TW201248882A - Thin film solar cell module and method of forming thereof - Google Patents

Thin film solar cell module and method of forming thereof Download PDF

Info

Publication number
TW201248882A
TW201248882A TW100117846A TW100117846A TW201248882A TW 201248882 A TW201248882 A TW 201248882A TW 100117846 A TW100117846 A TW 100117846A TW 100117846 A TW100117846 A TW 100117846A TW 201248882 A TW201248882 A TW 201248882A
Authority
TW
Taiwan
Prior art keywords
layer
semiconductor layer
disposed
solar cell
substrate
Prior art date
Application number
TW100117846A
Other languages
Chinese (zh)
Inventor
Kai-Hsiang Chuang
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW100117846A priority Critical patent/TW201248882A/en
Publication of TW201248882A publication Critical patent/TW201248882A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A thin film solar cell module includes a photovoltaic layer having a p-type semiconductor layer, an intrinsic semiconductor layer and n-type semiconductor layer. The photovoltaic layer has a recession structure not penetrating the intrinsic semiconductor layer. Accordingly, the contact surface between semiconductor layers is increased and the efficiency of photoelectric conversion is improved.

Description

201248882 六、發明說明: 【發明所屬之技術領域】 本發明是有關於-種薄膜太陽能電池模組及其製造方法,且 特別是有關於-種可增加光電轉換率的薄膜太陽能電池模組及 其製造方法。 【先前技術】 目月j太陽月b電池之型式主要可分為晶片(讀㈣㈣)太陽能 電池與薄膜(論他)太陽能電池兩大種。晶片太陽能電池普遍以 早晶石夕或多祕為基板㈣,其缺點騎料成本較高。薄膜太陽 能電池則是在-般平滑之_基板上沉轉砂、多㈣或三五 族材料等薄膜。而薄膜太陽能電酬具有低成本、容狀面積生 產且模組化製程簡單等等優點,因此薄膜太陽能電池之研發逐漸 成為新的發展方向。 習知之薄膜太陽能電池模組卜光電轉換層通常是由p型半 _、本Wntrin⑽半導體㈣半導體)、n型轉體堆疊形成刚 之結構,光線由朗基板下方人射進來,透過光電轉換層吸收產 生電子及制對,經由时電場將電子與翻對分_形成頓 與電流,再、㈣導線傳輸至負載使用。為了提昇電池的效率,習 知薄膜太陽能電池模組會將各光電轉換層的表面製成金字塔形 (pyramid)結構或粗紋化(texture(J)結構,以減少光的反射量。光電 轉換層通常使用非晶(amorphous)石夕薄膜,而為了增加光的利用, 通常會再堆疊-層微晶(micro_c轉lline 〇r咖〇,加㈣矽薄 201248882 膜,形成P-I-N/P-I-N之堆疊型(tandem)太陽能電池。 然而,為了有好的光電轉換效率,就必需製造波紋更深的金 字塔形(pyramid)結構或粗紋化(textured)結構。但當金字塔形 (pyramid)結構或粗紋化(textured)結構的波紋更深時,將後續之微 晶石夕薄膜形成於非晶㈣蘭過程將會更_,_降低太陽能 電池的生產良率。因此’如何使太陽能電池_擁有好的光電轉 換率及生產良率將是設計者極需思考的問題之一。 【發明内容】 鐾於以上的_,本發暇_—種_太陽能電池模組及 其製造方法’藉贿決先前技術所存在光轉鮮和生產良率無 法兼固的問題。 ” 根據本發明所揭露之薄膜太陽能電池模組,其包括一第一基 板、-第1極層、至少一光電轉換層、一第二電極層及一第二 基板。其中,第一電極層配置於第一基板上。光電轉換層包括一p 型半導體層、-本質半導體層及—n型半導體層,該p型半導體 層配置於該第-電極壯,該本質料體層配置於該p型半導體 層,該η辭導體層配置_本質半導體層,本質半導體層具有 -未貫穿本料導體層醉導體魏紐本質半導 體層上’第二電極層配置於η型半導體層上。—第二基板配置於 第二電極層上。 根據本發明所揭露之薄膜太 联太H錢組及其製造方法,·其 步驟包括提供一第一基板。接著 丧耆形成一弟一電極層於第一基板。 201248882 “成至夕域轉換層於第-電極層,每-光電轉換層包括 質半導體層及配置於本質半導體層之相對兩側的一 p型半 體層及一 n型半導體層,p财導體層配置於第-電極層上。接著 形成-未貫穿本質铸财的_結構於光換層。接著 二η型半導體層配置於該本質半導體層上,接著形成—第二電極 曰於先電難層。縣提供―第二基板,並將第二基板配置於第 二電極層上。 、弟 根據本發騎揭露之_太·電域組及據造方法 利用於光電轉換層内形成—未貫穿本質半導體層的凹陷結構於光 ,轉換層’接著形成_ η型半導體層配置於該本質半導體層上, 是明加各光電轉換相的接_積,進咐加各光電轉換層的 覆者力。另外’由於各光電轉換層的㈣力增加,是以可以製造 波、”文更冰的金子塔形(pyramid)結構或粗紋化_祕)結構,進而 增加各光電轉換層的光電轉換率。 以上之關於本發明内容之說明及以下之實施方式之說明係用 以示範與_本拥之伽,並且提縣伽之專财請範圍更 進一步之解釋。 【實施方式】 請:時參閱「第i圖」至「第2B圖」,「第1圖」為根據本發 斤揭路-實施例之薄膜太陽能電池模組的立體剖面示意圖,「第 2A圖」為「第1圖」之其中之一光電薄膜層的放大示意圖,「第 2B圖」為根據本發明所揭露另一實施例之其中之一光電薄膜層的 201248882 立體剖面示意圖。 本實施例之薄膜太陽能電池模組ίο包括一第一基板、一 第一電極層200、至少一光電轉換層300、一第二電極層400及一 第二基板500。其中,第一基板100及第二基板500可以是一透 明基板,如:玻璃基板。 第一電極層200配置於第一基板100。