TW201227979A - Method for fabricating solar cell - Google Patents

Method for fabricating solar cell Download PDF

Info

Publication number
TW201227979A
TW201227979A TW099146931A TW99146931A TW201227979A TW 201227979 A TW201227979 A TW 201227979A TW 099146931 A TW099146931 A TW 099146931A TW 99146931 A TW99146931 A TW 99146931A TW 201227979 A TW201227979 A TW 201227979A
Authority
TW
Taiwan
Prior art keywords
laser
solar cell
manufacturing
cell according
electrodes
Prior art date
Application number
TW099146931A
Other languages
Chinese (zh)
Inventor
Yueh-Hsun Lee
Original Assignee
Auria Solar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auria Solar Co Ltd filed Critical Auria Solar Co Ltd
Priority to TW099146931A priority Critical patent/TW201227979A/en
Publication of TW201227979A publication Critical patent/TW201227979A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A method for fabricating the same is provided as follows. A first electrode material layer is formed on a substrate. A portion of the first electrode material layer is removed, so as to form a plurality of first electrodes. The first electrodes are subjected to a laser treatment, such that the first electrodes have a rough surface. A photovoltaic layer and a plurality of second electrodes are formed on the first electrode in sequence, wherein the photovoltaic layer is formed between each first electrode and each second electrode, respectively.

