concentration and diffusion depth of the impurity can be obtained. For example, by heating and diffusing at 800 ° C or more and 1200 ° C or less for 1 minute to 120 minutes, a p-type impurity diffusion layer having a surface impurity concentration of 10 19 atoms/cm 3 to 10 21 atoms/cm 3 can be formed.

擴散環境並無特別限定,可在大氣中進行,亦可使用氮氣、氬氣等惰性氣體並適宜控制環境中的氧量等進行。就縮短擴散時間的觀點而言,較佳為使環境中的氧濃度為3%以下。另外,亦可視需要在擴散前在200℃~850℃的範圍內進行煅燒。The diffusion environment is not particularly limited, and it can be carried out in the air, or an inert gas such as nitrogen or argon can be used, and the amount of oxygen in the environment can be appropriately controlled. From the viewpoint of shortening the diffusion time, it is preferred to set the oxygen concentration in the environment to 3% or less. Further, it is also possible to carry out calcination in the range of 200 ° C to 850 ° C before the diffusion.

其次,如圖2(e)所示,藉由公知的蝕刻法,將形成於半導體基板1的表面的n型不純物擴散組成物膜4及p型不純物擴散組成物膜2去除。用於蝕刻的材料並無特別限定,較佳為例如包含氟化氫、銨、磷酸、硫酸、硝酸中的至少一種作為蝕刻成分且包含水或有機溶劑等作為蝕刻成分以外的成分的材料。藉由以上步驟,可在半導體基板上形成n型及p型的不純物擴散層。藉由設為此種步驟,與現有方法相比,可將步驟簡化。Next, as shown in FIG. 2(e), the n-type impurity diffusion composition film 4 and the p-type impurity diffusion composition film 2 formed on the surface of the semiconductor substrate 1 are removed by a known etching method. The material to be used for the etching is not particularly limited, and is preferably a material containing at least one of hydrogen fluoride, ammonium, phosphoric acid, sulfuric acid, and nitric acid as an etching component and containing water or an organic solvent as a component other than the etching component. By the above steps, an n-type and p-type impurity diffusion layer can be formed on the semiconductor substrate. By setting this step, the steps can be simplified as compared with the conventional method.

此處,示出了在n型不純物擴散組成物的塗佈·擴散後進行p型不純物擴散組成物的塗佈·擴散的例子,但亦可在p型不純物擴散組成物的塗佈·擴散後進行n型不純物擴散組成物的塗佈·擴散。即,亦可於圖2(a)~圖2(b)中進行p型不純物擴散組成物的塗佈·擴散來代替n型不純物擴散組成物的塗佈·擴散,圖2(c)~圖2(d)中進行n型不純物擴散組成物的塗佈·擴散而代替p型不純物擴散組成物的塗佈·擴散。其原因在於:本發明的p型不純物擴散組成物具有相對於n型不純物的阻擋性。Here, an example in which the p-type impurity diffusion composition is coated and diffused after application and diffusion of the n-type impurity diffusion composition is shown, but after the application and diffusion of the p-type impurity diffusion composition, Coating and diffusion of the n-type impurity diffusion composition is performed. In other words, in FIG. 2(a) to FIG. 2(b), coating and diffusion of the p-type impurity diffusion composition may be performed instead of the application and diffusion of the n-type impurity diffusion composition, and FIG. 2(c) to FIG. In 2(d), coating and diffusion of the n-type impurity diffusion composition are performed instead of coating and diffusion of the p-type impurity diffusion composition. The reason for this is that the p-type impurity diffusion composition of the present invention has barrier properties against n-type impurities.

繼而,使用圖3(f)~圖3(h),列舉背面接合型太陽電池為例來說明本發明的太陽電池的製造方法。首先,如圖3(f)所示,在背面形成有n型不純物擴散層5及p型不純物擴散層3的半導體基板1的整個背面上形成保護膜6。其次,如圖3(g)所示,藉由蝕刻法等對保護膜6進行圖案加工而形成保護膜開口6a。進而,如圖3(h)所示,藉由條紋塗佈法或絲網印刷法等,在包含保護膜開口6a的區域將電極膏進行圖案塗佈並進行煅燒,藉此形成n型接觸電極8及p型接觸電極7。藉此,可獲得背面接合型太陽電池9。Next, a method of manufacturing the solar cell of the present invention will be described by taking a back junction type solar cell as an example using FIGS. 3(f) to 3(h). First, as shown in FIG. 3(f), the protective film 6 is formed on the entire back surface of the semiconductor substrate 1 on which the n-type impurity diffusion layer 5 and the p-type impurity diffusion layer 3 are formed on the back surface. Next, as shown in FIG. 3(g), the protective film 6 is patterned by an etching method or the like to form a protective film opening 6a. Further, as shown in FIG. 3(h), the electrode paste is patterned and fired in a region including the protective film opening 6a by a stripe coating method or a screen printing method, thereby forming an n-type contact electrode. 8 and p-type contact electrode 7. Thereby, the back junction type solar cell 9 can be obtained.

另外,利用圖4(a)~圖4(d)對使用本發明的p型不純物擴散組成物的不純物擴散層的另一形成方法進行說明。圖4(a)~圖4(d)表示不純物擴散層的形成方法,其包括:使用n型不純物擴散組成物而形成圖案的步驟;以所述n型不純物擴散組成物作為遮罩而塗佈p型不純物擴散組成物的步驟;及使n型及p型不純物自所述n型不純物擴散組成物及p型不純物擴散組成物擴散至所述半導體基板中的步驟。Further, another method of forming the impurity diffusion layer using the p-type impurity diffusion composition of the present invention will be described with reference to FIGS. 4(a) to 4(d). 4(a) to 4(d) show a method of forming an impurity diffusion layer, comprising: a step of forming a pattern using an n-type impurity diffusion composition; and coating the n-type impurity diffusion composition as a mask. a step of diffusing the p-type impurity diffusion composition; and a step of diffusing the n-type and p-type impurities from the n-type impurity diffusion composition and the p-type impurity diffusion composition into the semiconductor substrate.

首先,如圖4(a)所示,在半導體基板1上對n型不純物擴散組成物膜4進行圖案形成。其次,視需要對n型不純物擴散組成物膜4進行煅燒後,如圖4(b)所示,以n型不純物擴散組成物膜4作為遮罩而形成p型不純物擴散組成物膜2。繼而,如圖4(c)所示,使n型不純物擴散組成物膜4中的n型不純物擴散成分與p型不純物擴散組成物膜2中的p型不純物擴散成分同時擴散至半導體基板1中而形成n型不純物擴散層5與p型不純物擴散層3。不純物擴散組成物的塗佈方法、煅燒方法及擴散方法可列舉與所述相同的方法。First, as shown in FIG. 4(a), the n-type impurity diffusion composition film 4 is patterned on the semiconductor substrate 1. Next, after the n-type impurity diffusion composition film 4 is calcined as needed, as shown in FIG. 4(b), the p-type impurity diffusion composition film 2 is formed by using the n-type impurity diffusion composition film 4 as a mask. Then, as shown in FIG. 4(c), the n-type impurity diffusion component in the n-type impurity diffusion composition film 4 and the p-type impurity diffusion component in the p-type impurity diffusion composition film 2 are simultaneously diffused into the semiconductor substrate 1. The n-type impurity diffusion layer 5 and the p-type impurity diffusion layer 3 are formed. The coating method, the calcination method, and the diffusion method of the impurity diffusion composition may be the same as those described above.