第一電極層200及第二 電極層400可以是一透明電極層,其材質可以是銦錫氧化物 (Indium Tin Oxide,ITO)、銦辞氧化物(Indium Zinc Oxide, IZO)、銦錫鋅氧化物(indium Tin Zinc Oxide,ITZO)、氧化辞 (Zinc Oxide)、銘錫氧化物(Aluminum Tin Oxide,ΑΤΟ)、I呂辞 氧化物(Aluminum Zinc Oxide,AZO)、鎘銦氧化物(Cadmium201248882 VI. Description of the Invention: [Technical Field] The present invention relates to a thin film solar cell module and a method of fabricating the same, and in particular to a thin film solar cell module capable of increasing photoelectric conversion rate and Production method. [Prior Art] The type of solar cell b battery can be divided into two types: wafer (read (four) (four)) solar cell and film (on him) solar cell. Wafer solar cells generally use as early as the base or the more secrets as the substrate (4), which has the disadvantage of high cost of riding. Thin-film solar cells are films that are sanded, multi- (four) or tri-five materials on a smooth substrate. The development of thin-film solar cells has become a new development direction because of the advantages of low-cost, solar-area production and simple modular process. The conventional thin film solar cell module photoelectric conversion layer is usually formed by p-type semi-_, the present Wntrin (10) semiconductor (four) semiconductor), n-type rotating body stacking, the light is formed by the person below the Lang substrate, and is absorbed by the photoelectric conversion layer. The electrons and the pair are used to form the electrons and the undulations through the electric field, and then the (four) wires are transmitted to the load for use. In order to improve the efficiency of the battery, the conventional thin film solar cell module may form a pyramid structure or a texture (J) structure on the surface of each photoelectric conversion layer to reduce the amount of light reflection. Usually, an amorphous stone film is used, and in order to increase the utilization of light, it is usually stacked again to form a layer of microcrystals (micro_c to lline 〇r curry, plus (four) thinner 201248882 film, forming a stacked type of PIN/PIN ( Tandem) solar cells. However, in order to have good photoelectric conversion efficiency, it is necessary to manufacture a deeper pyramidal structure or a textured structure, but when it is pyramidal or textured (textured) When the corrugation of the structure is deeper, the subsequent formation of the microcrystalline stone film in the amorphous (four) blue process will reduce the production yield of the solar cell. Therefore, 'how to make the solar cell_ have a good photoelectric conversion rate and Production yield will be one of the issues that designers need to think about. [Summary of the Invention] 鐾 以上 以上 _ _ _ _ _ _ solar battery module and its manufacturing method The thin film solar cell module according to the present invention includes a first substrate, a first pole layer, at least one photoelectric conversion layer, and a second electrode. And a second substrate, wherein the first electrode layer is disposed on the first substrate. The photoelectric conversion layer includes a p-type semiconductor layer, an intrinsic semiconductor layer, and an n-type semiconductor layer, wherein the p-type semiconductor layer is disposed on the first substrate An electrode is disposed on the p-type semiconductor layer, the n-conductor layer is disposed as an intrinsic semiconductor layer, and the intrinsic semiconductor layer has a second electrode that is not penetrated through the conductor layer The layer is disposed on the n-type semiconductor layer. The second substrate is disposed on the second electrode layer. The film according to the present invention is a method of manufacturing a film, and the method comprises the steps of: providing a first substrate. The funeral layer forms a second electrode layer on the first substrate. 