Description

34411twf.doc/n 201227979 54 六、發明說明: 【發明所屬之技術領域】 本卷月疋有關於—種太陽能電池(s〇iar ceu)的製造方 法,且特別疋有關於—種可提升效率之太陽能電池的製造 方法。 【先前技術】 、、太陽能是一種乾淨無污染且取之不盡的能源,因此在 遭遇1化能源所面臨的污染與短缺之問題時,如何有效利 用太陽能源已經成為最㈣目的焦點。其中,因太陽能電 池(solar cell)可直接將太陽能轉換為電能,而成為目前運用 太陽能源之發展重點。 石夕基太陽電池為業界常見的一種太陽能電池,石夕基太 陽能電池的原理是將高純度的半導體材料⑽)加入一些不 純物使其呈現不_性質。當太陽光照射到太陽能電池的 半導體材料時’光子所提供的能量可能會把半導體中的電 子激發出來’產生電子音;輯,電子與電洞均會受到内建 電位的影響’電洞往電場的方向移動,而f子則往相反的 方向移動。如果以導線將此太陽能電池與—負她吨連接 起來,形成一個迴路(1〇叩)就會有電流流過負載,這就是太 陽能電池發電的原理。料鴻電池大致可分切晶= 能電池與料膜太陽能電池。其中,由於_ ,,s〇larcell)具有低成本、容易*面積生產且 製耘間早等優點,因此薄膜太陽能電池的研發乃成為目前 34411twf.doc/n 201227979 新的發展方向。 【發明内容】 有鑑於此,本發明提供一種太陽能電池的製造方法, 以提升太陽能電池的效率。 本發明提出一種太陽能電池的製造方法,包括下列步 驟。於基板上形成第一電極材料層。移除 二 料層1形成多個第-電極。對第_電極進行ί射2材 以使第-電極具有不平絲面。依序於第—電極上形成光 電轉換層鮮㈣二,且光_換層形成於各第一電 極與各第二電極之間。 依照本發明實施例所述之太陽能電池的製造方法,上 述移除部分第—電極材料層的方法包括進行雷射切割製 程。 、 …依照本發明實施例所述之太陽能電池的製造方法,上 述在進行雷射切割製程之後,更包括調整雷射切割製程所 使用之參數,以及直接對第一電極進行雷射處理。 依照本發明實施例所述之太陽能電池的製造方法,上 述在進行雷射處理之後,更包括調整雷射處理所使用之參 數,以及直接進行雷射切割製程。 ^ 、依照本發明實施例所述之太陽能電池的製造方法,上 述之雷射切割製程所使用的雷射波長介於300 nmi 12〇〇 nm之間。 依照本發明實施例所述之太陽能電池的製造方法,上 201227979 ^ 34411twf.doc/n 述之雷射切割製程所使用的雷射能量密度介於0 005 mJ/cm2 至 1〇〇 mj/cm2 之間。 依照本發明實施例所述之太陽能電池的製造方法,上 述之雷射切割製程的雷射加工點距介於(U卜以至100 μιη 之間。 依照本發明實施例所述之太陽能電池的製造方法,上 述之雷射處理所使用的雷射波長介於3〇〇 ηπι至1200 nm 之間0 依照本發明實施例所述之太陽能電池的製造方法,上 述之雷射處理所使用的雷射能量密度介於〇 〇 〇 5 mJ/cm2至 100 mJ/cm2之間。 依照本發明實施例所述之太陽能電池的製造方法,上 述之雷射處理的雷射加工點距介於〇丨μm至1〇〇μιη之間。 基於上述,本發明之太陽能電池及其製造方法透過調 整所使狀f射的參數條件而連續進行雷射切割製程及雷 Μ表面處理’目此可㈣第—電極進行雷射表面處理,以 • 纟提升太陽能電池效率表現的同時,還能夠達到簡化製程 之效果。 為讓本發明之上述特徵和優點能更明顯易懂,下文特 舉實施例,並配合所附圖式作詳細說明如下。 【實施方式】 下文中參照隨附圖式來更充分地描述本發明。然而, 本發明可以多種不同的形式來實踐,並不限於文中所述之 201227979 —----)4 3441 ltwf.doc/n 實施例。以下實施例中所提到的方向用語,例如「上」、 下」等,僅是參考附加圖式的方向,因此使用的方向用 语是用來詳細說明,而非用來限制本發明。此外,在圖式 中為明確起見可能將各層的尺寸以及相對尺寸作誇張的描 繪。圖1A至圖1D是依照本發明之一實施例之太陽能電池 的製造步驟之剖面示意圖。 凊參照圖1A,提供基板1〇2,基板1〇2例如是透明基 板。基板102的材料例如是玻璃、透明樹脂或其他合適之 透明材質。上述透明樹脂例如是聚對苯二甲酸乙二酯 (polyethylene terephthalate,PET)、聚萘二曱酸乙二酯 (polyethylene naphthalate, PEN)、聚碳酸g旨(polyCarbonate, PC)、聚醚(p〇lyethersulfone,PES)、聚醯亞胺(p〇lyimide,朽)。 接著,於基板102上形成第一電極材料層1〇4。第一 電極材料層104的材料可為透明導電氧化物,其例如是可 以是透明導電氧化物(transparent conductive oxide,TCO), 其例如是氧化鋅(ZnO)、氧化銦(Ιη203)、二氧化錫(Sn02)、 銦錫氧化物(indium tin oxide, ITO)、銦鋅氧化物(in(jium zinc oxide,IZO)、氧化紹鋅(A1 doped ZnO, AZO)、摻鎵氧 化鋅(Ga doped zinc oxide,GZO)、銦鎵鋅氧化物 (indium-gallium-zinc oxide,IGZO)、鋅錫氧化物(zinc-Tin34411twf.doc/n 201227979 54 VI. Description of the invention: [Technical field to which the invention pertains] This volume has a method for manufacturing a solar cell (s〇iar ceu), and particularly relates to a method for improving efficiency. A method of manufacturing a solar cell. [Previous technology], solar energy is a clean, pollution-free and inexhaustible source of energy. Therefore, how to effectively use solar energy sources has become the focus of the most (four) purposes in the face of pollution and shortages faced by the 1st energy source. Among them, solar cells can directly convert solar energy into electrical energy, which has become the focus of current development of solar energy sources. Shi Xiji solar cell is a kind of solar cell commonly used in the industry. The principle of Shi Xiji solar cell is to add high-purity semiconductor material (10) to some impurities to make it not. When sunlight hits the semiconductor material of a solar cell, the energy provided by the photon may excite the electrons in the semiconductor to generate an electronic sound. The electrons and holes are affected by the built-in potential. The direction moves, while the f child moves in the opposite direction. If the solar cell is connected to the negative battery by a wire, a loop (1〇叩) will flow current through the load, which is the principle of solar power generation. The material battery can be roughly divided into crystal = energy battery and film solar battery. Among them, the development of thin-film solar cells has become a new development direction of 34411twf.doc/n 201227979 due to the advantages of low cost, easy* area production and early manufacturing. SUMMARY OF THE INVENTION In view of the above, the present invention provides a method of manufacturing a solar cell to improve the efficiency of the solar cell. The present invention provides a method of fabricating a solar cell comprising the following steps. A first electrode material layer is formed on the substrate. The two layers 1 are removed to form a plurality of first electrodes. The first electrode