其次,如圖4(d)所示,藉由公知的蝕刻法,將形成於半導體基板1的表面的n型不純物擴散組成物膜4及p型不純物擴散組成物膜2去除。藉由以上步驟,可在半導體基板上形成n型及p型的不純物擴散層。藉由設為此種步驟,與現有方法相比,可進一步將步驟簡化。Next, as shown in FIG. 4(d), the n-type impurity diffusion composition film 4 and the p-type impurity diffusion composition film 2 formed on the surface of the semiconductor substrate 1 are removed by a known etching method. By the above steps, an n-type and p-type impurity diffusion layer can be formed on the semiconductor substrate. By setting this step, the steps can be further simplified as compared with the conventional method.

此處,示出了在n型不純物擴散組成物的塗佈後進行p型不純物擴散組成物的塗佈的例子,但亦可在p型不純物擴散組成物的塗佈後進行n型不純物擴散組成物的塗佈。即,亦可於圖4(a)中進行p型不純物擴散組成物的塗佈來代替n型不純物擴散組成物的塗佈,圖4(b)中進行n型不純物擴散組成物的塗佈來代替p型不純物擴散組成物的塗佈。Here, an example in which the p-type impurity diffusion composition is applied after the application of the n-type impurity diffusion composition is shown, but the n-type impurity diffusion composition may be performed after the application of the p-type impurity diffusion composition. Coating of the object. That is, the application of the p-type impurity diffusion composition may be performed in FIG. 4(a) instead of the application of the n-type impurity diffusion composition, and the application of the n-type impurity diffusion composition may be performed in FIG. 4(b). Instead of the coating of the p-type impurity diffusion composition.

另外,利用圖5(a)~圖5(d)對使用本發明的p型不純物擴散組成物的另一不純物擴散層的形成方法進行說明。Further, a method of forming another impurity diffusion layer using the p-type impurity diffusion composition of the present invention will be described with reference to FIGS. 5(a) to 5(d).

如圖5(a)所示,在半導體基板1上形成本發明的p型不純物擴散組成物膜2。視需要對p型不純物擴散組成物膜2進行煅燒後,如圖5(b)所示,在半導體基板1的與形成有p型不純物擴散組成物膜2的面為相反側的面形成n型不純物擴散組成物膜4。As shown in FIG. 5(a), the p-type impurity diffusion composition film 2 of the present invention is formed on the semiconductor substrate 1. After the p-type impurity diffusion composition film 2 is fired as needed, as shown in FIG. 5(b), an n-type is formed on the surface of the semiconductor substrate 1 opposite to the surface on which the p-type impurity diffusion composition film 2 is formed. The impurity diffuses the composition film 4.

其次,如圖5(c)所示,藉由對該半導體基板進行加熱,使p型不純物擴散組成物膜2與n型不純物擴散組成物膜4同時擴散至半導體基板1中而形成p型不純物擴散層3與n型不純物擴散層5。不純物擴散組成物的塗佈方法、煅燒方法及擴散方法可列舉與所述相同的方法。Next, as shown in FIG. 5(c), by heating the semiconductor substrate, the p-type impurity diffusion composition film 2 and the n-type impurity diffusion composition film 4 are simultaneously diffused into the semiconductor substrate 1 to form a p-type impurity. The diffusion layer 3 and the n-type impurity diffusion layer 5. The coating method, the calcination method, and the diffusion method of the impurity diffusion composition may be the same as those described above.

其次,如圖5(d)所示,藉由公知的蝕刻法,將形成於半導體基板1的表面的p型不純物擴散組成物膜2及n型不純物擴散組成物膜4去除。藉由以上步驟,可在半導體基板上形成n型及p型的不純物擴散層。藉由設為此種步驟,與現有方法相比,可將步驟簡化。Next, as shown in FIG. 5(d), the p-type impurity diffusion composition film 2 and the n-type impurity diffusion composition film 4 formed on the surface of the semiconductor substrate 1 are removed by a known etching method. By the above steps, an n-type and p-type impurity diffusion layer can be formed on the semiconductor substrate. By setting this step, the steps can be simplified as compared with the conventional method.

此處,示出了在塗佈p型不純物擴散組成物後進行n型不純物擴散組成物的塗佈的例子,但亦可在n型不純物擴散組成物的塗佈後進行p型不純物擴散組成物的塗佈。Here, an example in which the n-type impurity diffusion composition is applied after the p-type impurity diffusion composition is applied is shown, but the p-type impurity diffusion composition may be performed after the application of the n-type impurity diffusion composition. Coating.

本發明的太陽電池的製造方法包括藉由本發明的半導體元件的製造方法而製造半導體元件的步驟。藉由於本發明的太陽電池的製造方法中包含本發明的半導體元件的製造方法,如上所述,與現有方法相比,可將步驟簡化。作為根據藉由本發明的半導體元件的製造方法所獲得的半導體元件來製造本發明的太陽電池的方法,可使用公知的方法。作為其具體例,可列舉使用所述圖3(f)~圖3(h)而說明的方法。藉由本發明的太陽電池的製造方法而獲得的太陽電池防止n型不純物混入至p型不純物擴散區域,故可抑制「由n型不純物混入至p型不純物擴散區域而造成的發電效率的降低」這一不良情況的發生。The method for producing a solar cell of the present invention includes the step of manufacturing a semiconductor device by the method for producing a semiconductor device of the present invention. By the method of manufacturing a semiconductor device of the present invention, the method for producing a semiconductor device of the present invention can be simplified as compared with the conventional method. As a method of manufacturing the solar cell of the present invention from the semiconductor element obtained by the method for producing a semiconductor device of the present invention, a known method can be used. Specific examples thereof include the methods described using the above-described FIGS. 3(f) to 3(h). The solar cell obtained by the method for producing a solar cell of the present invention prevents n-type impurities from being mixed into the p-type impurity diffusion region, thereby suppressing "a decrease in power generation efficiency caused by the incorporation of n-type impurities into the p-type impurity diffusion region". A bad situation has occurred.

本發明並不限定於所述實施方式,亦可基於業者的知識而施加各種設計變更等變形,此種施加有變形的實施方式亦包含於本發明的範圍內。The present invention is not limited to the above-described embodiments, and various modifications such as design changes may be applied based on the knowledge of the manufacturer. Such an embodiment in which deformation is applied is also included in the scope of the present invention.

本發明的p型不純物擴散組成物亦可展開至太陽電池等光電元件、或在半導體表面將不純物擴散區域進行圖案形成的半導體元件,例如電晶體陣列(transistor array)或二極體陣列(diode array)、光電二極體陣列(photo diode array)、轉換器(transducer)等。 [實施例]The p-type impurity diffusion composition of the present invention may be developed to a photovoltaic element such as a solar cell or a semiconductor element in which an impurity diffusion region is patterned on a semiconductor surface, such as a transistor array or a diode array. ), a photo diode array, a transducer, and the like. [Examples]

以下,列舉實施例,對本發明進一步進行具體說明,但本發明並不限定於該些實施例。再者,以下示出所使用的化合物中使用略語的化合物。Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the examples. Further, the compounds used in the abbreviations used in the compounds used are shown below.