201248882 "The conversion layer is formed on the first electrode layer, and each of the photoelectric conversion layers includes a qualitative semiconductor layer and is disposed on opposite sides of the intrinsic semiconductor layer a p-type half-layer and an n-type semiconductor layer, the p-conductor layer is disposed on the first electrode layer, and then formed into a light-transforming layer that does not penetrate the intrinsic structure. Then the two n-type semiconductor layers are disposed in the essence On the semiconductor layer, a second electrode is formed on the first hard layer. The county provides a second substrate, and the second substrate is disposed on the second electrode layer. The group and the method for manufacturing are used for forming a recessed structure in the photoelectric conversion layer, which does not penetrate the intrinsic semiconductor layer, and the conversion layer is subsequently formed on the intrinsic semiconductor layer, which is a photoelectric conversion phase Connected to the _ product, the entanglement of each photoelectric conversion layer. In addition, since the (four) force of each photoelectric conversion layer is increased, it is possible to manufacture a wave-like structure of a gold pyramid or a ruthenium structure, thereby increasing the photoelectric conversion ratio of each photoelectric conversion layer. The above description of the contents of the present invention and the following description of the embodiments are used to demonstrate the gamma of the present invention, and further explanation of the scope of the special taxation of the county. [Embodiment] Please refer to the following Figure 2 to Figure 2B, Figure 1 is a perspective cross-sectional view of a thin film solar cell module according to the present invention, and "2A" is "1" An enlarged schematic view of a photovoltaic film layer, and FIG. 2B is a schematic cross-sectional view of a second embodiment of the photovoltaic film layer according to another embodiment of the present invention. The thin film solar cell module of the present embodiment includes a first substrate, a first electrode layer 200, at least one photoelectric conversion layer 300, a second electrode layer 400, and a second substrate 500. The first substrate 100 and the second substrate 500 may be a transparent substrate, such as a glass substrate. The first electrode layer 200 is disposed on the first substrate 100. The first electrode layer 200 and the second electrode layer 400 may be a transparent electrode layer, which may be made of Indium Tin Oxide (ITO), Indium Zinc Oxide (IZO), or indium tin zinc oxide. Indium Tin Zinc Oxide (ITZO), Zinc Oxide, Aluminum Tin Oxide (、), Aluminium Zinc Oxide (AZO), Cadmium Indium Oxide (Cadmium)