is subjected to a galvanic material so that the first electrode has an uneven surface. A photo-electric conversion layer (4) is formed on the first electrode in sequence, and a photo-changing layer is formed between each of the first electrodes and each of the second electrodes. According to the method of fabricating a solar cell according to an embodiment of the invention, the method of removing a portion of the first electrode material layer includes performing a laser cutting process. The method for manufacturing a solar cell according to the embodiment of the present invention, after performing the laser cutting process, further includes adjusting parameters used in the laser cutting process and directly performing laser processing on the first electrode. According to the method of manufacturing a solar cell according to the embodiment of the present invention, after performing the laser processing, the parameter used in the laser processing is further included, and the laser cutting process is directly performed. According to the manufacturing method of the solar cell according to the embodiment of the invention, the laser cutting wavelength used in the above laser cutting process is between 300 nmi and 12 〇〇 nm. According to the method for manufacturing a solar cell according to an embodiment of the present invention, the laser energy density used in the laser cutting process described in 201227979 ^ 34411 twf.doc/n ranges from 0 005 mJ/cm 2 to 1 〇〇 mj/cm 2 . between. According to the method of manufacturing a solar cell according to the embodiment of the present invention, the laser processing dot distance of the laser cutting process is between (U and 100 μm). The method for manufacturing a solar cell according to the embodiment of the present invention The laser wavelength used in the above laser processing is between 3 〇〇 ππ and 1200 nm. 0 The method for manufacturing a solar cell according to the embodiment of the present invention, the laser energy density used in the laser processing described above. Between 5 mJ/cm 2 and 100 mJ/cm 2 . According to the method for manufacturing a solar cell according to an embodiment of the invention, the laser processing point distance of the laser processing described above is between 〇丨μm and 1〇. Between the 〇μιη. Based on the above, the solar cell of the present invention and the method of manufacturing the same are continuously performing the laser cutting process and the surface treatment of the thunder by adjusting the parameter conditions of the induced f-ejecting. The surface treatment can improve the efficiency of the solar cell while achieving the effect of simplifying the process. In order to make the above features and advantages of the present invention more obvious, the following The present invention will be described more fully hereinafter with reference to the accompanying drawings, in which: FIG. Said 201227979 —---) 4 3441 ltwf.doc / n embodiment. The directional terms used in the following embodiments, such as "upper", "lower" and the like, are merely referring to the orientation of the additional drawings, and thus the directional terms used are for the purpose of illustration and not limitation. In addition, the dimensions and relative dimensions of the layers may be exaggerated for clarity in the drawings. 1A through 1D are schematic cross-sectional views showing a manufacturing step of a solar cell according to an embodiment of the present invention. Referring to Fig. 1A, a substrate 1 2 is provided, and the substrate 1 2 is, for example, a transparent substrate. The material of the substrate 102 is, for example, glass, transparent resin or other suitable transparent material. The transparent resin is, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyether (p〇). Lyethersulfone, PES), polyethylenimine (p〇lyimide, decay). Next, a first electrode material layer 1〇4 is formed on the substrate 102. The material of the first electrode material layer 104 may be a transparent conductive oxide, which may be, for example, a transparent conductive oxide (TCO), which is, for example, zinc oxide (ZnO), indium oxide (Mn 203), tin dioxide. (Sn02), indium tin oxide (ITO), indium zinc oxide (I), A1 doped ZnO (AZO), gallium-doped zinc oxide (Ga doped zinc oxide) , GZO), indium-gallium-zinc oxide (IGZO), zinc tin oxide (zinc-Tin)