γ-BL:γ-丁內酯 MeTMS:甲基三甲氧基矽烷 PhTMS:苯基三甲氧基矽烷 DMeDMS:二甲氧基二甲基矽烷。γ-BL: γ-butyrolactone MeTMS: methyltrimethoxydecane PhTMS: phenyltrimethoxydecane DMeDMS: dimethoxydimethyl decane.

(1)溶液黏度及保存穩定性 使用東機產業股份有限公司製造的旋轉黏度計TVE-25L(E型數位黏度計),測定液溫25℃、轉數20 rpm下的黏度。(1) Viscosity and storage stability of the solution The viscosity of the liquid temperature of 25 ° C and the number of revolutions of 20 rpm was measured using a rotary viscometer TVE-25L (E-type digital viscometer) manufactured by Toki Sangyo Co., Ltd.

(2)剝離性評價 將切割成3 cm×3 cm的n型矽晶圓(silicon wafer)(飛羅得矽(Ferrotec Silicon)股份有限公司製造,表面電阻率410 Ω/□)在1%氫氟酸水溶液中浸漬1分鐘後進行水洗,鼓風(air blow)後利用加熱板在140℃下處理5分鐘。(2) Evaluation of peelability An n-type silicon wafer (manufactured by Ferrotec Silicon Co., Ltd., surface resistivity: 410 Ω/□) cut into 3 cm × 3 cm was used in 1% hydrogen. The aqueous solution of fluoric acid was immersed for 1 minute, washed with water, and air blowd, and then treated at 140 ° C for 5 minutes using a hot plate.

利用公知的旋轉塗佈法將測定對象的不純物擴散組成物以預烘烤(prebake)膜厚成為500 nm左右的方式塗佈於該矽晶圓。塗佈後,將矽晶圓在140℃下進行5分鐘預烘烤。The impurity-diffusion composition to be measured is applied to the tantalum wafer by a pre-bake film thickness of about 500 nm by a known spin coating method. After coating, the tantalum wafer was prebaked at 140 ° C for 5 minutes.

繼而,將各矽晶圓配置於電爐內,在氮氣:氧氣=99:1(體積比)的環境下,在900℃下維持30分鐘而使不純物熱擴散。Then, each of the germanium wafers was placed in an electric furnace, and the impurities were thermally diffused at 900 ° C for 30 minutes in an atmosphere of nitrogen: oxygen = 99:1 (volume ratio).

在23℃下將熱擴散後的各矽晶圓於5重量%的氫氟酸水溶液中浸漬1分鐘,將擴散劑及遮罩剝離。剝離後,使矽晶圓浸漬於純水中並進行清洗,藉由表面目視來觀察殘渣的有無。將浸漬1分鐘後可以目視確認到表面附著物且即便用破布擦拭亦無法去除者評價為差(worse),將浸漬1分鐘後可以目視確認到表面附著物但可藉由用破布擦拭來去除者評價為不良(bad),將於超過30秒且1分鐘以內無法目視確認到表面附著物者評價為良(good),將於30秒以內無法目視確認到表面附著物者評價為優(excellent)。就生產節拍的觀點而言,即便為良(good)亦可使用,但較佳為優(excellent)。Each of the heat-diffused wafers was immersed in a 5% by weight aqueous solution of hydrofluoric acid at 23 ° C for 1 minute to peel off the diffusing agent and the mask. After the peeling, the tantalum wafer was immersed in pure water and washed, and the presence or absence of the residue was visually observed by the surface. After immersing for 1 minute, the surface adhering matter was visually confirmed, and even if it was wiped with a rag, it could not be evaluated as a worst. After immersion for 1 minute, the surface adhering matter was visually confirmed but it could be wiped by using a rag. The remover was evaluated as bad, and the person who could not visually confirm the surface adherence within 30 minutes and within 1 minute was evaluated as good, and the person who could not visually confirm the surface attachment within 30 seconds was evaluated as excellent ( Excellent). From the viewpoint of production tempo, even if it is good, it is preferably excellent.

(3)擴散性 對用於剝離性評價的擴散後的矽晶圓,使用p/n判定機進行p/n判定,使用四探針式表面電阻測定裝置RT-70V(納普森(Napson)股份有限公司製造)測定表面電阻,設為薄片電阻值。薄片電阻值成為不純物擴散性的指標,電阻值小表示不純物擴散量大。將薄片電阻值為40(Ω/□)~70(Ω/□)者評價為優(excellent),將薄片電阻值為71(Ω/□)~100(Ω/□)者評價為良(good),將薄片電阻值為101(Ω/□)以上者評價為不良(bad)。(3) Diffusivity For the spread of the tantalum wafer for peelability evaluation, p/n determination was performed using a p/n judger, and a four-probe surface resistance measuring device RT-70V (Napson) was used. The surface resistance of the company was measured and set as the sheet resistance value. The sheet resistance value is an indicator of the diffusibility of the impurity, and the small resistance value indicates that the amount of diffusion of the impurity is large. When the sheet resistance value is 40 (Ω/□) to 70 (Ω/□), it is evaluated as excellent, and when the sheet resistance value is 71 (Ω/□) to 100 (Ω/□), it is evaluated as good (good). In the case where the sheet resistance value was 101 (Ω/□) or more, it was evaluated as bad.

(4)擴散均勻性 對用於薄片電阻值測定的擴散後的矽晶圓,使用二次離子質量分析裝置IMS7f(凱莫拉(Camera)公司製造),測定不純物的表面濃度分佈。根據所獲得的表面濃度分佈以100 μm間隔讀取10點的表面濃度,計算其平均值與標準偏差的比,即「標準偏差/平均值」,將「標準偏差/平均值」為0.3以下者判定為優(excellent),將超過0.3且0.6以下者判定為良(good),將超過0.6且1.0以內者判定為不良(bad),將超過1.0者判定為差(worse)。不純物的表面濃度的不均對發電效率造成大的影響,故最佳為優(excellent)。(4) Diffusion uniformity The surface concentration distribution of the impurity was measured using a secondary ion mass spectrometer IMS7f (manufactured by Camera Co., Ltd.) for the diffused germanium wafer for sheet resistance measurement. According to the obtained surface concentration distribution, the surface concentration of 10 points is read at intervals of 100 μm, and the ratio of the average value to the standard deviation is calculated, that is, "standard deviation/average value", and the "standard deviation/average value" is 0.3 or less. It is judged to be excellent, and it is judged that it is good if it exceeds 0.3 and 0.6 or less, and it is judged as bad by more than 0.6 and 1.0, and it is judged as bad by more than 1.0. The unevenness of the surface concentration of the impurities has a large influence on the power generation efficiency, so the best is excellent.