Indium Oxide,CIO)、鎘鋅氧化物(Cadmium Zinc Oxide,CZO)、 鎵鋅氧化物(GZO)及錫氟氧化物(FTO)至少其一。 值得注意的是,第一電極層200因材料的特性。當第一電 極層2〇0配置於第-基板1〇〇時會產生鋸齒狀之結構(如「第丄 圖」所示)。然而’圖示中之鑛齒狀的尺寸係為了方便觀察而 放大比例,實際上鑛齒狀之結構的尺寸大約為6〇奈米左:。 屬。在此需要說明的是,當第二電極層4〇〇 一電極層200僅可為透 有反射層的設計時,第 另外,第一電極層200或第二電極層4〇〇也可以是一反射 層’而反射層的材質例如是使用銀或銘之類反射性較佳的金 具有反射層時,第Indium Oxide (CIO), Cadmium Zinc Oxide (CZO), Gallium Zinc Oxide (GZO), and Tin Oxide (FTO) are at least one of them. It is to be noted that the first electrode layer 200 is characterized by the material. When the first electrode layer 2〇0 is disposed on the first substrate 1 会, a zigzag structure is formed (as shown in the "figure diagram"). However, the size of the ore-like shape in the illustration is scaled up for convenience of observation. In fact, the size of the structure of the ore-like shape is approximately 6 〇 nanometer left: Genus. It should be noted that when the second electrode layer 4 and the electrode layer 200 are only designed to have a reflective layer, the first electrode layer 200 or the second electrode layer 4 may be one. The reflective layer', and the material of the reflective layer is, for example, a silver having a reflective property such as silver or a reflective layer having a reflective layer.

