TW201244692A - Electrocardiogram signal measuring device - Google Patents

Electrocardiogram signal measuring device Download PDF

Info

Publication number
TW201244692A
TW201244692A TW100116428A TW100116428A TW201244692A TW 201244692 A TW201244692 A TW 201244692A TW 100116428 A TW100116428 A TW 100116428A TW 100116428 A TW100116428 A TW 100116428A TW 201244692 A TW201244692 A TW 201244692A
Authority
TW
Taiwan
Prior art keywords
signal
measuring device
unit
electrocardiographic
module
Prior art date
Application number
TW100116428A
Other languages
Chinese (zh)
Inventor
Chen-Yi Lee
Ray-Jade Chen
Ching-Yao Huang
Jui-Yuan Yu
Shih-Heng Cheng
Tzu-Tsung Chuang
Original Assignee
Univ Nat Chiao Tung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Chiao Tung filed Critical Univ Nat Chiao Tung
Priority to TW100116428A priority Critical patent/TW201244692A/en
Publication of TW201244692A publication Critical patent/TW201244692A/en

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

Disclosed is an electrocardiogram (ECG) signal measuring device, including a detecting units having at least two first signals, a signal processing module and a power supplying module, wherein the first signal detecting unit detects electrocardiogram signals of a biological body, the signal process module receives the ECG signal for rectification processing for allowing the processed ECG signal to be transmitted to an external information display device, and the power supplying module is electrically connected to the signal processing module either via a wire or wirelessly to supply the power, thereby providing an easy-to-use measuring device that can detect ECG signals rapidly to meet the emergency requirements.