(5)阻擋性 將切割成3 cm×3 cm的n型矽晶圓(飛羅得矽(Ferrotec Silicon)股份有限公司製造,表面電阻率410 Ω/□)在1%氫氟酸水溶液中浸漬1分鐘後進行水洗,鼓風後利用加熱板在140℃下處理5分鐘。(5) Barrier property An n-type germanium wafer (manufactured by Ferrotec Silicon Co., Ltd., surface resistivity 410 Ω/□) cut into 3 cm × 3 cm was immersed in a 1% hydrofluoric acid aqueous solution. After 1 minute, it was washed with water, and after blasting, it was treated at 140 ° C for 5 minutes using a hot plate.

如圖6(a)所示,利用公知的旋轉塗佈法將p型不純物擴散組成物以預烘烤膜厚成為500 nm左右的方式塗佈於該n型矽晶圓61,形成p型不純物擴散組成物膜62。形成後,將n型矽晶圓在140℃下進行5分鐘預烘烤而製作p型不純物擴散組成物塗佈基板。As shown in FIG. 6(a), the p-type impurity diffusion composition is applied to the n-type germanium wafer 61 so as to form a p-type impurity by a pre-bake film thickness of about 500 nm by a known spin coating method. The composition film 62 is diffused. After the formation, the n-type germanium wafer was prebaked at 140 ° C for 5 minutes to prepare a p-type impurity diffusion composition coated substrate.

其次,如圖6(b)所示,利用公知的旋轉塗佈法將n型不純物擴散組成物(OCD T-1,東京應化工業製造)以預烘烤膜厚成為500 nm左右的方式塗佈於該n型矽晶圓61,形成n型不純物擴散組成物膜64。形成後,將n型矽晶圓在140℃下進行5分鐘預烘烤而製作n型不純物擴散組成物塗佈基板。Next, as shown in FIG. 6(b), an n-type impurity diffusion composition (OCD T-1, manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied by a known spin coating method so that the prebaking film thickness is about 500 nm. An n-type impurity diffusion composition film 64 is formed on the n-type germanium wafer 61. After the formation, the n-type germanium wafer was prebaked at 140 ° C for 5 minutes to prepare an n-type impurity diffusion composition coated substrate.

繼而,如圖6(c)所示,空開5 mm的間隔而使所述p型不純物擴散組成物塗佈基板、n型不純物擴散組成物塗佈基板面對面地配置於電爐內。配置後,在氮氣:氧氣=99:1(體積比)的環境下,在900℃下維持30分鐘而使不純物熱擴散,藉此形成p型不純物擴散層63、n型不純物擴散層65(圖6(d))。Then, as shown in FIG. 6(c), the p-type impurity diffusion composition coating substrate and the n-type impurity diffusion composition coating substrate are placed face to face in an electric furnace at intervals of 5 mm. After the arrangement, the impurities are thermally diffused at 900 ° C for 30 minutes in an atmosphere of nitrogen: oxygen = 99:1 (volume ratio), thereby forming a p-type impurity diffusion layer 63 and an n-type impurity diffusion layer 65 (Fig. 6(d)).

熱擴散後,在23℃下將各n型矽晶圓於5重量%的氫氟酸水溶液中浸漬1分鐘,將已硬化的擴散劑剝離(圖6(e))。After the thermal diffusion, each n-type germanium wafer was immersed in a 5% by weight aqueous solution of hydrofluoric acid at 23 ° C for 1 minute to peel off the hardened diffusing agent ( FIG. 6( e )).

關於對p型不純物擴散組成物塗佈基板進行熱擴散並加以剝離者,使用二次離子質量分析裝置IMS7f(凱莫拉(Camera)公司製造),測定磷元素的表面濃度分佈。磷元素的表面濃度低表示對自對面的n型不純物擴散組成物擴散的磷元素的阻擋性高。將所獲得的磷元素的表面濃度為1017 atoms/cm3 以下者判定為優(excellent),將超過1017 atoms/cm3 且1018 atoms/cm3 以下者判定為良(good),將超過1018 atoms/cm3 者判定為不良(bad)。When the p-type impurity diffusion composition coated substrate was thermally diffused and peeled off, the surface concentration distribution of the phosphorus element was measured using a secondary ion mass spectrometer IMS7f (manufactured by Camera Co., Ltd.). The low surface concentration of the phosphorus element indicates that the barrier property to the phosphorus element diffused from the opposite n-type impurity diffusion composition is high. When the surface concentration of the obtained phosphorus element is 10 17 atoms/cm 3 or less, it is judged to be excellent, and if it exceeds 10 17 atoms/cm 3 and 10 18 atoms/cm 3 or less, it is judged to be good. Those exceeding 10 18 atoms/cm 3 were judged to be bad.

(6)聚矽氧烷的重量平均分子量的測定 聚矽氧烷的重量平均分子量是使用孔徑0.45 μm的薄膜過濾器(membrane filter)過濾樣品後,利用GPC(東曹股份有限公司製造的HLC-8220GPC)(展開溶劑:四氫呋喃,展開速度:0.4 ml/min,管柱:東曹股份有限公司製造的TSKgel Super HM-H)並藉由聚苯乙烯換算而求出。(6) Measurement of weight average molecular weight of polyoxyalkylene The weight average molecular weight of polyoxyalkylene was filtered using a membrane filter having a pore size of 0.45 μm, and then GPC (HLC- manufactured by Tosoh Corporation) was used. 8220 GPC) (developing solvent: tetrahydrofuran, development speed: 0.4 ml/min, column: TSKgel Super HM-H manufactured by Tosoh Corporation) and obtained by polystyrene conversion.

實施例1 (1)聚矽氧烷溶液的合成 向1000 mL的三口燒瓶中添加KBM-13(信越化學工業公司製造,MeTMS)164.93 g(1.21 mol)、KBM-103(信越化學工業公司製造,PhTMS)204.07 g(1.21 mol)、γ-BL 363.03 g,在40℃下一面攪拌一面歷時30分鐘添加在水130.76 g中溶解有甲酸0.1215 g的甲酸水溶液。滴加結束後,在40℃下攪拌1小時後,升溫至70℃,攪拌30分鐘。其後,將油浴(oil bath)升溫至115℃。在升溫開始1小時後溶液的內溫達到100℃,自該溫度起加熱攪拌1小時(內溫為100℃~110℃)。利用冰浴冷卻所獲得的溶液,獲得聚矽氧烷溶液A(PhTMS(50莫耳%)/MeTMS(50莫耳%):通式(1)中n:m=50:50者)。聚矽氧烷溶液A的固體成分濃度為39.8重量%。另外,聚矽氧烷溶液A中的聚矽氧烷的重量平均分子量(Mw)為2900。Example 1 (1) Synthesis of Polyoxane Solution To a 1000 mL three-necked flask, KBM-13 (manufactured by Shin-Etsu Chemical Co., Ltd., MeTMS), 164.93 g (1.21 mol), KBM-103 (manufactured by Shin-Etsu Chemical Co., Ltd.) was added. PhTMS) 204.07 g (1.21 mol), γ-BL 363.03 g, and an aqueous solution of formic acid having 0.1215 g of formic acid dissolved in 130.76 g of water was added thereto while stirring at 40 ° C for 30 minutes. After completion of the dropwise addition, the mixture was stirred at 40 ° C for 1 hour, and then heated to 70 ° C and stirred for 30 minutes. Thereafter, the oil bath was heated to 115 °C. The internal temperature of the solution reached 100 ° C 1 hour after the start of the temperature rise, and the mixture was heated and stirred for 1 hour from the temperature (the internal temperature was 100 ° C to 110 ° C). The obtained solution was cooled with an ice bath to obtain a polyoxymethane solution A (PhTMS (50 mol%) / MeTMS (50 mol%): n: m = 50: 50 in the formula (1)). The solid concentration of the polyoxyalkylene solution A was 39.8% by weight. Further, the polyoxymethane in the polyoxyalkylene solution A had a weight average molecular weight (Mw) of 2,900.