Oxide,ZTO)等。在一實施例中’第一電極材料層1〇4的形 成方法可以是採用化學氣相沈積法(CVD)、物理氣相沈積 法(PVD)、喷塗法或其他合適的方法來製備。 請參照圖1B,移除部分第一電極材料層1〇4,以形成 201227979j4 344lltwfd〇c/n 多個開口 106與多個第一電極i〇4a。開口 1〇6例如是暴露 出基板102的部分表面,以將第一電極材料層1〇4分隔成 多個帶狀的單一區塊’而形成之第一電極1〇4a可作為前電 極(front contact)。詳言之,開口 106與第一電極1〇4&分^ 是沿同一方向延伸且平行排列,且每個開口 1〇6與每個第 一電極104a為間隔交替配置。開π 1〇6的形成方例如是 進行雷射切割(laser scribing)製程來移除部分第一電極材 料層1〇4而形成之。在一實施例中,雷射切割製程所使用 的雷射波長介於300 nm至1200 nm之間,能量密度介於 0.005 mJ/cm2至100 mJ/cm2之間,雷射加工點距介於^ _ 至1 〇 〇 μm之間。雷射切割製程介於i 〇 μιη至5 〇 〇 之間。 隨之,調整上述雷射切割製程所使用之參數,並直接 對第一電極104a進行雷射處理,以使第一電極1〇4&具有 不平整表面108。在一實施例中,雷射處理所使用的雷射 波長介於300 nm至1200 nm之間,能量密度介於〇〇〇5 mJ/Cm2至1〇〇 mJ/cm2之間,雷射加工點距介於〇丨、_ 鲁 ΙΟΟμιη之間。 .Ρ王 具體而言’為了提昇後續預形成之太陽能電池的效 率,藉由雷射處理對第一電極刚a進行表面處理,而形成 具有凹,結構(texture)的不平整表面1〇8,可有助於減少光 的反射里具有凹凸結構的不平整表面1〇8會提高光線在 太陽能電池中散射的機率,並減少入射光之反射:以辦加 入射光在光·換層巾之行進距離,而增進光子上 供更多的電子-電洞的形成。在此說明的是,雖然圖⑴所 201227979 -一--M 34411twf.doc/n 不之貫施例是以圓弧狀的凹凸結構為例來進行說明 發明並不限於此。在其他實施例中,也可以藉由,,本 在第-電極lG4a的表面形成v字型溝槽、金字= (pyramid)結構、逆金轉形結職其他任意、形狀組合^ 凸結構,只要使第-電才亟馳具有不平整表φ i〇8 g凹 本發明於此不作特別之限制。 在此說明的是’由於雷射切割製程以及作為 之雷射處理皆是使用雷射,因此在進行雷射糊製程= 僅需調整雷射的參數條件即可紐對第―電極⑽ ^ ,面處理。如此-來,透過所使用之雷射參數的調整而= 續進行雷射切割製程及雷射處理,而使切割第—電極 及表面處理能齡同—個轉巾完成,可有 步驟並降低成本。 門化裊% 、值得一提的是,上述實施例是以先進行雷射切割製程 再進订^射處理的順序為例,但本發日脸不限於此。當然, ^另-實_巾,也可以先對未_之第—電極材田料層 〇4進打雷射處理,以使第一電極材料層刚的表面形^ 具有凹凸結構(texture)的不平整表面⑽;之後,調整所使 用雷射的倾找行雷胸_糾移除部分f電極材 料層104,而形成具有不平整表Φ 108的第-電極刚a。 一請參照1C,於基板102上方形成光電轉換材料層。 光電轉換材料層會覆蓋住第_電極刚&與基板搬。光電 轉換材料層可以是單層結構或堆疊層結構。找轉換材料 層的材料例如疋非結晶石夕、微晶石夕、多晶梦、硫化樹cds)、 201227979 H 34411twf.doc/n 銅銦鎵二砸(CuInGaSe2, CIGS)、銅銦二石西(CuinSe2, CIS)、 碲化鎘(CdTe)、有機材料或上述材料堆疊之多層結構。在 一實施例中,光電轉換材料層可以具有p型半導體層、N 型半導體層及本質層的PIN半導體堆疊結構。在一實施例 中,光電轉換材料層也可以是不具有本質層的pN半導體 堆疊結構。光電轉換材料層的形成方法例如是可利用化學 氣相沈積法、濺鍍法或其他合適的方法來製備。詳細說明 的疋’光電轉換材料層的形成方法例如是採用射頻電漿輔 助化學氣相沉積法(Radio Frequency Plasma Enhanced Chemical Vapor Deposition,RF PECVD)、超高頻電漿辅助 化學氣相沉積法(Very High Frequency Plasma Enhanced Chemical Vapor Deposition,VHF PECVD)或者是微波電衆 輔助化學氣相沉積法(Microwave Plasma Enhanced Chemical Vapor Deposition,MW PECVD)。本發明並不限制 光電轉換材料層中所使用光電轉換材料層的數目或結構, 本領域具通常知識者當可視需要而加以謂整。 • 之後’移除部分光電轉換材料層,以於第一電極1〇如 上形成多個開口 110,開口 110暴露出第—電極10如的部 分表面。平行排列而延伸的開口 110將光電轉換材料層分 隔成多數條帶狀的光電轉換層112,以作為主動層。^口 110與開口 106例如是相互平行並間隔—距離。^口 11〇 的形成方法例如是利用雷射切割製程來移除部分光電轉換 材料層而形成之。 ' 凊參照圖1D’在基板102上方形成第二電極材料層, 9 201227979, 34411twf.doc/n 且第二電極材料層填人開口 11G。第二電極材料層例如是 覆蓋住光電轉換層112與第—電極刚a。第二電極材料層 的,料例如是金屬、透明導電氧化物、或是金屬與透明^ 電氧化物之組合。在-實施例中,金屬例如枝(ai)、銀 (Ag)、鉬(Mo)、銅(Cu)、其他同時具有導電性與高反射性 的金屬或是上述金屬之合金,而透明導電氧化物則可為氧 化鋅(ZnO)、氧化銦(In2〇3)、二氧化錫(Sn〇2)、銦錫氧化物 (indmm tin oxide,ITO)、銦鋅氧化物(indium zinc 〇xide, ιζο)、氧化鋁辞(A1 doped Zn〇, AZ〇)、摻鎵氧化鋅(Ga doped zinc oxide, GZO)、銦鎵鋅氧化物(indium_galiiuin zinc 〇Xlde,IGZ0)、鋅錫氧化物(Zinc-Tin Oxide,ZTO)等。第二 電極材料層的形成方法例如是使用化學氣相沈積法 (CVD)、物理氣相沈積法(pVD)、噴塗法或其他合適的方法 來製備。 接著,移除部分第二電極材料層與部分光電轉換層 112’以形成多個開口 114與多個第二電極116,且開口 U4 暴露出第一電極l〇4a的部分表面。平行排列而延伸的開口 114例如是將第二電極材料層分隔成多個帶狀的第二電極 U6,以做為背電極(back contact)。開口 114分別與開口 110、開口 106相互平行並間隔一距離。此外,由於第二電 極材料層填入開口 11〇,且開口 114與開口 11〇之間間隔 一距離’因此切割後的第二電極116可透過開口 114與第 一電極104a電性連接。開口 114的形成方法例如是利用雷 射切割製程來移除部分第二電極材料層與部分光電轉換層 201227979^ 34411twf.doc/n η/向形成。至此,在進行上述之各個步 成太陽能電池100的製作。 細上所述,本發明之太陽能電池的製造方法連續 切割電極之雷射切·程以及對電極表面處理之雷射^ 理’因此可以藉由在電極上形成具有凹凸結構的不平整= 面而進步k升太陽能電池效率表現。 ,外,本發明之太電池的製造方法能夠與 2電池製程相整合,並可以僅透過調整所使用之= 條件而連續進行雷射_製程 能夠達到簡化製程步驟之功效。 处里而 纽ίί然本發明已以實施例揭露如上,然其並_以限定 本i明之;術領域中具有通常知識者’在不脫離 it _,當可作些許之更動與潤飾,故本 X之保5蔓範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1A至圖1D是依昭太蘇明夕 ^ j%) -V 1 池的製造步驟之剖面示意圖本U之·^例之太陽能電 【主要元件符號說明】 100:太陽能電池 102:基板 104 :第一電極材料層 104a :第一電極 11 201227979 34411twf.doc/n 106 :開口 108 :不平整表面 110 :開口 112 :光電轉換層 114 :開口 116 :第二電極Oxide, ZTO), etc. In one embodiment, the formation of the first electrode material layer 1〇4 may be carried out by chemical vapor deposition (CVD), physical vapor deposition (PVD), spray coating or other suitable methods. Referring to FIG. 1B, a portion of the first electrode material layer 1〇4 is removed to form a plurality of openings 106106 and a plurality of first electrodes i〇4a of 201227979j4 344lltwfd〇c/n. The opening 1〇6 is, for example, a portion of the surface of the substrate 102 exposed to divide the first electrode material layer 1〇4 into a plurality of strip-shaped single blocks′, and the first electrode 1〇4a can be used as a front electrode (front) Contact). In detail, the opening 106 and the first electrodes 1 〇 4 & amps are arranged in the same direction and arranged in parallel, and each of the openings 1 〇 6 is alternately arranged with each of the first electrodes 104a. The formation of π 1 〇 6 is formed, for example, by performing a laser scribing process to remove a portion of the first electrode material layer 1 〇 4 . In one embodiment, the