Description

201244692 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種訊號量測襞置,尤指一種能充份滿 足緊急醫療需求的心電生理訊號量測裝置。 【先前技術】 隨著現代醫學科技的進步,醫療人員能透過各種醫療 °又備量測人體的各種生理狀況以判斷出各種疾病的徵狀, 例如,醫生可利用心電裝置顯示出病患的心電生理訊號, 進而為進一步的病理診斷與解讀。 具體來說,以心電裝置來量測心電生理訊號時,通常 先將三至十個心電生理訊號貼片黏貼於人體的皮膚表面, 且將心電裝置與所述的三至十個心電生理訊號貼片透過傳 輸線予以連接,進而令心電裝置综合三至十個心電生理訊 號貼片量測出的心電生理訊號,同時於心電裝置的顯示螢 幕上予以顯示,此時,醫療人員即可藉由顯示出的心電生 理訊號開始進行進一步的病理診斷與解讀。 然而,實際實施時,所述的三至十個心電生理訊號貼 片必需配合特㈣黏貼位置,所以不具備專業醫療知識背 景的使用者通常難以自行將三至十個心電生理訊號貼片黏 貼於正確地黏貼於人體上。再者’於緊急醫療狀況或遠端 居家照護的情形中,即便使用者具備了專#醫療知識背 景,也無法快速地完成黏貼作業。這是因為心電生理訊號 貼片的黏貼位置會隨著不同的人體而產生差異 性,且心電 使用時需—尋找位 生理訊號貼片多達三至十個之多 112009 4 201244692 置,因而造成了延誤與作業上的眾多困難。 再者,若心電裝置中内建有電池來做為其電源供應的 來源,則使用者就必須對此類内建電池的心電裝置實施具 有計晝性的電池管理措施,例如定期充電、或定期做電池 汰換,否則,一旦發生了緊急的醫療狀況,就很可能因電 力不足的問題而延誤了寶貴的救援時間。 綜上所述,如何提供一種能充分符合緊急醫療需求的 心電生理訊號量測裝置,實已成為目前各界亟待解決的問 題。 【發明内容】 鑒於上述習知技術之種種缺點,本發明之主要目的, 係在於提供一種心電生理訊號量測裝置,包含第一訊號感 測單元、訊號處理模組、以及電源供應模組。其中,第一 訊號感測單元係用以貼附於生物體上以感測心電生理訊 號;訊號處理模組係具有供該第一訊號感測單元電性連接 之第一訊號連接埠,以藉由該第一訊號連接埠接收該第一 訊號感測單元所感測之心電生理訊號,而該訊號處理模組 係對該第一訊號連接埠所接收之心電生理訊號進行校調處 理後,將經校調處理之心電生理訊號發送至外部的資訊顯 示裝置;電源供應模組係透過有線或無線之方式與該訊號 處理模組電性連接,以作為該心電生理訊號量測裝置之電 源供應。 此外,本發明亦提供另一種心電生理訊號量測裝置, 包含第一訊號感測模組、訊號處理模組、以及電源供應模 112009 201244692 組。其中,第一訊號感測模組係包括饒性基板及至少二個 第一訊號感測單元,所述的饒性基板係具有訊號輸出單 元,用以電性連接該第一訊號感測單元,而所述的第一訊 號感測單元係用以貼附於生物體上以感測該生物體之心電 生理訊號,以令該訊號輸出單元輸出所感測出之心電生理 訊號;訊號處理模組,係具有供該訊號輸出單元電性連接 之第一訊號連接埠,以藉由該第一訊號連接埠接收該訊號 輸出單元所輸出之心電生理訊號,而該訊號處理模組係對 該第一訊號連接埠接收之心電生理訊號進行校調處理,進 而將經校調處理之心電生理訊號發送至外部的資訊顯示裝 置;電源供應模組係設置於該饒性基板上或該訊號處理模 組内,以提供該心電生理訊號量測裝置所需之電源。 據此,相較於習知技術,本發明之心電生理訊號量測 裝置可供任何使用者簡易、快速、正確地量測出生物體之 心電生理訊號,從而簡化量測心電生理訊號的作業程序, 充分符合緊急醫療的需求。 【實施方式】 以下係藉由特定的具體實施型態說明本發明之實施方 式,熟悉此技術之人士可由本說明書所揭示之内容輕易地 瞭解本發明之其他優點與功效。本發明亦可藉由其他不同 的具體實施型態加以施行或應用。圖示參考編號標誌為類 似元件。 請一併參閱第ΙΑ、1B及1C圖,其中,第1A圖係為本 發明之心電生理訊號量測裝置之結構示意圖、第1B圖係為 6 112009 201244692 ,第1A圖之心電生理訊號量測裝置之應用示意圖,而第lc 圖係為第1A圖之心電生理訊號量測裝置局部之系統架構 圖。 如圖所示,心電生理訊號量測裝置丨係包含訊號處理 模組11、電源供應模組12、以及至少二個第一訊號感測單 兀於此實施形態中’係繪示三個第一訊號感測單元13。 第一訊號感測單元13係用以貼附於生物體,以感測出 該生物體之心電生理訊號.。具體來說,第—訊號感測單元 13可包含導電接面(未圖示)以及黏貼膠體(未圖示), 其中,黏貼膠體係設置於導電接面的周圍,以供第一訊號 感測單元13貼附於生物體上,例如貼附於人體的皮膚 而導電接面則用以感測出例如為人之生物體之心電生理訊 说。實際實施時,導電接面的材料係可包含氣化銀,而黏 貼膠體則可使用例如為泡棉膠的材料予以製成。 訊號處理模組11係具有供第-訊職測單元13以可 活動的方式電性連接之第一訊號連接璋⑴,例如,第— 訊號連接埠ill係可設計為能供第一訊號感測單元13插 拔,並於特定的範圍内進行旋轉的形式。而第一訊號連接 璋111係用以接收該第一訊號感測單元13所感測出之心電 生理訊號,進而使訊號處理模組u針對第一訊號連接淳 111接收到之〜電生理訊號進行相關的校調處理,以將絲 =調處理之4生理訊號發送至外部时訊顯示裝置(未 圖不)。 具體來說’如第1C圖所示,訊號處理模組U可包含 112009 7 201244692 放大單元112、濾波單元113、訊號處理單元ii4以及例如 為無線收發器之發射單元115,而訊號處理模組u係藉由 放大單元112、濾波單元113、及訊號處理單元114進行所 述的校調處理。詳而言之,由於第一訊號感測單元13感測 到之心電生理訊號可能過於微弱,藉由放大單元112即能 先將感測到之複數個心電生理訊號予以放大。然,放大後 的心電生理訊號還可能包含有多餘的雜訊,因此,藉由濾 波單το 113即可將多餘的雜訊予以過濾,以擷取出乾淨的 心電生理訊號。爾後,再由訊號處理單元114對複數個經 過放大及過濾處理之心電生理訊號做综合性的歸納處理, 即可產生可供外部的資訊顯示裝置讀取、顯示的心電生理 訊號資訊,例如產生出可讀取之PQRST波形訊號。而發射 單元115則可用以將經過放大、過濾、及综合歸納處理的 心電生理訊號,進一步發送至外部的資訊顯示裝置,進而 令負訊顯不裝置予以顯示。 電源供應模組12係可設置於第—訊號感測單元] 内,或者設置於訊號處理模組n内,藉此與訊號處理模戾 11電性連接,以提供心電生理訊號量測裝置i所需之^ 源,於本實施例中,電源供應模組12係繪示為設置於訊^ 處理模組π内。實際進行裝轉#時,電;祕應模組1 係可為一次性電池或二次性電池,當然,亦可設 為紙電池之薄型電池的形態。另外,電源供應模組12也; β又冲為與第-訊號感測單元13及訊號處理模組η分離▲ 置之形式,並透過有線或無線之連接方式與訊號處理編 112009 8 .201244692 • = f性連接,藉此提供心電生理訊號量測裝置!所需之電 第訊號量測裝置1還可包括如 測作業,增加使用;:Γ=Μ 15 ’以進行更, 號處理模組u即可且有^此時,訊 之第二訊號連接埠叫弟—_感測模組15電性連接 =所^第二訊號感測模組15係具有複數個第二訊 感^早70 151,以及電性連接第二訊號感測單元151之 連接單疋152。其中’第二訊號感測單元⑸係用以貼附 於生物體上,以感測出生物體之心電生理訊號。連接單元 152係與複數個第二訊號感測單元151電性連接,於此: 施例中,連接單元152係為電性連接三個第二訊號感^ 兀151之傳輸排線。而連接單元152係具有用以插置於第 二訊號連接埠116中,以與訊號處理模級u電性連接之傳 輸端子153。藉此,该傳輸端子153係可將複數個第二訊 號感測單元151感測到之心電生理訊號傳輪至訊號處^ 組11,俾供該訊號處理模組11 一併進行前述之校調處理: 當然’第二訊號感測單元151之結構係可如同前述之第— 訊號感測單元13 ’亦即,第二訊號感測單元151也可包人 結構相同之導電操面(未圖示)以及黏貼膠體(未圖示)3 另外,心電生理訊號量測裝置1還可設置有壓力及力 速感測器14。具艘來說’壓力及加速感剛器u係可設^ 於訊號處理模組π中’或是設置於第〜訊號感測單|13 Π2009 9 201244692 中,用以感測生物體之腔體表面壓力以及施加於生物體之 按壓速度變化,進而使訊號處理模组u將感測到之腔體表 ^麼力及㈣速度變化—併發送至外部的資訊顯示裝置。 =以,本發明之心電生理訊號量測裝置丨£能提供相關的 亦訊進而協助相關的急救人員進行例如為心肺復甦術 (CPR)之急救作業。 實際實施時,當第一訊號感測單元13已連接於訊號處 理模組11之第一訊號連接埠U1上,且其設置角度已轉動 至特定的最佳位置時’係可藉由相關的鎖固元件(未圖示) 將第一訊號感測單元13予以固定,而該鎖固元件係可以一 體成形或分離設置的方式設置於訊號處理模組丨丨上。 請再綜合第1A至1C圖來參閱第2A以及2B圖,以瞭 解本發明之心電生理訊號量測裴置的另一實施例。其中, 第2A圖係為本發明之心電生理訊號量測裝置另一實施例 之結構示意圖,而第2B圖係為第2A圖之心電生理訊號量 測裝置之應用示意圖。 如圖所示,心電生理訊號量測裝置2係可包含一體成 型之第一訊號感測模組21,訊號處理模組22,及電源供應 模組23,並選擇性地設置有壓力及加速感測器24。其中, 第5凡號感測模組21係包含饒性基板211以及至少二第一 訊號感測單元212。 饒f生基板211,係具有訊號輸出單元2iia。第一訊號 感測單元212,係用以貼附於例如為人之生物體上,藉此 感測出生物體之心電生理訊號,並電性連接訊號輸出單元 112009 10 .201244692 211a,以令訊號輸出單元211a得以將第一訊號感測單元 4 212感測出之心電生理訊號予以輸出。 ' 於此實施例中,第一訊號感測模組21係包含三個第一 訊號感測單元212,以及設計成三角形之饒性基板211,且 三個第一訊號感測單元212係分別設置於三角形之饒性基 板211之三個端點上。其中,饒性基板211係可使用不織 布或塑膠的軟性材質予以製成,且饒性基板211之形狀亦 可為方形或其他形狀,並設置有一個或多個通氣孔213來 增加透氣性與舒適度。 進一步來說,第一訊號感測單元212的細部結構係可 如同前述之第一訊號感測單元13,亦即可包含導電接面以 及黏貼膠體,其中黏貼膠體係同樣可設置於導電接面之周 緣,以供第一訊號感測單元212貼附於生物體,而導電接 面係用以感測出生物體之心電生理訊號。 訊號處理模組22之架構與功效則可參照前述之訊號 處理模組11。具體來說,訊號處理模組22係具有第一訊 號連接埠221,以利用第一訊號連接埠221供訊號輸出單 元211a電性連接,進而接收訊號輸出單元211a輸出之心 電生理訊號。訊號處理模組22在接收到心電生理訊號後, 即會針對接收到之心電生理訊號進行所述的校調處理,進 而將經校調處理之心電生理訊號發送至外部的資訊顯示裝 置中。 當然,訊號處理模組22也可設置有相關的訊號連接埠 以供前述之第二訊號感測模組15予以接置,藉此進行更精 11 112009 201244692 確的校調處理與提供更為彈性的使用方式。訊號處理模組 22的内部系統架構,則可如同前述第1C圖所繪示之系統 架構,亦即同樣包含了相同的放大單元、濾波單元、訊號 處理單元、以及發射單元。 電源供應模組23係可電性連接該訊號輸出單元 211a,用以供應心電生理訊號量測裝置2所需之電源。於 此實施例中,電源供應模組23係可設置於饒性基板211 上,但,亦可將電源供應模組23設置於訊號處理模組22 内,當然,也可將電源供應模組23、饒性基板211或訊號 處理模組22分離設置,並透過有線或無線的連接方式,將 電源供應模組23與訊號輸出單元211a電性連接。 壓力及加速感測器24係可與訊號輸出單元211a電性 連接,用以感測生物體之腔體表面壓力以及施加於生物體 之按壓速度變化,進而令訊號處理模組22將感測到之腔體 表面壓力及按壓速度變化一併發送至外部的資訊顯示裝 置,故心電生理訊號量測裝置2亦能提供實施例如為心肺 復甦術(CPR)之急救作業的急救人員相關的數據資料。但, 壓力及加速感測器24亦可設置於訊號處理模組22内,以 因應不同的使用需求。 請再參閱第2C圖,係繪示本發明之心電生理訊號量測 裝置另一實施例之結構及應用示意圖。具體來說,第2C圖 所示之心電生理訊號量測裝置2’與第2A、2B圖所示之心 電生理訊號量測裝置2最大的差異,係在於心電生理訊號 量測裝置2’之第一訊號感測模組21’係採用了設計為方形 12 112009 201244692 之饒性基板211’,而且於方形之饒性基板21Γ内僅設置有 二個第一訊號感測單元212。同時,訊號輸出單元211a還 ’ 與設計為伸縮臂之貼片排線211b電性連接,進而電性連接 不設置於饒性基板211’上之第三個第一訊號感測單元 212。實際實施時,該藉由貼片排線211b與訊號輸出單元 211a電性連接之第一訊號感測單元212,即可根據不同的 實施需求調整其設置位置,例如量測特定導程Lead I、Lead II、或Lead III。另外,心電生理訊號量測裝置2’中的壓 力及加速感測器24,亦可對應地調整成設置於貼片排線 211b 上。 實際將本發明之心電生理訊號量測裝置應用於心肺復 甦術(CPR)的急救醫療時,係可先將心電生理訊號量測裝 置1 ( 2、2’)整體黏貼於待測者身體正面中線之特定位置 上。當急救者針對待測者施以心肺復甦術的急救作業時, 壓力及加速感測器14(24)即可感測到急救者針對待測者 施加的按壓速度變化以及待測者本身的胸腔壓力,進而將 感測結果傳送至外部的資訊顯示裝置,據此讓急救者更準 確的掌握待測者的生理狀況。 