TW201626196A - 電容式觸控設備與方法 - Google Patents

電容式觸控設備與方法 Download PDF

Info

Publication number
TW201626196A
TW201626196A TW104127551A TW104127551A TW201626196A TW 201626196 A TW201626196 A TW 201626196A TW 104127551 A TW104127551 A TW 104127551A TW 104127551 A TW104127551 A TW 104127551A TW 201626196 A TW201626196 A TW 201626196A
Authority
TW
Taiwan
Prior art keywords
signal
electrode
response signal
drive
response
Prior art date
Application number
TW104127551A
Other languages
English (en)
Inventor
桂格 安東尼 康迪洛
伯納德 歐馬爾 吉根
湯瑪士 約翰 瑞比斯奇
Original Assignee
3M新設資產公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M新設資產公司 filed Critical 3M新設資產公司
Publication of TW201626196A publication Critical patent/TW201626196A/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一種觸敏設備包括包含一觸敏表面的一觸控面板以及經電容耦合至至少一個接收電極的至少一個驅動電極。一感測電路回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號。一測量電路施加一時變轉移函數到該回應信號。該轉移函數隨著該回應信號成比例且同步地變化。一校準電路係用來將該時變轉移函數匹配至該回應信號。

Description

電容式觸控設備與方法
本揭露大致上關於觸敏裝置,特別是彼等依賴使用者手指或其他觸控器具與觸控裝置之間的電容耦合者,以及能夠在同一時間偵測經施加至該裝置之不同位置的複數個觸碰之此類裝置的具體應用。
可實施之觸敏裝置,以容許使用者便利地介接電子系統及顯示器,例如提供一般是由顯示器中的圖像來提示之顯示輸入,以用於人性化的互動與參與。在一些情形中,顯示輸入與其他輸入工具互補,例如機械按鈕、小鍵盤以及鍵盤。在其他情形中,顯示輸入作用為一獨立工具,以用來減少或消除對機械按鈕、小鍵盤、鍵盤以及指標裝置的需求。舉例而言,使用者可僅藉由觸碰一顯示中的觸控螢幕上由一圖示所識別的位置,或藉由觸碰一經顯示圖示並結合其他使用者輸入,執行一連串複雜的指令。
有若干種用於實施觸敏裝置的技術,例如包括電阻式、紅外線、電容式、表面聲波、電磁、近場成像等以及這些技術的組合。使用電容式觸碰感測裝置的觸敏裝置已經在許多應用中被發現效果良好。在許多觸敏裝置中,當在感測器中的導電物體經電容耦合至 導電觸控器具時(如使用者的手指),感測到該輸入。一般而言,每當兩個電傳導構件彼此接近而無實際觸碰時,會在兩者之間形成電容。在電容式觸敏裝置的情況中,當諸如一手指之一物體接近該觸碰感測表面,該物體與緊鄰該物體的該等感測點之間形成微小電容。藉由偵測各感測點處之電容變化並且註記感測點位置,感測電路可辨識多個物件,並且隨著物件在觸控表面各處移動而判定物件特性。
已經使用不同技術以基於此類電容改變來測量觸碰。一種技術測量接地電容的改變,藉此在一觸碰變更施加至一電極的一信號以前,基於該信號的電容條件而理解該電極的狀態。鄰近於電極的一觸碰可導致信號電流從電極流經一物體(諸如手指或觸控筆)至電氣接地。藉由偵測在該電極以及亦在觸控螢幕上之許多其他點上電容的改變,感測電路可註記該等點的位置,從而辨識螢幕上發生觸碰的位置。同樣地,依據感測電路與相關處理的複雜性,觸碰的許多特徵可為了其他目的而經評估,諸如判定該觸碰是否為多個觸碰的其中一個,以及該觸碰是否正在移動及/或滿足用於特定類型之使用者輸入的預期特徵。
另一已知技術藉由施加一信號到信號驅動電極來監視與觸碰相關的電容改變,該信號驅動電極藉由一電場而電容耦合至一信號接收電極。如這些用語之暗示,隨著信號接收電極將來自信號接收電極的一預期信號回傳,在該兩電極之間的預期信號(電容電荷)耦合可被用來指示與該兩電極相關聯之位置的觸碰相關狀態。在該位置處/該位置附近發生實際或所感知之觸碰時,或回應於在該位置處/該位 置附近之實際或所感知之觸碰,信號耦合之狀態改變,且此改變係由電容耦合的減少所反映。
就這些與其他相關的電容觸碰感測技術而言,已經使用許多方法來測量電極之間的交互電容。依據該等應用,這些方法可指定信號之不同類型及速度,經由該些方法,信號驅動電極將提供預期的信號到信號驅動電極,由此可感測電容電荷中的改變。隨著更高速度電子器件日益成長的趨勢,許多此些應用正需要相對更高頻率的信號被使用來驅動信號驅動電極。不幸的是,較高速電子器件及自此產生之此等信號兩者將接著出現RF(射頻)干涉。此RF干涉可降級(且在一些應用中可漸漸破壞)感測電路的效能以及用於相關聯觸控顯示器的相關處理之效能。不良反應可包括偵測速度、準確度與功率消耗。
以上問題係彼等已經對觸敏顯示器的有效設計以及用於定位與評估該等觸碰之相關方法帶來挑戰者的實例。
本揭露的態樣係關於克服前文所提及之挑戰和與觸敏顯示器之有效設計有關以及用於定位與評估用於如前文及他處所討論之觸控顯示器類型之觸碰的相關方法之其他挑戰。本揭露以一些實施方案與應用當作範例,其中一些係概述於下文。
一些實施例係關於一種觸敏設備,該觸敏設備包括經電容耦合至一接收電極的至少一個驅動電極。一感測電路經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信 號。該回應信號包含與一負向轉換部分分開的一正向轉換部分。一放大電路具有一時變增益,該時變增益具有與該回應信號之該等正向與負向轉換部分實質對準的一增加增益以及在該回應信號之該等正向與負向轉換部分之間的一減少增益。
一些實施例涉及一放大電路,其包含一時變時間常數,該時間常數具有實質對準該回應信號之該等正向與負向轉換部分的較小值,以及介於該回應信號之該等正向與負向轉換部分之間的較大值。
進一步的實施例係關於一觸敏設備,該設備包含經電容耦合至一接收電極的一驅動電極。一感測電路經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含該驅動信號的諧波(harmonic)。包含一時變增益的一放大電路,其在對應該諧波的一頻率範圍中具有減少增益。
在一些實施例中,包含經電容耦合至一接收電極之一驅動電極的一觸敏設備,其包括經耦合至該接收電極的一感測電路。該感測電路包括經耦合至該接收電極以及經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號之第一級。該回應信號係該驅動信號的微分表示且包括該驅動信號的至少一個奇諧波與至少一個偶諧波。該感測電路的第二級係耦合至該第一級的一輸出且經組態以抑制在該回應信號中的至少一個奇諧波。該感測電路的第三級係經電容耦合至該第二級的一輸出且將第二級的一輸出放大。該第三狀態抑制在該回應信號中的該至少一個偶諧波。
一些實施例包含一觸敏設備,該設備包括經電容耦合至一接收電極的一驅動電極。一感測電路回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含與一負向轉換部分分開的一正向轉換部分。一放大器經組態以一非線性增益放大該回應信號。一積分器從該回應信號的該正向轉換部分減去該回應信號的該負向轉換部分。
在一些實施例中,一觸敏設備包括一包含一觸敏表面的一觸控面板以及經電容耦合至至少一個接收電極的至少一個驅動電極。一感測電路回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號。一測量電路施加一時變轉移函數到該回應信號。該轉移函數隨著該回應信號成比例且同步地變化。一些實施例進一步包括將該時變轉移函數匹配至該回應信號的一校準電路。
一些實施例係關於一種操作一觸敏設備的方法。該方法涉及回應於傳送到經電容耦合至該接收電極之一驅動電極的一驅動信號而感測一接收電極上的一回應信號。將一時變轉移函數施加到該回應信號,該轉移函數隨著該回應信號成比例且同步地變化。使用施加該轉移函數至該回應信號的一結果來偵測在一觸敏表面上的一觸碰。
一些實施例涉及一種使用一觸控設備的方法,該觸控設備包括一觸敏面板,該觸敏面板包含經電容耦合至至少一個接收電極的至少一個驅動電極。該方法包括回應於傳送到該驅動電極之一驅動信號而判定用於該接收電極之一回應信號的形狀。一時變轉移函數係經形成,該時變轉移函數隨著該回應信號成比例且同步地變化。該時 變轉移函數係經施加到一回應信號,該回應信號包括與在該觸控面板上之一觸碰有關的資訊。
一些實施例係關於一種校準一觸敏面板的方法,該觸敏面板則包含經電容耦合至複數個接收電極的複數個驅動電極。就各接收電極而言,回應於傳送到該驅動電極之一驅動信號之用於該接收電極之一回應信號的形狀係經判定且一時變轉移函數係經形成,該時變轉移函數隨著該回應信號成比例且同步地變化。
這些實施例與其他實施例的方法與進一步態樣會在下文更詳細地討論之。
上文的發明內容非意欲說明本揭露的各說明性實施例與各實施方案。
8‧‧‧驅動電路系統
8’‧‧‧偏壓電路系統
10‧‧‧資料處理邏輯
12’‧‧‧觸控表面電路系統
12‧‧‧觸控表面電路系統
16‧‧‧驅動電極
18a‧‧‧接收電極
18b‧‧‧接收電極
24‧‧‧感測電路
24’‧‧‧感測電路
30‧‧‧數位轉換電路系統
30’‧‧‧處理器邏輯單元
110‧‧‧觸控裝置
112‧‧‧觸控面板
114‧‧‧控制器
114a‧‧‧觸碰輸出
116a-116e‧‧‧行電極
118a-118e‧‧‧列電極
120‧‧‧邊界
122‧‧‧節點
124‧‧‧節點
126‧‧‧控制線
128‧‧‧控制線
130‧‧‧手指
131‧‧‧觸碰位置
133‧‧‧觸碰位置
210‧‧‧回應信號電路
212‧‧‧前端電路模組
212(a)‧‧‧前端模組
212(b)‧‧‧前端模組
220‧‧‧後端電路模組
224‧‧‧多工器
224a‧‧‧輸入選擇/控制信號
226‧‧‧類比至數位轉換器(ADC)
230‧‧‧測量電路
232‧‧‧輸入埠
240‧‧‧組態暫存器
244‧‧‧狀態機電路系統
246‧‧‧暫存器/支援電路系統
252‧‧‧觸控面板
254‧‧‧驅動電極
256‧‧‧接收電極
258‧‧‧使用者手指
260‧‧‧信號產生器;驅動單元
280‧‧‧感測單元
282‧‧‧微分可變增益放大(VGA)電路
284‧‧‧積分放大器;第一積分器級;第一級
286‧‧‧可變電阻電路
290‧‧‧第二加法積分器;第二級
291‧‧‧運算放大器
292‧‧‧路徑
294‧‧‧多工器
296‧‧‧類比至數位轉換器(ADC)
310‧‧‧運算放大器
318‧‧‧輸入(IN)埠
320‧‧‧第一電阻器(R)
322‧‧‧第二電阻器
324‧‧‧第三電阻器
326b‧‧‧重設電路
328‧‧‧路徑
330‧‧‧開關
332‧‧‧開關
334‧‧‧開關
336‧‧‧開關
342‧‧‧第一信號
344‧‧‧第二信號
346‧‧‧第三信號
366‧‧‧階梯圖
368‧‧‧時間點
610‧‧‧TX信號
620a‧‧‧負向衝量脈衝
620b‧‧‧正向衝量脈衝
710‧‧‧觸敏設備;系統
712‧‧‧觸控面板
712‧‧‧感測器;觸控面板
713‧‧‧驅動電路系統;驅動電路系統
714‧‧‧感測電路;測量電路
715‧‧‧回應信號
715a-715d‧‧‧信號
715n‧‧‧有雜訊信號
716‧‧‧驅動電極
717‧‧‧控制電路系統
718‧‧‧接收電極
820‧‧‧圖
824‧‧‧信號
825‧‧‧積分信號
826‧‧‧信號;函數
903‧‧‧放大器
932‧‧‧乘法函數
935‧‧‧類比信號
936‧‧‧信號源
938‧‧‧類比至數位轉換器(ADC)
1024‧‧‧信號
1030‧‧‧系統
1152‧‧‧第四解調函數;濾波器;解調信號
1153‧‧‧解調函數;方形波
1154‧‧‧解調函數;濾波器;解調信號
1155‧‧‧解調函數;濾波器;信號
1313a‧‧‧驅動電路;驅動器
1313b‧‧‧驅動電路;驅動器
1313c‧‧‧驅動電路;驅動器
1313d‧‧‧驅動電路;驅動器
1314a‧‧‧接收測量電路
1314b‧‧‧接收測量電路
1314c‧‧‧接收測量電路
1314d‧‧‧接收測量電路
1315a‧‧‧回應信號
1315b‧‧‧回應信號
1315c‧‧‧回應信號
1315d‧‧‧回應信號
1324‧‧‧接收電路
1360‧‧‧感測器;電容觸控數化器系統
1362‧‧‧感測器
1367‧‧‧控制電路
1470‧‧‧圖
1474a‧‧‧信號
1474b‧‧‧信號
1475a‧‧‧信號
1475b‧‧‧信號
1476a‧‧‧信號
1479‧‧‧轉移函數
1515‧‧‧回應信號
1515p‧‧‧信號
1582‧‧‧第四解調函數;轉移函數
1583‧‧‧量化解調函數;信號;轉移函數
1584‧‧‧量化解調函數;信號;轉移函數
1585‧‧‧量化解調函數;信號;轉移函數
1692‧‧‧轉移函數;解調函數
1693‧‧‧函數;解調函數
1694‧‧‧函數
1695‧‧‧函數
1701‧‧‧步驟
1702‧‧‧步驟
1703‧‧‧步驟
1705‧‧‧步驟
1710‧‧‧步驟
1715‧‧‧步驟
1720‧‧‧步驟
1725‧‧‧步驟
1730‧‧‧步驟
1735‧‧‧步驟
1892‧‧‧解調轉移函數
1895‧‧‧解調轉移函數
1900‧‧‧圖
1901‧‧‧解調轉移函數
1902‧‧‧解調轉移函數
1903‧‧‧解調轉移函數
1906‧‧‧解調轉移函數
1909‧‧‧解調函數
F2、F1、F0‧‧‧開關
Cm‧‧‧交互電容;感測器電容;極間電容
Cd‧‧‧第二未知電容;驅動電極電容
Cr‧‧‧第三未知電容;電容
t1...t25‧‧‧時期
VD‧‧‧驅動信號
fD(t)‧‧‧解調轉移函數
Rcv1...Rcv4‧‧‧接收電極
RX01...RXN‧‧‧輸入埠