laser cutting process uses a laser wavelength between 300 nm and 1200 nm, an energy density between 0.005 mJ/cm2 and 100 mJ/cm2, and a laser processing distance between ^ _ to 1 〇〇μm. The laser cutting process is between i 〇 μιη and 5 〇 〇. Accordingly, the parameters used in the above laser cutting process are adjusted, and the first electrode 104a is directly subjected to laser treatment so that the first electrode 1〇4& has an uneven surface 108. In one embodiment, the laser uses a laser wavelength between 300 nm and 1200 nm and an energy density between 〇〇〇5 mJ/cm2 and 1〇〇mJ/cm2. The distance is between 〇丨, _ 鲁ΙΟΟμιη. In particular, in order to improve the efficiency of the subsequently preformed solar cell, the first electrode just a is surface treated by laser treatment to form an uneven surface 1〇8 having a concave texture. The uneven surface 1〇8, which can help reduce the reflection of light in the concave-convex structure, increases the probability of light scattering in the solar cell and reduces the reflection of incident light: to increase the travel distance of the incident light in the light-changing towel And enhance the formation of more electron-holes on the photons. Here, although the example of the 201227979-I-M 34411 twf.doc/n example of the figure (1) is an example of an arc-shaped uneven structure, the invention is not limited thereto. In other embodiments, the surface of the first electrode 1G4a may be formed with a v-shaped groove, a gold (pyramid) structure, an inverse gold-transformed other arbitrary shape combination, and a convex structure. The present invention is not limited in any way, so that the first electric motor has an unevenness table φ i 〇 8 g concave. What is explained here is that 'Because the laser cutting process and the laser processing are lasers, the laser paste process is performed. Only the parameter conditions of the laser need to be adjusted. The electrode-electrode (10) ^ deal with. In this way, through the adjustment of the laser parameters used, the laser cutting process and the laser processing are continued, so that the cutting electrode and the surface treatment can be completed at the same time, and the steps can be reduced and the cost can be reduced. . It is worth mentioning that the above embodiment is an example in which the sequence of the laser cutting process and the first processing is performed first, but the face of the present day is not limited to this. Of course, ^ another - real _ towel, you can also first laser treatment of the first - electrode material layer 〇 4, so that the surface shape of the first electrode material layer has a texture The surface (10) is flattened; thereafter, the tilting of the used laser is adjusted to remove the portion of the electrode material layer 104, and the first electrode a having the unevenness table Φ 108 is formed. Referring to 1C, a photoelectric conversion material layer is formed over the substrate 102. The photoelectric conversion material layer covers the first electrode and the substrate is moved. The photoelectric conversion material layer may be a single layer structure or a stacked layer structure. The material for the conversion material layer is, for example, 疋Amorphous Shishi, Microcrystalline Shixi, Polycrystalline Dream, sulphide cds), 201227979 H 34411twf.doc/n Copper Indium Gallium Dioxide (CuInGaSe2, CIGS), Copper Indium Dilithite (CuinSe2, CIS), cadmium telluride (CdTe), organic materials or a multilayer structure of the above materials stacked. In an embodiment, the photoelectric conversion material layer may have a p-type semiconductor layer, an N-type semiconductor layer, and an intrinsic layer PIN semiconductor stacked structure. In an embodiment, the photoelectric conversion material layer may also be a pN semiconductor stacked structure having no essential layer. The method of forming the photoelectric conversion material layer can be prepared, for example, by chemical vapor deposition, sputtering, or other suitable methods. The method for forming the 光电' photoelectric conversion material layer is, for example, a radio frequency plasma enhanced chemical Vapor Deposition (RF PECVD) or an ultra high frequency plasma assisted chemical vapor deposition method (Very). High Frequency Plasma Enhanced Chemical Vapor Deposition (VHF PECVD) or Microwave Plasma Enhanced Chemical Vapor Deposition (MW PECVD). The present invention is not limited to the number or structure of the layers of the photoelectric conversion material used in the photoelectric conversion material