而由於本發明之心電生理訊號量測裝置係内建有電源 供應模組,且第一訊號感測模組或第一訊號感測單元更可 與訊號處理模組分離,所以,第一訊號感測模組或第一訊 號感測單元係可設計為僅供單次使用的可拋棄形式,進 而,於每次使用本發明之心電生理訊號量測裝置時,使用 者都能使用全新的第一訊號感測模組或第一訊號感測單 s 13 112009 201244692 元,藉此不但能避免習知因電力不足而延誤緊急醫療處理 的弊端,更能符合醫療水準的高度衛生要求。 綜上所述,本發明係提供一種能快速、簡易地量測出 生物體的心電生理訊號之心電生理訊號量測裝置,因而, 即便使用者不具有專業醫療人員的相關知識亦可自行予以 實施,進而充分符合緊急醫療及遠端醫療照護的需求。 惟,上述實施型態僅例示性說明本發明之原理及其功 效,而非用於限制本發明。任何熟習此項技藝之人士均可 在不違背本發明之精神及範疇下,對上述實施型態進行修 飾與改變。因此,本發明之權利保護範圍,應如後述之申 請專利範圍所列。 【圖式簡單說明】 第1A係為本發明之心電生理訊號量測裝置之結構示 意圖; 第1B圖係為第1A圖之心電生理訊號量測裝置之應用 不意圖, 第1C圖係為第1A圖之心電生理訊號量測裝置之局部 系統架構圖; 第2A係為本發明之心電生理訊號量測裝置之另一結 構不意圖, 第2B圖係為第2A圖心電生理訊號量測裝置之應用示 意圖;以及 第2C圖係為本發明之心電生理訊號量測裝置之又一 結構及應用示意圖。 14 112009 201244692 【主要元件符號說明】 卜 2、2’ 心電生理訊號量測裝置 11 ' 22 訊號處理模組 111 ' 221 第一訊號連接埠 112 放大單元 113 濾波單元 114 訊號處理單元 115 發射單元 116 第二訊號連接埠 12、23 電源供應模組 13 、 212 第一訊號感測單元 14、24 壓力及加速感測器 15 第二訊號感測模組 151 第二訊號感測單元 152 連接單元 153 傳輸端子 2 卜 21, 第一訊號感測模組 211、21Γ 饒性基板 211a 訊號輸出單元 213 通氣孔 211b 貼片排線201244692 VI. Description of the Invention: [Technical Field] The present invention relates to a signal measuring device, and more particularly to an electrocardiographic signal measuring device capable of fully satisfying emergency medical needs. [Prior Art] With the advancement of modern medical technology, medical personnel can measure various physiological conditions of the human body through various medical treatments to determine the symptoms of various diseases. For example, doctors can use electrocardiographic devices to display the symptoms of patients. Electrocardiographic signals, and further pathological diagnosis and interpretation. Specifically, when the electrocardiographic device is used to measure the electrophysiological signal, three to ten electrophysiological signal patches are usually adhered to the skin surface of the human body, and the electrocardiographic device and the three to ten The electrocardiogram signal patch is connected through the transmission line, so that the ECG device integrates the electrocardiographic signals measured by the three to ten electrophysiological signal patches, and is displayed on the display screen of the electrocardiogram device. Medical personnel can begin further pathological diagnosis and interpretation by displaying the electrophysiological signals. However, in actual implementation, the three to ten electrophysiological signal patches must be matched with the special (four) pasting position, so users who do not have professional medical knowledge background are often difficult to patch three to ten electrophysiological signals by themselves. Adhere to the correct adhesion to the human body. Furthermore, in the case of emergency medical conditions or remote home care, even if the user has a special medical knowledge background, the pasting operation cannot be completed quickly. This is because the adhesion position of the electrophysiological signal patch will vary with different human bodies, and the ECG needs to be used - looking for a physiological signal patch as many as three to ten 112009 4 201244692, thus causing Delays and many difficulties in homework. Furthermore, if a battery is built into the ECG device as a source of power supply, the user must implement a battery management measure such as periodic charging for the ECG device of such a built-in battery. Or do battery replacement on a regular basis, otherwise, once an emergency medical situation occurs, it is likely that the rescue time is delayed due to insufficient power. In summary, how to provide a cardiac electrophysiological signal measuring device that can fully meet the urgent medical needs has become an urgent problem to be solved. SUMMARY OF THE INVENTION In view of the above disadvantages of the prior art, the main object of the present invention is to provide an electrocardiographic signal measuring device comprising a first signal sensing unit, a signal processing module, and a power supply module. The first signal sensing unit is configured to be attached to the living body to sense the electrophysiological signal; the signal processing module has a first signal connection port for electrically connecting the first signal sensing unit to Receiving the electrocardiographic signal sensed by the first signal sensing unit by the first signal port, and the signal processing module performs the calibration process on the electrophysiological signal received by the first signal port The electrocardiographic signal transmitted by the calibration is sent to an external information display device; the power supply module is electrically connected to the signal processing module by wire or wirelessly as the electrophysiological signal measuring device. Power supply. In addition, the present invention also provides another electrocardiographic signal measuring device, which comprises a first signal sensing module, a signal processing module, and a power supply module 112009 201244692 group. The first signal sensing module includes a resilient substrate and at least two first signal sensing units, and the flexible substrate has a signal output unit for electrically connecting the first signal sensing unit. The first signal sensing unit is configured to be attached to the living body to sense the electrophysiological signal of the living body, so that the signal output unit outputs the sensed electrophysiological signal; the signal processing mode a first signal port for electrically connecting the signal output unit to receive an electrophysiological signal output by the signal output unit by the first signal port, and the signal processing module is configured to The first signal is connected to the received electrocardiographic signal for calibration, and then the corrected ECG signal is sent to an external information display device; the power supply module is disposed on the magnetic substrate or the signal The processing