電極層200具 電極層,而不 201248882 具有上述的反射層。在本實施例中,第一電極層勘與第二電 極層400也可以皆為透明電極層,而無反射層的配置。換古 之,此《卩分的设計可依使用者的需求而作調整(例如是製作雙 面又光的膜太1%能電池或單面受光的薄膜太陽能電池),上 述僅為舉例說明’非限於此。 本發明之薄膜太陽能電池模組10可包括至少-光電轉換 層300堆疊在一起,如二層或三層堆疊在一起。本實施例之薄 膜太陽能電池模組1〇包括二層光電轉㈣3⑻,但並不以此 為限,實施時可以實際需求更改光電轉換層3〇〇之層數。本實 施之每一光電轉換層300包括一 p型半導體層31〇、一本質半導 體層320及- n型半導體層33(),該p型半導體層31()配置於 該第-電極層200上。其中,可將p型半導體層31〇、本質半 導體層32〇&n型半導體層33〇依序或反序配置於第—電極層 200上。在本實施例卜半導體層31〇所推雜的材料可以 疋選自7L素週期表中三族元素的群組,例如是硼(B)、鋁(义)、 鎵(Ga)、銦(ln)、鉈(T1)。而!^型半導體層33〇所摻雜的材料可 以是選自it素週期表中五族元素的群組,例如是氮(Ν)、罐⑻、 砷(As)、銻(Sb)、鉍(Bi)。另外,本質半導體層32〇可以是未摻 雜或微摻雜之本質半導體層光電轉換層3〇〇則可形成一種 P-I-N光電轉換結構。當然,在本發明之其它實關中,光電 轉換層300也可以是採用不具有本質半導體層32〇的叫光 轉換結構設計。 201248882 此外’光電轉換層300可以是一<5夕薄膜、一in_v化合物半 導體薄膜、一 II-VI化合物半導體薄膜或一有機化合物半導體 薄膜。詳細而言,矽薄膜例如是包含有a-Si、pC_Si、、a_Si(3e、 pc-SiGe、a-SiC、pc-SiC、堆疊式(tandem)矽薄膜或三層(triple) 矽薄膜至少其一。III-V化合物半導體薄膜例如是包含有砷化 鎵(GaAs)、碟化銦鎵(inGaP)或其組合。Π-VI化合物半導體薄 膜例如是包含有銅銦硒(CIS)、銅銦鎵硒(CIGS)、鎘化碲(CdTe) 或其組合。有機化合物半導體薄膜例如是包含有3_己烷噻吩 (P〇ly(3-hexylthi〇phene),P3HT)與奈米碳球(pCBM)混合物。 意即薄膜太陽能電池模組10至少可以是採用非晶石夕薄膜 錫能電池、微晶㈣膜太陽能電池、堆疊式細㈣薄膜太 陽月b電池—層(tnple)式薄膜太陽能電池、銅銦砸薄膜太陽能 電池、銅銦鎵_膜太陽能電池太陽能電池或有機 薄膜太陽能電池之膜層結構。 '。之本實知例之光電轉換層_可視實際需求而定 上述僅為舉例說明,薄臈太陽能電池模組H)亦可以是採用 他可能的薄膜太陽能電池模組的臈層結構。The electrode layer 200 has an electrode layer instead of 201248882 having the above-described reflective layer. In this embodiment, the first electrode layer and the second electrode layer 400 may also be transparent electrode layers without a reflective layer. In the past, this design can be adjusted according to the needs of users (for example, a double-sided and light-film film is too 1% battery or single-sided light-receiving thin film solar cell), the above is only an example 'Not limited to this. The thin film solar cell module 10 of the present invention may comprise at least - the photoelectric conversion layers 300 stacked together, such as two or three layers stacked together. The thin film solar cell module 1 of the present embodiment includes two layers of photoelectric conversion (four) 3 (8), but it is not limited thereto, and the number of layers of the photoelectric conversion layer 3 can be changed in actual implementation. Each of the photoelectric conversion layers 300 of the present embodiment includes a p-type semiconductor layer 31, an intrinsic semiconductor layer 320, and an -n-type semiconductor layer 33 (), and the p-type semiconductor layer 31 is disposed on the first electrode layer 200. . Here, the p-type semiconductor layer 31, the intrinsic semiconductor layer 32, and the n-type semiconductor layer 33 may be disposed on the first electrode layer 200 in order or in reverse order. The material doped by the semiconductor layer 31 in the present embodiment may be selected from the group of three elements of the 7L periodic table, such as boron (B), aluminum (y), gallium (Ga), indium (ln). ), 铊 (T1). and! The material doped with the ^-type semiconductor layer 33 可以 may be a group selected from the group of five elements in the periodic table of the elements, such as nitrogen (barium), can (8), arsenic (As), antimony (Sb), and antimony (Bi). ). Alternatively, the intrinsic semiconductor layer 32 can be an undoped or microdoped intrinsic semiconductor layer photoelectric conversion layer 3 to form a P-I-N photoelectric conversion structure. Of course, in other implementations of the present invention, the photoelectric conversion layer 300 may also be of a light-converting structure design that does not have an intrinsic semiconductor layer 32〇. Further, the 'photoelectric conversion layer 300' may be a <5 薄膜 film, an in_v compound semiconductor film, an II-VI compound semiconductor film or an organic compound semiconductor film. In detail, the germanium film includes, for example, a-Si, pC_Si, a_Si (3e, pc-SiGe, a-SiC, pc-SiC, tandem tantalum film or triple film). 1. The III-V compound semiconductor film includes, for example, gallium arsenide (GaAs), indium gallium (inGaP) or a combination thereof. The bismuth-VI compound semiconductor film includes, for example, copper indium selenide (CIS), copper indium gallium. Selenium (CIGS), cadmium cadmium (CdTe) or a combination thereof. The organic compound semiconductor film includes, for example, 3 hexylthiophene (P3HT) and nanocarbon spheres (pCBM). The mixture means that the thin film solar cell module 10 can be at least an amorphous quartz thin film tin energy battery, a microcrystalline (four) film solar cell, a stacked fine (four) thin film solar moon b battery-layer (tnple) thin film solar cell, copper The film structure of the indium-bismuth thin film solar cell, the copper indium gallium film solar cell or the organic thin film solar cell. The photoelectric conversion layer of the present embodiment can be determined by the actual needs, and the above is only an example. The solar cell module H) can also be made of his possible film Ge layer structure of the solar energy battery module.

另外,光電轉換層_具有至少 320的凹陷結構340,盘— 貝牙个負千等I 體層上。曝構_ =如f於該樹; 的型態,也可以是如「第二圖」所示之細 圖」所不之凹槽341之型態。j 中’凹陷結構獨之週期介於如奈米至爾米之間,地 201248882 指之週期為凹陷結構340内之開孔342或凹槽341戶斤相隔的間距。 而較理想之凹陷結構340的周期範圍介於100奈米至2s〇奈米尸 凹陷結構340之深度範圍介於8〇奈米至25〇奈米之間,而 構340之較理想深度數值約為1〇〇奈米。 ’ ° 需注意的是,由於第-電極層2〇〇具有雜齒狀之結構,是 以後續配置於第一電極層的光電轉換層綱及第二電極= 400間的接觸表面皆由原本平滑表面轉變為鑛齒狀之結構。^ 由於鑛齒狀之結構實際尺寸約為6G奈米,故圖示除第—電極 層200祕齒狀表示外,其餘表面僅用平滑表面表示。 另外,本發明亦提供—種製作上述_太陽能電池模組 10的方法,其說明如下。 請參閱「第3A圖」至「第3K圖」,「第3A圖」至「第 3K圖」為根據本發割揭露—實施例之賴太陽能電池模組 的製作流程圖。首先如「第3A圖」所示,提供一第一基板獅。 接著’如「第3B圖」所示’形成一第一電極層2〇〇於第一基 板100上在本貝钯例中’形成第一電極層的方式例如是 使用麵法(sputtering)、金屬有機化學氣相沈積(metal organic chemical vapor deposition,M〇CVD)法、或蒸鍍法 (evaporation)。一般來說,在薄膜太陽能電池模組i〇的製程 中’形成第-電極層細後’通常可接著使用第_道雷射製程 以圖案化第-電極層2GG,用以增加薄膜太陽能電池模組1〇 的入光量。 201248882 接著’如「第3C圖」所示,p型半導體層310配置於第一 電極層上。再者,如「第3D圖」所示,形成一本質半導體層320 於P型半導體層310上。在本實施例中,形成本質半導體層320 的方法例如採用射頻電漿輔助化學氣相沉積法(Radio Frequency Plasma Enhanced Chemical Vapor Deposition 5 RF PECVD)、超高頻電漿輔助化學氣相沉積法(Very mghFurther, the photoelectric conversion layer _ has a recess structure 340 of at least 320, and the disc-tooth-tooth has a negative-thick I-body layer. The type of the fading _ = such as f in the tree; may also be the shape of the groove 341 which is not shown in the "figure shown in the second figure". The period of the recessed structure in j is between nanometer and ermi, and the period of 201248882 refers to the interval between the opening 342 or the groove 341 in the recessed structure 340. The preferred recess structure 340 has a period ranging from 100 nm to 2 s. The depth of the recessed structure 340 ranges from 8 nanometers to 25 nanometers, and the ideal depth value of the structure 340 is about It is 1 〇〇 nanometer. ' ° It should be noted that since the first electrode layer 2 has a structure with a dentate shape, the contact surface between the photoelectric conversion layer and the second electrode = 400 which are subsequently disposed in the first electrode layer is smoothed by the original The surface transforms into a mineral-like structure. ^ Since the actual size of the ore-like structure is about 6G nanometer, the illustration is shown by the smooth surface only except for the cryptographic representation of the first electrode layer 200. Further, the present invention also provides a method of fabricating the above-described solar cell module 10, which is explained below. Please refer to "3A" to "3K", and "3A" to "3K" are flow charts for manufacturing solar cell modules according to the present disclosure. First, as shown in "Figure 3A", a first substrate lion is provided. Then, as shown in FIG. 3B, the method of forming a first electrode layer 2 on the first substrate 100 and forming the first electrode layer in the present Palladium example is, for example, using sputtering, metal. A metal organic chemical vapor deposition (M〇CVD) method or an evaporation method. In general, in the process of forming a thin film solar cell module, the formation of the first electrode layer is generally followed by a first laser process to pattern the first electrode layer 2GG for increasing the thin film solar cell mode. The amount of light entering the group 1〇. 201248882 Next, as shown in the "3Cth diagram", the p-type semiconductor layer 310 is disposed on the first electrode layer. Further, as shown in "3D", an intrinsic semiconductor layer 320 is formed on the P-type semiconductor layer 310. In the present embodiment, the method of forming the intrinsic semiconductor layer 320 is, for example, Radio Frequency Plasma Enhanced Chemical Vapor Deposition 5 RF PECVD, and Ultra High Frequency Plasma Assisted Chemical Vapor Deposition (Very). Mgh