layer, and those skilled in the art can arbitrarily define them as needed. • Thereafter, a portion of the photoelectric conversion material layer is removed to form a plurality of openings 110 on the first electrode 1 such that the opening 110 exposes a portion of the surface of the first electrode 10. The openings 110 extending in parallel are separated into a plurality of strip-shaped photoelectric conversion layers 112 as an active layer. The port 110 and the opening 106 are, for example, parallel to each other and spaced apart from each other. The formation method of the port 11 is formed, for example, by using a laser cutting process to remove a portion of the photoelectric conversion material layer. A second electrode material layer, 9 201227979, 34411 twf.doc/n, and a second electrode material layer filling the opening 11G is formed over the substrate 102 with reference to FIG. 1D'. The second electrode material layer covers, for example, the photoelectric conversion layer 112 and the first electrode a. The material of the second electrode material layer is, for example, a metal, a transparent conductive oxide, or a combination of a metal and a transparent oxide. In the embodiment, the metal is, for example, alum (ai), silver (Ag), molybdenum (Mo), copper (Cu), other metals having both conductivity and high reflectivity, or an alloy of the above metals, and transparent conductive oxidation. The material may be zinc oxide (ZnO), indium oxide (In2〇3), tin dioxide (Sn〇2), indium tin oxide (ITO), indium zinc oxide (indium zinc 〇xide, ιζο ), alumina (A1 doped Zn〇, AZ〇), gallium-doped zinc oxide (GZO), indium gallium zinc oxide (indium_galiiuin zinc 〇Xlde, IGZ0), zinc tin oxide (Zinc-Tin) Oxide, ZTO), etc. The method of forming the second electrode material layer is, for example, prepared by chemical vapor deposition (CVD), physical vapor deposition (pVD), spray coating, or other suitable methods. Next, a portion of the second electrode material layer and a portion of the photoelectric conversion layer 112' are removed to form a plurality of openings 114 and a plurality of second electrodes 116, and the opening U4 exposes a portion of the surface of the first electrode 104a. The opening 114 extending in parallel is, for example, a second electrode U6 which divides the second electrode material layer into a plurality of strips as a back contact. The openings 114 are parallel to the openings 110 and 106, respectively, and spaced apart by a distance. In addition, since the second electrode material layer is filled in the opening 11 〇 and the opening 114 is spaced apart from the opening 11 ’ by the distance ′, the diced second electrode 116 can be electrically connected to the first electrode 104 a through the opening 114 . The opening 114 is formed by, for example, using a laser cutting process to remove a portion of the second electrode material layer and a portion of the photoelectric conversion layer 201227979^34411twf.doc/n η/. So far, the production of the solar cell 100 has been carried out in each of the above steps. As described above, the method for manufacturing a solar cell of the present invention can continuously cut the laser cutting process of the electrode and the laser treatment of the surface of the electrode electrode. Therefore, it is possible to form an unevenness having a concave-convex structure on the electrode. Progressive k-liter solar cell efficiency performance. In addition, the manufacturing method of the battery of the present invention can be integrated with the 2 battery process, and the laser process can be continuously performed only by adjusting the used conditions to achieve the simplification of the process steps. The present invention has been disclosed in the above embodiments, but it is intended to limit the present invention; those who have the usual knowledge in the field of art 'do not leave it _, when it is possible to make some changes and retouching, The scope of the X Guardian 5 Scope is subject to the definition of the patent application scope attached. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1D are schematic cross-sectional views showing the manufacturing steps of the -V 1 pool of the Yoshitasu-Shin-Hinji ^j% pool. The solar energy of the U-^ example is explained. [Main component symbol description] 100: Solar energy Battery 102: substrate 104: first electrode material layer 104a: first electrode 11 201227979 34411twf.doc/n 106: opening 108: uneven surface 110: opening 112: photoelectric conversion layer 114: opening 116: second electrode