module is provided to provide the power required by the electrophysiological signal measuring device. Accordingly, the electrocardiographic signal measuring device of the present invention can be used by any user to measure the electrophysiological signals of a living object simply, quickly and correctly, thereby simplifying the measurement of the electrophysiological signals. The operating procedures are fully compliant with the needs of emergency medical care. [Embodiment] The embodiments of the present invention are described below by way of specific embodiments, and those skilled in the art can readily understand other advantages and effects of the present invention from the disclosure. The invention may also be embodied or applied by other different embodiments. The illustration reference number is labeled as a similar component. Please refer to Figures 1, 1B and 1C together. Figure 1A is a schematic diagram of the structure of the electrocardiographic signal measuring device of the present invention, and Figure 1B is the electrophysiological signal of Figure 1A, 2009. The application diagram of the measuring device, and the lc figure is a system architecture diagram of the electrocardiographic signal measuring device of FIG. 1A. As shown in the figure, the electrophysiological signal measuring device includes a signal processing module 11, a power supply module 12, and at least two first signal sensing units. A signal sensing unit 13. The first signal sensing unit 13 is for attaching to the living body to sense the electrophysiological signal of the living body. Specifically, the first signal sensing unit 13 may include a conductive interface (not shown) and an adhesive body (not shown), wherein the adhesive system is disposed around the conductive interface for the first signal sensing The unit 13 is attached to the living body, for example, attached to the skin of the human body, and the conductive joint is used to sense the electrophysiological theory of, for example, a living organism. In practice, the material of the conductive joint may comprise vaporized silver, and the adhesive colloid may be made of a material such as foam. The signal processing module 11 has a first signal connection port (1) for the first communication device 13 to be electrically connected in a movable manner. For example, the first signal connection module can be designed to provide first signal sensing. The unit 13 is inserted and removed and rotated in a specific range. The first signal port 111 is configured to receive the electrophysiological signal sensed by the first signal sensing unit 13, and then the signal processing module u receives the electrophysiological signal received by the first signal port 111. The relevant calibration process is to send the 4 physiological signals of the silk=tuning process to the external time display device (not shown). Specifically, as shown in FIG. 1C, the signal processing module U can include an 112009 7 201244692 amplifying unit 112, a filtering unit 113, a signal processing unit ii4, and a transmitting unit 115 such as a wireless transceiver, and the signal processing module u The calibration process is performed by the amplification unit 112, the filtering unit 113, and the signal processing unit 114. In detail, since the electrophysiological signal sensed by the first signal sensing unit 13 may be too weak, the amplifying unit 112 can first amplify the plurality of electrocardiographic signals sensed. However, the amplified ECG signal may also contain unwanted noise, so the extra noise can be filtered by filtering a single το 113 to extract a clean ECG signal. Then, the signal processing unit 114 performs a comprehensive induction process on a plurality of amplified and filtered electrocardiographic signals to generate ECG signal information that can be read and displayed by an external information display device, for example, Produces a readable PQRST waveform signal. The transmitting unit 115 can be used to further transmit the electrocardiographic signals that have been amplified, filtered, and integrated, to an external information display device, thereby causing the negative display device to display. The power supply module 12 can be disposed in the first signal sensing unit or in the signal processing module n, thereby being electrically connected to the signal processing module 11 to provide an electrophysiological signal measuring device. In the present embodiment, the power supply module 12 is shown as being disposed in the processing module π. When the actual loading and forwarding ##, electricity; the secret module 1 can be a disposable battery or a secondary battery, of course, it can also be set as a thin battery of paper batteries. In addition, the power supply module 12 is also in the form of a separate signal from the first signal sensing unit 13 and the signal processing module η, and is connected by a wired or wireless connection and signal processing. 