Frequency Plasma Enhanced Chemical Vapor Deposition * VHF PECVD)或者是微波電漿辅助化學氣相沉積法(Micr〇waveFrequency Plasma Enhanced Chemical Vapor Deposition * VHF PECVD) or Microwave Plasma Assisted Chemical Vapor Deposition (Micr〇wave)

Plasma Enhanced Chemical Vapor Deposition,MW PECVD )。 其中本質半導體層32〇可根據所採用的膜層設計(如上述之矽 薄膜或II_VUb合物半導㈣麟結構),㈣整無層的形成 方法’上述僅為舉例說明。 接著’如「第3E圖」所示,形成一未貫穿本質半導體層 32〇的凹陷結構34〇於本質半導體層no,接著與1型半導體 33〇層配置於該本質半導體層32〇上。其中形成凹陷結構的 方式可包括進仃-機械力切割移除或—雷射切割移除製程。接 著’如「第3G圖」至「㈣圖」所示,依序完成-第二P型 半導體層310、一第二太暂主道姻^ β。 本料導體層32〇、-第二!!型半導體層 苐_電極板400。 其中’在本實施财,如「第則」所示,形成第二 ^貝半導體挪後並未再形成凹陷結構獨。在其他實施」 成第—層本質半導體320後也可以如「第3E圖」所示 201248882 形成一未貫穿本質半導體層320的凹陷結構340。 々接著’如「第3K圖」所示,提供一第二基板5〇〇並配置 於第二電極層4G0 ’用以進行封裝製程而完成薄膜太陽能電池 模組1G,由於封裝餘㈣本發明之主要技術特徵,故在此 不贅述。 根據本發明所揭露之薄膜太陽能電池模組及其製造方法,係 利用於光電轉換層_成—未貫穿本#半導體層_陷結構,是 乂 '“力σ各光電轉換層間的接觸面積,進*增加各光電轉換層的覆 著力。另外,由於各光電轉換層的覆著力增加,是以可以製造波 更永的金予塔形(pyramid)結構或粗紋化(textm>ed)結構,進而增 加各光電轉換層的光電轉換率。 雖然本發明之實施例揭露如上所述,然並非用以限定本發 明’任何Μ相關技藝者,在魏離本發明之精神和範圍内,舉 凡依本發明申請範騎述之形狀、構造、特徵及精神當可做些許 之文更’目此本㈣之專利紐範_視本說明書觸之 利範圍所界定者為準。 ^ 【圖式簡單說明】 第1圖」為根據本發明所揭露一實施例之薄膜太陽能電池 模組的立體剖面示意圖。 第2Α圖」為第1圖」其中之一光電薄膜層的放大示意圖。 第2Β圖」為根據本發明所揭露另一實施例之其中之一光電 薄膜層的立體剖面示意圖。 ⑧ 201248882 「第3A圖」至「第3K圖」為根據本發明所揭露一實施 例之薄膜太陽能電池模組的製作流程圖。 【主要元件符號說明】 10 薄膜太陽能電池模組 100 第一基板 200 第一電極層 300 光電轉換層 310 Ρ型半導體層 320 本質半導體層 330 . η型半導體層 340 凹陷結構 341 凹槽 342 開孔 400 第二電極層 500 第二基板 13Plasma Enhanced Chemical Vapor Deposition, MW PECVD). The intrinsic semiconductor layer 32 can be designed according to the film layer used (such as the above-mentioned ruthenium film or II_VUb compound semi-conductive (four) lining structure), and (4) the formation method of the entire layer. The above is merely illustrative. Then, as shown in Fig. 3E, a recess structure 34 which is not penetrated through the intrinsic semiconductor layer 32A is formed on the intrinsic semiconductor layer no, and then is placed on the intrinsic semiconductor layer 32A with the type 1 semiconductor 33 layer. The manner in which the recessed structure is formed may include a 仃-mechanical force cutting removal or a laser cutting removal process. Then, as shown in the "3G map" to "(4) diagram", the second P-type semiconductor layer 310 and the second P-type semiconductor layer are sequentially formed. The material conductor layer 32〇, the second!! type semiconductor layer 苐_electrode plate 400. Among them, in this implementation, as shown in the "No.", the formation of the second semiconductor has not formed a recessed structure. After the other implementations of the first layer of the intrinsic semiconductor 320, a recessed structure 340 that does not penetrate the intrinsic semiconductor layer 320 may be formed as shown in FIG. 3E. Then, as shown in FIG. 3K, a second substrate 5 is provided and disposed on the second electrode layer 4G0' for performing a packaging process to complete the thin film solar cell module 1G. The main technical features are not described here. The thin film solar cell module and the method for fabricating the same according to the present invention are used for the photoelectric conversion layer _ into - not through the # semiconductor layer _ trap structure, which is the contact area between the photoelectric conversion layers of the force σ * Increasing the adhesion of each photoelectric conversion layer. Further, since the adhesion of each photoelectric conversion layer is increased, it is possible to manufacture a gold-preferred pyramid structure or a textm > ed structure. Increasing the photoelectric conversion ratio of each of the photoelectric conversion layers. Although the embodiments of the present invention are disclosed above, it is not intended to limit the invention to any of the related art, and it is within the spirit and scope of the present invention. To apply for the shape, structure, characteristics and spirit of Fan Xia, you can do some of the more detailed texts of this (4) patent New Fan _ as defined in the scope of this specification. ^ [Simple description] 1 is a perspective cross-sectional view of a thin film solar cell module according to an embodiment of the present invention. Figure 2 is an enlarged view of one of the photovoltaic thin film layers in Fig. 1 . Fig. 2 is a perspective cross-sectional view showing one of the photovoltaic thin film layers according to another embodiment of the present invention. 8 201248882 "3A" to "3K" are flowcharts for fabricating a thin film solar cell module according to an embodiment of the present invention. [Major component symbol description] 10 Thin film solar cell module 100 First substrate 200 First electrode layer 300 Photoelectric conversion layer 310 Ρ-type semiconductor layer 320 Intrinsic semiconductor layer 330. n-type semiconductor layer 340 recess structure 341 groove 342 opening 400 Second electrode layer 500 second substrate 13

Claims (1)

201248882 七、申清專利範圍·· 1. 一種_太陽能電池模組,其包括: 一第一基板; -第-電極層,配置於該第一基板上; 至·^光電轉換層’每—絲電轉換層包括—p型半導體 、=本質半導體層及—n型半導體層’該p型半導體詹配置 广第電極層上,該本質半導體層配置於該p型半導體詹, /里半導體層配置於該本質半導體層,該本質半導體詹具有 至少―凹陷結構,該凹陷結構未貫穿該本f半導體層; 第一電極層,配置於該n型半導體層上;及 —第二基板,配置於該第二電極層上。 2. 如請求項第1項所述之薄膜太陽能電池模組,其中每-該光電 轉換層包括多個該凹陷結構,該凹陷結構之間距介於卯奈米 至250奈米之間。 3. 如明求項第W所述之薄膜太陽能電池模缸,其中該凹陷結構 之/未度範圍介於80奈米至25〇奈米之間。 《如請求項第1項所述之_太陽能電池模組,更包括一反射 層,配置於該第二電極層上,該第二基板配置在該反射居上。 5. 如請求項第i項所述之薄臈太陽能電_且,其中該四陷結構 可以是一凹槽型態。 ° 6. 如請求 场能電池池,射如陷結構 可以是一開孔型態。 201248882 7·種薄膜太陽能電池模組製造方法,其步驟包括: 提供一第一基板; 形成一第一電極層於該第一基板; 層包一光電轉換層於該第一電極層’每一該光電轉換 的導體層及配置於該本f半導體層之相對兩側 該第==層及—n晴體層,該p型半導體層配置於 :層 形成-未貫穿該本質半導體層的 凹陷結構於該本質半導 :成-第二電極層於該n型半導體層;及 提供一第二基板,將該第二 如請求邮7顧述之_切;;2設於該第二電極層上。 成該凹陷結構的方式更包括進;^池模組製造方法,其中形 切割移除製程。 丁機械力切割移除或一雷射 15201248882 VII. Shenqing Patent Range·· 1. A solar cell module comprising: a first substrate; a first electrode layer disposed on the first substrate; a phototransformation layer per wire The electrical conversion layer includes a p-type semiconductor, an intrinsic semiconductor layer, and an n-type semiconductor layer. The p-type semiconductor is disposed on a wide electrode layer, and the intrinsic semiconductor layer is disposed on the p-type semiconductor, and the / semiconductor layer is disposed on The intrinsic semiconductor layer has at least a recessed structure, the recessed structure does not penetrate the f semiconductor layer; the first electrode layer is disposed on the n-type semiconductor layer; and the second substrate is disposed on the first semiconductor layer On the two electrode layers. 2. The thin film solar cell module of claim 1, wherein each of the photoelectric conversion layers comprises a plurality of the recessed structures, the distance between the recessed structures being between 卯 nanometers and 250 nanometers. 3. The thin film solar cell mold cylinder of claim W, wherein the recessed structure has a range of between 80 nm and 25 nm. The solar cell module of claim 1, further comprising a reflective layer disposed on the second electrode layer, the second substrate being disposed on the reflection. 5. The thin solar cell of claim 1 wherein the quadrangular structure is a groove type. ° 6. If the field energy battery pool is requested, the shot structure can be an open hole type. 201248882 A method for manufacturing a thin film solar cell module, the method comprising: providing a first substrate; forming a first electrode layer on the first substrate; and layering a photoelectric conversion layer on the first electrode layer a photoelectric conversion conductive layer and a third layer disposed on opposite sides of the f-semiconductor layer, wherein the p-type semiconductor layer is disposed on a layer-forming recessed structure that does not penetrate the intrinsic semiconductor layer Intrinsic semiconducting: forming a second electrode layer on the n-type semiconductor layer; and providing a second substrate, the second being disposed on the second electrode layer. The manner of forming the recessed structure further includes the method of manufacturing the pool module, wherein the shape cutting removes the process. Ding mechanical force cutting removal or a laser 15
TW100117846A 2011-05-20 2011-05-20 Thin film solar cell module and method of forming thereof TW201248882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100117846A TW201248882A (en) 2011-05-20 2011-05-20 Thin film solar cell module and method of forming thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117846A TW201248882A (en) 2011-05-20 2011-05-20 Thin film solar cell module and method of forming thereof

Publications (1)

Publication Number Publication Date
TW201248882A true TW201248882A (en) 2012-12-01

Family

ID=48138848

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117846A TW201248882A (en) 2011-05-20 2011-05-20 Thin film solar cell module and method of forming thereof

Country Status (1)

Country Link
TW (1) TW201248882A (en)

Similar Documents

Publication Publication Date Title
US8435825B2 (en) Methods for fabrication of nanowall solar cells and optoelectronic devices
US10741706B2 (en) Transparent conductive electrode for three dimensional photovoltaic device
CN108140735B (en) Multi-junction photoelectric conversion device and photoelectric conversion module
Lee et al. Hybrid energy harvester based on nanopillar solar cells and PVDF nanogenerator
CN104106145A (en) A vertical junction solar cell structure and method
TW201228017A (en) Solar cell
US20100326520A1 (en) Thin film solar cell and manufacturing method thereof
WO2012055302A1 (en) Electrode and manufacturing method thereof
TW201128789A (en) New structure solar cell with superlattices
TW201140859A (en) Coaxial nanowire solar cell structure
WO2012037379A2 (en) Single and multi-junction light and carrier collection management cells
TW201308635A (en) Tandem solar cell with improved tunnel junction
WO2021147403A1 (en) Intermediate connection layer, laminated photovoltaic device, and production method thereof
CN112786730A (en) Laminated photovoltaic device
JP2009253269A (en) Photoelectric conversion device using semiconductor nanomaterials, and method of manufacturing the same
WO2023103409A1 (en) Solar cell and preparation method therefor
KR20110015998A (en) Solar cell and method for manufacturing the same
TW201248882A (en) Thin film solar cell module and method of forming thereof
TW201236182A (en) Photovoltaic devices and methods of forming the same
US20120055535A1 (en) Photovoltaic Devices With Textured Glass Superstrate
CN113990959B (en) Intermediate tandem layer, production method thereof, laminated photovoltaic device and preparation method thereof
CN108198871A (en) Heterojunction solar cell and its manufacturing method
TW201227979A (en) Method for fabricating solar cell
TWI580063B (en) Chip with light energy harvesting function and manufacture method thereof
TW201110367A (en) Thin film solar cell and fabrication method thereof