S 12S 12

Claims (1)

34411twf_doc/n 2012279794 j4 七、申請專利範圍: h 一種太陽能電池的製造方法,包括: 於一基板上形成一第一電極材料層; ί夕除。为5玄第一電極材料層,以形成多個第一電極; 對忒些第一電極進行一雷射處理,以使該些第一電換 具有不平整表面;以及 -依序於遠些第一電極上形成一光電轉換層與多個第 一電極,且该光電轉換層形成於各該第一電極與各該第> 電極之間。 、2·如申請專利範圍第1項所述之太陽能電池的製造 方法,其中移除部分該第一電極材料層的方法包括進行/ 雷射切割製程。 3. 如申請專利範圍第2項所述之太陽能電池的製造 方法,在進行該雷射切割製程之後,更包括: 調整該雷射切割製程所使用之參數;以及 直接對該些第一電極進行該雷射處理。 4. 如申請專利範圍第2項所述之太陽能電池的製造 方法’在進行該雷射處理之後,更包括: 調整該雷射處理所使用之參數;以及 直接進行該雷射切割製程。 5. 如申請專利範圍第2項所述之太陽能電池的製造 方法,其中該雷射切割製程所使用的雷射波長介於3〇〇 nm 至1200 nm之間。 6. 如申請專利範圍第2項所述之太陽能電池的製造 13 201227979^ 34411twf.doc/n 方法’其中該雷射切割製程所使用的雷射能量密度介於 0.005 mJ/cm2 至 100 mJ/cm2 之間。 7_如申請專利範圍第2項所述之太陽能電池的製造 方法’其中該雷射切割製程的雷射加工點距介於〇丨μπ1多 100 μιη 之間。 8. 如申請專利範圍第1項所述之太陽能電池的製造 方法’其中該雷射處理所使用的雷射波長介於300 nm多 1200 nm 之間。 9. 如申請專利範圍第1項所述之太陽能電池的製造 方法,其中該雷射處理所使用的雷射能量密度介於0.〇〇5 mJ/cm2 至 100 mJ/cm2 之間。 10. 如申請專利範圍第1項所述之太陽能電池的製造 方法,其中該雷射處理的雷射加工點距介於0.1 μπι至100 μιη之間。34411twf_doc/n 2012279794 j4 VII. Patent Application Range: h A method for manufacturing a solar cell, comprising: forming a first electrode material layer on a substrate; a 5th first electrode material layer to form a plurality of first electrodes; performing a laser treatment on the first electrodes to make the first electric switches have an uneven surface; and - sequentially A photoelectric conversion layer and a plurality of first electrodes are formed on one of the electrodes, and the photoelectric conversion layer is formed between each of the first electrodes and each of the electrodes. 2. The method of manufacturing a solar cell according to claim 1, wherein the method of removing a portion of the first electrode material layer comprises performing a laser/laser cutting process. 3. The method for manufacturing a solar cell according to claim 2, after performing the laser cutting process, further comprising: adjusting parameters used in the laser cutting process; and directly performing the first electrodes The laser treatment. 4. The method of manufacturing a solar cell according to claim 2, after performing the laser processing, further comprising: adjusting parameters used in the laser processing; and directly performing the laser cutting process. 5. The method of fabricating a solar cell according to claim 2, wherein the laser cutting process uses a laser wavelength between 3 〇〇 nm and 1200 nm. 6. The manufacture of a solar cell according to claim 2, the method of claim 2, wherein the laser energy density of the laser cutting process is between 0.005 mJ/cm2 and 100 mJ/cm2. between. 7_ The method of manufacturing a solar cell according to claim 2, wherein the laser processing point of the laser cutting process is between 〇丨μπ1 and 100 μmη. 8. The method of manufacturing a solar cell according to claim 1, wherein the laser treatment uses a laser having a wavelength between 300 nm and 1200 nm. 9. The method of manufacturing a solar cell according to claim 1, wherein the laser treatment uses a laser energy density of between 0.15 mJ/cm2 and 100 mJ/cm2. 10. The method of manufacturing a solar cell according to claim 1, wherein the laser processing laser processing point distance is between 0.1 μm and 100 μm.
TW099146931A 2010-12-30 2010-12-30 Method for fabricating solar cell TW201227979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW099146931A TW201227979A (en) 2010-12-30 2010-12-30 Method for fabricating solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099146931A TW201227979A (en) 2010-12-30 2010-12-30 Method for fabricating solar cell