(2)p型不純物擴散成分的合成 向1000 mL的三口燒瓶中添加KBM-13(MeTMS)366.75 g(2.69 mol)、B(OH)3 (硼酸)83.25 g(1.35 mol),升溫至40℃,攪拌1小時。其後,添加γ-BL 550.0 g,升溫至90℃,攪拌1小時(內溫為75℃~85℃)。利用冰浴冷卻所獲得的溶液,獲得p型不純物溶液A。p型不純物溶液A的固體成分濃度為52.3重量%。(2) Synthesis of p-type impurity diffusion component To a 1000 mL three-necked flask, KBM-13 (MeTMS) 366.75 g (2.69 mol) and B(OH) 3 (boric acid) 83.25 g (1.35 mol) were added, and the temperature was raised to 40 °C. Stir for 1 hour. Thereafter, 550.0 g of γ-BL was added, the temperature was raised to 90 ° C, and the mixture was stirred for 1 hour (internal temperature was 75 ° C to 85 ° C). The obtained solution was cooled with an ice bath to obtain a p-type impurity solution A. The solid content concentration of the p-type impurity solution A was 52.3% by weight.

(3)p型不純物擴散組成物的製作 將所述(1)中合成的聚矽氧烷溶液A 20.05 g、所述(2)中合成的p型不純物溶液A 15.26 g、γ-BL 44.65 g、矽酮系界面活性劑BYK333(日本畢克化學(BYK-Chemie Japan)股份有限公司製造)0.04 g混合,充分攪拌以變得均勻,獲得p型不純物擴散組成物A(固體成分濃度:20%)。(3) Preparation of p-type impurity diffusion composition: 20.05 g of the polyaluminoxane solution A synthesized in the above (1), p-type impurity solution A (26) synthesized in the above (2), γ-BL 44.65 g 0.04 g of an anthrone-based surfactant BYK333 (manufactured by BYK-Chemie Japan Co., Ltd.) was mixed and stirred sufficiently to obtain a p-type impurity diffusion composition A (solid content concentration: 20%) ).

所述獲得的p型不純物擴散組成物A的黏度是表2所示的結果。另外,使用所獲得的p型不純物擴散組成物A,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。The viscosity of the obtained p-type impurity diffusion composition A is the result shown in Table 2. Further, using the obtained p-type impurity diffusion composition A, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were obtained.

實施例2 以聚矽氧烷的組成成為通式(1)中n:m=90:10者的方式,將原料添加比設為PhTMS(90莫耳%)/MeTMS(10莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物B。使用所獲得的不純物擴散組成物B,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。再者,所使用的聚矽氧烷溶液中的聚矽氧烷的重量平均分子量(Mw)為2300。Example 2 In such a manner that the composition of the polysiloxane is such that n: m = 90:10 in the formula (1), the raw material addition ratio is set to PhTMS (90 mol%) / MeTMS (10 mol%), Except for this, the impurity diffusion composition B was obtained in the same manner as in Example 1. Using the obtained impurity diffusion composition B, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown. Further, the weight average molecular weight (Mw) of the polyoxyalkylene in the polyoxyalkylene solution used was 2,300.

實施例3 以聚矽氧烷的組成成為通式(1)中n:m=80:20者的方式,將原料添加比設為PhTMS(80莫耳%)/MeTMS(20莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物C。使用所獲得的不純物擴散組成物C,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。再者,所使用的聚矽氧烷溶液中的聚矽氧烷的重量平均分子量(Mw)為2500。Example 3 In a manner in which the composition of the polyoxyalkylene was n: m = 80:20 in the formula (1), the raw material addition ratio was set to PhTMS (80 mol%) / MeTMS (20 mol%), Except for this, the impurity diffusion composition C was obtained in the same manner as in Example 1. Using the obtained impurity diffusion composition C, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown. Further, the polyoxyalkylene oxide used in the polyoxyalkylene solution had a weight average molecular weight (Mw) of 2,500.

實施例4 以聚矽氧烷的組成成為通式(1)中n:m=40:60者的方式,將原料添加比設為PhTMS(40莫耳%)/MeTMS(60莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物D。使用所獲得的不純物擴散組成物D,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。再者,所使用的聚矽氧烷溶液中的聚矽氧烷的重量平均分子量(Mw)為3100。Example 4 In a manner in which the composition of the polyoxyalkylene was n: m = 40: 60 in the formula (1), the raw material addition ratio was set to PhTMS (40 mol%) / MeTMS (60 mol%). Except for this, the impurity diffusion composition D was obtained in the same manner as in Example 1. Using the obtained impurity diffusion composition D, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown. Further, the polyoxymethane in the polyoxyalkylene solution used had a weight average molecular weight (Mw) of 3,100.

實施例5 以聚矽氧烷的組成成為通式(1)中n:m=30:70者的方式,將原料添加比設為PhTMS(30莫耳%)/MeTMS(70莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物E。使用所獲得的不純物擴散組成物E,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。再者,所使用的聚矽氧烷溶液中的聚矽氧烷的重量平均分子量(Mw)為3400。Example 5 In a manner in which the composition of polyoxyalkylene was n: m = 30:70 in the general formula (1), the raw material addition ratio was set to PhTMS (30 mol%) / MeTMS (70 mol%). Except for this, the impurity diffusion composition E was obtained in the same manner as in Example 1. Using the obtained impurity diffusion composition E, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown. Further, the polyoxymethane in the polyoxyalkylene solution used had a weight average molecular weight (Mw) of 3,400.

關於實施例1~實施例5,聚矽氧烷中的芳基比率為40莫耳%以上者的擴散均勻性優異,聚矽氧烷中的芳基比率為80莫耳%以下者的剝離性表示尤其良好的結果。阻擋性於實施例1~實施例5中均表示出良好的結果。In the examples 1 to 5, the arylene ratio in the polysiloxane is 40 mol% or more, and the diffusion uniformity is excellent, and the arylene ratio in the polysiloxane is 80 mol% or less. Indicates particularly good results. The barrier properties showed good results in Examples 1 to 5.

實施例6 於用以獲得(B)p型不純物擴散成分的原料中,將MeTMS變更為PhTMS,除此以外,以與實施例1相同的方式獲得不純物擴散組成物F。使用所獲得的不純物擴散組成物F,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。(Example 6) An impurity diffusion composition F was obtained in the same manner as in Example 1 except that MeTMS was changed to PhTMS in the raw material for obtaining the (B) p-type impurity diffusion component. Using the obtained impurity diffusion composition F, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown.