112009 8 .201244692 • = f-sex connection to provide ECG signal measurement device! The required electric signal measuring device 1 may further include a measuring operation, and the use is increased; Γ=Μ 15 ' to perform the more, the number processing module u can be and there is ^ at this time, the second signal connection of the signal 埠叫 — _ _ Sense module 15 electrical connection = ^ Second signal sensing module 15 has a plurality of second sensation ^ early 70 151, and electrically connected to the second signal sensing unit 151 connection list疋152. The second signal sensing unit (5) is attached to the living body to sense the electrophysiological signal of the birth object. The connecting unit 152 is electrically connected to the plurality of second signal sensing units 151. Here, in the embodiment, the connecting unit 152 is a transmission cable electrically connected to the three second signal sensors 151. The connecting unit 152 has a transmission terminal 153 for inserting into the second signal port 116 for electrically connecting to the signal processing module u. Therefore, the transmission terminal 153 can transmit the electrophysiological signal sensed by the plurality of second signal sensing units 151 to the signal processing group 11 for the signal processing module 11 to perform the foregoing calibration. Adjustment processing: Of course, the structure of the second signal sensing unit 151 can be the same as the above-mentioned signal sensing unit 13', that is, the second signal sensing unit 151 can also cover the same conductive surface (not shown). In addition, the electrophysiological signal measuring device 1 can also be provided with a pressure and force velocity sensor 14. For the ship, the 'pressure and acceleration sensor u can be set in the signal processing module π' or in the first signal sensing list |13 Π2009 9 201244692 to sense the cavity of the organism The surface pressure and the pressing speed applied to the living body change, so that the signal processing module u senses the cavity force and (4) the speed change—and sends it to the external information display device. The electrocardiographic signal measuring device of the present invention can provide relevant information to assist the relevant emergency personnel in performing emergency operations such as cardiopulmonary resuscitation (CPR). In actual implementation, when the first signal sensing unit 13 is connected to the first signal port 埠U1 of the signal processing module 11, and the set angle has been rotated to a specific optimal position, the related lock can be used. The solid component (not shown) fixes the first signal sensing unit 13, and the locking component can be disposed on the signal processing module 一体 in an integrally formed or separated manner. Please refer to Figures 2A and 2B again in conjunction with Figures 1A through 1C to illustrate another embodiment of the electrophysiological signal measurement device of the present invention. 2A is a schematic structural view of another embodiment of the electrocardiographic signal measuring device of the present invention, and FIG. 2B is a schematic view of the application of the electrophysiological signal measuring device of FIG. 2A. As shown in the figure, the electrophysiological signal measuring device 2 can include an integrally formed first signal sensing module 21, a signal processing module 22, and a power supply module 23, and is selectively provided with pressure and acceleration. Sensor 24. The fifth sensing module 21 includes a resilient substrate 211 and at least two first signal sensing units 212. The substrate 211 has a signal output unit 2iia. The first signal sensing unit 212 is configured to be attached to, for example, a living organism, thereby sensing an electrophysiological signal of the living object, and electrically connecting the signal output unit 112009 10 .201244692 211a to The signal output unit 211a can output the electrophysiological signal sensed by the first signal sensing unit 4 212. In this embodiment, the first signal sensing module 21 includes three first signal sensing units 212, and a triangular substrate 211 designed as a triangle, and the three first signal sensing units 212 are respectively set. On the three end points of the triangular substrate 211. The resilient substrate 211 can be made of a soft material made of non-woven fabric or plastic, and the shape of the rigid substrate 211 can also be square or other shapes, and one or more vent holes 213 are provided to increase the breathability and comfort. degree. Further, the detailed structure of the first signal sensing unit 212 can be the first signal sensing unit 13 as described above, and can also include a conductive interface and an adhesive, wherein the adhesive system can also be disposed on the conductive interface. The periphery is for the first signal sensing unit 212 to be attached to the living body, and the conductive interface is for sensing the electrophysiological signal of the living object. For the structure and function of the signal processing module 22, reference may be made to the signal processing module 11 described above. Specifically, the signal processing module 22 has a first signal port 221 for electrically connecting the signal output unit 211a by using the first signal port 221, and receiving the electrophysiological signal output by the signal output unit 211a. After receiving the electrophysiological signal, the signal processing module 22 performs the calibration process on the received electrocardiographic signal, and then transmits the corrected ECG signal to the external information display device. in. Of course, the signal processing module 22 can also be provided with an associated signal connection port for the second signal sensing module 15 to be connected, thereby performing a more refined 11 112009 201244692 correct calibration process and providing more flexibility. How to use it. The internal system architecture of the signal processing module 22 can be similar to the system architecture shown in FIG. 1C, that is, the same amplification unit, filtering unit, signal processing unit, and transmitting unit are also included. The power supply module 23 is electrically connected to the signal output unit 211a for supplying power required by the electrophysiological signal measuring device 2. In this embodiment, the power supply module 23 can be disposed on the flexible substrate 211. However, the power supply module 23 can also be disposed in the signal processing module 22. Of course, the power supply module 23 can also be disposed. The flexible substrate 211 or the signal processing module 22 is separately disposed, and