Da、Db、Dc、Dd‧‧‧驅動電極
VDa、VDb、VDc、VDd‧‧‧信號
Ctrl1、Ctrl2‧‧‧控制線
V1475a、V1475b‧‧‧值
結合隨附圖式來考量本揭露之各種實施例的下述實施方式可更完全瞭解本揭露,其中根據目前的揭露:圖1A係一觸控裝置的示意圖;圖1B係另一觸控裝置的示意圖;圖2A係又另一觸控裝置的示意圖,其顯示經組態以用於具體實施例的電路模組,其中回應信號係沿著用於一測量模組(或電路)的平行信號路徑被處理;圖2B係圖2A觸控裝置之一部分的示意圖,其顯示用於具體實施例的例示性模組,該等具體實施例涉及用於沿著平行信號路徑中之一者來處理回應信號的電路; 圖3A係在圖2B所示之電路之一部分的示意圖;圖3B係一時序圖,其顯示藉由在圖2B與圖3A所示的電路系統處理信號;圖3C係另一時序圖,其顯示在圖2B與圖3A所示之信號與電路系統的處理;圖4係一基於時間的圖,其顯示按照時變常數之在圖3A中放大電路系統的增益;圖5係另一基於時間的圖,其顯示按照頻率且隨上文所參考之時變參數而變動之在圖3A之放大電路系統的增益;圖6A至6G形成另一基於時間之圖,其顯示圖2B與3A之積分最後級的信號時序;圖7顯示一例示性觸敏設備的一簡化示意圖,該觸敏設備經組態以用來測量在一觸控面板的兩電極之間的交互電容Cm;圖8顯示根據一些實施例之包含一例示性信號組與轉移函數對時間的圖;圖9顯示根據一些實施例之測量電路的一實施例;圖10與11顯示一回應信號的一單一循環以及可用來同步地解調該回應信號的四個替代性fD(t)解調轉移函數;圖12A、12B、及12C提供用於四個例示性解調轉移函數之雜訊/信號%對雜訊波長的圖;圖13顯示一電容觸控數化器系統,其包含一電極矩陣;圖14顯示包括一驅動信號VD與一回應信號之一個循環的例示性圖; 圖15A顯示具有1μsec之指數衰變時間常數之回應信號的一單一循環以及可用來同步地解調信號的四個替代性fD(t)轉移函數;圖15B顯示橫跨一雜訊波長範圍之雜訊的向量量值,其集中在11μsec的信號波長上(就圖15A之四個替代性轉移函數之各者而言);圖15C顯示具有1μsec之指數衰變時間常數之回應信號的一單一循環,相對於可用來同步地解調信號的四個替代性fD(t)轉移函數,該指數衰變時間常數係在時間上被延遲;圖15D顯示橫跨一雜訊波長範圍之雜訊的向量量值,其集中在11μsec的信號波長上(就圖15C之四個替代性轉移函數之各者而言);圖16A顯示施加到回應信號的另外解調轉移函數;圖16B顯示橫跨一雜訊波長範圍之雜訊/信號的量值,其集中在11μsec的信號波長上(就圖16A之該等轉移函數之各者而言);圖16C顯示與圖16A中相同的解調函數,但這些函數卻相對於回應信號在相位上領先一個時間週期;圖16D顯示橫跨一雜訊波長範圍之雜訊/信號的量值,其集中在11μsec的信號波長上(就圖16C之該等轉移函數之各者而言);圖17A與17B係繪示根據各種實施例之用於觸控設備的校準程序流程圖;圖18A顯示匹配到方形波信號VD之第三諧波的若干解調轉移函數;圖18B顯示得自將圖18A之解調轉移函數施加到具有從0.3μsec至22μsec之波長之正弦波的經解調、經積分的輸出;以及圖19顯示雜訊測量的若干實例。
圖式非必然按比例繪製。在圖式中所使用的相似元件符號指稱相似的組件。但是,將明白,在一給定圖式中使用一數字指稱一組件,並非意圖限制在另一圖式中用相同數字標示該組件。
本揭露的態樣據信可應用於種種不同類型的觸敏顯示系統、裝置以及方法,其包括涉及容易在回應信號上產生RF干涉的電路系統,該回應信號係用以指示觸控顯示裝置的哪個位置已出現觸碰事件。雖然本揭露不一定受限於此電路系統與應用,但是本揭露的各種態樣卻可經由使用此上下文之各種實例的討論而被理解。
根據特定實例實施例,本揭露係關於包括一觸控表面電路之類型的觸敏設備,該觸控表面電路經組態以回應於一電容變更觸碰而促進一耦合電容中的一變化。該設備包括經電容耦合至一接收電極的至少一個驅動電極。一感測電路回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號。該回應信號包含與一負向轉換部分分開的一正向轉換部分。放大電路隨後使用於回應於時變輸入參數而將信號放大與處理。放大電路具有一時變增益,該時變增益具有與該回應信號之該等正向與負向轉換部分實質對準的一最大增益以及在該等正向與負向轉換部分之間之減少增益。放大電路相對於用於在暫態部分之間之該回應信號部分的增益來調整暫態部分的增益。放大電路抑制諸如呈奇及/或偶諧波形式的射頻(RF)干涉,以提供一雜訊濾波輸出以用於判定在該觸控表面上之電容變更觸碰的位置。例如,根據一些態樣,該放大電路具有一時變時間常數。時間常數的減少值或最小值係實質對準回應信號的該等正向與負向轉 換部分,且該時間常數的增加值係實質對準在該等正向與負向轉換部分之間的該回應信號部分。
圖1A繪示上述類型之觸控裝置的一具體實例,該觸控裝置亦根據本揭露包括一觸控表面電路12、一感測電路24、以及一數位轉換電路系統30。觸敏表面電路12、感測電路24、及數位轉換電路系統30與上面所說明的實施例係經協同式設計,以抑制RF干涉且因而提供一雜訊濾波輸出,以用來判定在觸控表面上之電容變更觸碰的位置。就許多應用而言,驅動電路系統8與資料處理邏輯(例如,微電腦電路)10被包括當作該觸控裝置的一部分。可在觸控裝置外面或裡面的驅動電路系統8經組態以用於將一偏壓驅動信號提供給在觸控表面電路12中的驅動電極16,該偏壓驅動信號可被用於提供一基準,經由該基準,電容變更觸碰事件可在一電容式節點上被感測,且稍後由資料處理邏輯10所處理。就許多應用而言,驅動電路系統8單獨及/或連同其他高頻耦合電路系統產生一高頻信號,由此高頻信號,RF雜訊干涉係受到相當重視。RF-雜訊干涉可以藉由驅動電路系統8所產生之驅動信號所直接發展之諧波頻率的形式存在。驅動電路系統8經常用來驅動其他電路及/或產生其他高頻信號,諸如與上文註釋之微電腦及類比至數位轉換電路中所涉及之信號取樣電路一起使用。觸控面板12易受到與顯示電子器件及其他外部RF雜訊產生器相關之RF雜訊源的影響。
與上述討論一致地,藉由經由一回應信號處理一耦合電容中的改變,此RF雜訊干涉係經減少(若未完全地移除),該回應信 號則使用感測電路24經由接收電極18a與18b(圖1A)被回傳。感測電路24提供一回應性信號(被稱作回應信號),其具有用於將朝向較高信號位準的正向轉換以及朝向較低信號位準的負向轉換特徵化的暫態部分(如在下文例如結合圖3B及圖6B所討論)。
接著,在感測電路24內,回應於估計這些暫態部分的時變輸入參數,使用增益與濾波電路系統來放大與處理信號。感測電路24因此相對於在該等暫態部分之間之該等回應信號部分的增益而來調整該等暫態部分的增益,且因此抑制RF干涉。為了理解這些暫態部分如何產生以表示該回應信號,以下圖1B呈現關於電容-變更信號之發展的更多細節,該等電容變更信號係結合觸控面板的驅動與接收電極而被發展。
據此,將觸控裝置連同相關控制器電路、感測電路與放大電路一起使用,可用來處理如經由回傳路徑自一觸控面板之接收電極的所發展之回應信號,以用來偵測在觸控面板之相關聯位置或節點處的電容改變。將理解的是,此觸控面板可能具有用於驅動電極與接收電極的特定應用佈局,諸如經由複數個接收電極相對於一個或多個驅動電極的組織配置,後者可與複數個接收電極一起配置以提供一矩陣,其中該應用將需要於該矩陣的電極交叉點處提供許多特定觸控面板節點。正如另一應用的實例,可相對於一個或多個接收電極以ITO或奈米網的形式來提供一驅動電極,該等電極之各者將提供一基於可微分回應信號的位置及/或信號特徵(例如,振幅、形狀、調變類型、及/或相位)。
在圖1B中,其顯示一例示性觸控裝置110。裝置110包括連接到電子電路系統的觸控面板112,為了簡單起見,其係經組合在一起成一單一標記為114的示意框並統稱為控制器,該控制器係經實施為諸如包括類比-信號介面電路系統、一微電腦、一處理器、及/或可程式化邏輯陣列的(控制)邏輯電路系統。因此,控制器114係顯示為包含偏壓電路系統與觸控表面電路系統8’/12’(相對於圖1A的觸控面板112)以及感測電路24’(相對於圖1A的感測電路24)以及一處理器邏輯單元30’(相對於圖1A的數位轉換電路系統30)的態樣。
觸控面板112係顯示為具有行電極116a至116e與列電極118a至118e的5×5矩陣,但是其他數目的電極與其他矩陣大小亦可被使用。就許多應用而言,觸控面板112係例示為透明或半透明而允許使用者透過觸控面板來檢視物體。此些應用例如包括用於電腦之像素化顯示器、手提裝置、行動電話、或其他周邊裝置的物體。邊界120表示觸控面板112的檢視區域以及亦較佳地表示此一顯示器的檢視區域(若使用)。從平面透視圖之角度,電極116a至116e、118a至118e空間分佈於邊界120上方。為了易於繪示,將電極展示為寬且顯眼的,但實務上,電極可為相對窄且對使用者而言不顯眼的。進一步,其等電極可經設計成具有可變的寬度,例如矩陣節點附近之呈鑽石或其他形狀襯墊形式的增加寬度,以便能夠增加極間電極邊緣電場且因而增加觸碰對電極至電極電容耦合的影響。在例示性實施例中,該等電極可包含銦錫氧化物(ITO)或其他適合的導電材料。從深度視角而言,行電極可位於與列電極的不同平面(從圖1B的視角,行電極 116a至116e位於列電極118a至118e的下方),使得在行與列電極之間未形成明顯的歐姆接觸,且使得只有給定行電極與給定列電極之間的明顯電性耦合是電容耦合。電極矩陣基本上位於覆蓋玻璃、塑膠薄膜、或類似者下方,使得能夠保護電極免於與使用者手指或其他觸控相關器具直接實體接觸。此一覆蓋玻璃、薄膜或類似物之暴露表面可稱為一觸控表面。此外,在顯示器類型的應用中,背屏蔽(為一選項)可放置於顯示器與觸控面板112之間。此一背屏蔽通常由一玻璃或薄膜上之一傳導ITO塗層組成,並且可經接地或受一波形驅動,其減少自外部電干擾源至觸控面板112中之信號耦合。其他背屏蔽方法已為此項技術中所熟知。大體上,一背屏蔽減少由觸控面板112感測到的雜訊,在一些實施例中,其係可提供經改善的觸敏度(例如,感測較輕觸碰的能力)以及更快速的回應時間。背屏蔽有時結合其他雜訊減少方法來使用,包括空間相隔的觸控面板112與一顯示器,因為例如來自LCD顯示器的雜訊強度會隨著距離快速地減低。除了這些技術以外,下文參考各種實施例討論處理雜訊問題的其他方法。
一給定列電極與行電極之間的電容耦合主要隨電極最接近之區中的電極之幾何形狀變化。此些區域對應電極矩陣的「節點」,其中一些係標示在圖1B中。例如,在行電極116a與列電極118d之間的電容耦合主要發生在節點122,且在行電極116b與列電極118e之間的電容耦合主要發生在節點124。圖1B的5×5矩陣具有此等節點,該等節點中任一者可藉由控制器114經由適當選擇控制線126其中一條(該等控制線將各別的行電極116a至116e個別耦合至控制 器)以及適當選擇控制線128其中一條(該等控制線將各別的行電極118a至118e個別耦合至控制器)來定址。
當使用者的手指130或其他觸控器具接觸或接近接觸裝置110的觸控表面時,如在觸碰位置131所示,該手指經電容耦合至電極矩陣。手指自矩陣(特別是自位於最靠近觸碰位置的那些電極)汲取電荷,並且在如此進行時,改變了對應最接近節點(一或多個)的電極之間的耦合電容。例如,在觸碰位置131上的觸碰最接近對應電極116c/118b的節點。如下文所進一步說明的,耦合電容的此改變可藉由控制器114偵測且被解譯當作在116a/118b節點處或附近的觸碰。較佳地,控制器經組態以快速地偵測矩陣之全部節點之電容的改變(若有),且能夠分析相鄰節點之電容改變的量值,以便藉由內插準確地判定位於節點之間的觸碰位置。再者,控制器114有利地經設計,以偵測同時或在重疊時間施加至該觸控裝置之不同部分的多個相異觸碰。若另一手指與手指130之觸碰同時地在觸碰位置133處觸碰裝置110之觸控表面,或若各別觸碰至少在時間上重疊,則控制器較佳能夠偵測兩個此等觸碰之位置131、133,且在一觸碰輸出114a上提供此等位置。能夠由控制器114偵測到之相異的同時或在時間上重疊之觸碰的數目較佳地不限於2,例如,數目可為3、4,或大於60(取決於電極矩陣之大小)。
如下面所進一步討論的,控制器114可使用致使其能快速地判定在電極矩陣之一些或全部節點上之耦合電容的各種電路模組與組件。例如,控制器較佳地包括至少一個信號產生器或驅動單元。 該驅動單元將一驅動信號傳送到一組電極(稱作驅動電極)。在圖1B的實施例中,行電極116a-e可被使用當作驅動電極,或者列電極118a-e可如此使用。該驅動信號較佳地一次傳送到一個驅動電極,例如以從第一驅動電極至最後驅動電極之掃描順序。當各此類電極被驅動,該控制器監測其他組電極(稱為接收電極)。控制器114可包括一或多個耦合至全部該等接收電極的感測單元。就傳送到各驅動電極的各驅動信號而言,該等感測單元產生用於該複數個接收電極的回應信號。較佳地,該感測單元經設計使得各回應信號包含該驅動信號的一微分表示。例如,假如該驅動信號由函數f(t)表示(例如,表示隨時間變動的電壓),然後該回應信號可等於一函數f(t)或提供一函數f(t)的近似值,其中,g(t)=d f(t)/dt。換言之,g(t)為相對於驅動信號f(t)之時間之導數。取決於控制器114中所使用之電路系統的設計細節,回應信號可包括諸如以下的信號:(1)單獨g(t);或(2)具有恆定偏移之g(t)(g(t)+a);或(3)具有一乘法比例因數之g(t)(b*g(t)),該比例因數能夠為正或為負且能夠具有大於1或小於1但大於0的量值;或者(4)其組合。在任何情況下,該回應信號的振幅係有利地與經驅動的驅動電極與正被監控的特定接收電極之間的耦合電容相關。g(t)的振幅亦與原始函數f(t)的振幅成比例,且假如適合用於該應用,則可僅使用一驅動信號之單一脈衝針對給定節點判定g(t)之振幅。
控制器亦可包括電路系統以識別且隔離該回應信號之振幅。用於此目的之例示性電路裝置可包括一個或多個峰值偵測器、取樣/保持緩衝器、時變積分器及/或第二級積分器低通濾波器,其中的選 擇可取決於驅動信號與對應回應信號的特性。控制器亦可包括一個或多個類比至數位轉換器(ADC)以將類比振幅轉換成數位格式。亦可使用一或多個多工器以避免不必要重複的電路元件。當然,控制器亦較佳地包括其中用以儲存所測量振幅與相關聯參數的一個或多個記憶體裝置以及用以執行必要計算與控制功能的微處理器。