實施例7 於用以獲得(B)p型不純物擴散成分的原料中,將MeTMS變更為DMeDMS(信越化學工業公司製造),除此以外,以與實施例1相同的方式獲得不純物擴散組成物G。使用所獲得的不純物擴散組成物G,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。Example 7 In the same manner as in Example 1, the impurity diffusion composition G was obtained in the same manner as in Example 1 except that MeTMS was changed to DMEDMS (manufactured by Shin-Etsu Chemical Co., Ltd.) in the raw material for obtaining the (B)-p-type impurity diffusion component. . Using the obtained impurity diffusion composition G, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown.

實施例8 於(3)p型不純物擴散組成物的製作中,將所述(1)中合成的聚矽氧烷溶液變更為10.03 g,將所述(2)中合成的p型不純物溶液A變更為22.89 g,除此以外,以與實施例1相同的方式獲得不純物擴散組成物K。使用所獲得的不純物擴散組成物K,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。Example 8 In the preparation of the (3) p-type impurity diffusion composition, the polyaluminoxane solution synthesized in the above (1) was changed to 10.03 g, and the p-type impurity solution A synthesized in the above (2) was used. The impurity diffusion composition K was obtained in the same manner as in Example 1 except that it was changed to 22.89 g. Using the obtained impurity diffusion composition K, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown.

實施例9 以(B)p型不純物擴散成分成為通式(2)中R5 中的甲基與苯基的莫耳比為甲基:苯基=5:95者的方式,於原料中將MeTMS變更為MeTMS(5莫耳%)/PhTMS(95莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物L。使用所獲得的不純物擴散組成物L,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。Example 9 The method of diffusing a component of (B) p-type impurity into a molar ratio of a methyl group and a phenyl group in R 5 in the formula (2) to a methyl group: phenyl group: 5:95, in a raw material The impurity diffusion composition L was obtained in the same manner as in Example 1 except that MeTMS was changed to MeTMS (5 mol %) / PhTMS (95 mol %). Using the obtained impurity diffusion composition L, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown.

實施例10 以(B)p型不純物擴散成分成為通式(2)中R5 中的甲基與苯基的莫耳比為甲基:苯基=20:80者的方式,於原料中將MeTMS變更為MeTMS(20莫耳%)/PhTMS(80莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物M。使用所獲得的不純物擴散組成物M,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。Example 10 The method of diffusing a component of (B) p-type impurity into a molar ratio of a methyl group and a phenyl group in R 5 in the formula (2) to a methyl group: a phenyl group: 20:80, The impurity diffusion composition M was obtained in the same manner as in Example 1 except that MeTMS was changed to MeTMS (20 mol %) / PhTMS (80 mol %). Using the obtained impurity diffusion composition M, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown.

實施例11 以(B)p型不純物擴散成分成為通式(2)中R5 中的甲基與苯基的莫耳比為甲基:苯基=50:50者的方式,於原料中將MeTMS變更為MeTMS(50莫耳%)/PhTMS(50莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物N。使用所獲得的不純物擴散組成物N,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。Example 11 The method in which the (B) p-type impurity diffusion component is such that the molar ratio of the methyl group and the phenyl group in R 5 in the general formula (2) is methyl group: phenyl group = 50:50, The impurity diffusion composition N was obtained in the same manner as in Example 1 except that MeTMS was changed to MeTMS (50 mol %) / PhTMS (50 mol %). Using the obtained impurity diffusion composition N, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown.

實施例12 以(B)p型不純物擴散成分成為通式(2)中R5 中的甲基與苯基的莫耳比為甲基:苯基=80:20者的方式,於原料中將MeTMS變更為MeTMS(80莫耳%)/PhTMS(20莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物O。使用所獲得的不純物擴散組成物O,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。Example 12 A method in which the (B) p-type impurity diffusion component is such that the molar ratio of the methyl group and the phenyl group in R 5 in the general formula (2) is methyl group: phenyl group = 80:20, The impurity diffusion composition O was obtained in the same manner as in Example 1 except that MeTMS was changed to MeTMS (80 mol %) / PhTMS (20 mol %). Using the obtained impurity diffusion composition O, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown.

實施例13 以(B)p型不純物擴散成分成為通式(2)中R5 中的甲基與苯基的莫耳比為甲基:苯基=95:5者的方式,於原料中將MeTMS變更為MeTMS(95莫耳%)/PhTMS(5莫耳%),除此以外,以與實施例1相同的方式獲得不純物擴散組成物P。使用所獲得的不純物擴散組成物P,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,均表示出良好的結果。Example 13 The method in which the (B) p-type impurity diffusion component is such that the molar ratio of the methyl group and the phenyl group in R 5 in the formula (2) is methyl group: phenyl group = 95:5, The impurity diffusion composition P was obtained in the same manner as in Example 1 except that MeTMS was changed to MeTMS (95 mol %) / PhTMS (5 mol %). Using the obtained impurity diffusion composition P, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, good results were shown.

比較例1 使用硼酸作為(B)p型不純物擴散成分,除此以外,以與實施例1相同的方式獲得不純物擴散組成物H。硼酸於聚矽氧烷溶液A中的溶解性低,產生白色沈澱。使用所獲得的不純物擴散組成物H,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,薄片電阻值高,擴散均勻性亦為差的結果。Comparative Example 1 An impurity diffusion composition H was obtained in the same manner as in Example 1 except that boric acid was used as the (B) p-type impurity diffusion component. The solubility of boric acid in the polyoxane solution A is low, resulting in a white precipitate. Using the obtained impurity diffusion composition H, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured. As a result, as shown in Table 2, the sheet resistance value was high and the diffusion uniformity was also poor.

比較例2 使用苯基硼酸作為(B)p型不純物擴散成分,除此以外,以與實施例1相同的方式獲得不純物擴散組成物I。苯基硼酸於聚矽氧烷溶液A中的溶解性表示良好的結果。使用所獲得的不純物擴散組成物I,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,薄片電阻值高,擴散均勻性亦為差的結果。Comparative Example 2 An impurity diffusion composition I was obtained in the same manner as in Example 1 except that phenylboric acid was used as the (B) p-type impurity diffusion component. The solubility of phenylboronic acid in polyoxymethane solution A indicates good results. Using the obtained impurity diffusion composition I, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured. As a result, as shown in Table 2, the sheet resistance value was high and the diffusion uniformity was also poor.

比較例3 不使用聚矽氧烷,除此以外,以與實施例1相同的方式獲得不純物擴散組成物J。使用所獲得的不純物擴散組成物J,測定剝離性、薄片電阻值、擴散均勻性、阻擋性,結果如表2所示,阻擋性為差的結果。Comparative Example 3 An impurity diffusion composition J was obtained in the same manner as in Example 1 except that polyoxyalkylene was not used. Using the obtained impurity diffusion composition J, peelability, sheet resistance value, diffusion uniformity, and barrier property were measured, and as a result, as shown in Table 2, the barrier property was poor.