the power supply module 23 is electrically connected to the signal output unit 211a through a wired or wireless connection. The pressure and acceleration sensor 24 is electrically connected to the signal output unit 211a for sensing the surface pressure of the cavity of the living body and the change of the pressing speed applied to the living body, so that the signal processing module 22 will sense The surface pressure and the change of the pressing speed of the cavity are sent to the external information display device, so the electrophysiological signal measuring device 2 can also provide data related to the first-aid personnel who perform the first-aid operation such as cardiopulmonary resuscitation (CPR). . However, the pressure and acceleration sensor 24 can also be disposed in the signal processing module 22 to meet different usage requirements. Please refer to FIG. 2C again to illustrate the structure and application diagram of another embodiment of the electrophysiological signal measuring device of the present invention. Specifically, the biggest difference between the electrophysiological signal measuring device 2' shown in FIG. 2C and the electrophysiological signal measuring device 2 shown in FIGS. 2A and 2B is the electrophysiological signal measuring device 2 The first signal sensing module 21' adopts a rugged substrate 211' designed as a square 12 112009 201244692, and only two first signal sensing units 212 are disposed in the square-shaped substrate 21A. At the same time, the signal output unit 211a is also electrically connected to the patch cable 211b designed as a telescopic arm, and is electrically connected to the third first signal sensing unit 212 not disposed on the flexible substrate 211'. In actual implementation, the first signal sensing unit 212 electrically connected to the signal output unit 211a by the chip cable 211b can adjust the setting position according to different implementation requirements, for example, measuring a specific lead Lead I, Lead II, or Lead III. Further, the pressure and acceleration sensor 24 in the electrophysiological signal measuring device 2' may be correspondingly adjusted to be disposed on the patch wire 211b. When the electrocardiographic signal measuring device of the present invention is actually applied to the emergency medical treatment of cardiopulmonary resuscitation (CPR), the electrophysiological signal measuring device 1 (2, 2') may be integrally attached to the body of the test subject. At a specific position on the front centerline. When the first-aid person performs the first-aid operation of cardiopulmonary resuscitation for the person to be tested, the pressure and acceleration sensor 14 (24) can sense the change of the pressing speed applied by the first-aider to the test subject and the chest of the test subject itself. The pressure, which in turn transmits the sensing result to an external information display device, allows the first-aid person to more accurately grasp the physiological condition of the person to be tested. Since the electrocardiographic signal measuring device of the present invention has a power supply module built therein, and the first signal sensing module or the first signal sensing unit can be separated from the signal processing module, the first signal is The sensing module or the first signal sensing unit can be designed to be disposable for single use. Further, each time the electrocardiographic signal measuring device of the present invention is used, the user can use the brand new The first signal sensing module or the first signal sensing list s 13 112009 201244692 yuan can not only avoid the drawbacks of delaying emergency medical treatment due to insufficient power, but also meet the high medical requirements of medical standards. In summary, the present invention provides an electrocardiographic signal measuring device capable of quickly and easily measuring an electrophysiological signal of a living object, and thus, even if the user does not have the relevant knowledge of a medical professional, he or she can Implemented to fully meet the needs of emergency medical care and remote medical care. However, the above embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Any person skilled in the art can modify and modify the above-described embodiments without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present invention should be as set forth in the scope of the claims described later. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A is a schematic structural view of an electrocardiographic signal measuring device of the present invention; FIG. 1B is a schematic application of the electrophysiological signal measuring device of FIG. 1A, and FIG. 1C is FIG. 1A is a partial system architecture diagram of the electrophysiological signal measuring device of FIG. 1; FIG. 2A is another structural intention of the electrophysiological signal measuring device of the present invention, and FIG. 2B is a cardiac electrophysiological signal of FIG. 2A. The application diagram of the measuring device; and the 2C figure is another structure and application diagram of the electrocardiographic signal measuring device of the present invention. 14 112009 201244692 [Description of main component symbols] Bu 2, 2' ECG signal measuring device 11 ' 22 Signal processing module 111 ' 221 First signal port 112 Amplifying unit 113 Filter unit 114 Signal processing unit 115 Transmitting unit 116 Second signal connection port 12, 23 power supply module 13, 212 first signal sensing unit 14, 24 pressure and acceleration sensor 15 second signal sensing module 151 second signal sensing unit 152 connection unit 153 transmission Terminal 2 卜 21, first signal sensing module 211, 21 饶 magnetic substrate 211a signal output unit 213 vent hole 211b patch cable