藉由測量用於在電極矩陣中諸節點之各者的回應信號的振幅,控制器可產生與用於電極矩陣之諸節點之各者的耦合電容相調之所測量值的一矩陣。可比較這些測量值與先前獲得之參考值之一類似矩陣,以判定由於觸碰之發生而使哪些節點(若有)已歷經耦合電容變化。
自側面來看,使用於觸控裝置中之觸控面板可包括一前(透明)層、具有平行配置之第一組電極的一第一電極層、一絕緣層、具有平行配置且較佳地正交於第一組電極之第二組電極的一第二電極層、以及後層。暴露之前表面層可為該觸控面板之該觸控表面的一部分或可為附接到該觸控面板的該觸控表面。
圖2A為與上文論述之態樣中之許多態樣一致的另一觸控裝置之示意圖,其展示分別經組態以用於自觸控面板(未顯示)之電極提供的回應信號之特定類比及數位處理的前端電路模組212(或可選地作為並列之多個前端模組212(a)、212(b)等中之一者操作)及後端電路模組220。在具體實施例中,包括那些由圖2A所表示的,後端電路模組220係與其他電路系統(如與圖1B的控制器114)合作地 被實施,以用來提供各種時序與控制信號,諸如沿著後端電路模組220之右側所顯示的那些。
如經由圖2A之左側(在其上可選地複製方塊)所描繪的,回應信號電路210對經由相關輸入埠RX01、RX02等等所提供之各別的回應信號操作。正如將結合圖3A所進一步討論的,此等回應信號電路210經實施以對與對應(信號饋送)接收電極(圖1B)相關聯之觸控面板節點操作且提供對觸控面板節點(觸控表面處之相關聯之耦合電容)之準確觸碰監視。雖然這些回應信號電路210可經實施以同時操作且提供此觸碰監視,但在所繪示的實例中,經由多工器(「Mux」)224來選擇這些回應信號電路210中之僅一者的輸出埠以用於此處理。
回應於一輸入選擇/控制信號224a,多工器224將經類比處理之回應信號的一經選定通道(如由相關聯的回應信號路徑所界定)提供到類比至數位轉換器(ADC)226。多工器224可經控制以步單步調適(step through)RXN通道,直到全部電極皆由ADC轉換為止。ADC 226將經類比處理之回應信號的數位版本呈現給測量電路230(在後端的電路模組220中),測量電路230經組態用於藉由對先前論述之相關聯之耦合電容的特徵化執行測量,且藉由自此等特徵化判定觸控表面上之觸碰的位置,來對回應信號作出回應。如對於過取樣ADC而言將為典型的,ADC 226對經由輸入埠232所提供且例如在大約8MHz或其倍數下操作的ADC_clock信號做出回應。
在具體實施例中,如界定模組212及220之邊界線描繪,前端電路模組及後端電路模組212及220中之一者或兩者係經實施於特殊應用積體電路(ASIC)晶片中。例如,前端電路模組212可使用一個ASIC晶片來實施,一個或多個(複製)內部電路之各者經組態以用於處理來自接收電極之回應信號路徑中的一或多者,且後端電路模組使用經組態而具有用於對回應信號執行測量之測量電路系統的另一ASIC晶片來實施。
在各個此類具體實施例中,模組212與220兩者使用資料、時序及控制信號,以藉由回應信號電路210來實現回應信號的適當處理。例如,在前端模組212的左邊,這些控制信號包括如用以對用於對回應信號電路210內之回應信號求積分的電路之節點加偏壓的一電壓偏壓信號(V偏壓)。前端模組212亦對由後端電路模組220所提供的控制/組態信號做出回應,其包括用以設定用於控制增益、時序及由回應信號電路210對回應信號進行之大體處理的時變參數的控制/組態信號。測量電路230內之組態暫存器240可用以固定此等時變參數及其他控制信號,如一給定之觸控板(或對接收電極饋送之其他類型裝置)可能需要的。測量電路230亦包括用於取得與儲存這些經處理回應信號(資料取得邏輯)的相關支援電路以及以狀態機電路系統244形式來繪示的電路系統以及將被理解用於基於ASIC之實施方案的各項暫存器/支援電路系統246。
如沿著後端電路模組220的右側所顯示的那些,其他時序與控制信號係經提供以協助藉由回應信號電路210進行處理之時序 以及由ADC 226進行處理之時序。這些信號包括模式控制、序列週邊介面相容(SPI)控制線以及資料接收與發送以及用於當接收邏輯開始轉換行資料(沿著接收電極(一或多個))且當資料轉換完成時的控制。該等信號係顯示於該圖的右手邊。
圖2B繪示具有分解圖的實例電路,該分解圖對應先前繪示的觸控面板(圖1A的12或圖1B的112)與圖2A的前端電路模組中之一者。如以一個此種觸控面板實施方案所設想,該觸控面板可包括40列乘以64行的矩陣裝置,該矩陣裝置則具有19吋矩形對角檢視區域(具16:10縱橫比)。在此情形中,電極可具有大約0.25吋的均勻間隔,且在其他具體實施例中,可為0.2吋或更小。由於本實施例的大小,電極可具有與其相關聯的明顯的雜散阻抗,例如用於列電阻的40K歐姆電阻以及用於行電極的64K歐姆電阻。考慮此觸碰回應處理所涉及之人類因素,在需要時,可使得測量矩陣之所有2,560個節點(40×64=2560)處的耦合電容的回應時間相對較快,例如,小於20毫秒或甚至小於10毫秒。若列電極用作驅動電極且行電極用作接收電極,且同時取樣全部的行電極,則順序掃描40列電極需要例如20毫秒(或10毫秒),時間預算為每列電極(驅動電極)0.5毫秒(或0.25毫秒)。
再次參考圖2A之具體繪示,圖2A的驅動電極254與接收電極256,其等係藉由其等之電性特徵(呈集總電路元件模型的形式)而非藉由其等的實體特徵來描繪,其等係表示可見於具有比40×64更小之矩陣的觸控裝置中的電極,但此不應被視為限制。在圖 2A的此代表性實施例中,在集總電路模型中所示的串聯電阻R各具有10K歐姆值,且在集總電路模型中所示的雜散電容C各具有20微微法拉(pf)的值,但當然,這些值不以任何方式當作限制。在此代表性實施例中,耦合電容Cc標稱為2pf,且使用者手指258在電極254、256之間節點上觸碰的存在導致耦合電容Cc下降大約25%而到大約1.5pf的值。同樣地,這些值不應視為限制。
根據更早所說明的控制器,此一觸控裝置使用具體電路系統來訊問面板252,以判定在面板252之節點之各者的耦合電容Cc。在這點上,控制器可藉由判定指示耦合電容或對耦合電容做出回應之參數的值而來判定該耦合電容,例如,如上文所提及且下文所進一步說明之一回應信號的振幅。為了完成此任務,觸控裝置較佳地包括:耦合至驅動電極254的一低阻抗驅動電路(在圖1B的控制器114或圖2B的信號產生器260內);耦合至接收電極256的感測單元280;以及將由感測單元280所產生之回應信號的振幅轉換成數位格式的一類比至數位轉換器(ADC)單元226。感測單元280包括微分可變增益放大(VGA)電路282,該電路對藉由驅動單元所供應之驅動信號執行微分。VGA電路282包括一可變增益電阻器,且可具有分別用於設定電路增益與將該增益的穩定性最佳化之可變增益電容。
取決於驅動單元260所供應之驅動信號的特性(且因此亦取決於由感測單元280所產生之回應信號的特性),圖2A的觸控裝置亦可包括:峰值偵測電路(未顯示),該偵測電路亦充當作取樣/保持緩衝器;以及相關聯的重設電路326b,其可操作來將峰值偵測器重 設。在大部分實用的應用中,觸控裝置亦將包括在信號產生器260(圖2B)與觸控面板252之間的多工器,以容許在一給定時間定址複數個驅動電極中之任一者的能力。以此方式,當物體(例如,手指或導電觸控筆)變更在列與行電極之間的交互耦合時,會發生交互耦合之改變,該等電極藉此回應於經多工的驅動信號而經順序地掃描。類似地,在接收側上,另一多工器(圖2A的224)容許單個ADC單元快速地取樣與多個接收電極相關聯的振幅,從而避免每一接收電極需要一ADC單元之費用。元件212b顯示具有多個ADC的相似電路之若干層。此實施方案具有5個此類通道。
上文所討論之圖2B的VGA電路282將呈微分信號形式(該微分信號將回應信號特徵化)的輸出提供到使用兩級之在圖2B中所示的另一放大電路。描繪為積分放大器284之第一級經組態且配置以使用時變參數對回應信號的微分信號表示執行積分,以促進在暫態部分上的降低取樣率,以用於針對RF信號之奇諧波產生空值。積分放大器284藉由積分將驅動信號的脈衝部分放大,如其等在回應信號中回傳(從接收電極)所特徵化。在積分放大器284之前端輸入上的一可變電阻電路286具有一變化(variation),該變化經控制以提供時變改變於與驅動信號同步的增益中。可變電阻電路286係經控制,以將在增益中的時變改變提供到回應信號,以達到對脈衝部分(對應驅動信號)的此操作。使用另一控制信號(未顯示)將放大積分運算重設,其係與對應驅動信號的時序同步化,以實現用於各脈衝部分之操 作的適當重複。此放大用來將回應信號的操作態樣放大,同時仰制由回應信號所攜帶的非所欲雜訊(包括驅動信號的奇諧波)。
積分放大器284提供經電容耦合至第二級290的輸出,以用於回應信號的進一步處理。此進一步處理使用運算放大器291提供用於組合位於正向轉換與負向轉換之暫態部分的積分,以用於增加信號強度且同時提供雜訊(包括偶諧波)之有效共模抑制(藉由將如自積分放大器284之輸出處理的單線微分回應信號之正態樣與負態樣(包括經放大之轉換部分)加總)。因此重複藉由第二級進行之此積分(以積分與清零(integration-and-dump)操作的方式),從而如同先前論述之級且如同用於積分重設的以類似方式控制之控制信號(未顯示),實現對每一經脈衝部分之操作的適當重複。
第二級290將其輸出,經由另一電容耦合的路徑292,提供到先前結合圖2A來說明的多工器與ADC。電容耦合的路徑包括取樣與保持電路系統(在概念上,藉由電容與開關所描繪),其用於保留如由第二級290所處理之回應信號之各部分的類比特徵化,其係可進一步經由多工器294與ADC 296來處理,以用於藉由一控制器或測量電路來評估。
更具體地,運算放大器291被使用來執行相加運算,以導致正與負邊緣轉換被結合以得到最大信號強度,且理想地,在這些正與負邊緣轉換之間的雜訊會因為如在共模抑制中的反相相加而被取消。作為具體的實施方案,這可藉由回應於用於正與負邊緣轉換的時脈定相來選擇反相或非反相積分器(或積分運算)以從正邊緣減去負 邊緣來得到。此加法積分因而將正與負向信號加總,以提供一虛擬微分信號,該虛擬微分信號增加信號振幅2X且減少被耦合至感測器內的共模雜訊。至運算放大器291之一個輸入上的V偏壓信號會經設定至一位準,以容許沿著電容耦合的路徑292之輸出位準的最佳化,以用於藉由ADC 296之隨後類比-數位轉換的取樣與保持效果(S/H)。使用在第一級284之前端上的時變係數,信號微分與第一級積分的組合有助於減小自晶片上增益(藉由電阻性路徑提供)之增益變化及TX(或驅動)信號之斜率。變化仍然保持來自晶片上積分電容(CINT)與觸控螢幕電容。驅動信號的位準有助於補償橫跨不同列的螢幕變化,在此,在積分反體路徑中的電容(圖2B的CINT)則針對跨不同接收器的變化而調整。在此經組合的微分與積分中所涉及的信號位準可如下以數學方式進行估計:I螢幕=CC.dVTX/dt
VDIFF=I螢幕.RDIFF=CC.RDIFF.dVTX/dt
IINT=VDIFF/RINT =CC.(RDIFF/RINT).dVTX/dt
dVINT=(IINT/CINT).dt
dVINT=dVTX.(CC/CINT).(RDIFF/RINT)其中,在觸控裝置上感測到的電流為I螢幕,微分電壓信號為VDIFF,且其積分版本係以dVINT表達。
據此,圖2B的可變增益放大電路系統包括一積分電路,該積分電路使用時變參數於暫態部分處提供積分與清零信號濾波操作。此信號濾波操作可借助於至用於取樣回應信號之一時脈速率之 倍數的降低取樣率。先前所討論的測量電路隨後可回應於回應信號,如經由圖2B的可變增益放大器所處理,其係藉由對相關聯之耦合電容的特徵化執行測量並判定觸控表面上的觸碰位置。使用在專利文件第WO2010/138485號(PCT/US2010/036030)中的信號處理教示作為參考,此處理以經改良之RX接收器電路提供具有增加TX驅動位準及改善CRFI(傳導射頻抗擾性)之增加的信號雜訊比以及LCD(液晶顯示器)雜訊抑制。總功率位準與成本亦明顯減少。就關於在相似環境中之觸控裝置操作的進一步/背景資訊而言,可參考上面提及的此專利文件,該專利文件在本文中以引用的方式併入,以得到此等教示以及關於前端信號處理與時序以及後端(基於控制器/測量)回應信號處理的彼等教示。
結合與圖2B電路系統一致之電路系統的具體實驗實施方案,在回應信號之微分信號表示上的此積分可被有利地使用,以在頻率回應中產生空值。使用此實施方案,RF信號雜訊,尤其是在頻率回應中的第三與第五諧波(微分信號表示的各積分)係經由此些空值被濾波。正如上面所說明,此RF-信號雜訊濾波可包括此奇諧波以及交插偶諧波兩者。
圖3A、圖3B、以及圖3C提供用於理解關於在圖2B中之第一級之態樣的進一步細節。這些態樣係涉及積分放大器284的可變電阻與時序。就在圖3A中所繪示的具體實例實施例而言,運算放大器310包括連接到電壓參考(V偏壓,如同在圖2A與圖2B中被共同命名之信號)的正輸入埠以及經配置用來接收先前電路系統之輸出 以作為輸入信號(在「輸入」埠318)的負輸入埠,該先前電路系統係圖2B的(微分)電路282。對應圖2B的可變電阻電路286,在圖3A中所示的可變電阻係由配置用於以並聯路徑連接的三個電阻器所提供:第一電阻器(R)320、第二電阻器(4R)322、以及第三電阻器(2R)324。該等電阻中至少兩者的值可彼此不同。各別開關F2、F1、F0係在所對應之並聯路徑的各者中,其中一個或多個使用控制信號經由路徑328而選擇性地關閉(提供控制器且與驅動信號同步,以實現用於各脈衝部分之操作的適當重複)。這些可選擇的開關被標為330、332以及334,以用於各別地連接在輸入(IN)埠318與運算放大器310之負輸入埠之間之電阻器320、322以及324中之一或多者。以相似方式經控制的開關336亦以與驅動信號同步的方式被控制,以實現與針對每一脈衝部分提供之重複一致的重設時序。
積分放大器310的時間常數可隨著時間調整,以使得該時間常數的減少(或最小)值實質上對準該回應信號的該等正向與負向轉換部分,該時間常數的最大值則對準在該等正向與負向轉換部分之間之回應信號的部分。時間常數可由於上面所說明的時變電阻及/或由於時變反饋電容Cint而隨著時間改變。不論電阻、電容或兩者是否隨著時間改變而提供一時變時間常數,該變化係與驅動信號同步。
這是因為開關330、332及334被使用來界定用於運算放大器310之積分運算的RC時間常數,其中RC的R係由電阻器320、322及324之並聯配置所提供的電阻,且RC的C係在運算放大 器310之負反饋迴路中所提供的電容。因此,圖3C右邊的表顯示與時序圖之例示性時間點逆關聯的時間常數。