[表1] [Table 1]

[表2] [Table 2]

1‧‧‧半導體基板
2、62‧‧‧p型不純物擴散組成物膜
3、63‧‧‧p型不純物擴散層
4、64‧‧‧n型不純物擴散組成物膜
5、65‧‧‧n型不純物擴散層
6‧‧‧保護膜
6a‧‧‧保護膜開口
7‧‧‧p型接觸電極
8‧‧‧n型接觸電極
9‧‧‧背面接合型太陽電池
61‧‧‧n型矽晶圓
1‧‧‧Semiconductor substrate
2, 62‧‧‧p type impurity diffusion composition film
3, 63‧‧‧p type impurity diffusion layer
4, 64‧‧‧n type impurity diffusion composition film
5, 65‧‧‧n type impurity diffusion layer
6‧‧‧Protective film
6a‧‧‧ Protective film opening
7‧‧‧p type contact electrode
8‧‧‧n type contact electrode
9‧‧‧Back junction solar cells
61‧‧‧n type wafer

圖1(a)~圖1(c)是表示使用本發明的p型不純物擴散組成物的不純物擴散層的形成方法的第一例的步驟剖面圖。 圖2(a)~圖2(e)是表示使用本發明的p型不純物擴散組成物的不純物擴散層的形成方法的第二例的步驟剖面圖。 圖3(f)~圖3(h)是表示使用本發明的p型不純物擴散組成物的背面接合型太陽電池的製作方法的一例的步驟剖面圖。 圖4(a)~圖4(d)是表示使用本發明的p型不純物擴散組成物的不純物擴散層的形成方法的第三例的步驟剖面圖。 圖5(a)~圖5(d)是表示使用本發明的p型不純物擴散組成物的不純物擴散層的形成方法的第四例的步驟剖面圖。 圖6(a)~圖6(e)是表示阻擋性測定用試樣中的不純物擴散層的形成方法的步驟剖面圖。1(a) to 1(c) are cross-sectional views showing the steps of a first example of a method of forming an impurity diffusion layer using the p-type impurity diffusion composition of the present invention. 2(a) to 2(e) are cross-sectional views showing the steps of a second example of a method of forming an impurity diffusion layer using the p-type impurity diffusion composition of the present invention. 3(f) to 3(h) are cross-sectional views showing an example of a method of producing a back junction type solar cell using the p-type impurity diffusion composition of the present invention. 4(a) to 4(d) are cross-sectional views showing the steps of a third example of a method of forming an impurity diffusion layer using the p-type impurity diffusion composition of the present invention. 5(a) to 5(d) are cross-sectional views showing the steps of a fourth example of a method of forming an impurity diffusion layer using the p-type impurity diffusion composition of the present invention. 6(a) to 6(e) are step sectional views showing a method of forming an impurity diffusion layer in a sample for barrier properties measurement.

1‧‧‧半導體基板 1‧‧‧Semiconductor substrate

3‧‧‧p型不純物擴散層 3‧‧‧p type impurity diffusion layer

Claims (11)

一種p型不純物擴散組成物,其含有(A)聚矽氧烷及(B)具有Si-O-B鍵的p型不純物擴散成分。A p-type impurity diffusion composition comprising (A) a polyoxyalkylene oxide and (B) a p-type impurity diffusion component having a Si-O-B bond. 如申請專利範圍第1項所述的p型不純物擴散組成物,其中所述(B)具有Si-O-B鍵的p型不純物擴散成分包含下述通式(2)所表示的部分結構,(式中,R5 及R6 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基、碳數6~15的芳基的任一者,多個R5 及R6 可分別相同亦可不同)。The p-type impurity diffusion composition according to the first aspect of the invention, wherein the (b) p-type impurity diffusion component having a Si-OB bond comprises a partial structure represented by the following formula (2), (wherein R 5 and R 6 represent a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nonyloxy group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms; In any of the aryl groups having 6 to 15 carbon atoms, a plurality of R 5 and R 6 may be the same or different. 如申請專利範圍第2項所述的p型不純物擴散組成物,其中R5 表示碳數1~6的烷基或碳數6~15的芳基的任一者,R6 表示羥基、碳數1~6的烷氧基或碳數1~6的醯氧基的任一者。The p-type impurity diffusion composition according to claim 2, wherein R 5 represents any of an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 15 carbon atoms, and R 6 represents a hydroxyl group and a carbon number. Any of 1 to 6 alkoxy groups or 1 to 6 carbon atoms. 如申請專利範圍第3項所述的p型不純物擴散組成物,其中R5 中的碳數1~6的烷基與碳數6~15的芳基的莫耳比為碳數1~6的烷基:碳數6~15的芳基=20:80~80:20。The p-type impurity diffusion composition according to claim 3, wherein the molar ratio of the alkyl group having 1 to 6 carbon atoms in R 5 to the aryl group having 6 to 15 carbon atoms is 1 to 6 carbon atoms. Alkyl group: aryl group having 6 to 15 carbon atoms = 20:80 to 80:20. 如申請專利範圍第1項至第4項中任一項所述的p型不純物擴散組成物,其中所述(A)聚矽氧烷是以下述通式(1)所表示,(式中,R1 表示碳數6~15的芳基,多個R1 可分別相同亦可不同; R2 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基、碳數6~15的芳基的任一者,多個R2 可分別相同亦可不同; R3 及R4 表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基的任一者,多個R3 及R4 可分別相同亦可不同; 其中,R2 ~R4 中的羥基、碳數1~6的烷氧基、碳數1~6的醯氧基可與另外的R2 ~R4 中的羥基、碳數1~6的烷氧基、碳數1~6的醯氧基的任一者形成縮合的交聯結構; X表示羥基、碳數1~6的烷基、碳數1~6的烷氧基、碳數1~6的醯氧基、碳數2~10的烯基、碳數6~15的芳基的任一者,Y表示氫原子、碳數1~6的烷基、碳數1~6的醯基的任一者; n:m=95:5~25:75)。The p-type impurity diffusion composition according to any one of claims 1 to 4, wherein the (A) polyoxane is represented by the following general formula (1), (wherein R 1 represents an aryl group having 6 to 15 carbon atoms, and a plurality of R 1 's may be the same or different; R 2 represents a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, or an alkoxy group having 1 to 6 carbon atoms. Any one of a decyloxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 's may be the same or different; R 3 and R 4 represent Any one of a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, a nonyloxy group having 1 to 6 carbon atoms, and an alkenyl group having 2 to 10 carbon atoms; and a plurality of R 3 and R 4 may be the same or different; wherein, the hydroxyl group in R 2 to R 4 , the alkoxy group having 1 to 6 carbon atoms, the decyloxy group having 1 to 6 carbon atoms, and the other hydroxyl group in R 2 to R 4 Any one of the alkoxy group having 1 to 6 carbon atoms and the decyloxy group having 1 to 6 carbon atoms forms a condensed crosslinked structure; X represents a hydroxyl group, an alkyl group having 1 to 6 carbon atoms, and a carbon number of 1 to 6 Any one of an alkoxy group, a decyloxy group having 1 to 6 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms; Y represents a hydrogen atom and an alkyl group having 1 to 6 carbon atoms; Any one of the fluorenyl groups having 1 to 6 carbon atoms; n: m = 95: 5 to 25: 75). 如申請專利範圍第5項所述的p型不純物擴散組成物,其中R2 及R4 表示羥基、碳數1~6的烷氧基或碳數1~6的醯氧基的任一者,R3 表示碳數1~4的烷基或碳數2~4的烯基。The p-type impurity diffusion composition according to claim 5, wherein R 2 and R 4 represent any one of a hydroxyl group, an alkoxy group having 1 to 6 carbon atoms, or a nonyloxy group having 1 to 6 carbon atoms. R 3 represents an alkyl group having 1 to 4 carbon atoms or an alkenyl group having 2 to 4 carbon atoms. 如申請專利範圍第5項或第6項所述的p型不純物擴散組成物,其中n:m=80:20~40:60。The p-type impurity diffusion composition according to claim 5 or 6, wherein n: m = 80: 20 to 40: 60. 一種半導體元件的製造方法,其包括:在半導體基板上塗佈如申請專利範圍第1項至第7項中任一項所述的p型不純物擴散組成物而形成p型不純物擴散組成物膜的步驟;以及使p型不純物自所述p型不純物擴散組成物膜擴散而形成p型不純物擴散層的步驟。A method of manufacturing a semiconductor device, comprising: coating a p-type impurity diffusion composition film according to any one of claims 1 to 7 on a semiconductor substrate to form a p-type impurity diffusion composition film; And a step of diffusing the p-type impurity from the p-type impurity diffusion composition film to form a p-type impurity diffusion layer. 一種半導體元件的製造方法,其包括:在半導體基板上塗佈n型不純物擴散組成物而形成n型不純物擴散組成物膜的步驟;於所述步驟後塗佈如申請專利範圍第1項至第7項中任一項所述的p型不純物擴散組成物而形成p型不純物擴散組成物膜的步驟;以及藉由對所述半導體基板進行加熱而同時形成n型不純物擴散層與p型不純物擴散層的步驟。A method of manufacturing a semiconductor device, comprising: a step of coating an n-type impurity diffusion composition on a semiconductor substrate to form an n-type impurity diffusion composition film; and coating the coating as in the first to the first a p-type impurity diffusion composition according to any one of the items 7 to form a p-type impurity diffusion composition film; and simultaneously forming an n-type impurity diffusion layer and a p-type impurity diffusion by heating the semiconductor substrate The steps of the layer. 一種半導體元件的製造方法,其包括:在半導體基板的其中一個面上塗佈如申請專利範圍第1項至第7項中任一項所述的p型不純物擴散組成物而形成p型不純物擴散組成物膜的步驟;在所述半導體基板的另一個面上塗佈n型不純物擴散組成物而形成n型不純物擴散組成物膜的步驟;以及藉由對所述半導體基板進行加熱而同時形成p型不純物擴散層與n型不純物擴散層的步驟。A method of manufacturing a semiconductor device, comprising: coating a p-type impurity diffusion composition according to any one of claims 1 to 7 on one of the surfaces of the semiconductor substrate to form a p-type impurity diffusion a step of forming a film; coating a n-type impurity diffusion composition on the other surface of the semiconductor substrate to form an n-type impurity diffusion composition film; and simultaneously forming a p by heating the semiconductor substrate A step of a type impurity diffusion layer and an n-type impurity diffusion layer. 一種太陽電池的製造方法,其包括利用如申請專利範圍第8項至第10項中任一項所述的半導體元件的製造方法而製造半導體元件的步驟。A method of manufacturing a solar cell, comprising the step of manufacturing a semiconductor device using the method of manufacturing a semiconductor device according to any one of claims 8 to 10.
TW105131132A 2015-09-29 2016-09-28 P-type impurity diffusion composition, method for manufacturing semiconductor element using the same, and method for manufacturing solar cell TWI699006B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015190906 2015-09-29
JP2015-190906 2015-09-29
JP2016161027 2016-08-19
JP2016-161027 2016-08-19