S 15 112009S 15 112009

Claims (1)

201244692 七、申請專利範圍: 1. 一種心電生理訊號量測裝置,包含: 第一訊號感測模組,包括: 饒性基板,係具有訊號輸出單元;及 至少二個第一訊號感測單元,係用以貼附於生 物體以感測該生物體之心電生理訊號,並電性連接 該饒性基板之訊號輸出單元,以令該訊號輸出單元 輸出所感測之心電生理訊號; 訊號處理模組,係具有供該訊號輸出單元電性連接 之第一訊號連接埠,以藉由該第一訊號連接埠接收該訊 號輸出單元所輸出之心電生理訊號,其中,該訊號處理 模組係對該第一訊號連接埠所接收之心電生理訊號進 行校調處理,進而將經校調處理之心電生理訊號發送至 外部的資訊顯示裝置;以及 電源供應模組,係電性連接該訊號輸出單元,以提 供該心電生理訊號量測裝置所需之電源。 2. 如申請專利範圍第1項所述之心電生理訊號量測裝 置,復包含壓力及加速感測器,該壓力及加速感測器係 與該第一訊號感測模組或該訊號處理模組電性連接,用 以感測該生物體之腔體表面壓力以及施加於該生物體 之按壓速度變化,進而令該訊號處理模組將所感測到之 腔體表面壓力及按壓速度變化發送至外部的資訊顯示 裝置。 3. 如申請專利範圍第1項所述之心電生理訊號量測裝 1 112009縮項版 .201244692 置,其卜該第-訊號感測單元係包含導電接面以及為 貼勝體,該黏貼膠體係設置於該導電接面之周緣,以: 該第一訊號感測單元貼附於該生物體,而該導電接面係 用以感測出該生物體之心電生理訊號。 “ 4.如申睛專利範圍第1項所述之心電生理訊號量測裝 置,復包括第二訊號感測模組,而該訊號處理模組復^ 有第二訊號連接蟑,其中,該第二訊號感測模組係具備; 第二訊號感測單元,係用以貼附於該生物體以感測 該生物體之心電生理訊號;以及 連接單元,係與該第二訊號感測單元電性連接,且 具有用以與該第二訊號連接埠電性連接之傳輸端子,以 藉由該傳輸端子將該第二訊號感測單元感測到之心電 生理訊號傳輸至該訊號處理模組,俾供該訊號處理模組 一併進行所述之校調處理。 如申明專利範圍第4項所述之心電生理訊號量測裝 置/、中,該第二訊號感測單元係包含導電接面以及黏 貼膠體,該黏貼膠體係設置於該導電接面之周緣,以供 X弟一 號感測單元貼附於該生物體,而該導電接面係 用以感測出該生物體之心電生理訊號。 .如申叫專利範圍第1項所述之心電生理訊號量測裝 置,其中,該訊號處理模組係包含用以完成所述的校調 處理之放大單元、濾波單元、處理單元、以及用以將所 述的經杈調處理之心電生理訊號發送至外部的資訊顯 示裝置之發射單元。 2 112009縮項版 201244692 7. —種心電生理訊號量測裝置,包含: 至少二個第一訊號感測單元,係用以貼附於生物體 以感測該生物體之心電生理訊號; 訊號處理模組,係具有供該第一訊號感測單元電性 連接之第一訊號連接埠,以藉由該第一訊號連接埠接收 該第一訊號感測單元所感測之心電生理訊號,其中,該 訊號處理模組係對該第一訊號連接埠所接收之心電生 理訊號進行校調處理,以將經校調處理之心電生理訊號 發送至外部的資訊顯示裝置;以及 電源供應模組,係透過有線或無線之方式與該訊號 處理模組電性連接,以提供該心電生理訊號量測裝置所 需之電源。 8. 如申請專利範圍第7項所述之心電生理訊號量測裝 置,其中,該電源供應模組係為薄型電池。 9. 如申請專利範圍第7項所述之心電生理訊號量測裝 置,復包括第二訊號感測模組,而該訊號處理模組復具 有第二訊號連接埠,其中,該第二訊號感測模組係具備: 第二訊號感測單元,係用以貼附於該生物體以感測 該生物體之心電生理訊號;以及 連接單元,係與該第二訊號感測單元電性連接,且 具有用以與該第二訊號連接埠電性連接之傳輸端子,以 藉由該傳輸端子將該第二訊號感測單元感測到之心電 生理訊號傳輸至該訊號處理模組,俾供該訊號處理模組 一併進行所述之校調處理。 3 112009縮項版 .201244692 申明專利範圍弟9項所述之心電生理訊號量測裝 置,其中,該第二訊號感測單元係包含導電接面以及黏 貼膠體,該黏貼膠體係設置於該導電接面之周緣,以供 5亥第二訊號感測單元貼附於該生物體,而該導電接面係 用以感測出該生物體之心電生理訊號。 U.如申凊專利範圍第7項所述之心電生理訊號量測裝 置,其中,該訊號處理模組係包含用以完成所述之校調 處理之放大單元、濾波單元、處理單元、以及用以將所 述之經校調處理之心電生理訊號發送至外部的資訊顯 示裝置之發射單元。 12. 如申请專利範圍第7項所述之心電生理訊號量測裝 置,其中,該第一訊號感測單元係包含導電接面以及黏 貼膠體,該黏貼膠體係設置於該導電接面之周緣,以供 該第一訊號感測單元貼附於該生物體,而該導電接面係 用以感測出該生物體之心電生理訊號。 13. 如申睛專利範圍第7項所述之心電生理訊號量測裴 置,復包含壓力及加速感測器,該壓力及加速感測器係 與該第一訊號感測單元或該訊號處理模組電性連接,用 以感測該生物體之腔體表面壓力以及施加於該生物體 之按壓速度變化’進而令該訊號處理模組將感測到之腔 體表面壓力及按壓速度變化發送至外部的資訊顯示裝 置。 14. 如申請專利範圍第7項所述之心電生理訊號量測裝 置,復包含設置於該訊號處理模組之鎖固元件,該鎖固 4 112009縮項版 201244692 元件係用以固定已連接於該第一訊號連接埠並已調整 至特定的角度之第一訊號感測單元。 15.如申請專利範圍第14項所述之心電生理訊號量測裝 置,其中,該鎖固元件與該訊號處理模組係為一體成形 或分離設置。 5 112009縮項版201244692 VII. Patent application scope: 1. An electrocardiographic signal measuring device, comprising: a first signal sensing module, comprising: a magnetic substrate, having a signal output unit; and at least two first signal sensing units And a signal output unit for attaching to the living body to sense the electrophysiological signal of the living body, and electrically connecting the signal output unit of the magnetic substrate, so that the signal output unit outputs the sensed electrophysiological signal; The processing module has a first signal port for electrically connecting the signal output unit to receive the electrophysiological signal output by the signal output unit by the first signal port, wherein the signal processing module Performing a calibration process on the electrocardiographic signal received by the first signal port, and transmitting the ECG signal processed by the calibration to an external information display device; and a power supply module electrically connecting the A signal output unit for providing the power required by the electrophysiological signal measuring device. 2. The electrocardiographic signal measuring device according to claim 1 of the patent application, comprising a pressure and acceleration sensor, the pressure and acceleration sensor and the first signal sensing module or the signal processing The module is electrically connected to sense a surface pressure of the cavity of the living body and a change in a pressing speed applied to the living body, so that the signal processing module sends the sensed surface pressure and the pressing speed of the cavity to be sensed. Information display device to the outside. 3. For the electrocardiographic signal measurement device described in item 1 of the patent application, 1 112009 contraction version 201244692, the first signal-sensing unit comprises a conductive junction and a sticker body, the sticker The glue system is disposed on the periphery of the conductive joint to: the first signal sensing unit is attached to the living body, and the conductive joint is used to sense the electrophysiological signal of the living body. 4. The electrocardiographic signal measuring device according to item 1 of the scope of the patent application includes a second signal sensing module, and the signal processing module has a second signal connection port, wherein The second signal sensing module is configured to: the second signal sensing unit is configured to be attached to the living body to sense the electrophysiological signal of the living body; and the connecting unit is coupled to the second signal The unit is electrically connected, and has a transmission terminal for electrically connecting to the second signal, and the electrocardiographic signal sensed by the second signal sensing unit is transmitted to the signal processing by the transmission terminal The module is configured to perform the calibration process together with the signal processing module. The second signal sensing unit includes the electrocardiographic signal measuring device according to claim 4 of the patent scope. The conductive interface and the adhesive body are disposed on the periphery of the conductive joint for the X-ray sensing unit to be attached to the living body, and the conductive joint is used to sense the living body Heart electrophysiological signal. The electrocardiographic signal measuring device of the first aspect, wherein the signal processing module comprises an amplifying unit, a filtering unit, a processing unit, and the The electrocardiographic signal processed by the sputum is sent to the transmitting unit of the external information display device. 2 112009 Reduced version 201244692 7. The electrocardiographic signal measuring device comprises: at least two first signal sensing units, The signal processing module is configured to have a first signal port for electrically connecting the first signal sensing unit, by using the first a signal connection module receives the electrophysiological signal sensed by the first signal sensing unit, wherein the signal processing module performs calibration processing on the electrophysiological signal received by the first signal connection port to The electrocardiographic signal transmitted by the calibration is sent to an external information display device; and the power supply module is electrically connected to the signal processing module by wire or wirelessly to 8. The electrocardiographic signal measuring device of the electrocardiographic signal measuring device. 8. The electrocardiographic signal measuring device according to claim 7, wherein the power supply module is a thin battery. The electrophysiological signal measuring device of the seventh aspect includes a second signal sensing module, and the signal processing module has a second signal connection port, wherein the second signal sensing module is The second signal sensing unit is configured to be attached to the living body to sense the electrophysiological signal of the living body; and the connecting unit is electrically connected to the second signal sensing unit, and has a function And transmitting, by the transmission terminal, the electrocardiographic signal sensed by the second signal sensing unit to the signal processing module, and the signal processing is performed by the transmission terminal connected to the second signal The module performs the calibration process together. The invention relates to an electrocardiographic signal measuring device according to claim 9, wherein the second signal sensing unit comprises a conductive interface and an adhesive glue, and the adhesive system is disposed on the conductive The periphery of the junction is for the 5th second signal sensing unit to be attached to the living body, and the conductive interface is used to sense the electrophysiological signal of the living body. The electrocardiographic signal measuring device of claim 7, wherein the signal processing module comprises an amplifying unit, a filtering unit, a processing unit, and the like for performing the calibration process. The electrocardiographic signal for transmitting the calibration process to the transmitting unit of the external information display device. 12. The electrocardiographic signal measuring device according to claim 7, wherein the first signal sensing unit comprises a conductive interface and an adhesive glue, and the adhesive system is disposed on a periphery of the conductive surface. The first signal sensing unit is attached to the living body, and the conductive interface is used to sense the electrophysiological signal of the living body. 13. The electrophysiological signal measuring device according to claim 7 of the claim, comprising a pressure and acceleration sensor, the pressure and acceleration sensor and the first signal sensing unit or the signal The processing module is electrically connected to sense the surface pressure of the cavity of the living body and the change of the pressing speed applied to the living body, thereby causing the signal processing module to sense the surface pressure and the pressing speed of the cavity. Send to an external information display device. 14. The electrocardiographic signal measuring device according to claim 7 of the patent application, comprising a locking component disposed in the signal processing module, the locking 4 112009 contracted version 201244692 component is used for fixing the connected The first signal sensing unit is connected to the first signal and has been adjusted to a specific angle. 15. The electrocardiographic signal measuring device of claim 14, wherein the locking element is integrally formed or separated from the signal processing module. 5 112009 indented version
TW100116428A 2011-05-11 2011-05-11 Electrocardiogram signal measuring device TW201244692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100116428A TW201244692A (en) 2011-05-11 2011-05-11 Electrocardiogram signal measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100116428A TW201244692A (en) 2011-05-11 2011-05-11 Electrocardiogram signal measuring device