具有可變R增益設定的輸入微分器282輸出一具有倒轉正與負脈衝輸出的雙向信號。反饋R容許微分增益改變,以用感測器的相互Cc來將RC微分脈衝函數輸出最大化。
回應信號可包括驅動信號的偶及/或奇諧波,且這些諧波的減少使信號雜訊比增加。在圖3A所示的第一積分器級284包含具有時變係數的雙向積分器,以將在各VD驅動邊緣上的加權平均積分且清零,以降低取樣率到2倍的取樣速率。第一積分器級284之雙向積分器的係數係經選擇,以在增益中產生空值,以在驅動信號VD的第三與第五諧波附近提供最小或減少增益。第二加法積分器290總和出來自第一積分器284的正與負濾波邊緣資料。加法積分器290從該回應信號的正向轉換部分減去該回應信號的負向轉換部分。共模RF雜訊,例如該驅動信號的第二、第四、及/或其他偶諧波,會從在加法積分器290中的回應信號被減少或取消。放大器包含
圖3B係顯示與圖3A之電路系統相關的三個信號342、344及346的時序圖。第一信號342係TX脈衝,該脈衝信號的一個脈衝係被驅動到驅動電極上(例如,如在圖1A與圖1B中所使用)。TX脈衝的脈衝頻率可改變;不過,就包括那些結合圖1A與圖1B來說明的許多應用而言,100KHZ脈衝是適當的,且8Mhz時脈則使用來界定TX脈衝的脈衝時序。在IN埠318上呈現的第二信號344係單線微分信號,其具有對準TX脈衝之所繪示正斜率的向上衝量峰值以及具有對準TX脈衝之 負斜率的向下衝量峰值。這些係微分轉換部分,其對應TX脈衝邊緣,對此感測電路系統監控回應信號。如在圖3B底部所示,第三信號346對應在圖3A中的電路系統輸出,該輸出被使用來驅動第二(加法積分器)級,如在圖2B的290上所示。
圖3C係另一時序圖,其顯示可選擇的開關330、332及334以及重設開關336如何被控制以實現針對圖3A中顯示之電路系統的所欲或最佳的時變增益。如在圖3A與圖3C所繪示,當用於開關的對應控制信號係在邏輯高狀態時(如圖3C的時序圖所示),開關330、332、334及336之各者則會關閉(傳導狀態)。例如,於開關330、332及334之各者呈關閉狀態的情況下,由圖3A之運算放大器310所提供的增益最大,如藉由圖3C之頂部處的階梯圖366之中心所繪示。在時間點368一經重設之後,由圖3A之運算放大器310所提供的增益立即由呈關閉狀態的開關330以及呈開啟(非傳導)狀態的開關332與334所設定。這是因為開關330、332及334被使用來界定用於運算放大器310之積分運算的RC時間常數,其中RC的R係由電阻器320、322及324之並聯配置所提供的電阻,且RC的C係在運算放大器310之負反饋迴路中所提供的電容。因此,圖3C右邊的表顯示與時序圖之例示性時間點逆關聯的時間常數。
圖4與圖5係基於時間的圖,其用於顯示按照時變常數(圖4)以及按照上面所參考的時變常數(圖5)之圖3A的運算放大器310的增益。各圖的水平軸係時間單位,其經線性地顯示,對應距如在圖3B之信號344所示的脈衝或峰值之邊緣的距離。各圖的垂直 軸顯示上文所提及、以指數為單位的時間常數(RC),其中圖5則顯示按照頻率(1/(2RC×(3.1456))的時間常數。如在圖5之曲線的頂部所示,在開關關閉的情況下,對應的電阻器提供最小電阻,以沿著水平軸,將在點0的增益最大化(其中感測到尖峰之邊緣)。將理解的是,可如給定應用與時脈時序之可能所欲來調整電阻與電容(用於RC)及時序,其中上文所繪示的時序假設8MHz時脈用於驅動電路系統與相關電路時序與狀態機時序,其中RF雜訊濾波經調整/最佳化以減少由此導出的奇與偶諧波。
圖6A至圖6G形成另一基於時間之圖的部分,其顯示相對於在圖2B所繪示之電路系統級的進一步信號時序的實例。在圖6A中,顯示如將出現在先前所繪示之觸控面板的驅動電極上之TX信號610,其以一個循環(或週期)描畫。在藉由接收電極傳遞以後,回應信號係藉由一微分器電路(例如,經由VGA電路282)被處理(微分),以產生微分形式的TX信號610,如在圖6B所示。在經例示的TX信號610以方形波(一系列矩形脈衝)實施的情況下,微分運算產生衝量脈衝,其包括與矩形脈衝的各正向轉換相關聯的負向衝量脈衝(例如,620a)以及與矩形脈衝的各負向轉換有關聯的正向衝量脈衝(例如,620b)。雖然衝量脈衝會因為觸控螢幕的運算放大器信號頻寬及RC濾波器效應而變得略圓,但回應信號之此導出形式為驅動信號之微分表示。
圖6C與圖6D顯示藉由感測單元(圖2B的280)的第一與第二級之回應信號的進一步處理。圖6C顯示如在上文以圖4與圖 5所討論之第一級的增益態樣(顯示可歸因於第一級之運算放大器的增益),且其中積分重設(在反饋中)居中於衝量脈衝之間,且其中增益的時序係藉由經由有效電阻來改變RC時間常數而被調整/最佳化,如本文中上面的顯示(可選用地,此改變亦可被實施以改變有效電容)。圖6F顯示在第一級之輸出處之信號的較不理想特徵化,其中增益係顯示用於所處理回應信號的雙極性態樣(正與負兩者)。就特定的實施方案而言,因為衝量脈衝之間的雜訊(包括TX信號的奇諧波)係明顯經抑制,所以此第一級可能被視為適當的。
就其他實施方案而言,此第一級係由第二級(圖2B的290)所補足,第二級提供進一步雜訊濾波,其包括對產生自TX信號之偶諧波的抑制(歸零)。據此,第二級藉由相對於在第二級之輸入處的正與負轉換來執行積分及清零操作而進一步影響回應信號(如在圖6C與圖6E)。操作的清零態樣發生在圖6C所示之信號的低點,如藉由圖2B之運算放大器291的負反饋迴路中的電容短路開關所控制。積分在各清零(或重設)以後開始。
圖6G繪示經由運算放大器291施行的相加運算,藉此,正與負邊緣轉換係被組合以得到最大的信號強度,且理想上,在這些正與負邊緣轉換之間的雜訊則藉由如在共模抑制中的相加運算來取消。
本文中所揭示的實施例涉及使用匹配至回應信號的轉移函數來處理回應信號。可使用校準電路來達成將轉移函數匹配至該回應信號。感測電路(諸如在圖2B顯示的感測電路280)感測來自接收電極的回應信號,該接收電極係回應於傳輸到驅動電極的一驅動信號 以及可能的觸碰輸入(若存在)。感測單元施加一時變轉移函數到該回應信號。時變轉移函數的施加可被用來解調來自回應信號之載波部分的回應信號資訊攜載部分,該載波部分係回應於驅動信號。因此,在一些實施方案中,轉移函數被稱為解調轉移函數,且在一些實施方案中,該轉移函數被稱為濾波轉移函數。在任何情況中,時變轉移函數係與回應信號實質匹配(相關),以使得該轉移函數隨著回應信號成比例且同步地變化。在一些實施方案中,觸敏設備進一步包括一觸控電路,該觸控電路經組態以處理感測電路的輸出以偵測在觸敏表面上之觸碰的存在及/或位置。在一些實施例中,該系統包括一校準電路,該校準電路經組態以判定與回應信號匹配的時變轉移函數。例如,感測電路可包含一放大器或一微分器。在一些實施方案中,測量電路係經配置以施加該轉移函數到回應信號的微分表示。
在一些實施方案中,假若在轉移函數與回應信號之間的交互相關產生比大約0.5更大的相關係數,則時變轉移函數可被說是匹配回應信號。在一些組態中,施加轉移函數到回應信號的測量電路可能實施作為一濾波器及/或以具有一時變增益的放大器。該處理可包含具有一時變增益的一積分器。例如,積分器可具有時變RC常數,例如因為時變增益電容器及/或時變增益電阻。在一些實施方案中,該測量電路可包含具有一時變增益的一微分器。
圖7顯示例示性觸敏設備710的簡化示意圖,該觸敏設備710經組態以用於測量在觸控面板712的兩電極716與718之間之交互電容Cm。驅動電路系統713施加驅動信號VD到驅動電極716, 且感測電路系統714接收來自接收電極718的信號715。回應信號715可被用來計算Cm或Cm中的改變。控制電路系統717控制測量電路714及/或驅動電路系統713的功能及時序,且可進一步處理從測量電路714接收到的信號。
用來測量電容的裝置可採用電容式輸入(例如,觸碰)裝置(諸如按鈕與開關、線性滑動器、及矩陣觸控面板)以及感測器(其用於偵測位置鄰近電極之物質的存在或數量)或數化器(其用於觸控筆的電容式偵測)的形式。在這些狀況之各者中,至少一個未知的交互電容(在本文中標為Cm)起因於電極之間的耦合,且第二與第三未知電容(在本文中標為Cd與Cr)起因於驅動電極Cr與接地以及接收電極Cr與接地之間的耦合。當物件或物質接近且具有在AC電壓被施加到該等電極中至少一者時所產生的電場時,Cm、Cd及Cr則會改變。此改變可被用來當作用來識別一觸碰或一物件之存在的基礎。Cm、Cd及Cr係電極的簡化模型,其基本上具有經分佈的電阻與電容,該經分佈的電阻與電容根據電極的形狀以及該等電極之製造材料而改變。
本揭露說明用來測量這些電容之參數的電路系統與方法且最尤其是用來測量Cm中之改變的方法。在一些實施例中,該感測電路包含一微分器以及一時變增益。在一些實施例中,測量電路經組態以將回應信號乘以時變轉移函數,且將在一段時間內的乘法乘積積分(例如,回應信號的整數倍循環)。轉移函數與回應信號可在乘法及/或積分之前被數位化,使得轉移函數與回應信號包含一些離散值。替 代地,感測電路可包括一類比相乘器電路及/或類比積分器,其經組態以將類比相乘器電路的一輸出積分。在本實例中,感測電路系統可包括一類比至數位轉換器,其經組態以將該積分器的一輸出數位化。
圖8顯示根據一些實施例之包含一組例示性信號以及轉移函數對時間的圖820。包含一方形波的驅動信號VD係藉由驅動電路713被施加到驅動電極716(見圖7)。信號715大約為驅動信號VD的一微分版本。此例示性情境可存在於測量電路714的輸入阻抗相較於電容Cm及Cr的阻抗係非電容式且低的情況中。依照在本文中之本實例所說明的原理與方法亦應用於其他波形。解調轉移函數fD(t)同步地解調信號715。信號824得自此解調(亦即,解調轉移函數fD(t)到信號715之施加)。數學上,解調係藉由將信號715乘以轉移函數fD(t)得到信號824來完成。信號825表示在一段時間內(諸如信號715的一整數倍循環)信號824的積分。
功能上,有許多以解調轉移函數fD(t)來解調信號715的方法。在數位處理實施例中,信號715與fD(t)可被轉換成具有數位數字的數位格式,該等數位數字表示在順序離散時間處之715與fD(t)的值。例如,信號826表示轉移函數fD(t)的數位化版本,其在時期t1至t8期間內具有八個離散值。信號715與轉移函數fD(t)可表示為兩個向量,該等向量在離散順序時間上包含一(相等長度)系列的值。結果所得之兩向量的純量積可被計算,且一系列此類的積可被加入,以執行如信號825所示的積分函數。
圖9顯示測量電路714的實施例,其中信號715首先由放大器903處理。放大器903可在其之輸入處(例如和接面(summing junction))提供一低阻抗,且其可將信號715的量值放大。結果所得的信號935係藉由將其乘以來自時間同步來源936的時變解調函數fD(t)而被解調。在一項實施例中,信號935可具有信號715的形狀(見圖8),且乘法函數932可以是類比相乘器電路,其中fD(t)可具有信號935的波形(無及時雜訊存在於信號935上)。最後,積分信號825可藉由類比至數位轉換器(ADC)938被轉換成數位格式。在一些實施例中,信號源936與ADC 938可被合併於感測電路系統714中。
在另一項實施例中,函數932可經組態以將類比信號935乘以一數位fD(t)信號。在數位fD(t)方法中,信號935及時乘以一時變數位值。信號826(圖8)係信號fD(t)的數位表示,其中信號fD(t)已經被量化成例如在八個時間週期內的八個值。該等八個值的各個可由數位數字所代表,且在當信號715被接收時的適當時間上,各數位數字可被施加到乘法數位至類比轉換器,如先前的說明。
根據一些實施例,解調轉移函數fD(t)可具有實質上與回應信號715相同的形狀,得到信號715的匹配濾波。為此原因,函數fD(t)(以及函數826)係顯示於圖9,其具有與函數715大約相同的形狀。
圖10顯示回應信號715的一單一循環以及可用來同步解調信號715的四個替代性fD(t)解調轉移函數。函數1153係方形波。函數1154係近似信號715之形狀的一多層量化波形。函數1155 係近似圖3C所示形狀的一多層量化波形。圖10看起來與圖3C不同,因為圖10組合圖3C的波形加上圖3C的週期性反轉,該週期性反轉係由在圖6F所示之交替的加、減函數所指示。第四解調函數l152具有與無雜訊信號715相同的形狀。
模擬係經施行,藉此以將各種頻率的雜訊加到信號715,且所得之有雜訊信號使用四個解調函數1152、1153、1154、以及1155之各者被同步解調。經解調信號隨後在信號715之四個循環的期間(四個信號波長)內被積分。在所示的實例中,信號波長係11μsec,因此經解調信號係於44μsec的期間被積分。信號715係藉由從具有第二時間常數(例如,1μsec)的正規化指數波形減去具有第一時間常數(例如,0.1μsec)之時間常數的正規化指數波形而被模擬。在這些模擬中,雜訊除以信號(N/S)係藉由從解調(信號+雜訊)位準減去已知解調信號位準然後除以該解調信號位準來計算。該結果係更常用信號/雜訊(S/N)位準的倒數。因為圖形比例(graph scaling)更易管理,所以N/S被用於此處,特別在雜訊接近零位準的頻率處。
圖12A與12B顯示經解調N/S百分比的圖形。就這些測量而言,一單一正弦波頻率的雜訊會係被加到信號715,且解調與積分測量的百分比改變係被計算。峰值雜訊量值係信號715之峰值的50%,且積分係在信號715的四個循環上被施行。圖12A與12B在相對於信號715的雜訊相位中有所不同。在圖12A中,雜訊正弦波的相位係對準信號715。在圖12B中,雜訊正弦波的相位以90度領先信號715。
圖12C顯示0度雜訊(圖12A)與90度雜訊(圖12B)的向量和。因此,圖12C顯示跨一波長範圍之雜訊的量值,其集中在信號波長11μsec上。圖12A、12B及12C顯示四個例示性解調轉移函數的性能隨著雜訊的頻率與相位而明顯變化。總體而言,匹配與接近匹配的解調信號1152與1154在雜訊而非奇諧波的存在之下具有較優的效能。
一些實施例涉及校準該解調器的該轉移函數以實質匹配該回應信號。信號715的形狀隨著驅動信號VD的形狀、感測器712的參數、以及在測量電路714內之組件的參數而變化。基本上,在感測器之間因為大小與結構的變化,可導致信號715的明顯變化。因此,測量信號715的形狀以及以接近匹配的解調函數來解調信號715係有利的。在測量電路714包含用來以快速速率數位化信號715之電路的數位處理系統中,信號715的形狀可藉由快速的類比至數位轉換而直接測量。
和在系統之正常使用期間內相比,在校準期間內的測量之時間關鍵性較小,所以校準測量的雜訊可藉由比正常使用更多之信號715之循環上的測量所減少。同樣地,可能可藉由在校準期間內關閉非關鍵性的有雜訊函數來減少雜訊。驅動信號VD可在校準期間內關閉,如此周圍雜訊可被直接測量,且可從有雜訊信號的位準減去雜訊測量,以產生無雜訊信號形狀的近似。
如上所述,信號715可係施加到電容感測器之方形波驅動信號的結果,其傳遞通過有時藉由一觸碰來修改的感測器電容 Cm。驅動信號的諧波可藉由路徑到達測量電路而不是Cm,在此情況中,這些諧波實質上為雜訊。或者,雜訊可來自亦產生方形波的一切換電源。奇諧波雜訊藉由將方形波(奇)諧波加到信號715而被模擬,其包含21%的第三諧波、13%的第五諧波、9%的第七諧波、以及7%的第九諧波。這些經組合諧波信號的峰值位準係經正規化為信號715之峰值量值的50%。所得的有雜訊信號715n係以圖形的方式顯示於圖11中。
用於信號715n之4個循環的解調與積分的模擬結果係顯示於表1的第3行。所計算的N/S百分數比率係以百分比顯示於表1的第4行。各種解調函數導致不同的積分結果,如表1所示。表1的「0雜訊」行顯示在以各種解調信號之信號715解調的四個循環以後的積分器位準且沒有雜訊。匹配濾波器1152與1154減少信號的奇諧波雜訊含量多於方形波1153,但信號1155實質上刪除奇諧波。這是因為濾波器1155匹配奇諧波雜訊,但是卻與該雜訊呈正交相位,因此濾波器1155則與奇諧波雜訊具有接近零的關聯,導致基本上沒有雜訊在信號715n的實例中被解調。
圖13顯示電容觸控數化器系統1360,其具有與系統710相似的組件與特徵,但系統1360包含一電極矩陣。感測器1362包含兩個電極陣列,該等電極彼此上下配置。頂部電極陣列包含平行接收電極Rcv1、Rcv2、Rcv3、以及Rcv4。下陣列包括平行驅動電極Da、Db、Dc、以及Dd;其等經配置而正交於電極Rcv1、Rcv2、Rcv3、以及Rcv4。十六個極間電極(交互)電容Cm通常大約相等。驅動電路1313a、1313b、1313c、以及1313d產生可能是任何波形的信號VDa、VDb、VDc、以及VDd,雖然本文中的實例係使用脈衝。接收電路1314a、1314b、1314c、以及1314d各別測量回應信號1315a、1315b、1315c、以及1315d。測量的結果係被傳送到感測、測量、及/或控制電路1367。在本發明的類比處理實施例中,接收電路1314可執行轉移函數,該轉移函數包含信號715a至715d的同步解調、積分、以及類比至數位轉換中之一或多者。在本發明的數位處理實施例中,接收電路1324可放大信號715a至715d且接收電路1324可將信號715a至715d從類比轉換到數位格式以用於在電路1367中處理。驅動電路1313與接收電路1314係藉由電路1367經由控制線Ctrl1與Ctrl2而被控制。
使用者藉由觸碰位於頂部陣列上的觸控表面(未顯示)而與感測器互動。鄰近一電極交叉點的一觸碰將改變極間電容Cm的其中一個或多個。鄰近一觸碰的極間電容(一或多個)係經減少量值,而變得與其他極間電容不相等。在大部分的矩陣觸控系統中,一觸碰影響超過一個極間電容Cm,因此內插法可被使用來細化觸碰位置。
在由圖13以及本文中別處所例示之矩陣觸控系統的情況中,驅動信號Da、Db、Dc以及Dd係基本上按順序一次驅動一個。信號1315a、1315b、1315c、以及1315d可藉由多個測量電路1314a、1314b、1314c、以及1314d同時被接收,且各接收通道可同時施行分開的回應信號1315a、1315b、1315c、以及1315d的解調轉移函數fD(t)與積分。
感測器1360具有經分佈(distributed)之電容與電阻的一複合陣列。驅動電極電容Cd係顯示為各電極上接地的一單一電容,但實際上Cd係大致上沿著各電極分佈。同樣地,各接收電極具有沿著其之長度分佈的電容Cr。電極的電阻(在系統1360中沒有顯示)可從數百歐姆改變到數萬歐姆變化,如此回應信號將取決於經過驅動與接收電極之信號路徑的長度而被衰減不同的量。
接收信號可受到至少兩種主要的改變。首先,接收信號可與驅動電極距接收電極的距離成比例地一起變化。例如,當遠距電極Da以信號來驅動時,全部四個接收信號全部皆低於當鄰近電極Dd被驅動之時。同樣地,驅動信號Da至Dd在驅動端係最大,且隨著該等驅動信號到達驅動電極Da至Dd的遠端而衰減。回應信號可與其等至驅動電極之驅動端的鄰近度成比例地逐個改變。例如,回應信號1315a(附接至電極Rcv1)在量值上將比信號1315d更大,因為驅動器1313a至1313d更靠近電極Rcv1地施加其等之信號。
因此,各回應信號的形狀(及/或大小)可取決於該等驅動電極中被啟動者而變化。此變化可藉由本文中所說明的校準程予 來測量,且唯一的解調轉移函數fD(t)可用於各驅動電極。同樣地,接收測量電路1314a至1314d中之各者可使用與其他測量電路不同的解調轉移函數fD(t)。
一些類比處理電路(諸如圖2A與2B的類比/數位混合電路)亦適合用於測量接收波形的形狀對時間,其係藉由使用用於信號715之取樣的解調電路系統。一種以使用此類比電路來測量的方法係參考圖14來說明。圖14顯示例示性圖1470,其包括如上面所說明之驅動信號VD的一個循環以及所產生之回應信號715。在所示的實例中,一系列解調取樣脈衝將被使用,以在一系列的八個離散時間上取樣信號715。首先,脈衝1476a被用來當作轉移函數fD(t)(對應系統1030的fD(t),圖10),以僅僅解調在時間t1與t9期間內發生的信號715之部分。信號1476a包含一對相反極性的取樣時間,其係由信號715的½波長所分開。結果係信號1474a(對應系統1030的信號1024),其被積分以產生具有V1475a之最後值的信號1475a。圖14顯示在VD之一個完整循環上的積分,但實際上,積分係較佳地在VD的許多循環上被施行。在積分結束時之信號1475a的值與在取樣時期t1與t9期間內信號715的平均值成比例。
接著,脈衝1476a被用來當作轉移函數fD(t),以僅僅解調在時間t2與t10期間內發生的信號715之部分。結果係信號1474b,其係被積分以產生信號1475b。在積分結束時之信號1475b的值是V1475b,其與在時期t2與t10期間內之信號715的平均值成比例。此過程可持續,直到在每一時期上(t1與t9至t8與t16)之信號 715的值為已知。在圖1470的實例中,施行八個積分以測量八對之相反相位樣本(t1與t9、t2與t10、t3與t11等等)。在八個樣本點測量信號715的量值以後,可使用這些八個值(以及他們的相反相位互補)來產生解調轉移函數fD(t)。就給定的實例而言,結果將是經計算的轉移函數1479,其中八個值以及此八個值的互補形成近似信號715的轉移函數。
測量信號715的程序較佳地在系統正常使用以前完成之一校準程序期間內被施行。校準程序容許測量系統適應來自各種原因之回應信號715之形式與量值中的變化。假如有可干擾此校準程序的可控制雜訊源,其等則可在校準期間內被關閉。例如,鄰近的顯示及/或非必要的電源可被關閉,尤其假如這些組件發射與電容測量系統同步的雜訊。
圖15A顯示具有指數衰變時間常數1μsec之回應信號1515的一單一循環以及可用來同步解調信號1515的四個替代性fD(t)轉移函數。信號1584係意圖大約匹配信號1515的量化fD(t)(其與圖11的信號1154相似)。信號1585係量化fD(t),其意圖大約匹配與1515相似的指數衰變信號,但具有衰變時間常數1.5μsec。信號1583係量化fD(t),其意圖大約匹配與1515相似的指數衰變信號,但具有衰變時間常數0.5μsec。第四解調函數1582係與無雜訊信號1515相同形狀。
圖15B顯示跨一雜訊波長範圍之雜訊的向量量值,其集中在信號波長11μsec上。圖15A與15B顯示三個量化解調函數 fD(t)1583、1584、1585的性能在一雜訊頻率的範圍內具有相似的性能。匹配函數1582係最佳的解調函數,且接近匹配函數1584在許多雜訊頻率範圍中具有優於函數1583與1585的性能。
圖15C顯示具有指數衰變時間常數1μsec之回應信號1515p的一單一循環以及可被用來同步地解調信號1515p的四個替代性fD(t)轉移函數1582、1583、1584、1585。相對於四個替代性fD(t)轉移函數1582、1583、1584、1585,信號1515p在時間上會移位(延遲)0.5μsec。信號1584係意圖大約匹配信號1515p的量化fD(t)(其與圖11的信號1154相似)。信號1585係量化fD(t),其意圖大約匹配與1515相似的指數衰變信號,但具有衰變時間常數1.5μsec。信號1583係量化fD(t),其意圖大約匹配與1515p相似的指數衰變信號,但具有衰變時間常數0.5μsec。第四解調函數1582係與無雜訊信號1515p相同形狀。
圖15D顯示跨一雜訊波長範圍之雜訊的向量量值,其集中在信號波長11μsec上。圖15C與15D顯示信號1585的性能,其係意圖大約匹配與1515p相似之指數衰變信號的量化fD(t),但具有更長的衰變時間常數1.5μsec,並在許多雜訊頻率範圍中具有優於函數1582、1583、與1584的性能。信號1583與較短的(0.5uSec)時間常數匹配,但卻由於相移而具有最大的性能衰退。這證明,在一些情況中,較寬的(例如,較長的時間常數)轉移函數可產生較佳的性能,其中轉移函數係相對於被測量的信號相移。
圖16A顯示施加到信號715之另外的解調轉移函數。函數1693、1694、以及1695係簡單的取樣函數,其各別具有3、2、以及1個取樣週期的寬度。解調函數1692匹配信號715。圖16B顯示跨一雜訊波長範圍之雜訊/信號的量值,其集中在信號波長11μsec上。除了在基本的信號頻率上之外,匹配轉移函數1692執行良好,且函數1693、1694、以及1695中的多個函數則在一些雜訊頻率範圍中具有較佳的N/S性能。
圖16C顯示與圖16A中相同的解調函數,但彼等函數卻相對於信號715在相位領先一個時間週期。圖16D顯示跨一雜訊波長範圍之雜訊/信號的量值,其集中在信號波長11μsec上。函數1695的N/S係從圖16D被刪除,因為在大部分的頻率上,它比其他的N/S測量大於100倍以上。這是因為在當信號715接近零的時間上函數1695取樣信號715。較寬的解調函數1693在許多頻率上具有優於函數1692及1694的N/S,因為其相對於雜訊將信號715的較大部分解調。
圖12A、12B、12C顯示雜訊對信號(N/S)比,其藉由模擬的測量電路714來測量。很明顯的,不同解調轉移函數可導致不同的N/S比。假如N/S比可已知用於具有具體雜訊位準及/或雜訊譜的具體系統,則可能可調適解調轉移函數,以達到指定的N/S比,諸如最小的N/S比。
一些實施例涉及一種校準觸控設備的方法,其係藉由將用來測量回應信號的轉移函數與回應信號匹配。在使用觸控設備來偵測該觸碰輸入以前的初始化期間內,可施行該校準。圖17A係繪示根 據一些實施例之用於觸控設備之校準程序的流程圖。該校準涉及判定一接收電極之回應信號的形狀1701。隨著該回應信號成比例且同步地變化的一時變轉移函數係經判定1702。該轉移函數隨後可被使用1703,以解調包括一觸碰輸入的一回應信號。
產生用於接收電極的該回應信號可逐個電極變化。因此,可判定不同的時變轉移函數以用於各個電極或用於相鄰的電極群組。用於特定接收電極的回應信號亦可沿著接收電極的長度而變化。因此,在一些實施方案中,多個轉移函數可被形成,以用於接收電極,其中多個轉移函數之各者各別地對應沿著接收電極的驅動電極位置。
圖17B係更詳細的流程圖,其繪示根據一些實施方案的校準程序。判定1705回應信號的形狀與量值,同時減少或最小化雜訊。例如,回應信號的形狀與量值可使用事先知道與該回應信號相當緊密匹配的接近匹配轉移函數來判定。在藉由關閉驅動信號及/或其他雜訊源來判定轉移函數的程序內,可減少或最小化雜訊。
以具有減少雜訊之回應信號的形狀與量值為基礎,來形成1710一初始轉移函數。使用初始轉移函數,判定1715具有雜訊之回應信號的形狀與量值。測量1720雜訊,並從具有雜訊的回應信號減去1725該雜訊。從具有雜訊的回應信號減去該雜訊的結果被稱為減去雜訊回應信號。形成1730雜訊(N)與減去雜訊回應信號(S)的比,例如N/S或S/N。可迭代地調整1735初始轉移函數,以減少N/S值(或增加S/N值)。例如,可藉由調整初始轉移函數而形成轉移函數,使得該 比係在指定的範圍內。該經調整的轉移函數可在用於觸碰偵測之觸控設備的操作期間內被使用。
用於調整轉移函數的選項涉及使用在落後或超前相位的初始轉移函數,來重新判定具有雜訊的回應信號。隨後以重新判定具有雜訊之回應信號的結果為基礎,來調整初始轉移函數。另一選項涉及使用在時間上比初始轉移函數更窄或更寬的轉移函數來重新判定具有雜訊的回應信號。隨後以重新判定具有雜訊之回應信號的結果為基礎,來調整初始轉移函數。調整轉移函數可涉及調整轉移函數的形狀及/或相位。可選用地,除了轉移函數以外之觸控設備的參數可另外地被調整以增加信號雜訊比,諸如調整驅動信號的頻率及/或調整回應信號之積分週期的持續時間。轉移函數以及可選用地其他參數可被迭代地調整,直到N/S或S/N比是在指定的範圍內為止。
可選用地,雜訊譜可被測量且轉移函數可以所測量的雜訊譜為基礎來調整,正如相對於函數1155來說明的(圖10)。例如,雜訊譜可在驅動信號的基頻上及/或在基頻的一個或多個諧波上被測量。在一些實施方案中,測量雜訊譜涉及在比驅動信號之基頻更小之頻率上測量雜訊信號。雜訊譜可如上文所說明者,以類似於使用取樣脈衝測量信號形狀的方式來判定。使用一相似的過程可測量雜訊信號的形狀與量值。
圖18A與18B顯示一實例,其中測量具有波長3.67μsec(信號715的第三諧波頻率)的雜訊。就雜訊測量而言,驅動信號VD會被關閉,如此信號15僅僅包含雜訊。給定具有波長24t的VD,24t的K 個整數倍的積分週期將測量在K信號波長中的雜訊。基本上,大部分的雜訊未與信號VD同步,因此通常較佳地是在比正常操作期間內被用來測量信號715還更多的信號波長上測量雜訊。
圖18A顯示若干解調轉移函數。解調轉移函數1892係匹配到方形波信號VD的第三諧波。解調轉移函數1895係大約匹配方形波信號VD之第三諧波的一量化函數。在其他頻率上的雜訊可藉由使用具有所欲頻率與波形的轉移函數而被測量。若除了多個取樣時間t以外的諸波長係經測量,t的持續時間則可藉由變更建立取樣時間t之持續時間的系統時脈之時脈頻率而改變。
圖18B顯示從0.3μsec至22μsec施加波長之正弦波的所得之解調、積分輸出。解調轉移函數1892與1895選擇地傳遞所欲的第三諧波,同時阻擋全部其他頻率的90%或更多。因此,可測量雜訊譜,且可調整測量系統以避免雜訊。例如,信號VD的頻率可被修改,且取樣週期t1、t2、等等的持續時間可被調整,以匹配在VD之頻率的改變。積分週期的持續時間可被改變及/或解調轉移函數FD(t)(形狀與相位)可被改變以避免雜訊,該雜訊係被測量到具有與測量電路系統有關係之特定頻率或相位關係。
圖19顯示雜訊測量的若干實例。已知所欲的接收信號715具有16t的波長,如在圖19中所示,16t之K個整數倍的積分週期則將測量雜訊的K個信號波長。鑑於大部分的雜訊未與信號715同步,所以通常較佳地是在比被用來測量信號715還更多的信號波長上測量雜訊。
就雜訊測量而言,驅動信號VD會被關閉,如此信號715僅僅包含雜訊。圖19顯示將測量各種頻率之雜訊的若干解調轉移函數。解調轉移函數1901測量在VD之基頻的雜訊。解調轉移函數1902測量在信號VD之第二諧波的雜訊。解調轉移函數1903測量在信號VD之第三諧波的雜訊。解調轉移函數106測量在信號VD之第六諧波的雜訊。
在其他頻率上的雜訊可藉由使用具有所欲頻率的FD(t)函數而被測量。為了測量除了多個取樣時間t以外的諸波長,t的持續時間則可藉由變更建立取樣時間t之持續時間的系統時脈之時脈頻率而改變。
解調函數1909係在比信號VD之(24t)基頻更長的波長上測量雜訊之解調函數的實例。實例1909測量36t的雜訊波長,且其中非全部被顯示。
因此,可測量雜訊譜,且可調整測量系統以避免雜訊。例如,取樣週期t1、t2等等的持續時間可被調整以改變信號VD的頻率。積分週期的持續時間可被改變(例如,到16t的持續時間而非24t,如在圖1900中所示)。或者,解調轉移函數FD(t)(形狀與相位)可被改變以避免雜訊,該雜訊係被測量到具有與測量電路有關係之特定頻率或相位關係。
在本揭露中所說明的實施例包括以下項目:
項目1.一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極; 一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含與一負向轉換部分分開的一正向轉換部分;以及一放大電路,其包含一時變增益,該時變增益具有與該回應信號之該等正向與負向轉換部分實質對準的一增加增益以及在該回應信號之該等正向與負向轉換部分之間的一減少增益。
項目2.如項目1之觸敏設備,其中該放大電路包含與該驅動信號同步的一時變電阻。
項目3.如項目1至2中任一項之觸敏設備,其中該放大電路包含經連接至一運算放大器之一輸入埠的複數個並聯電阻器,該複數個電阻器中至少兩個電阻器的值係不同於彼此,該複數個電阻器中的各電阻器具有一不同的對應開關。
項目4.如項目1至3中任一項之觸敏設備,其中該放大電路包含與該驅動信號同步的一時變電容。
項目5.一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含與一負向轉換部分分開的一正向轉換部分;以及一放大電路,其包含一時變時間常數,該時變時間常數具有與該回應信號之該等正向與負向轉換部分實質對準的較小值以及介於該回應信號之該等正向與負向轉換部分之間的較大值。
項目6.如項目5之觸敏設備,其中該時變時間常數包含一時變電阻。
項目7.如項目5至6中任一項之觸敏設備,其中該時變時間常數包含一時變電容。
項目8.一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含該驅動信號的一諧波;以及一放大電路,其包含一時變增益,該時變增益在對應該諧波的一頻率範圍中具有減少增益。
項目9.如項目8之觸敏設備,其中該諧波包含複數個奇諧波,且該時變增益在對應該複數個該奇諧波的該頻率範圍中具有複數個最小值(minima)。
項目10.一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其經耦合至該接收電極,且包含:一第一級,其經耦合至該接收電極且經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號係該驅動信號的一微分表示且包含該驅動信號的至少一個奇諧波與至少一個偶諧波; 一第二級,其經耦合至該第一級的一輸出且抑制在該回應信號中的該至少一個奇諧波;以及一第三級,其經電容耦合至該第二級的一輸出且放大該第二級的一輸出並抑制該回應信號中的至少一個偶諧波。
項目11.如項目10之觸敏設備,其中:該第一級包含一可變增益微分電路;該第二級包含一增益,該增益在對應該至少一個奇諧波的一頻率回應中具有一空值(null);以及該第三級包含一加法積分器。
項目12.一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含與一負向轉換部分分開的一正向轉換部分;一放大器,其經組態以放大該回應信號且具有一非線性增益;以及一積分器,其從該回應信號的該正向轉換部分減去該回應信號的該負向轉換部分。
項目13.一種系統,其包含:一觸敏設備,其包含:一觸控面板,其包含一觸敏表面以及經電容耦合至至少一個接收電極的至少一個驅動電極; 一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號;以及一測量電路,其經組態以施加一時變轉移函數到該回應信號;以及一校準電路,其經組態以將該時變轉移函數匹配至該回應信號,該轉移函數隨著該回應信號成比例且同步地變化。
項目14.一種觸敏設備,其包含:一觸控面板,其包含一觸敏表面以及經電容耦合至至少一個接收電極的至少一個驅動電極;一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號;以及一測量電路,其經組態以將一時變轉移函數施加到該回應信號,該轉移函數隨著該回應信號成比例且同步地變化。
項目15.如項目14之設備,其進一步包含一觸控處理電路,該觸控處理電路經組態以基於該測量電路的一輸出來偵測在該觸敏表面上的一觸碰。
項目16.如項目14至15中任一項之設備,其中該測量電路包括具有一時變增益的一放大器。
項目17.如項目14至16中任一項之設備,其中該測量電路包括具有一時變增益的一積分器。
項目18.如項目17之設備,其中該積分器具有一時變RC常數。
項目19.如項目17至18中任一項之設備,其中該積分器具有一時變增益電容。
項目20.如項目17至19中任一項之設備,其中該積分器具有一時變增益電阻。
項目21.如項目17至20中任一項之設備,其中該感測電路包含具有一時變增益的一微分器。
項目22.如項目14至21中任一項之設備,其中該測量電路經組態以將該回應信號乘以該轉移函數,且將在一段時間上的該乘法的積分。
項目23.如項目22之設備,其中該段時間係該回應信號之循環的整數倍。
項目24.一種方法,其包含:回應於傳送到經電容耦合至該接收電極之一驅動電極的一驅動信號,來感測一接收電極上的一回應信號;將一時變轉移函數施加到該回應信號,該轉移函數隨著該回應信號成比例且同步地變化;以及使用施加該轉移函數到該回應信號的一結果,來偵測在一觸敏表面上的一觸碰。
項目25.一種使用觸控設備的方法,該觸控設備包括一觸敏面板,該觸敏面板包含經電容耦合至至少一個接收電極的至少一個驅動電極,該方法包含: 回應於傳送到該驅動電極的一驅動信號而判定一用於該接收電極之一回應信號的一形狀;以及形成隨著該回應信號成比例且同步地變化的一時變轉移函數;將該時變轉移函數施加到一回應信號,該回應信號包括與在該觸控面板上之一觸碰有關的資訊。
項目26.如項目25之方法,其中:施加該轉移函數包含將該轉移函數乘以該回應信號;以及進一步包含將在一段時間上的該乘法的積積分。
項目27.如項目26之方法,其中該段時間包含該回應信號之一週期的整數倍。
項目28.如項目25至27中任一項之方法,其中該回應信號與該時變轉移函數係以數位格式表示。
項目29.如項目25至28中任一項之方法,其中該回應信號與該時變轉移函數之各者係以向量表示,該等向量在離散順序時間包含一系列數值。
項目30.如項目29之方法,其中施加該轉移函數包含形成該回應信號向量與該轉移函數向量的一純量積(scalar product)。
項目31.如項目25之方法,其中該回應信號與該時變轉移函數係以類比格式表示。
項目32.一種校準包括一觸敏面板之一觸控設備的方法,該觸敏面板包含經電容耦合至至少一個接收電極的至少一個驅動電極,該方法包含: 回應於傳送到該驅動電極的一驅動信號而判定一用於該接收電極之一回應信號的一形狀;以及形成隨著該回應信號成比例且同步地變化的一時變轉移函數。
項目33.如項目32之方法,其中判定該回應信號的該形狀包含判定該回應信號之許多離散部分的該等形狀。
項目34.如項目33之方法,其中判定該回應信號的該形狀包含判定用於該回應信號之該等離散部分之各者的該回應信號之一平均值。
項目35.如項目32至34中任一項之方法,其中該校準係在使用該觸控設備以偵測一觸碰之前的一初始化期間內施行。
項目36.如項目32至35中任一項之方法,其中在該較準之至少一些部分的期間內減輕雜訊。
項目37.如項目32至36中任一項之方法,其中該回應信號包含一微分信號。
項目38.如項目32至37中任一項之方法,其中判定該回應信號的該形狀包含:使用一接近匹配的轉移函數來判定具有減少雜訊之一回應信號的一形狀與量值;基於具有減少雜訊之該回應信號的該形狀與量值來形成一初始轉移函數;以及使用該初始轉移函數來判定具有雜訊之一回應信號的一形狀與量值。
項目39.如項目38之方法,其中形成該時變轉移函數包含:測量雜訊;藉由從具有雜訊的該回應信號減去該雜訊來計算一減去雜訊的回應信號;形成該減去訊之回應信號與該雜訊的一比率;以及基於該比率來調整該初始轉移函數。
項目40.如項目39之方法,其中調整該初始轉移函數包含調整該初始轉移函數的一時變形狀與一時變量值中之至少一者。
項目41.如項目40之方法,其中調整該初始轉移函數的一時變形狀與一時變量值中之至少一者包含:使用在一落後相位或超前相位的該初始轉移函數來重新判定具有雜訊的該回應信號;以及基於具有雜訊之該回應信號的該重新判定來調整該初始轉移函數的該形狀。
項目42.如項目40之方法,其中調整該初始轉移函數的一時變形狀與一時變量值中之至少一者包含:使用在時間上比該初始轉移函數更窄或更寬的一轉移函數來重新判定具有雜訊的該回應信號;以及基於具有雜訊之該回應信號的該重新判定來調整該初始轉移函數的該形狀。
項目43.如項目40之方法,其進一步包含:測量一雜訊譜;以及 基於該雜訊譜來調整該初始轉移函數的該形狀。
項目44.如項目43之方法,其中判定該雜訊譜包含決定相對於時間之一雜訊信號的一形狀與量值。
項目45.如項目44之方法,其中判定該雜訊信號的該形狀與量值包含判定該雜訊信號之許多離散時間部分的該等形狀與量值。
項目46.如項目43之方法,其中判定該雜訊譜包含:判定該雜訊信號在該驅動信號之一基頻的該形狀與量值;以及判定該雜訊信號在該基頻之一個或多個諧波的該形狀與量值。
項目47.如項目43之方法,其中判定該雜訊譜包含判定該雜訊信號在小於該驅動信號之一基頻之一頻率的該形狀與量值。
項目48.如項目32之方法,其進一步包含調整該觸控設備的一參數以增加一信號雜訊比。
項目49.如項目48之方法,其中調整該參數包含調整該驅動信號的一頻率。
項目50.如項目48之方法,其中調整該參數包含調整一積分週期的一持續時間。
項目51.如項目48之方法,其中調整該參數包含調整該轉移函數的一形狀或相位。
項目52.一種校準一觸敏面板的方法,該觸敏面板包含經電容耦合至複數個接收電極的複數個驅動電極,該方法包含:就各接收電極而言:回應於傳送到該驅動電極的一驅動信號而判定用於該接收電極之一回應信號的一形狀;以及形成隨著該回應信號成比例且同步地變化的一時變轉移函數。
項目53.如項目52之方法,其中判定該回應信號的該形狀包含判定該回應信號之許多離散部分的該等形狀。
項目54.如項目52至53中任一項之方法,其中該校準形成用於各接收電極之一經調整的轉移函數。
項目55.如項目52至54中任一項之方法,其中該校準形成用於各接收電極之多個轉移函數,該多個轉移函數之各者各別對應沿著該接收電極的一驅動電極位置。
與項目1至55之該等實施例以及其他實施例有關的另外資訊,係揭示於2013年3月13日提出申請的美國專利申請案第13/798,736號,該案之全文在此以引用方式併入本文。
如在該等圖式中例示的各種模組及/或其他基於電路的建構方塊,其等可被實施以實行結合該等圖式來說明之操作與活動中之一或多者。在此上下文中,「級」或「模組」係實行這些或相關操作/活動其中之一或多者的電路。例如,在上面所討論的特定實施例中,一個或多個模組係離散邏輯電路或可程式化邏輯電路,其經組態與配 置以用來實施這些操作/活動,正如在該等圖式中所示的電路模組中。在特定實施例中,可程式化電路係被程式化以執行一組(或多組)指令(及/或組態資料)的一個或多個電腦電路。該等指令(及/或組態資料)係呈被儲存在記憶體(電路)中且可自記憶體(電路)存取的韌體或軟體形式。作為一項實例,第一與第二模組包括一基於硬體的電路以及呈韌體形式之一組指令的組合,其中該第一模組包括具有一組指令的一第一硬體電路且該第二模組包括具有另一組指令的一第二硬體電路。
同樣地,除非另外指示,否則在說明書與申請專利範圍中所使用之表達數量的全部數字、特性之量度等等皆被理解為以用語「大約」所修飾。因此,除非另有相反的指示,否則在該說明書與申請專利範圍中所陳述的數值參數係近似值,其係可依據在所屬技術領域中具有通常知識者利用本申請案教示所欲獲得的所欲特性而有所不同。至少應鑑於有效位數的個數,並且藉由套用普通捨入技術,詮釋各數值參數。
本揭露中的各種修改及變更對於所屬技術領域中具有通常知識者而言將顯而易知而未背離本揭露的範圍,並且應理解的是,本揭露不限於本文中所陳述的例示性實施例。舉例而言,除非另有指示,讀者應假設一項揭示之實施例的特徵亦可應用於全部其他揭示之實施例。
8‧‧‧驅動電路系統
10‧‧‧資料處理邏輯
12‧‧‧觸控表面電路系統
16‧‧‧驅動電極
18a‧‧‧接收電極
18b‧‧‧接收電極
24‧‧‧感測電路
30‧‧‧數位轉換電路系統

Claims (16)

  1. 一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含與一負向轉換部分分開的一正向轉換部分;以及一放大電路,其包含一時變增益,該時變增益具有與該回應信號之該等正向與負向轉換部分實質對準的一增加增益以及在該回應信號之該等正向與負向轉換部分之間的一減少增益。
  2. 如請求項1之觸敏設備,其中該放大電路包含與該驅動信號同步的一時變電阻。
  3. 如請求項1之觸敏設備,其中該放大電路包含經連接至一運算放大器之一輸入埠的複數個並聯電阻器,該複數個電阻器中至少兩個電阻器的值係不同於彼此,該複數個電阻器中的各電阻器具有一不同的對應開關。
  4. 如請求項1之觸敏設備,其中該放大電路包含與該驅動信號同步的一時變電容。
  5. 一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含與一負向轉換部分分開的一正向轉換部分;以及一放大電路,其包含一時變時間常數,該時變時間常數具有與該回應信號之該等正向與負向轉換部分實質對準的較小值以及介於該回應信號之該等正向與負向轉換部分之間的較大值。
  6. 如請求項5之觸敏設備,其中該時變時間常數包含一時變電阻。
  7. 如請求項5之觸敏設備,其中該時變時間常數包含一時變電容。
  8. 一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含該驅動信號的一諧波;以及一放大電路,其包含一時變增益,該時變增益在對應該諧波的一頻率範圍中具有減少增益。
  9. 如請求項8之觸敏設備,其中該諧波包含複數個奇諧波,且該時變增益在對應該複數個該奇諧波的該頻率範圍中具有複數個最小值(minima)。
  10. 一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其經耦合至該接收電極,且包含:一第一級,其經耦合至該接收電極且經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號係該驅動信號的一微分表示且包含該驅動信號的至少一個奇諧波與至少一個偶諧波;一第二級,其經耦合至該第一級的一輸出且抑制在該回應信號中的該至少一個奇諧波;以及一第三級,其經電容耦合至該第二級的一輸出且放大該第二級的一輸出並抑制該回應信號中的至少一個偶諧波。
  11. 如請求項10之觸敏設備,其中:該第一級包含一可變增益微分電路;該第二級包含一增益,該增益在對應該至少一個奇諧波的一頻率回 應中具有一空值(null);以及該第三級包含一加法積分器。
  12. 一種觸敏設備,其包含:一驅動電極,其經電容耦合至一接收電極;一感測電路,其回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號,該回應信號包含與一負向轉換部分分開的一正向轉換部分;一放大器,其經組態以放大該回應信號且具有一非線性增益;以及一積分器,其從該回應信號的該正向轉換部分減去該回應信號的該負向轉換部分。
  13. 一種系統,其包含:一觸敏設備,其包含:一觸控面板,其包含一觸敏表面以及經電容耦合至至少一個接收電極的至少一個驅動電極;一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號;以及一測量電路,其經組態以施加一時變轉移函數到該回應信號;以及一校準電路,其經組態以將該時變轉移函數匹配至該回應信號,該轉移函數隨著該回應信號成比例且同步地變化。
  14. 一種觸敏設備,其包含:一觸控面板,其包含一觸敏表面以及經電容耦合至至少一個接收電極的至少一個驅動電極;一感測電路,其經組態以回應於傳送到該驅動電極的一驅動信號而產生用於該接收電極的一回應信號;以及一測量電路,其經組態以將一時變轉移函數施加到該回應信號,該 轉移函數隨著該回應信號成比例且同步地變化。
  15. 如請求項14之設備,其中該測量電路包括具有一時變增益的一放大器。
  16. 如請求項14之設備,其中該測量電路包括具有一時變增益的一積分器。
TW104127551A 2014-08-25 2015-08-24 電容式觸控設備與方法 TW201626196A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462041307P 2014-08-25 2014-08-25

Publications (1)

Publication Number Publication Date
TW201626196A true TW201626196A (zh) 2016-07-16

Family

ID=53879809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104127551A TW201626196A (zh) 2014-08-25 2015-08-24 電容式觸控設備與方法

Country Status (7)

Country Link
US (1) US10318066B2 (zh)
EP (1) EP3186697A1 (zh)
JP (1) JP6568205B2 (zh)
KR (1) KR20170044155A (zh)
CN (1) CN106575183B (zh)
TW (1) TW201626196A (zh)
WO (1) WO2016032704A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640912B (zh) * 2016-10-24 2018-11-11 瑞鼎科技股份有限公司 應用於互電容觸控面板的互電容觸控感測電路及雜訊抑制方法
TWI774778B (zh) * 2018-05-31 2022-08-21 李尚禮 應用於觸控辨識裝置之感測模組及其方法
TWI774779B (zh) * 2018-05-31 2022-08-21 李尚禮 應用於觸控辨識裝置之感測模組及其方法

Families Citing this family (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10042486B1 (en) 2013-10-18 2018-08-07 Apple Inc. Dynamic demodulation waveform adjustment for tonal noise mitigation
US20170090609A1 (en) * 2015-09-25 2017-03-30 Synaptics Incorporated Oversampled step and wait system for capacitive sensing
CN105589613B (zh) * 2016-01-28 2019-04-19 华为技术有限公司 一种触摸点定位方法、装置及终端设备
KR20230021171A (ko) 2016-03-15 2023-02-13 나이키 이노베이트 씨.브이. 신발류를 위한 용량성 발 존재 감지
US11064768B2 (en) 2016-03-15 2021-07-20 Nike, Inc. Foot presence signal processing using velocity
KR20170131380A (ko) * 2016-04-01 2017-11-29 선전 구딕스 테크놀로지 컴퍼니, 리미티드 적분 회로 및 신호처리 모듈
US10768746B1 (en) 2016-05-10 2020-09-08 Apple Inc. Quasi-continuous-time sampling of discrete-time sampled signals
US10209827B1 (en) 2016-06-24 2019-02-19 Apple Inc. Dynamic adjustment of demodulation waveform
CN106951128B (zh) * 2017-05-09 2023-01-20 Oppo广东移动通信有限公司 驱动信号的调整方法、计算机可读存储介质及移动终端
US10635236B2 (en) * 2017-07-26 2020-04-28 Synaptics Incorporated Calibration of multiple analog front-ends
US10574259B2 (en) * 2017-10-03 2020-02-25 Invensense, Inc. Continuous-time sensing apparatus
US10585539B2 (en) * 2017-10-26 2020-03-10 Novatek Microelectronics Corp. High sensitivity readout circuit for touch panel
CN108008854B (zh) * 2017-11-27 2021-03-23 百富计算机技术(深圳)有限公司 一种避免天线载波干扰的方法、装置及终端设备
US11972078B2 (en) * 2017-12-13 2024-04-30 Cypress Semiconductor Corporation Hover sensing with multi-phase self-capacitance method
EP3543718B1 (en) * 2018-03-19 2020-08-19 Melexis Technologies NV Method for detecting a failure in an electronic system
US10528204B2 (en) * 2018-03-26 2020-01-07 Samsung Display Co., Ltd. Digital differential detection for touch sensors
US10725549B2 (en) 2018-03-29 2020-07-28 Cirrus Logic, Inc. Efficient detection of human machine interface interaction using a resonant phase sensing system
US10908200B2 (en) 2018-03-29 2021-02-02 Cirrus Logic, Inc. Resonant phase sensing of resistive-inductive-capacitive sensors
US11537242B2 (en) 2018-03-29 2022-12-27 Cirrus Logic, Inc. Q-factor enhancement in resonant phase sensing of resistive-inductive-capacitive sensors
US11092657B2 (en) 2018-03-29 2021-08-17 Cirrus Logic, Inc. Compensation of changes in a resonant phase sensing system including a resistive-inductive-capacitive sensor
US10642435B2 (en) 2018-03-29 2020-05-05 Cirrus Logic, Inc. False triggering prevention in a resonant phase sensing system
US10921159B1 (en) 2018-03-29 2021-02-16 Cirrus Logic, Inc. Use of reference sensor in resonant phase sensing system
KR102559962B1 (ko) * 2018-05-02 2023-07-26 삼성디스플레이 주식회사 터치 패널
US11467678B2 (en) 2018-07-24 2022-10-11 Shapirten Laboratories Llc Power efficient stylus for an electronic device
US11294504B2 (en) 2018-12-14 2022-04-05 Stmicroelectronics Asia Pacific Pte Ltd Oversampled high signal to noise ratio analog front end for touch screen controllers
TWI694362B (zh) * 2018-12-27 2020-05-21 友達光電股份有限公司 觸控顯示器
GB2582065B (en) * 2019-02-26 2021-09-08 Cirrus Logic Int Semiconductor Ltd On-chip resonance detection and transfer function mapping of resistive-inductive-capacitive sensors
CN111610873B (zh) * 2019-02-26 2023-10-27 敦泰电子有限公司 触控控制方法、电路***及触控装置
US10948313B2 (en) 2019-02-26 2021-03-16 Cirrus Logic, Inc. Spread spectrum sensor scanning using resistive-inductive-capacitive sensors
US11402946B2 (en) 2019-02-26 2022-08-02 Cirrus Logic, Inc. Multi-chip synchronization in sensor applications
US11536758B2 (en) 2019-02-26 2022-12-27 Cirrus Logic, Inc. Single-capacitor inductive sense systems
CN111610872B (zh) * 2019-02-26 2023-07-07 敦泰电子有限公司 触控控制方法、电路***及触控装置
US10935620B2 (en) 2019-02-26 2021-03-02 Cirrus Logic, Inc. On-chip resonance detection and transfer function mapping of resistive-inductive-capacitive sensors
KR20200142343A (ko) * 2019-06-12 2020-12-22 주식회사 하이딥 터치 장치 및 이의 터치 검출 방법
FR3097990B1 (fr) * 2019-06-27 2021-05-21 Thales Sa Surface tactile a detection tactile hybridee
WO2021026365A1 (en) * 2019-08-07 2021-02-11 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Touch-sensing via excitation of a surface with a waveform
US11079874B2 (en) 2019-11-19 2021-08-03 Cirrus Logic, Inc. Virtual button characterization engine
US10908750B1 (en) * 2019-11-26 2021-02-02 Synaptics Incorporated Minimizing latency for resonant input object detection and classification
CN111258457B (zh) * 2020-01-21 2021-10-19 京东方科技集团股份有限公司 一种触控显示装置
US11449175B2 (en) * 2020-03-31 2022-09-20 Apple Inc. System and method for multi-frequency projection scan for input device detection
US11579030B2 (en) 2020-06-18 2023-02-14 Cirrus Logic, Inc. Baseline estimation for sensor system
US11835410B2 (en) 2020-06-25 2023-12-05 Cirrus Logic Inc. Determination of resonant frequency and quality factor for a sensor system
US11868540B2 (en) 2020-06-25 2024-01-09 Cirrus Logic Inc. Determination of resonant frequency and quality factor for a sensor system
US11460933B2 (en) 2020-09-24 2022-10-04 Apple Inc. Shield electrode for input device
US11997777B2 (en) 2020-09-24 2024-05-28 Apple Inc. Electrostatic discharge robust design for input device
US11287926B1 (en) 2020-09-25 2022-03-29 Apple Inc. System and machine learning method for detecting input device distance from touch sensitive surfaces
US11526240B1 (en) 2020-09-25 2022-12-13 Apple Inc. Reducing sensitivity to leakage variation for passive stylus
US11619519B2 (en) 2021-02-08 2023-04-04 Cirrus Logic, Inc. Predictive sensor tracking optimization in multi-sensor sensing applications
US11808669B2 (en) 2021-03-29 2023-11-07 Cirrus Logic Inc. Gain and mismatch calibration for a phase detector used in an inductive sensor
US11821761B2 (en) 2021-03-29 2023-11-21 Cirrus Logic Inc. Maximizing dynamic range in resonant sensing
KR102308901B1 (ko) * 2021-03-29 2021-10-05 (주)복서 투명전도성필름이 구비된 대시보드를 이용하여 차량을 제어하는 방법, 장치 및 시스템
US11507199B2 (en) 2021-03-30 2022-11-22 Cirrus Logic, Inc. Pseudo-differential phase measurement and quality factor compensation
US11979115B2 (en) 2021-11-30 2024-05-07 Cirrus Logic Inc. Modulator feedforward compensation
US11854738B2 (en) 2021-12-02 2023-12-26 Cirrus Logic Inc. Slew control for variable load pulse-width modulation driver and load sensing
GB2614074A (en) * 2021-12-21 2023-06-28 Touchnetix As Touch-sensitive apparatus with improved noise immunity and method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690232B2 (en) 2001-09-27 2004-02-10 Kabushiki Kaisha Toshiba Variable gain amplifier
US8049732B2 (en) 2007-01-03 2011-11-01 Apple Inc. Front-end signal compensation
JP2010049608A (ja) * 2008-08-25 2010-03-04 Seiko Instruments Inc 近接検出装置および近接検出方法
WO2010138485A1 (en) 2009-05-29 2010-12-02 3M Innovative Properties Company High speed multi-touch touch device and controller therefor
US9298303B2 (en) 2009-12-31 2016-03-29 Google Technology Holdings LLC Duty cycle modulation of periodic time-synchronous receivers for noise reduction
US8519970B2 (en) 2010-07-16 2013-08-27 Perceptive Pixel Inc. Capacitive touch sensor having correlation with a receiver
US9389724B2 (en) * 2010-09-09 2016-07-12 3M Innovative Properties Company Touch sensitive device with stylus support
US9086439B2 (en) * 2011-02-25 2015-07-21 Maxim Integrated Products, Inc. Circuits, devices and methods having pipelined capacitance sensing
DE112012001000T5 (de) 2011-02-25 2013-11-21 Maxim Integrated Products, Inc. Kapazitive Berührungserkennungs-Architektur
US9268441B2 (en) * 2011-04-05 2016-02-23 Parade Technologies, Ltd. Active integrator for a capacitive sense array
KR101202745B1 (ko) * 2011-04-21 2012-11-19 주식회사 실리콘웍스 터치감지회로
US8766939B2 (en) * 2012-01-09 2014-07-01 Broadcom Corporation Highly configurable analog preamp with analog to digital converter
JP5490828B2 (ja) * 2012-01-10 2014-05-14 シャープ株式会社 線形系係数推定方法及びそれを用いた集積回路、タッチパネルシステム、及び電子機器
US8890841B2 (en) 2013-03-13 2014-11-18 3M Innovative Properties Company Capacitive-based touch apparatus and method therefor, with reduced interference

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI640912B (zh) * 2016-10-24 2018-11-11 瑞鼎科技股份有限公司 應用於互電容觸控面板的互電容觸控感測電路及雜訊抑制方法
TWI774778B (zh) * 2018-05-31 2022-08-21 李尚禮 應用於觸控辨識裝置之感測模組及其方法
TWI774779B (zh) * 2018-05-31 2022-08-21 李尚禮 應用於觸控辨識裝置之感測模組及其方法

Also Published As

Publication number Publication date
US20170212635A1 (en) 2017-07-27
WO2016032704A1 (en) 2016-03-03
EP3186697A1 (en) 2017-07-05
JP6568205B2 (ja) 2019-08-28
CN106575183A (zh) 2017-04-19
KR20170044155A (ko) 2017-04-24
JP2017529602A (ja) 2017-10-05
CN106575183B (zh) 2020-02-14
US10318066B2 (en) 2019-06-11

Similar Documents

Publication Publication Date Title
JP6568205B2 (ja) 干渉を低減した静電容量ベースのタッチ装置及び方法
TWI595401B (zh) 具有減少干擾之電容式觸控裝置及其方法
JP6621496B2 (ja) マルチポイントタッチ表面コントローラ
US9417739B2 (en) High speed multi-touch touch device and controller therefor
US8411066B2 (en) High speed noise tolerant multi-touch touch device and controller therefor
WO2015102977A1 (en) Capacitive touch systems and methods using differential signal techniques
TW201530406A (zh) 用於廣寬高比應用之觸控面板