Publications (1)

Publication Number Publication Date
TW201227979A true TW201227979A (en) 2012-07-01

Family

ID=46933459

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099146931A TW201227979A (en) 2010-12-30 2010-12-30 Method for fabricating solar cell

Country Status (1)

Country Link
TW (1) TW201227979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227237A (en) * 2013-03-15 2013-07-31 北京工业大学 Laser one-step forming method for surface nap layer and isolation layer of crystalline silicon solar cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103227237A (en) * 2013-03-15 2013-07-31 北京工业大学 Laser one-step forming method for surface nap layer and isolation layer of crystalline silicon solar cell
CN103227237B (en) * 2013-03-15 2015-10-14 北京工业大学 The laser one-step moulding method of crystal silicon solar batteries surface pile layer and separator

Similar Documents

Publication Publication Date Title
CN107710419B (en) Solar cell and solar cell module
KR101031246B1 (en) Thin film type Solar Cell and method of manufacturing the smae, and Thin film type solar cell module and Power generation system using the same
CN110635051B (en) Solar cell module and manufacturing method thereof
JP2004014958A (en) Thin film polycrystalline solar cell and manufacturing method therefor
TWI377685B (en) Photovoltaic cell structure and manufacturing method thereof
JP2009152222A (en) Manufacturing method of solar cell element
TWI453938B (en) Solar cell and method for fabricating the same
KR101428146B1 (en) Solar cell module and method of fabricating the same
KR20150090606A (en) Solar cell and manufacturing method thereof
TW201724538A (en) Thin film type solar cell and method of manufacturing the same
KR101103894B1 (en) Solar cell and method of fabricating the same
JP2013532911A (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP5602234B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof
JP2014503128A (en) Solar cell and manufacturing method thereof
KR101369920B1 (en) A solar cell and a manufacturing method thereof
JP2016195188A (en) Method of manufacturing solar cell and method of manufacturing solar cell module
RU2632266C2 (en) Heterostructure photoelectric converter based on crystalline silicon
TW201227979A (en) Method for fabricating solar cell
CN101707219B (en) Solar cell with intrinsic isolation structure and production method thereof
US20110155229A1 (en) Solar cell and method for manufacturing the same
KR20130061346A (en) Solar cell and method of manufacturing the same
CN114868256A (en) Aligned metallization of solar cells
JP6013198B2 (en) Photoelectric conversion element and method for producing photoelectric conversion element
CN104254926B (en) Photovoltaic apparatus
TWI581447B (en) Heterojunction solar cell and fabrication method thereof