Publications (1)

Publication Number Publication Date
TW201244692A true TW201244692A (en) 2012-11-16

Family

ID=48094125

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116428A TW201244692A (en) 2011-05-11 2011-05-11 Electrocardiogram signal measuring device

Country Status (1)

Country Link
TW (1) TW201244692A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104700555A (en) * 2013-12-04 2015-06-10 吴川仕 Intelligent sensing device with warning function
TWI497456B (en) * 2013-12-02 2015-08-21 Chuan Shih Wu Intelligent sensing device with warning function
TWI502556B (en) * 2013-12-02 2015-10-01 Chuan Shih Wu Method of making a flexible sensing pad of an intelligent sensing device with warning function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI497456B (en) * 2013-12-02 2015-08-21 Chuan Shih Wu Intelligent sensing device with warning function
TWI502556B (en) * 2013-12-02 2015-10-01 Chuan Shih Wu Method of making a flexible sensing pad of an intelligent sensing device with warning function
CN104700555A (en) * 2013-12-04 2015-06-10 吴川仕 Intelligent sensing device with warning function
CN104700555B (en) * 2013-12-04 2017-04-05 秀育企业股份有限公司 The intelligent-induction device of tool alarm function

Similar Documents

Publication Publication Date Title
US11253159B2 (en) Tracking cardiac forces and arterial blood pressure using accelerometers
CN101536900B (en) Method and system for constructing modular medical instrument based on USB HUB
US20160338646A1 (en) Ultra-thin wearable sensing device
TWI533845B (en) Wireless electronic stethoscope
US7751872B2 (en) Portable electrocardiogram
US20140275817A1 (en) Portable, Pediatric Medical Diagnostic Device
JP6780828B2 (en) Systems and methods for performing electrocardiogram
CN107233108A (en) A kind of wearable sticker of acquisition volume message number
CN113274038B (en) Lip-shaped sensor device combining myoelectricity and pressure signals
WO2017166819A1 (en) Wearable 12-lead electrocardiograph
CN104970757A (en) Implantable wireless gastroenteric function detection system and usage method thereof
KR20220003170A (en) AUXILIARY ELECTROCARDIOGRAM (ECG) ASSEMBLIES AND CLINICAL DATA ACQUISITION SYSTEMS INCLUDING AUXILIARY ECG ASSEMBLIES
TW201244692A (en) Electrocardiogram signal measuring device
US8195279B2 (en) Portable electrocardiogram
Mahmud et al. An inexpensive and ultra-low power sensor node for wireless health monitoring system
WO2017177733A1 (en) Smart wristwatch for measuring multi-sign data
CN208551844U (en) A kind of wearable sticker acquiring body sound signal
CN211796425U (en) Device and system for synchronously monitoring dynamic body temperature and dynamic electrocardiogram
CN211300045U (en) Children type multifunctional medical stethoscope
WO2017215278A1 (en) Electrocardio monitoring stethoscope for multi-party consultation
KR102471204B1 (en) Head set appartus for detecting human signal
TWI311909B (en) Patch typed wireless apparatus for collecting physiological signals
CN110801242A (en) Children type multifunctional medical stethoscope
CN110584655A (en) Wearable electrocardiogram monitoring device
CN215272880U (en) Traditional chinese and western medicine combines intracardiac branch of academic or vocational study stethoscope