Publications (2)

Publication Number Publication Date
TW201712882A true TW201712882A (en) 2017-04-01
TWI699006B TWI699006B (en) 2020-07-11

Family

ID=58423569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105131132A TWI699006B (en) 2015-09-29 2016-09-28 P-type impurity diffusion composition, method for manufacturing semiconductor element using the same, and method for manufacturing solar cell

Country Status (5)

Country Link
JP (1) JP6772836B2 (en)
KR (1) KR20180063056A (en)
CN (1) CN108028188B (en)
TW (1) TWI699006B (en)
WO (1) WO2017057238A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935255B2 (en) * 2011-07-22 2016-06-15 日立化成株式会社 Impurity diffusion layer forming composition for inkjet, method for producing impurity diffusion layer, method for producing solar cell element, and method for producing solar cell
JP5935256B2 (en) * 2011-07-22 2016-06-15 日立化成株式会社 P-type diffusion layer forming composition, method for producing p-type diffusion layer, and method for producing solar cell element
TW201335278A (en) * 2012-02-23 2013-09-01 Hitachi Chemical Co Ltd Impurity diffusion layer forming composition, method for producing semiconductor substrate having impurity diffusion layer, and method for producing photovoltaic cell element
JP6310649B2 (en) 2012-07-26 2018-04-11 東京応化工業株式会社 Method for diffusing impurity diffusion component and method for manufacturing solar cell
MY177765A (en) * 2013-07-04 2020-09-23 Toray Industries Impurity-diffusing composition and method for producing semiconductor element

Also Published As

Publication number Publication date
WO2017057238A1 (en) 2017-04-06
KR20180063056A (en) 2018-06-11
CN108028188A (en) 2018-05-11
TWI699006B (en) 2020-07-11
CN108028188B (en) 2022-03-22
JP6772836B2 (en) 2020-10-21
JPWO2017057238A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
JP6361505B2 (en) Impurity diffusion composition and method for manufacturing semiconductor device
JP6477687B2 (en) Pattern formation method
US20130109123A1 (en) Diffusing agent composition and method of forming impurity diffusion layer
TWI794370B (en) Crack-resistant silicon-based planarizing compositions, methods and films
WO2020116340A1 (en) Method for producing semiconductor element and method for producing solar cell
JP2017103379A (en) Impurity diffusing composition and manufacturing method of semiconductor device using the same
JP2016195203A (en) P-type impurity diffusion composition, method of manufacturing semiconductor element using the same, and solar cell
JP6044397B2 (en) Mask paste composition, semiconductor device obtained using the same, and method for manufacturing semiconductor device
JP2019533026A (en) Polysiloxane, semiconductor material, semiconductor and solar cell manufacturing method
TW201639007A (en) Impurity diffusion composition, method for manufacturing semiconductor element using same, and solar cell
TWI699006B (en) P-type impurity diffusion composition, method for manufacturing semiconductor element using the same, and method for manufacturing solar cell
KR102124920B1 (en) Mask paste composition, semiconductor element obtained using same, and method for producing semiconductor element
TW200400162A (en) Anti-reflection film and display having the same
JP2014103232A (en) Non-photosensitive composition and method of producing impurity diffusion layer using the same
WO2018021117A1 (en) Semiconductor element production method and solar cell production method
TWI591127B (en) Mask paste composition,mask layer, semiconductor element obtained using the same and method for producing semiconductor element
TW201922934A (en) Resin composition, cured film thereof, semiconductor device equipped with same, and method for producing semicondcutor device
TW201829625A (en) Impurity diffusion composition and semiconductor element production method using impurity diffusion composition
JP2009302087A (en) Composition for forming tft flattening film, and display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees