TW201238125A - Template electrode structures for depositing active materials - Google Patents

Template electrode structures for depositing active materials Download PDF

Info

Publication number
TW201238125A
TW201238125A TW100120247A TW100120247A TW201238125A TW 201238125 A TW201238125 A TW 201238125A TW 100120247 A TW100120247 A TW 100120247A TW 100120247 A TW100120247 A TW 100120247A TW 201238125 A TW201238125 A TW 201238125A
Authority
TW
Taiwan
Prior art keywords
layer
substrate
active material
template
electrode
Prior art date
Application number
TW100120247A
Other languages
Chinese (zh)
Other versions
TWI536640B (en
Inventor
Ghyrn E Loveness
William S Delhagen
Rainer Fasching
Song Han
Zu-Qin Liu
Original Assignee
Amprius Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/039,031 external-priority patent/US8257866B2/en
Application filed by Amprius Inc filed Critical Amprius Inc
Publication of TW201238125A publication Critical patent/TW201238125A/en
Application granted granted Critical
Publication of TWI536640B publication Critical patent/TWI536640B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.

Description

201238125 六、發明說明: 【先前技術】 人們對高容量之可再充電電池之需求係強烈的且每年變 得愈加強烈。許多應用(諸如,航空太空、醫療器件、攜 帶型電子設備及汽車應用)需要按重量及/或體積計為高容 量的電池。鋰離子電極技術在此領域中提供了一定程度的 改良。然而,迄今為止,链離子電池主要係由石墨製造, 其理論容量僅為372 mAh/g。 矽、鍺、錫及許多其他材料由於其高的電氣化學容量而 為具吸引力的活性材料。舉例而言,石夕之Li4.4Si相的對應 理論容量為約4200 mAh/g。然而,此等材料中之許多材料 尚未廣泛用於商業鋰離子電池中。一原因在於,此等材料 中的一些材料之體積在循環期間展現大的改變。舉例而 言,矽在充電至其理論容量時體積會增大多達400%。此 量值之體積改變可引起活性材料結構中的大應力,從而導 致破裂及粉碎、電極内之電連接及機械連接損失,以及容 量衰退。 習知電極包括用以將活性材料固持於基板上之聚合物黏 合劑。大多數聚合物黏合劑並非足夠有彈性的以適應一些 高容量材料之大的體積增大。結果,活性材料粒子傾向於 彼此分離且與集電器分離。總之,需要電池電極中之高容 量活性材料的改良之應用,其將上文所述之缺點減至最 〇 【發明内容】 156769.doc 201238125 提供電氣化學活性雷& & μ 用此等材料之電極,及 t極之方法的實例。電氣化學活性電極材料可包 括含有一金屬石夕化物之一高表面積模板,及沈積於該模板 =上的1容量活性材料層。該模板可充當用於該活性材 ;'、之機械支樓件,及/或在該活性材料與例如一基板之 間的-電導體。歸因於該模板之該高表面積,甚至該活性 材料之-薄層亦可提供足夠的活性材料負载及相應之每表 面積的電極容量。因而,該活性材料層之厚度可維持於其 破裂臨限值以下,以在電池循環期間保持其結構完整性。 该活性層之厚度及/或組合物亦可經特定輪廊化,以減小 在基板界面附近之體積增大且保留此界面連接。 在某些只轭例中,一種用於一鋰離子電池甲之電氣化學 活性電極材料包括:一奈求結構化模板,其含有一金屬矽 化物’及-電氣化學活性材料之一屠,其塗佈該奈米結構 化模板。該電氣化學活性材料經組態以在該鋰離子電池之 循環期間接納及釋放鋰離子。此外,該奈米結構化模板可 促進電流至及自該電氣化學活性材料之導電。一電氣化學 活性電極材料亦可包括形成於該電氣化學活性材料之該層 之上的一设層。s亥设層可包括碳、銅、聚合物、硫化物及/ 或金屬氧化物。 該奈米結構化模板中之一金屬矽化物的實例包括石夕化 錦、矽化鈷、矽化銅、矽化銀、矽化鉻、矽化鈦、妙化 紹、矽化辞及矽化鐵。在一特定實施例中,一金屬石夕化物 包括在NhSi、NiSi及NiSh當中之至少一不同的石夕化鎳 156769.doc 5 201238125 相。一電氣化學活性材料可為結晶矽、非晶矽、氧化矽、 氮氧化矽、含錫材料、含鍺材料及含碳材料。一電氣化學 活性材料可具有至少約500 mAh/g,或更特定言之至少約 1000 mAh/g之一理論鋰化容量。具有此等容量之活性材料 可被稱為「高容量活性材料」。在某些實施例中,一電氣 化學活性電極材料可用於製造一正電極。正電氣化學活性 材料之實例包括呈LiM_式之各種活性組份,m表示具 有平均氧化狀慼為3的一或多個離子。此等離子之實例包 括釩(V)、錳(Mn)、鐵(Fe)、鈷(c〇)及鎳(Ni”非活性組份 可呈Li2M’03形式’ Μ·表示具有平均氧化狀態為4的一或多 個離子。此等離子之實例包括猛(Mn)、欽㈤、錯㈣、 釕网、鍊㈣及翻(Pt)e其他正活性材料包括硫石夕酸 鋰鐵(U2FeSi〇4)、六價鐵鈉氧化物(NaJeOO。 '在某一實細例中’該電氣化學活性材料之一層經換雜以 增大5亥專活性材料之暮雷M .a , 亭电丨生。摻雜物之一些實例包括磷及/ 或硼。在某些實施例中’一奈米結構化模板包括含石夕化物 之奈米線。該等夺半綠夕且& τ 卡線之長度平均而言可介於約1微米與 200微米之間,及/忐甘古τ 戍八直役平均而言小於約100奈米。該 電氣化學活性材料之—層之厚度平均而言為至少約科 ^。在此等或其他實施例中,該活性材料對該模板之-質 量比為至少約5。 在特定貫施例中,續雷益、 電乳化學活性材料之一層包括非晶 梦。此層之厚度平均而可太s J ° 了為至少約20奈米。此外,一奈 米結構化模板包括石夕化錄+ ^ 裸*木線’其長度平均而言介於約 156769.doc 201238125 1微米與200微米之間且直徑平均而言小於約刚奈米。 亦提供一種用於一鐘離子番a 雕于電池中之鋰離子電極。在某些 實施例中,一鋪子電池電極包括m學㈣電_ 料,該電氣化學活性電極材料含有:一奈米結構化模板. 及一電氣化學活性材料之—#, 、, 層其塗佈該奈米結構化模 板。該㈣結構化模板可包括—金屬魏物^模板可促 進電流至及自該電氣化學活性材料之導f。該電氣化學活 性材料可經組態以在該鐘離子電池之循環期間接納及釋放 鋰離子。該電極亦可包括—集電器基板,該集電器基板與 該電氣化學活性電極材料電連通。該基板可包括該金屬石夕 化物之一金屬。 在某些實施例中,該電極之—奈米結構化模板包括根附 至該基板之奈米線n狀況下,該㈣結構化模板之 表面積對該基板之表面積的比率為至少約2〇。該基板可包 括基底子層,其實質上不含該金屬石夕化物之該金屬; 及頂#子層’其含有該金屬石夕化物之該金屬。該基板可 包括銅、鎳、鈥及/或不鏽鋼。一用於正電極之基板亦可 包括鋁。 違電氣化學活性電極材料可包括具有自由末端及根附在 基板上之末端的多個結構。此等多個結構中之每一者包括 一奈米結構化模板及電氣化學活性材料。在某些實施例 中°玄電氣化學活性材料塗佈(至少部分地)該等模板。該 舌丨生材料層沿著該模板之高度(例如,沿著一奈米線模板 之長度)可具有一變化之厚度及/或組合物。在一特定實施 156769.doc 5 201238125 例中,201238125 VI. Description of the Invention: [Prior Art] The demand for high-capacity rechargeable batteries is strong and is becoming stronger every year. Many applications, such as aerospace, medical devices, portable electronic devices, and automotive applications, require high capacity batteries by weight and/or volume. Lithium ion electrode technology provides a degree of improvement in this area. However, to date, the chain ion battery has been mainly made of graphite, and its theoretical capacity is only 372 mAh/g. Tantalum, niobium, tin and many other materials are attractive active materials due to their high electrical chemical capacity. For example, the corresponding theoretical capacity of the Li4.4Si phase of Shi Xizhi is about 4200 mAh/g. However, many of these materials have not been widely used in commercial lithium ion batteries. One reason is that the volume of some of these materials exhibits large changes during cycling. For example, the volume will increase by as much as 400% when charged to its theoretical capacity. This change in volume can cause large stresses in the structure of the active material, resulting in cracking and comminution, electrical and mechanical connection losses in the electrodes, and volume degradation. Conventional electrodes include polymeric binders for holding an active material on a substrate. Most polymer binders are not sufficiently flexible to accommodate the large volume increase of some high capacity materials. As a result, the active material particles tend to be separated from each other and separated from the current collector. In summary, there is a need for improved applications of high capacity active materials in battery electrodes that minimize the disadvantages described above. [Abstract] 156769.doc 201238125 Providing electrochemically active thunder && μ using such materials Examples of electrodes, and methods of t-poles. The electrochemically active electrode material can comprise a high surface area template comprising a metal lithium compound and a 1 volume active material layer deposited on the template. The template can serve as a mechanical support for the active material; and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding electrode capacity per surface area. Thus, the thickness of the active material layer can be maintained below its rupture threshold to maintain its structural integrity during battery cycling. The thickness and/or composition of the active layer may also be specifically wheeled to reduce the volume increase near the interface of the substrate and to preserve this interfacial connection. In some yoke examples, an electrochemically active electrode material for a lithium ion battery includes: a structural template, which contains a metal sulphate' and an electrochemically active material, which is coated. The nanostructured template. The electrochemically active material is configured to accept and release lithium ions during the cycle of the lithium ion battery. In addition, the nanostructured template promotes electrical conduction to and from the electrochemically active material. An electrochemistry active electrode material can also include a layer formed over the layer of the electrochemically active material. The s-layer may include carbon, copper, polymers, sulfides, and/or metal oxides. Examples of one of the metal ruthenium compounds in the nanostructured template include Shi Xihua Jin, cobalt telluride, copper telluride, silver telluride, chromium telluride, titanium telluride, miaohua Shao, Huahua and iron telluride. In a particular embodiment, a metal ruthenium compound comprises at least one different Nishi, nickel, and NiSh 156769.doc 5 201238125 phase. An electrochemically active material may be crystalline germanium, amorphous germanium, antimony oxide, antimony oxynitride, tin-containing material, antimony-containing material, and carbonaceous material. An electrochemistry active material can have a theoretical lithiation capacity of at least about 500 mAh/g, or more specifically at least about 1000 mAh/g. An active material having such a capacity may be referred to as a "high-capacity active material". In some embodiments, an electrochemically active electrode material can be used to make a positive electrode. Examples of positive electrochemical active materials include various active components in the form of LiM_, and m represents one or more ions having an average oxidized enthalpy of 3. Examples of the plasma include vanadium (V), manganese (Mn), iron (Fe), cobalt (c), and nickel (Ni) inactive components may be in the form of Li2M'03' Μ· indicating an average oxidation state of 4 One or more ions. Examples of such plasmas include argon (Mn), chin (five), er (tetra), ruthenium, chain (tetra), and other (Pt)e positive active materials including lithium iron sulphate (U2FeSi〇4). , hexavalent iron sodium oxide (NaJeOO. 'In a real case, 'one of the layers of the electrochemically active material is modified to increase the 5 hai special active material 暮雷 M.a, 亭电丨生. Some examples of inclusions include phosphorus and/or boron. In certain embodiments, a one-nanometer structured template includes a nanowire containing a ceramsite. The average length of the halved green & τ card lines It may be between about 1 micrometer and 200 micrometers, and / 忐 古 τ 戍 直 直 平均 average is less than about 100 nanometers on average. The thickness of the layer of the electrochemically active material is at least about In this or other embodiments, the active material has a mass to mass ratio of at least about 5. In a particular embodiment, continued benefit One layer of the electro-labile chemically active material includes an amorphous dream. The thickness of this layer is on average and may be at least about 20 nm for s J °. In addition, one nanometer structured template includes Shi Xihua Lu + ^ bare * wood line 'The length is on average between about 156769.doc 201238125 between 1 micron and 200 microns and the diameter is on average less than about just nanometer. A lithium ion electrode for one ion ion in a battery is also provided. In some embodiments, a plasma cell electrode includes a m-four (4) electro-chemical electrode material comprising: a nanostructured template. and an electro-chemically active material - #, ,, layer coating The nanostructured template. The (4) structured template may include a metal material template to promote current to and from the electrochemically active material. The electrochemically active material may be configured to be in the ion battery. The lithium ion is received and released during the cycle. The electrode may further include a current collector substrate electrically connected to the electrochemically active electrode material. The substrate may include one metal of the metal lithium. In an embodiment, the nanostructured template of the electrode comprises a nanowire n attached to the substrate, and the ratio of the surface area of the (4) structured template to the surface area of the substrate is at least about 2 Å. The substrate includes a substrate sub-layer that is substantially free of the metal of the metal cerium; and a top # sub-layer that contains the metal of the metal cerium. The substrate may comprise copper, nickel, niobium, and/or stainless steel. A substrate for a positive electrode may also comprise aluminum. The electro-chemically active electrode material may comprise a plurality of structures having free ends and ends attached to the substrate. Each of the plurality of structures comprises a nanometer. Structured Templates and Electrochemically Active Materials. In certain embodiments, the Xuan Electrochemical Active Materials coat (at least partially) the templates. The layer of tongue-forming material may have a varying thickness and/or composition along the height of the template (e.g., along the length of a nanowire template). In a specific implementation 156769.doc 5 201238125 example,

上之末端處可具有更多的石夕及更少之鍺。There can be more stone eves and fewer ridges at the end.

在該基板之一表面上形成含有一 一方法包括:接收一基板; 一金屬矽化物之一奈米結構 化模板;及在該奈米結構化模板上形成一電氣化學活性材 料之一層。該電氣化學活性材料經皴態以在該鋰離子電池 之循環期間接納及釋放鋰離子。該奈米結構化模板經组態 以促進電流至及自該電氣化學活性材料之導電。此外,該 模板對該電氣化學活性材料提供結構支撐,如丁文進—步 所述。 在某些實施例中,一方法亦包括在形成該金屬矽化物模 板之前處理該基板。此處理可涉及以下技術中之一戍多 者:氧化、退火、還原、粗糙化、濺鍍、蝕刻 '電鍍、反 電鍍、化學氣相沈積、氮化物形成,及沈積一中間子層。 一方法亦可包括在該基板之該表面上形成一金屬組件,使 得該金屬組件之一部分係在形成該金屬矽化物時消耗。 在某些實施例中,形成該奈米結構化模板包括使一含石夕 前驅體流動於該基板之該表面之上。一方法亦可包括摻雜 該等電氣化學活性材料。一方法亦可包括在該電氣化學活 性材料之該層之上形成一殼層。該殼層可包括以下材料中 156769.doc -8 - 201238125 或夕者.碳、銅、聚合物、硫化物、氣化物及金屬氧 化物。 ’ 某;“&amp;例中’該方法亦涉及在形成該電氣化學活性 • ; &lt;層之别’在該奈米結構化模板之上選擇性地沈積 ^ 广化材料。該純化材料可包括個別結構’該等個別結構 形成層且在此等結構中間具有離散間距。 :只細例中,形成該電氣化學活性材料之該層係在 大置輸送狀態(mass transp〇rt regime)下執行,使得與該 π米、。構化模板之自由末端處相比,—實質上較低濃度之 -活性材料前驅體在該基板之該表面處可用。該方法亦可 /ν及在形成δ亥電氣化學活性材料之該層的同時,改變活性 材料前驅體之該組合物。此可允許(例如)上文所述之漸變 鍺/矽奈米結構的產生。 下文將參看特定圖式進一步描述此等及其他特徵。 【實施方式】 奈米結構(且詳言之奈米線)係針對電池應用的令人激動 之新材料。已提出,高容量電極活性材料可部署為奈米結 _ 構,且在不犧牲電池效能之情況下使用❶甚至是(諸如)藉 _ 由矽所觀察到之在鋰化期間的較大之體積增大亦不會使奈 -米材料之結構完整性惡化(由於其小的大小)。換言之,與 習知電極形態相比,奈米結構擁有高的表面積對體積比/ 另外’高的表面積對體積比提供來自電解質之電氣化學活 性離子可直接接近的較大分率之活性材料。 本文參考奈米線描述各種實施例。然而,應理解,除非 156769.doc 201238125 另外規疋,否則本文對奈米線之參考意欲包括其他類型之 奈米結構,包括奈米管、奈米粒子、奈米球、奈米棒、奈 米彡I,及其類似者。一般而言,術語「奈米結構」指代具 有小於約1微米之至少一尺寸的結構。此尺寸可為(例如)奈 米結構(例如,矽化物模板奈米線)之直徑、形成於模板之 上之殼層的厚度(例如,非晶矽層之厚度),或某其他奈米 結構尺寸。應理解,最終經塗佈之結構之總尺寸(長度及 直仅)中之任者無需處於奈米尺度。舉例而言,最終結 構可包括奈米層,該奈米層之厚度為約500奈米且塗佈於 直徑為約100奈米且長度為2〇微米的模板之上。儘管此整 體結構之直;^為約微米且長度為2()微米,但由於模板 及活性材料層之尺寸,其可一般被稱為「奈米結構」。在 特定實施例中’術語「奈米線」指代具有位於伸長之模板 結構之上的奈米尺度殼層的結構。 奈米線(作為奈米結構之特定狀況)具有大於】、通常至 少約2且更常常至少約4之縱橫比。在特定實施例中,奈米 線具有至少約1G且甚至至少約i⑽之縱橫比。奈米線可使 用其-較大的尺寸來連接至其他電極組件(例如,導電基 板、其他活性材料結構或導電添 : 線可為根附—在基板上的,使得奈米線== ^之—末端(或某其他部分)與基板接觸。因為兩個4 =小的且存在可用於膨脹之鄰近空隙體積,所以: 化(例如’位於石夕化物模板之上之奈米殼層的 二在 奈米線中所積累的内邱雍 4 4在 内應力亦為小的且不會如在較大結構 156769.doc 201238125 情況下發生一般***奈米線。換言之,奈米線之某些尺寸 (例如’總直徑及/或殼層厚度)保持於所使用之活性材料的 相應破裂等級以下。奈米線歸因於其伸長之結構(其對應 於模板結構之高度)亦准許電極表面之每單位面積的高容 I。此係由其相對高之縱橫比及至基板之端子連接引起。 沈積含有高容量材料之奈米結構可為需要昂貴材料(諸 如,用於蒸汽·液體-固體(VLS)沈積製程中之金催化劑)的 緩k製程。使用此等製程所產生之電池電極針對某些消費 型應用(諸如,攜帶型電子設備及電載具)可為成本極高 的。此外’ VLS沈積通常產生比非晶結構硬質之結晶結 構,且因此,更易裂開及粉碎。最終,VLS沈積之結構的 基板連接歸因於兩種不同材料(例如,金屬基板及高容量 活丨生材料)之相異界面而可為脆弱的,該兩種材料中之一 者經歷大的體積增大,而另一者保持原樣。在不限於任何 特定理論之情況下,據信,&amp;等現象可破壞自此等電極所 建置之電池的猶環效能。 已發現,一些金屬矽化物奈米結構可在不使用催化劑的 情況下直接形成於某些基板上。石夕化物結構可形成於含有 金屬的表面上,從而構成金屬石夕化物。含金屬之基板表面 :以各種形式提供,諸如基底子層(例如,绪)或位於基底 市電盗之上的單獨子層(例如,形成於不錄鋼或銅箱之表 :上的薄錄層)。在一些實例中’在石夕化物結構之形成之 :處理含金屬之表面,以便促進矽化物形成製程。舉例而 a,可在形成矽化鎳奈米結構之前氧化具有含鎳之表面的 156769.doc 201238125 表面。如下文進一步解釋,此氧化產生用於矽化鎳形成之 長卵點。總之,已發現,氧化允許在模板形成期間之較寬 的處理窗。 ,矽=物奈米結構可充當稍後塗佈有高容量活性材料從而 φ成複合」電極的高表面積模板。出於此文件之目的, &amp;「模板」一般包括用於支撐電池電極中之活性材料的奈米 結構之集合。模板可提供對活性材料之機 性材料相對於(例如)導電基板之電連通兩者。在某=施 7中’模板配置為鄰近於基板之層且其特徵可為其高度或 厚度。此配置可被稱為「模板層」,其應與其他類型之層 (「諸如’活性材料層)區別。在下文之描述中進-步指出此 在-些但非所有實施例中,可呈現鄰近基板。在某 例中,塗佈有活性材料之模板可直接連接至電池之 ;=:(除了導電基板以外),諸如電導線及電池端 一此膏二Γ“列中’模板可包括一般延伸遠離基板且在 一些貫施例中在實質卜j円 單厚Ml 延伸㈣化物奈米線的 早-層。此柄板之高度將一般對應於奈米 然而,應理解,其他矽化物社 A長度 多層石夕化物模板^ 物-構配置亦為可能的⑷如, 「模板結構」-般指代係模板之一 些模板結構包括石夕化物材料,而同— ^構一 包括其他材料(例如,導電 、之些結構可 至少-奈米尺度之尺寸(例: 常’模板結構具有 構可被稱為模板奈0構^模板結 丨、、,’σ稱。在—此眚故丄 二貝施例中,模板奈米結 156769.doc •12- 201238125 構可塑形為具有根附在基板上之末端(或其他部分)的奈米 線,該等奈米線與基板形成整體結構◊換言之,其可铲不 具有與石夕化物奈米線所附著至之基板表面的清楚界定= 態邊界或界面。結果’(例如)與VLS沈積之結構相比,根 附在基板上之奈米線可具有至基板之優良機械黏著及低的 電接觸電阻。此外,許多石夕化物係良好之電導體,且可在 沈積於石夕化物奈米線周圍之活性材料與(例如)集電基板之 間提供高導電路徑。 金屬妙化物亦可充當活性材料自身且經受鐘化。然而, 矽化物一般具有遠低於(例如)矽或錫之容量。因此,矽化 物模板可比較少地有助於電極之總容量。當與存在石夕化物 材料相比存在實質上更多之活性材料時,此貢獻可為特別 小的。舉例而言,直徑僅為約10奈米之石夕化物奈米線可用 以沈積厚度為至少約100奈米,或更特定言之厚度介於約 300奈米與5G0奈米之間的活性層。在此實例中,活性材料 體積對石夕化物體積之比率為至少約4〇〇。因此,此複合電 極可在實質上不鐘化石夕化物模板之情況下使用。最低程度 地鐘化或實質上不鐘化石夕化物結構幫助保持其作為模板之 元整性及其至基板之連接的完整性。此等特性產生電極内 之強且穩固之機械及電連接,及結果,在大量循環内之穩 定的猶環效能。諸如具有較厚基底之錐形石夕化物結構及具 有較厚自由末端之錐形(或蕈形)活性材料層的各種其他特 徵可用以幫助維持此等連接。此等特徵通常聚焦於使用各 種技術減小在基板界面附近的體積增大。Forming on one surface of the substrate includes a method comprising: receiving a substrate; a metal hydride crystallization template; and forming a layer of an electrochemically active material on the nanostructured template. The electrochemically active material is in a state of enthalpy to accept and release lithium ions during the cycle of the lithium ion battery. The nanostructured template is configured to facilitate electrical conduction to and from the electrochemically active material. In addition, the template provides structural support to the electrochemically active material, as described in Ding Wenjin. In some embodiments, a method also includes processing the substrate prior to forming the metal halide template. This treatment may involve one of the following techniques: oxidation, annealing, reduction, roughening, sputtering, etching, electroplating, reverse plating, chemical vapor deposition, nitride formation, and deposition of an intermediate sub-layer. A method can also include forming a metal component on the surface of the substrate such that a portion of the metal component is consumed in forming the metal telluride. In some embodiments, forming the nanostructured template comprises flowing a zephyr precursor onto the surface of the substrate. A method can also include doping the electrochemically active materials. A method can also include forming a shell over the layer of the electrochemically active material. The shell layer may comprise 156769.doc -8 - 201238125 or the following materials: carbon, copper, polymers, sulfides, vapors, and metal oxides. ' </ br> <RTIgt; &amp; </ RTI> <RTIgt; </ RTI> the method also involves selectively depositing a broadened material over the nanostructured template in forming the electrochemical activity; &lt; The individual structures 'these individual structures form a layer and have discrete spacings between the structures. In a particular example, the layer forming the electrochemically active material is performed under mass transport conditions (mass transp〇 regime), The active material precursor is available at the surface of the substrate at a substantially lower concentration than the free end of the π meter. The method can also be used to form δHake. Simultaneously with the layer of the chemically active material, the composition of the active material precursor is altered. This may allow, for example, the generation of the gradual 锗/矽 nanostructure described above. These will be further described below with reference to specific figures. And other features. [Embodiment] The nanostructure (and in detail the nanowire) is an exciting new material for battery applications. It has been proposed that high-capacity electrode active materials can be deployed as nanostructures. And the use of ruthenium without sacrificing battery performance, even if it is observed, such as by 矽, that the larger volume increase during lithiation does not deteriorate the structural integrity of the nano-meter material (due to Its small size. In other words, the nanostructure has a high surface area to volume ratio / another 'high surface area to volume ratio provides a large fraction of the electrochemically active ions from the electrolyte that are directly accessible compared to conventional electrode configurations. Active Materials. Various embodiments are described herein with reference to nanowires. However, it should be understood that the reference to nanowires herein is intended to include other types of nanostructures, including nanotubes, unless 156769.doc 201238125 is otherwise regulated. Nanoparticles, nanospheres, nanorods, nanosheets I, and the like. In general, the term "nanostructure" refers to a structure having at least one dimension of less than about 1 micron. This size can be, for example, the diameter of a nanostructure (eg, a telluride template nanowire), the thickness of a shell formed over the template (eg, the thickness of an amorphous layer), or some other nanostructure size. It should be understood that any of the overall dimensions (length and straightness) of the final coated structure need not be on the nanometer scale. For example, the final structure can include a nanolayer having a thickness of about 500 nanometers and coated over a template having a diameter of about 100 nanometers and a length of 2 micrometers. Although the overall structure is straight; about a micrometer and a length of 2 () micrometers, it can be generally referred to as a "nanostructure" due to the size of the template and active material layer. In a particular embodiment, the term "nanowire" refers to a structure having a nanoscale shell layer over an elongated template structure. The nanowires (as a particular condition of the nanostructure) have an aspect ratio greater than, typically at least about 2 and more often at least about 4. In a particular embodiment, the nanowires have an aspect ratio of at least about 1 G and even at least about i (10). The nanowire can be connected to other electrode components using its larger size (eg, conductive substrate, other active material structure, or conductive additive: the wire can be root attached - on the substrate such that the nanowire == ^ - the end (or some other part) is in contact with the substrate. Because the two 4 = small and there is a volume of adjacent voids that can be used for expansion, so: (for example, 'the second layer of the nanoshell above the template The internal stress accumulated in the nanowire is also small and does not occur as in the case of larger structures 156769.doc 201238125. In other words, some dimensions of the nanowire ( For example, 'total diameter and/or shell thickness) is maintained below the corresponding fracture level of the active material used. The nanowire is also attributed to its elongated structure (which corresponds to the height of the stencil structure) per unit of electrode surface. The high volume I of the area is caused by its relatively high aspect ratio and terminal connection to the substrate. Deposition of nanostructures containing high capacity materials can require expensive materials (such as for vapor·liquid-solid (VLS)) The slow-k process of the gold catalyst in the process. The battery electrodes produced using these processes can be extremely costly for certain consumer applications, such as portable electronic devices and electrical carriers. In addition, 'VLS deposition It generally produces a crystalline structure that is harder than an amorphous structure and, therefore, is more susceptible to cracking and pulverization. Finally, the substrate connection of the VLS deposited structure is attributed to two different materials (eg, metal substrates and high-capacity living twin materials). A dissimilar interface can be fragile, one of the two materials undergoes a large volume increase while the other remains intact. Without being limited to any particular theory, it is believed that &amp; The hysteresis effectiveness of the cells built from these electrodes. It has been found that some metal telluride nanostructures can be formed directly on certain substrates without the use of a catalyst. The structure can be formed on metals. On the surface, thereby forming a metal ceramsite. The surface of the metal-containing substrate: provided in various forms, such as a sub-layer of the substrate (for example, Xu) or on the base electric thief. A sub-layer (for example, a thin layer formed on a surface of a non-recorded steel or copper box). In some instances, 'in the formation of a lithi structure: treating a metal-containing surface to facilitate the telluride formation process. For example, a, 156769.doc 201238125 surface having a nickel-containing surface can be oxidized prior to formation of the nickel-deposited nickel nanostructure. As explained further below, this oxidation produces long egg spots for the formation of nickel telluride. In summary, it has been found that oxidation Allows for a wider processing window during template formation. The 矽 = nanostructure can act as a high surface area template that is later coated with a high capacity active material to φ into a composite electrode. For the purposes of this document, &amp; A "template" generally includes a collection of nanostructures for supporting an active material in a battery electrode. The template can provide both electrical communication of a functional material of the active material relative to, for example, a conductive substrate. The template is disposed adjacent to the substrate and may be characterized by its height or thickness. This configuration may be referred to as a "template layer" which should be distinguished from other types of layers ("such as 'active material layer"). It is further pointed out in the following description that this may be present in some but not all embodiments Adjacent to the substrate. In one case, the template coated with the active material can be directly connected to the battery; =: (except for the conductive substrate), such as the electrical wire and the battery end, the paste "column" template can include general Extending away from the substrate and in some embodiments, the early-layer of the (4) nanowire is extended in a substantial thickness of M1. The height of the shank will generally correspond to the nanometer. However, it should be understood that other 矽 社 A length multi-layer lithographic template configuration is also possible (4) eg, "template structure" - generic reference template Some templating structures include lithographic materials, and the same structure includes other materials (for example, conductive, some of which may be at least the size of the nanometer scale (eg: often 'template structure has a structure can be called template nai 0 The structure of the template is 丨, ,, 'σ 称. In the case of the 丄 丄 丄 贝 , 模板 模板 模板 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 156 Partial) of the nanowires, the nanowires forming a unitary structure with the substrate, in other words, the shovel does not have a clearly defined boundary or interface with the surface of the substrate to which the iridium nanowires are attached. Results '( For example, the nanowire attached to the substrate can have excellent mechanical adhesion to the substrate and low electrical contact resistance compared to the VLS deposited structure. In addition, many of the electrical conductors are good electrical conductors and can be deposited. Shi Xihuana A highly conductive path is provided between the active material surrounding the wire and, for example, the collector substrate. The metal compound can also act as the active material itself and undergo a clocking. However, the telluride generally has a much lower capacity than, for example, tantalum or tin. Thus, the telluride template can contribute less to the total capacity of the electrode. This contribution can be particularly small when there is substantially more active material than the presence of the ascetic material. For example, diameter Only about 10 nanometers of the nanowire can be used to deposit an active layer having a thickness of at least about 100 nanometers, or more specifically between about 300 nanometers and 5 nanometers. In this example The ratio of the volume of the active material to the volume of the ceramsite is at least about 4. Therefore, the composite electrode can be used without substantially igniting the lithographic template. The structure helps maintain its integrity as a template and its integrity to the substrate. These properties produce strong and robust mechanical and electrical connections within the electrode, and as a result, in a large number of cycles Stable Eucalyptus Efficacy. Various other features such as a tapered stellite structure with a thicker substrate and a tapered (or 蕈-shaped) active material layer with a thicker free end can be used to help maintain these connections. It is often focused on using various techniques to reduce the volume increase near the interface of the substrate.

S 156769.doc 201238125 纟有奈米線之梦化物模板具有可用於支樓活性材料之大 的表面積。在某些實施例中,用作模板之奈米線的直徑介 於約10奈米與1〇〇奈米之間且晷由人# π 丁間且長度介於約10微米與100微米 之間。該等奈米線可為密集間隔的。緊密間隔之模板結構 可共用共同的塗佈殼層,從而有效地形成多核單殼配置。 在此等狀況下,模板生長密度未必對應於經塗佈之奈米結 構的密度。在某些實施例中,模板結構之間的間距可甚至 小於塗層厚度,藉此引起活性材料層的顯著互連。此等互 連在基底附近為特別突出的,從而產生聚結或連續薄膜狀 結構,此妨礙良好的循環效能。—般而言,需要避免奈米 線聚結,其有時被稱為「群聚」或「套筒狀加…邮」 聚集’參看圖2Β進一步描述。 常常,模板具有為大於典型基板之數量級的數量級之表 面積。模板可塗佈有活性材料之薄層,且藉此,提供具有&amp; 大的可逆能量密度之電極。應注意,活性材料層未必需要 在整個模板之上且在—些實施例中在基板之上延伸的連續 層。在-些實施例中,活性材料層為位於石夕化物結構之: j活性材料殼層的集合。此等殼層中之一些殼層可(例如) 錯由在基板界面處提供鈍化材料而在基板表面處為分開 的。下文描述活性材料層之各種實例。活性材料層之厚产 一般係藉由所使用之活性材料的特性來判定,且二般:二 於針對特定活性材料之破裂限制以下。 又’'、 塗佈於模板之上之活性層的厚度應與電池電極之厚度區 別。活性層之厚度一般為奈米尺度的,❿電池電極之厚度 156769.doc 201238125 -般至少對應於模板之高度且可為幾十㈣。應注意,模 板結構(例如,石夕化物奈米線)通常並非完全垂直的。因 此,模板高度可猶微小於此等結構之長度。一般而言,導 電基板亦有㈣電極之厚度。在—實例中,沈積於崎米 長的奈米線(直徑為Η)奈米且間隔開5叫米)之上的⑽夺 米厚之石夕層可提供比得上實質上較厚之習知石墨負電極之 能量密度的能量密度。因而,可使用此等活性材料結構及 電極來建構具有改良之重量及體積容量特性的電氣化學電 池。 旦形成杈板,則可以相對快速之方式且在無需昂貴催 化劑之情況下在此模板之上沈積活性材料作為一層。此 外,某些所沈積之活性材料可採取—些更合乎需要之形態 形式。舉例而言,在矽化鎳奈米線之上的無催化劑沈積產 生非晶矽,而使用VLS自金催化劑島狀物生長矽奈米線產 生結晶矽。在不限於任何特定理論之情況下,據信,非晶 矽結構具有較少且較弱之原子鍵,此允許此等結構在曝露 至在重複之鋰化/去鋰化循環期間所遇到之應力時比更硬 質之結晶結構更好地保持其完整性。又,用以形成活性材 料層之沈積技術可經特定調節以控制活性材料沿著模板高 度之分佈(例如,在活性材料結構之自由末端附近比在基 底附近沈積更多的活性材料),且控制所沈積之材料之其 他特性(諸如,組合物 '孔隙率及其他特性)。 此外’已提出各種技術來保護奈米線與導電基板之間的 電連接。在一類別之技術中’完成奈米線之結構具有「上S 156769.doc 201238125 The nano-line dream template has a large surface area that can be used for the active material of the branch. In certain embodiments, the diameter of the nanowire used as a template is between about 10 nanometers and 1 nanometer and between #10πι and between about 10 microns and 100 microns in length. . The nanowires can be closely spaced. The closely spaced template structures share a common coating shell to effectively form a multi-core, single-shell configuration. Under these conditions, the template growth density does not necessarily correspond to the density of the coated nanostructure. In some embodiments, the spacing between the template structures can be even less than the thickness of the coating, thereby causing significant interconnection of the active material layers. These interconnections are particularly prominent near the substrate, resulting in a coalesced or continuous film-like structure which interferes with good cycle performance. In general, it is necessary to avoid nanowire coalescence, which is sometimes referred to as "clustering" or "sleeve-like addition". The aggregation is further described with reference to Figure 2A. Often, the stencil has a surface area that is orders of magnitude greater than the order of a typical substrate. The template can be coated with a thin layer of active material and, thereby, an electrode having a &amp; large reversible energy density. It should be noted that the active material layer does not necessarily require a continuous layer extending over the entire stencil and in some embodiments over the substrate. In some embodiments, the active material layer is located in the structure of the lithium compound: a collection of j active material shell layers. Some of these shell layers may, for example, be separated by providing a passivating material at the substrate interface and at the substrate surface. Various examples of active material layers are described below. The thick production of the active material layer is generally determined by the characteristics of the active material used, and is generally: two below the crack limit for a particular active material. Further, the thickness of the active layer applied to the template should be different from the thickness of the battery electrode. The thickness of the active layer is generally on the nanometer scale, and the thickness of the tantalum battery electrode is 156769.doc 201238125 - generally at least corresponds to the height of the template and may be several tens (four). It should be noted that the template structure (e.g., the Shihua compound nanowire) is generally not completely vertical. Therefore, the height of the template can be as small as the length of the structure. In general, the conductive substrate also has (iv) the thickness of the electrode. In the example, the (10) layer of the thickness of the rice layer deposited on the long rice line (diameter Η) and spaced apart by 5 meters can provide a substantially thicker comparison. The energy density of the energy density of the graphite negative electrode. Thus, such active material structures and electrodes can be used to construct electrochemical cells having improved weight and volumetric capacity characteristics. Once the ruthenium is formed, the active material can be deposited as a layer on top of the stencil in a relatively rapid manner and without the need for expensive catalysts. In addition, some of the deposited active materials may take some of the more desirable forms. For example, a non-catalytic deposition over the deuterated nickel nanowire produces amorphous germanium, while the VLS is used to grow the germanium wire from the gold catalyst island to produce crystalline germanium. Without being limited to any particular theory, it is believed that the amorphous germanium structure has fewer and weaker atomic bonds, which allows such structures to be encountered during exposure to repeated lithiation/delithiation cycles. Stress maintains its integrity better than a harder crystalline structure. Also, the deposition technique used to form the active material layer can be specifically adjusted to control the distribution of the active material along the height of the template (eg, depositing more active material near the free end of the active material structure than near the substrate) and controlling Other characteristics of the deposited material (such as the composition 'porosity and other characteristics'). Further, various techniques have been proposed to protect the electrical connection between the nanowire and the conductive substrate. In a category of technology, the structure of the finished nanowire has "on

S 156769.doc 201238125 重」(top heavy)形狀’其中奈米線之附著區域(奈米線接近 且接觸基板之區域)與奈米線之遠端區域相比相對較薄。 一般而言,遠端區域與附著區域相比將具有實質上更多的 活性材料。在另一類別之技術中,模板奈米線之間距受到 控制’使得個別線在其至基板之附著中相對均勻地間隔。 在特定實施例中,一機構用以防止模板奈米線在其附著區 域處在彼此附近群聚。在又一類別中,某些「鈍化」技術 及/或材料用以最小化在基板界面處的機械變形及應力, 其一般由活性材料之體積增大及收縮引起。 上重形狀之一些實例包括具有自根附在基板上之末端至 自由末i而逐漸及連續增大之橫截面尺寸(例如,直徑)(類似 於圖3B中所示之尺寸)的形狀。在其他實施例中,橫截面 尺寸可逐漸地但非連續地增大。其他實例包括突然但連續 地增大其橫截面尺寸的形狀。此外,其他實例包括突然且 非連續地增大其橫截面尺寸的形狀。整體形狀輪廓可藉由 活性材料層之厚度、模板結構之橫截面尺寸,或此等兩個 參數之組合來驅策(dri吟舉例而言,模板結構可具有寬 於自由末端之基底,而活性材料塗層之分佈可使得整體電 極結構具有寬於基底之自由末端。 說明根據某些實施例之製造含有 兩谷置活性材料之電氣化學活性f極的程序該程 可以接收基板(操们〇2)開始。可將基板材·供為^ ^ 作中之-或多者中所使用的處理裝置中之捲筒 薄片或任何其他m常,基板係由可充#電極华電 156769.docS 156769.doc 201238125 "top heavy shape" wherein the attachment area of the nanowire (the area where the nanowire is close to and in contact with the substrate) is relatively thin compared to the distal end region of the nanowire. In general, the distal region will have substantially more active material than the attachment region. In another class of techniques, the spacing of the template nanowires is controlled&apos; such that the individual lines are relatively evenly spaced in their attachment to the substrate. In a particular embodiment, a mechanism is used to prevent the template nanowires from clustering near each other at their attachment regions. In yet another class, certain "passivation" techniques and/or materials are used to minimize mechanical deformation and stress at the interface of the substrate, which is generally caused by increased volume and shrinkage of the active material. Some examples of the upper weight shape include a shape having a cross-sectional dimension (e.g., diameter) (similar to the size shown in Fig. 3B) which gradually and continuously increases from the end of the substrate attached to the substrate to the free end i. In other embodiments, the cross-sectional dimension may increase gradually but non-continuously. Other examples include shapes that suddenly and continuously increase their cross-sectional dimensions. Further, other examples include shapes that suddenly and non-continuously increase their cross-sectional dimensions. The overall shape profile can be driven by the thickness of the active material layer, the cross-sectional dimension of the template structure, or a combination of these two parameters (for example, the template structure can have a substrate that is wider than the free end, and the active material The distribution of the coating may be such that the overall electrode structure has a wider free end than the substrate. A procedure for fabricating an electrochemically active f-pole containing two active materials in accordance with certain embodiments can be used to receive the substrate (Operator 2) Initially, the base plate can be supplied as a roll sheet or any other m in the processing device used in the middle or more, and the substrate is made up of a rechargeable electrode #156769.doc

S -16- 201238125 之材料製成,但狀況無需如此(如下文所解釋)^合適之裝 置的實例包括化學氣相沈積(CVD)裝置(例如,熱CVD或電 漿增強型CVD裝置)、物理氣相沈積(pVD)裝置,及適於執 行下文所述之操作的其他裝置。在某些實施例中,所述程 序之一或多個操作係執行於在以下案中所述之垂直沈積裝 置中:Mosso等人在2009年12月14日申請之題為 「Apparatus for Deposition on Two Sides of the Web」的美 國專利申請案第12/637,727號,該案之全部内容出於描述 垂直沈積裝置之目的以引用的方式併入本文中。 基板通常為電極之一部分(例如,集電器基板)。然而, 其亦可用作在製造期間支撐模板及活性材料及/或在電極 製造期間支撐材料源(例如,在金屬矽化物沈積操作中之 金屬源)的暫時載體,且接著在模板電連接至電池之集電 器組件時被移除。若基板成為電極之一部分,則其可一般 包括適用於此電極中之材料(自機械、電氣及電氣化心 點而言)。實例包括連續猪薄片、穿孔薄片、膨脹金屬, 及發泡體。 在某些實施例中’基板包括含金屬之材料,該金屬被消 耗以形成金屬矽化物奈米結構。下文提供合適之含金屬之 材料的實例。含金屬之材料可支撐於基底基板子層上,基 底基板子層充當對模板及活性材料之機械支撐件。另外或 替代地,基底基板子層可充當在耗物奈米結構(且在較 少程度上,活性材料)與電池電端子之間的電流導體。 各種中間子層可提供於基底材料與金屬源中間。舉例而S -16- 201238125 made of material, but this need not be the case (as explained below). Examples of suitable devices include chemical vapor deposition (CVD) devices (eg, thermal CVD or plasma enhanced CVD devices), physics. A vapor phase deposition (pVD) device, and other devices suitable for performing the operations described below. In some embodiments, one or more of the procedures are performed in a vertical deposition apparatus as described in the following: Mosso et al., filed on December 14, 2009, entitled "Apparatus for Deposition on U.S. Patent Application Serial No. 12/637,727, the entire disclosure of which is incorporated herein by reference in its entirety for the entire disclosure of the entire disclosure. The substrate is typically a portion of an electrode (eg, a current collector substrate). However, it can also be used as a temporary carrier to support the template and active material during fabrication and/or to support a source of material during electrode fabrication (eg, a metal source in a metal telluride deposition operation), and then electrically connect to the template The collector assembly of the battery was removed. If the substrate becomes part of the electrode, it can generally comprise materials suitable for use in the electrode (from mechanical, electrical and electrification points). Examples include continuous pork flakes, perforated flakes, expanded metal, and foams. In some embodiments the substrate comprises a metal-containing material that is consumed to form a metal telluride nanostructure. Examples of suitable metal-containing materials are provided below. The metal-containing material can be supported on the base substrate sub-layer, and the base substrate sub-layer acts as a mechanical support for the template and the active material. Additionally or alternatively, the base substrate sub-layer can act as a current conductor between the consumable nanostructure (and, to a lesser extent, the active material) and the battery electrical terminals. Various intermediate sub-layers may be provided between the substrate material and the metal source. For example

S 156769.doc -17· 201238125 言’含有銅及/或鎳之子層可沈積於基底子層與金屬源子 層之間’以改良稍後形成之模板至基底子層的冶金及電子 連接。在一特定實施例中,含有導電材料(例如,不鏽鋼) 之基底子層塗佈有薄的銅子層,繼之以較厚的鎳子層(例 如,在約10奈米與3微米之間)β鎳子層接著用以形成矽化 錄模板’而銅子層充當黏著及導電中間物。 在某些實施例中,相同材料充當集電基底材料及矽化物 模板之金屬源兩者。可用作基底材料及矽化物之金屬源兩 者的材料之實例包括鎳、銅及鈦,其皆可提供為箔、穿孔 薄片、膨脹金屬、發泡體及其類似者。在其他實施例中, 基板含有形成相異子層或其他結構(例如,塗佈有薄鎳^ 之銅基底箔)的兩種材料。在一些狀況下,金屬源材料七 為離散小滴、粒子,或遍及基底材料所分佈之規則圖案市 存在。通常(但未必),用以形成矽化物之含金屬之材料仿 於基底材料表面上,使得其在處理期間直接曝露至處理拜 兄(例如,含矽刖驅體氣體)。一般而言,該兩種材料在同 一結構内之分佈可為均勻的(在極端狀況下之合金或化合 物)’或非均勻的(例如,逐漸分佈,其中更多金屬源材料 集中於表面附近)。 基底材料之實例包括鋼、塗佈有金屬氧化物之銅、不鏽 鋼欽I呂、錄、絡、鹤、金屬氮化物、金屬石炭化物、 石厌、石反纖维、石墨、石墨薄膜、碳網格、導電聚合物,或 2上各者(包括多層結構)的組合◊基底材料可形成為箔、 溥膜'網格、發泡體、層板、線、管、粒子、多層結構, 156769.doc • J8·S 156769.doc -17· 201238125 The sub-layer containing copper and/or nickel may be deposited between the sub-layer of the substrate and the metal source sub-layer to improve the metallurgical and electronic connection of the later formed template to the sub-layer of the substrate. In a particular embodiment, a sub-sublayer containing a conductive material (eg, stainless steel) is coated with a thin copper sub-layer followed by a thicker nickel sub-layer (eg, between about 10 nm and 3 microns) The beta nickel sublayer is then used to form the deuterated template and the copper sublayer acts as an adhesion and conductive intermediate. In some embodiments, the same material acts as both a collector substrate material and a metal source for the vapor template. Examples of materials which can be used as the base material and the metal source of the telluride include nickel, copper and titanium, all of which can be provided as foils, perforated sheets, expanded metals, foams and the like. In other embodiments, the substrate contains two materials that form a hetero-sublayer or other structure (e.g., a copper base foil coated with a thin nickel). In some cases, the metal source material 7 is a discrete droplet, a particle, or a regular pattern distributed throughout the substrate material. Typically (but not necessarily), the metal-containing material used to form the telluride is applied to the surface of the substrate material such that it is directly exposed to the treatment process (e.g., the ruthenium-containing gas) during processing. In general, the distribution of the two materials within the same structure can be uniform (in an extreme case alloy or compound) 'or non-uniform (eg, gradually distributed, where more metal source material is concentrated near the surface) . Examples of the base material include steel, copper coated with metal oxide, stainless steel Qin Ilu, recorded, complex, crane, metal nitride, metal carbide, stone, stone, fiber, graphite, graphite film, carbon mesh The composite substrate of the grid, the conductive polymer, or the two (including the multilayer structure) can be formed into a foil, a tantalum film, a foam, a laminate, a wire, a tube, a particle, a multilayer structure, 156,769. Doc • J8·

S 201238125 或任何其他合適之組態。在某此 =*霄粑例令,基底材料為厚 :“…微米與50微米之間,或更特定言之介於約5微米 與3 0微米之間的金屬箔。 /、 含:屬之源材料的實例包括錦、銘、銅、銀、鉻、鈦' 鋁、錫’及其組合。-些合金之實例包括鎳/ 錄/鶴、錄/鉻、_、錄/鐵、錄/欽及義。如所提 及,在某些實施射,含金屬之源材料在基底材料之頂部 :成源子層。此源子層之厚度可為至少約1〇⑽,或更特 Μ之至少約⑽nm。在某些實施例中,源子層之厚度可 高達約3微米。在其他實施例中’含金屬之材料在基底材 料之表面上形成粒子或某些其他離散結構。此等離散結構 可以至少約10奈米厚,或更特定言之介於約1〇奈米與顺 来之間的厚度來提供。-般而言,基板在基板表面附近或 基板表面上應具有足夠量之含金屬之材料,以形成石夕化物 奈米結構。舉例而言,沈積於銅基底子層之上之2〇奈米厚 的鎳子層可足以產生長度為20微米之矽化鎳奈米線的稠密 塾。 在某些實施例中,使用PVD或某其他沈積技術來形成遮 罩材料之薄的子層。此子層之厚度可介於約i埃與15埃之 間。已發現,在此等厚度下之某些材料並不形成連續層, 而是形成小的分離島狀物或塊狀物之集合。特定言之,遮 罩材料可沈積為小的島狀物,且用於遮蔽下伏之基板以防 止在此等區域中沈積含金屬之子層。另外或替代地,遮罩 材料可沈積於含金屬之子層之頂部以遮蔽模板生長。S 201238125 or any other suitable configuration. In some cases, the base material is thick: "... between 30 microns and 50 microns, or more specifically between about 5 microns and 30 microns. /, Contains: Examples of source materials include Jin, Ming, copper, silver, chromium, titanium 'aluminum, tin' and combinations thereof. Examples of some alloys include nickel/record/he, record/chrome, _, record/iron, record/champ And, as mentioned, in some embodiments, the metal-containing source material is on top of the substrate material: a source sub-layer. The source sub-layer may have a thickness of at least about 1 〇 (10), or at least at least About (10) nm. In some embodiments, the source sublayer may have a thickness of up to about 3 microns. In other embodiments, the 'metal containing material forms particles or some other discrete structure on the surface of the substrate material. Such discrete structures It may be provided at least about 10 nanometers thick, or more specifically between about 1 nanometer and sin. Generally, the substrate should have a sufficient amount near the surface of the substrate or on the surface of the substrate. a metal material to form a stellite nanostructure. For example, a 2 〇 deposited on a copper substrate sublayer The thick nickel sub-layer may be sufficient to produce a dense crucible of a 20 micron length of deuterated nickel nanowire. In some embodiments, PVD or some other deposition technique is used to form a thin sub-layer of the masking material. The thickness of the layer can be between about 1 angstrom and 15 angstroms. It has been found that certain materials at these thicknesses do not form a continuous layer, but rather form a collection of small discrete islands or lumps. In other words, the mask material can be deposited as small islands and used to shield the underlying substrate to prevent deposition of metal-containing sub-layers in such regions. Additionally or alternatively, the mask material can be deposited on the metal-containing The top of the layer is grown with a masking template.

S 156769.doc -19- 201238125 在某些實施例中,含金屬之子層可在此子層之沈積期間 圖案化。舉例而言,遮罩子層(例如,網格)可位於基底子 層之上,且含金屬之子層形成於此組合之上》基底子層之 覆蓋部分將實質上不含金屬,且將不會在猶後操作期間形 成矽化物結構。使用位於基板表面之上之金屬網格來進行 測試。鈦接著沈積穿過網格中之開放空間,從而形成鈦島 狀物。此等島狀物又妨礙此等區域令之矽化物形成,此導 致圖案化之模板生長。可使用(例如)奈米壓印微影或一些 自組裝技術來製造具有小節距(pitch)的特殊網格,以達成 遮罩粒子之所要分佈。 基板可含有可用以進行以下操作之其他材料:增強隨後 开乂成之石夕化物奈米結構至基底子層的黏著;在處理及電池 循環期間保護基底子層;促進模板結構之長晶;防止活性 材料在基板界面處(或附近)的沈積;在矽化物形成期間充 當額外矽源;及其他功能。舉例而言,基板可包括中間子 層來執行此功能。圖2A為根據某些實施例之三層基板2〇() 的不意性表示。子層202為基底子層,子層2〇6為含金屬材 料子層,且子層204為中間子層。在某些實施例(圖中未展 示)中,中間子層可相對於基底子層(或基板)位於含金屬子 層之另一側面上。中間子層之額外實例及細節提供於2〇〇9 年11月11曰申請之頒予DelHagen等人之題為 「INTERMEDIATE LAYERS FOR ELECTRODE FABRICATION」 的美國臨時專利申請案61/260,297中,該案之全部内容出 於描述中間子層之目的以引用的方式併入本文中。再其他 -20- 156769.doc s 201238125 材料及子層可提供作為基板之一部分。舉例而言,含金屬 之子層可具有金屬氧化物子層或保護性子層。 返回至圖1 ’在操作102中所接收之基板可具有遮罩子 層,該遮罩子層位於含金屬之子層之上。遮罩子層覆蓋含 金屬之子層之一部分,而曝露含金屬之區域的某些小之間 隔開的區域。在於操作106中形成矽化物結構期間,所曝 路之區域更可用以與含矽前驅體(例如,矽烷)反應,藉此 導致離散矽化物結構(諸如,與圖2B中所示之矽化物結構 叢集相對比之在圖2C中所示的矽化物結構)之形成。特定 言之,圖2B為叢集矽化物結構214之示意性表示,叢集矽 化物結構214塗佈有在該等矽化物結構之基底附近(亦即, 在基板212附近)重疊的活性材料層216,且形成龐大的活 性材料聚結。此等聚結之總尺寸(或基板界面附近之活性 材料的厚度)可大大地超過針對特定活性材料之臨限值限 制攸而導致在電池循環期間在界面附近的破裂及高應 力。不僅活性材料可自錢物結構分層,而且整個石夕化物 結構可與基板分離,藉此使其不起作用。 沈積遮罩子層可幫助克服此叢集。圖冗為根據某些實施 例之經由位於基板222之上之遮罩中間子層225所形成之分 離的石夕化物結構224之示意性表示。遮罩中間子層225可且 有判定形㈣化物結構224之處的開口,其允許基於由遮 罩中間子層225所界定之模板來分離且分佈石夕化物結構 以。模板結構之分佈可為隨機或圖案化的。遮罩子層之 實例包括自組裝之氧化辞粒子及氧切粒子,及在含:屬 .3 J56769.doc -21- 201238125 之子層之上形成網格結構的隨機定向之奈米線。自遮罩子 層或含金屬之子層形成島狀物的一些相應技術包括蒸鍍、 角度沈積、自組裝、微影圖案化及其他技術。 圖2D為塗佈有活性材料層226之分離的矽化物結構 224(類似於圖2C中所描繪且在上文所述之矽化物結構224) 的示意性表示。活性材料層226並未在矽化物結構224之基 底附近重疊以形成聚結。因而,甚至在基板界面處,活性 材料層226亦在破裂臨限值内,此導致與(例如)圖2B中所 沈積之結構相比較小的機械應力及粉碎。 遮罩子層可保持為電極之一部分或可被移除。可在妙化 物結構之形成之前以機械方式移除用以圖案化含金屬之子 層的遮軍子層。可以化學方式移除用以在矽化物結構之形 成期間覆蓋含金屬之子層的部分之遮罩子層(例如,藉由 在不會實質上干擾矽化物結構之情況下選擇性地蝕刻遮罩 子層)。特定實例包括酸蝕刻、加熱及蒸發。在其他實施 例中’遮罩子層保持為電極之一部分,且可用以(例如)防 止活性材料在基板界面處之沈積。下文參看圖2E及圖汀進 一步描述此等實例中之一些實例。 應注意,基板材料可彼此交織(例如,在編織、毛氈、 網格或相當結構中位於中間子層之粒子當中的含金屬:子 層的粒子)必匕外’應注意,相異材料可一起提供作為引 入至操作H)2中之程序的基板之—料,或―或多種此等 材料可在錢之處理操作中沈積或以纟他方式與基 合。 土 156769.docS 156769.doc -19- 201238125 In certain embodiments, a metal-containing sub-layer can be patterned during deposition of this sub-layer. For example, a mask sub-layer (eg, a mesh) can be over the substrate sub-layer and a metal-containing sub-layer is formed over the combination. The covered portion of the sub-sublayer will be substantially metal free and will not A telluride structure is formed during the post-subsequent operation. The test was performed using a metal grid located above the surface of the substrate. Titanium is then deposited through the open space in the grid to form a titanium island. These islands in turn impede the formation of tellurides in these areas, which results in patterned template growth. Special meshes with small pitches can be made using, for example, nanoimprint lithography or some self-assembly techniques to achieve the desired distribution of mask particles. The substrate may contain other materials that may be used to: enhance adhesion of the subsequently opened nano-structure to the sub-layer of the substrate; protect the sub-layer during processing and battery cycling; promote growth of the template structure; Deposition of the active material at (or near) the substrate interface; acting as an additional source of germanium during the formation of the telluride; and other functions. For example, the substrate can include an intermediate sub-layer to perform this function. 2A is an unintentional representation of a three-layer substrate 2() in accordance with some embodiments. Sublayer 202 is a sub-sublayer, sub-layer 2〇6 is a metal-containing sub-layer, and sub-layer 204 is an intermediate sub-layer. In some embodiments (not shown), the intermediate sub-layer may be on the other side of the metal-containing sub-layer relative to the substrate sub-layer (or substrate). Additional examples and details of the intermediate sub-layer are provided in U.S. Provisional Patent Application Serial No. 61/260,297, entitled "INTERMEDIATE LAYERS FOR ELECTRODE FABRICATION", to DelHagen et al. The content is incorporated herein by reference for the purpose of describing the intermediate sub-layers. Others -20- 156769.doc s 201238125 Materials and sub-layers can be provided as part of the substrate. For example, the metal-containing sub-layer can have a metal oxide sub-layer or a protective sub-layer. Returning to Figure 1 'the substrate received in operation 102 can have a mask sub-layer over the metal-containing sub-layer. The mask sublayer covers a portion of the metal containing sublayer while exposing some of the small spaced regions of the metal containing region. During the formation of the telluride structure in operation 106, the exposed regions are more useful for reacting with a hafnium-containing precursor (e.g., decane), thereby resulting in a discrete telluride structure (such as the telluride structure shown in Figure 2B). The cluster is formed relatively in comparison to the telluride structure shown in Figure 2C. In particular, FIG. 2B is a schematic representation of a clustered telluride structure 214 coated with an active material layer 216 that overlaps near the substrate of the germanide structure (ie, near the substrate 212), And a large amount of active material coalesced. The overall size of such coalescence (or the thickness of the active material in the vicinity of the substrate interface) can greatly exceed the threshold for specific active materials, resulting in cracking and high stress near the interface during battery cycling. Not only can the active material be layered from the structure of the money, but the entire structure can be separated from the substrate, thereby rendering it inoperative. Deposition of the mask sublayer can help overcome this cluster. The figure is a schematic representation of the separated lithium structure 224 formed by the mask intermediate sub-layer 225 over the substrate 222 in accordance with certain embodiments. The mask intermediate sub-layer 225 can have openings at the location of the shaped (tetra) compound structure 224 that allow separation and distribution of the lithotripe structure based on the template defined by the mask intermediate sub-layer 225. The distribution of the template structure can be random or patterned. Examples of the mask sublayer include self-assembled oxidized particles and oxygen dicing particles, and randomly oriented nanowires forming a lattice structure over a sublayer containing: genus .3 J56769.doc -21 - 201238125. Some corresponding techniques for forming islands from a mask sub-layer or a metal-containing sub-layer include evaporation, angular deposition, self-assembly, lithography, and other techniques. 2D is a schematic representation of a separate telluride structure 224 coated with active material layer 226 (similar to the telluride structure 224 depicted in FIG. 2C and described above). The active material layer 226 does not overlap near the base of the telluride structure 224 to form agglomerates. Thus, even at the substrate interface, the active material layer 226 is within the cracking threshold, which results in less mechanical stress and comminution than, for example, the structure deposited in Figure 2B. The mask sublayer can remain as part of the electrode or can be removed. The occlusion sublayer used to pattern the metal-containing sub-layer can be mechanically removed prior to formation of the structuring structure. The mask sub-layer to cover portions of the metal-containing sub-layer during formation of the telluride structure can be chemically removed (eg, by selectively etching the mask sub-layer without substantially interfering with the vapor-deposited structure) . Specific examples include acid etching, heating, and evaporation. In other embodiments the 'mask sublayer remains as part of the electrode and can be used, for example, to prevent deposition of the active material at the substrate interface. Some of these examples are further described below with reference to Figures 2E and Figures. It should be noted that the substrate materials may be interwoven with each other (for example, metal-containing: sub-layer particles located in the particles of the intermediate sub-layer in a woven, felt, mesh or equivalent structure) must be noted that different materials may be provided together As a substrate to be introduced into the procedure in the operation H) 2, or a plurality of such materials may be deposited in a processing operation of money or in a matrix. Earth 156769.doc

S 22- 201238125 返回至圖1,程序100可視情況繼續進行處理基板表面 (操作104)。該處理可用以改質基板表面,以便增強矽化物 形成或用於其他目的。此處理之實例包括引入用於金屬矽 化物形成中之材料(例如,石夕源、金屬源、催化劑及其類 似者)、化學改質基板表面(例如,形成氧化物、氮化物、 石炭化物、初始石夕化物結構,及用各種氧化劑及還原劑來處 理)、物理改質表面(例如,藉由雷射切除、滾紋、電拋光 來增大表面粗糙度(諸如,藉由電鍍及反電鍍來增大表面 粗縫度))、改變晶粒定向、退火、用基於氧之電浆來處理 以形成氧化物、用纟於氬之電漿來處理以改變粗链度(例 如,濺鍍錐形物形成)、音波處理及離子植入。應注意, 此等技術中之一些技術可用以控制存在於表面上之各種材 料(例如’金屬源材料)的量以及此等材料之物理特性(例 如,表面粗糙度)。舉例而t,用還原劑或氧化劑化學改 質基板表面可用以按對促進長晶特別有用之尺度來修改粗 糙度。丙酮繼之以甲醇及異丙醇沖洗中之音波處理可用以 在姓刻之前清潔金屬其他技術包括氧電_刻。此 外,若摻雜物擴散至石夕反應金屬+,則吾人可用該摻雜物 來處理表面以增大矽化物結構的導電性。 在某些實施例中,首先氧化在表面上含有錄塗層或另— 石夕化物源材料之基板。如上文所提及,基板之本體可由矽 化物源材料製成。特定實例包括㈣。當錄子層用於另— 基板之頂部時,職層之厚度針對下文所呈現之處理 可介於約50奈米與300奈米之間。在氧或其他合適之氧化S 22- 201238125 Returning to Figure 1, the process 100 proceeds to process the substrate surface as appropriate (operation 104). This treatment can be used to modify the surface of the substrate to enhance the formation of telluride or for other purposes. Examples of such treatment include introducing materials for metal halide formation (eg, Shixia source, metal source, catalyst, and the like), chemically modifying the surface of the substrate (eg, forming oxides, nitrides, carbides, Initial lithium structure, and treatment with various oxidizing agents and reducing agents), physically modifying the surface (for example, by laser ablation, embossing, electropolishing to increase surface roughness (such as by electroplating and counter plating) To increase the surface roughness (), change the grain orientation, anneal, treat with oxygen-based plasma to form oxides, and treat with argon plasma to change the thick chain (for example, sputter cone) Shape formation), sonication and ion implantation. It should be noted that some of these techniques can be used to control the amount of various materials (e.g., &apos;metal source materials) present on the surface and the physical properties of such materials (e.g., surface roughness). By way of example, chemically modifying the surface of the substrate with a reducing agent or oxidizing agent can be used to modify the roughness on a scale that is particularly useful for promoting the growth of the crystal. Acetone followed by sonication in methanol and isopropanol rinses can be used to clean the metal before the last name, including oxygenation. In addition, if the dopant diffuses to the stone reaction metal +, the dopant can be used to treat the surface to increase the conductivity of the vapor structure. In some embodiments, the substrate comprising the recording coating or the other source material is first oxidized on the surface. As mentioned above, the body of the substrate can be made of a bismuth source material. Specific examples include (4). When the recording layer is applied to the top of the other substrate, the thickness of the layer may be between about 50 nm and 300 nm for the treatment presented below. In oxygen or other suitable oxidation

S 156769.doc -23- 201238125 劑存在的情況下,基板在氧化/處理㈣之溫度可維持於 約15(TC與50(rc之間下歷時介於約〇」分鐘與1〇分鐘之 間。在更特定實施例中,氧化係在維持於約50托下之腔室 中在存在空氣之情況下執行歷時約i分鐘,而基板保持於 約300。。了。氧化/處理可繼續進行歷時w分鐘至2分鐘之 間在某些κ施例中,無特定氧化/處理操作存在,且程 序直接繼續進行形成模板結構。據信,存在於沈積腔室中 之剩餘水分及氧在程序起始階段及沈積階段期間提供錄表 面的足夠處理。然而,&amp; 了達成矽化物模板之更受控制的 形成’可能需要特定控制之氧化操作。特定言之,已發 現 疋程度上之氧化幫助矽化鎳結構之形成。在不限於 任何特定理論之情況下,據信,在氧化期間,平滑之錦表 面轉換為更粗糖之氧化鎳表面。粗輪之氧化物邊緣可在稍 後之矽化物形成期間充當長晶位點。此外,氧化物可充當 遮罩以允許僅在鎳塗層之微孔處的長晶。此幫助達成矽化 物奈米線之更均勻分佈且避免叢集(如上文所述)。 氧化物之另一功能可為調節金屬自源材料子層及至反應 位點之擴散速率。已發現,過度氧化對石夕化物形成可為有 害的。舉例而言,當約2〇〇 sccm之乾空氣流以約1%至5% 與氬氣混合且用於在40(rc下氧化歷時約3〇秒時,所得表 面據信為過度氧化的。替代於形成具有多個長晶位點之粗 韓表面,所得之過氧化表面具有金色且引起極少之石夕化物 奈米線的長晶。以相同方式,氧化不足之表面可能不會提 供足夠的長晶位點。因而,氧化條件可針對每一含金屬之 I56769.docS 156769.doc -23- 201238125 In the presence of the agent, the temperature of the substrate at oxidation/treatment (4) can be maintained at about 15 (TC and 50 (between about 〇 minutes and 1 minute between rc). In a more specific embodiment, the oxidation system is carried out in a chamber maintained at about 50 Torr in the presence of air for a period of about i minutes, while the substrate is maintained at about 300. The oxidation/treatment can continue for a period of time w. Between minutes and 2 minutes, in certain κ applications, no specific oxidation/treatment operations exist and the procedure proceeds directly to form the template structure. It is believed that the residual moisture and oxygen present in the deposition chamber are at the beginning of the process. Adequate processing is provided during the deposition phase. However, &amp; achieving a more controlled formation of the halide template may require specific controlled oxidation operations. In particular, it has been found that the degree of oxidation helps to deuterate the nickel structure. Without being limited to any particular theory, it is believed that during oxidation, the surface of the smooth brocade is converted to a nickel oxide surface of coarser sugar. The oxide edge of the coarse wheel can be later refined. It acts as a long crystal site during formation. Furthermore, the oxide can act as a mask to allow for crystal growth only at the micropores of the nickel coating. This helps achieve a more uniform distribution of the germanium nanowires and avoids clustering (as above) Another function of the oxide may be to modulate the diffusion rate of the metal from the source material sublayer and to the reaction site. It has been found that excessive oxidation can be detrimental to the formation of the lithium compound. For example, when about 2 〇〇 The sccm dry air stream is mixed with argon at about 1% to 5% and used to oxidize at 40 (rc for about 3 sec seconds), the resulting surface is believed to be over oxidized. Instead of forming with multiple long crystal positions On the rough surface of the point, the resulting peroxidized surface has a gold crystal and causes very few crystal growth of the nanowire. In the same way, the insufficiently oxidized surface may not provide sufficient long crystal sites. Thus, the oxidation condition Available for each metal containing I56769.doc

S -24· 201238125 材料及含有此等材料之結構而最佳化。 程序100可繼續進行形成矽化物奈米結構(區塊106) ^在 某些實施例中’將基板引入至CVD腔室中*應注意,諸如 處理操作104及/或活性材料形成操作1〇8之其他操作可執 行於同一腔室中。含矽前驅體(諸如,矽烷)接著以(例如) 介於約10 seem與300 seem之間的流動速率流動至腔室中。 此等流動速率值係提供用於自英國之SUrface Techn〇1()gyS -24· 201238125 Materials and structures containing these materials are optimized. The process 100 can continue to form a telluride nanostructure (block 106). ^In some embodiments, the substrate is introduced into the CVD chamber. * It should be noted that such as processing operation 104 and/or active material forming operation 1〇8 Other operations can be performed in the same chamber. The ruthenium containing precursor (such as decane) then flows into the chamber at a flow rate of, for example, between about 10 seem and 300 seem. These flow rate values are provided for use in the UK from SUrface Techn〇1() gy

Systems購得的STS MESC Multiplex CVD系統,該系統可 處理直徑尚達約4英吋之基板。然而,一般熟習此項技術 者應理解,可使用其他CVD系統。矽烷在载氣中之體積濃 度可小於約10%、或更特定言之小於約5%,或甚至小於約 1%。在特定實施例t,秒烧之濃度為約1%。處理氣體亦 可匕括或多種載氣’諸如氬氣、氮氣、氦氣、氫氣、氧 氣(但通常不具有料)、:氧化碳,及甲^切化物沈 積期間,可將基板維持於介於約35〇艽與5〇〇艽之間,或更 特定言之介於約385它與45〇七之間的溫度下。腔室壓力可 介於約托與大氣壓力之間,或更特定言之介於約5〇托 與300托之間。沈積之持續_可介於約1分鐘與60分鐘之 間,或更特定言之介於約5分鐘與15分鐘之間。 與、-實知例中’處理條件可在同-沈積循環期間變 言’最初可以相對高之濃度引入石夕院,以便促 乎線之Γ米結構之長晶。當進—步奈米線生長受到自奈 ,... ♦尖鳊之金屬擴散限制時,可接著 減小(例如,朝向矽化物浼媸彡。从^ 積麵作之末尾)梦炫濃度。此 156769.doc -25- 201238125 外,基板溫度可最初保持為低且接著升高,以便促進此金 眉擴散。總之,可使處理條件變化,以控制模板結構之物 理性質(例如,長度、直徑、形狀、定向)。此外,可藉由 使處理條件變化來控制模板結構之形態性質,諸如材料沿 著模板之高度的化學計量相、結晶/非晶相,及分佈。待 考慮之其他處理條件係氣體混合物之組合物、流動速率、 流動型樣、腔室塵力、基板溫度及電場特性。在某些實施 例中,調整處理條件(例如,溫度、壓力及矽烷濃度'),以 促進非晶矽之側壁沈積或矽粒子至矽化物結構(一旦其已 長晶)上的沈積。可改變之條件可包括處理溫度、壓力及 矽烷濃度。 所選擇之處理條件一般取決於含金屬之材料以及所要結 構之大小、形n及組合物。舉例而言,上文所述之沈積條 件可用以生長長度平均而言介於約〇 5微米與5〇微米之間 且直徑平均而言介於約10奈米與100奈米之間的矽化鎳奈 米線。厚度為至少約20奈米之鎳塗層可足以沈積此等矽化 錄結構。 一般而言,矽化物奈米線之直徑可介於約5奈米與1〇〇奈 米之間(亦即,在沈積活性材料之前),或更特定言之,介 於約奈米與50奈米之間。此外,奈米線《長度可介於約 1微米與⑽微米之間’或更特定言之長度介於約5微米與 微米之間,且甚至介於約丨2微米與3 〇微米之間。在不限 於任何特定理論之情況下,據信,可藉由金屬自基板至生 長尖端之擴散來限制矽化物奈米線長度。已發現,當使用 156769.doc -26 - 201238125 上文所述之處理條件時,矽化鎳奈米線很少生長至長於約 20微米至25微米。 儘管此長度可針對活性材料沈積提供足夠的表面積,但 某些技術可用以進一步伸長奈米線。在某些實施例中,具 有含矽材料之中間子層引入於基底子層與含金屬之子層之 間。矽中間子層緊密接近生長之奈米結構的根部而提供替 代(或額外)矽源,此可有助於長晶製程。已發現,自沈積 於矽晶圓上之鎳所生長的矽化物結構更均勻地長晶且更迅 速地生長。在某些實施例中,中間子層包括金屬摻雜物, 該金屬摻雜物在矽與金屬反應時擴散且亦增大所得矽化物 之導電性。該摻雜物可被沈積或甚至被植入,尤其在係以 相對低之數量提供的情況下。在一些狀況下,使用氮來摻 雜矽化鎳。Systems purchased the STS MESC Multiplex CVD system, which processes substrates up to approximately 4 inches in diameter. However, those of ordinary skill in the art will appreciate that other CVD systems can be used. The volume concentration of decane in the carrier gas can be less than about 10%, or more specifically less than about 5%, or even less than about 1%. In a particular embodiment t, the concentration of seconds burn is about 1%. The process gas can also include or support a plurality of carrier gases such as argon, nitrogen, helium, hydrogen, oxygen (but usually without materials), carbon oxide, and during the deposition of the metal, which can maintain the substrate between Between about 35 〇艽 and 5 ,, or more specifically between about 385 and 45 〇. The chamber pressure can be between about Torr and atmospheric pressure, or more specifically between about 5 Torr and 300 Torr. The duration of deposition may be between about 1 minute and 60 minutes, or more specifically between about 5 minutes and 15 minutes. In the case of &lt;RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; When the growth of the nanowire line is self-sufficient, ... ♦ When the metal diffusion limit of the sharp tip is limited, it can be further reduced (for example, toward the telluride 浼媸彡. From the end of the ^ surface). Outside of 156769.doc -25- 201238125, the substrate temperature can be initially kept low and then raised to promote diffusion of the eyebrow. In summary, the processing conditions can be varied to control the physical properties (e.g., length, diameter, shape, orientation) of the template structure. In addition, the morphological properties of the template structure can be controlled by varying the processing conditions, such as the stoichiometric phase, crystalline/amorphous phase, and distribution of the material along the height of the template. Other processing conditions to be considered are the composition of the gas mixture, flow rate, flow pattern, chamber dust force, substrate temperature, and electric field characteristics. In some embodiments, the processing conditions (e.g., temperature, pressure, and decane concentration) are adjusted to promote deposition of sidewalls of the amorphous germanium or deposition of germanium particles to the germanide structure (once it has grown). Conditions that can be varied can include treatment temperature, pressure, and decane concentration. The processing conditions selected will generally depend on the metal-containing material and the size, shape, and composition of the desired structure. For example, the deposition conditions described above can be used for nickel telluride having a growth length on average between about 5 μm and 5 μm and a diameter on average between about 10 nm and 100 nm. Nano line. A nickel coating having a thickness of at least about 20 nanometers may be sufficient to deposit such a ruthenium recording structure. In general, the diameter of the germanium nanowire can be between about 5 nanometers and 1 nanometer (i.e., before the active material is deposited), or more specifically, between about 100 meters and 50 nanometers. Between the rice. In addition, the nanowires "may be between about 1 micrometer and (10) micrometers in length or more specifically between about 5 micrometers and micrometers in length, and even between about 2 micrometers and 3 micrometers. Without being bound by any particular theory, it is believed that the length of the germanium nanowire can be limited by the diffusion of metal from the substrate to the growth tip. It has been found that the deuterated nickel nanowires rarely grow to longer than about 20 microns to 25 microns when using the processing conditions described above for 156769.doc -26 - 201238125. While this length can provide sufficient surface area for active material deposition, certain techniques can be used to further stretch the nanowire. In some embodiments, a middle sub-layer having a ruthenium-containing material is introduced between the base sub-layer and the metal-containing sub-layer. The 矽 intermediate sublayer is in close proximity to the root of the growing nanostructure to provide an alternative (or additional) source of lanthanum which may aid in the growth process. It has been found that the telluride structure grown from nickel deposited on the germanium wafer grows more uniformly and grows more rapidly. In some embodiments, the intermediate sub-layer includes a metal dopant that diffuses as the ruthenium reacts with the metal and also increases the conductivity of the resulting telluride. The dopant can be deposited or even implanted, especially if it is provided in relatively low quantities. In some cases, nitrogen is used to dope the deuterated nickel.

在另一實施例中,在形成初始矽化物模板之後,可引入 額外的含金屬之材料(例如,濺鑛於初始模板上),且重複 矽化物形成操作106。換言之,初始矽化物模板成為用於 沈積於其之上的另一矽化物模板的新基板等。在此實例 中,沈積另一模板可在初始模板中提供額外交聯,藉此有 助於機械及電完整性。模板及電極之額外實例及細節提供 於2010年5月24日申請之題為「MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODE j 的美國臨時專利申請案 61/347,614,及2010年10月22日申請之題為「BATTERY ELECTRODE STRUCTURES FOR HIGH MASS LOADINGS s 156769.doc -27- 201238125 OF HIGH CAPACITY ACTIVE MATERIALS」的美國臨時 專利申請案61/406,047中,該等申請案之全部内容皆出於 描述模板及電極之目的以引用的方式併入本文中。 矽化物奈米線由於自提供於基板上之含金屬之材料生長 而通常為根附在基板上的。根附在基板上之結構的某些細 節描述於2009年5月7日申請之題為 「ELECTRODE INCLUDING NANOSTRUCTURES FOR RECHARGEABLE CELLS」的美國專利申請案12/437,529中,該案之全部内 容出於描述根附在基板上之結構的目的以引用的方式併入 本文中。然而,不同於在該專利申請案中所述之一些VLS 生長奈米線,矽化物奈米線可與基板形成更強的機械結合 且具有較低的接觸電阻。據信,可變之材料組合物及較寬 的根附在基板上之末端有助於此現象。 發現,矽化物奈米線在如本文所述而製造時一般沿著奈 米線之長度具有可變的材料組合物。奈米線在根附在基板 上之末端附近(在該處更多金屬可用)比在自由(遠端)末端 附近具有更高的金屬濃度。取決於金屬類型,此可變性可 反映於矽化物之不同的形態及化學計量相中。舉例而言, 矽化鎳奈米線可包括矽化鎳之一個、兩個或所有三個相 (亦即,Ni2Si、NiSi及NiSi2) »據信,較高鎳含量相形成與 鎳金屬的較強之結合。因此,此可變性可加強矽化鎳奈米 線至基板之黏著且減小接觸電阻。金屬含量可變性亦可引 起沿著奈米線之長度的不同的物理性質。 在特定實施例中,具有較高之鎳含量的根附在基板上之 -28- 156769.docIn another embodiment, after the initial vaporization template is formed, additional metal-containing material (e.g., splashed onto the initial template) may be introduced and the telluride formation operation 106 repeated. In other words, the initial telluride template becomes a new substrate or the like for another telluride template deposited thereon. In this example, depositing another template can provide additional cross-linking in the initial template, thereby contributing to mechanical and electrical integrity. Additional examples and details of the stencils and electrodes are provided in U.S. Provisional Patent Application Serial No. 61/347,614, filed on May 24, 2010, entitled "MULTIDIMENSIONAL ELECTROCHEMICALLY ACTIVE STRUCTURES FOR BATTERY ELECTRODE j, and on October 22, 2010. "BATTERY ELECTRODE STRUCTURES FOR HIGH MASS LOADINGS s 156769.doc -27-201238125 OF HIGH CAPACITY ACTIVE MATERIALS", US Provisional Patent Application No. 61/406,047, the entire contents of which are hereby The manner of reference is incorporated herein. The telluride nanowire is typically attached to the substrate as a result of the growth of the metal-containing material provided on the substrate. Some details of the structure of the root attached to the substrate are described in U.S. Patent Application Serial No. 12/437, file, filed on Jan. 7, 2009, entitled &quot;ELECTRODE INCLUDING NANOSTRUCTURES FOR RECHARGEABLE CELLS&quot; The purpose of the structure attached to the substrate is incorporated herein by reference. However, unlike some of the VLS grown nanowires described in this patent application, the telluride nanowires can form a stronger mechanical bond with the substrate and have a lower contact resistance. It is believed that the variable material composition and the wider root attached to the end of the substrate contribute to this phenomenon. The telluride nanowires were found to have a variable material composition along the length of the nanowires when fabricated as described herein. The nanowire has a higher metal concentration near the end of the root attached to the substrate where more metal is available than near the free (distal) end. Depending on the type of metal, this variability can be reflected in the different morphology and stoichiometric phases of the telluride. For example, the deuterated nickel nanowire may include one, two or all three phases of niobium nickel (ie, Ni2Si, NiSi, and NiSi2). » It is believed that a higher nickel content phase is formed with a stronger nickel metal. Combine. Therefore, this variability enhances the adhesion of the nickel germanium nanowire to the substrate and reduces the contact resistance. Metal content variability can also cause different physical properties along the length of the nanowire. In a particular embodiment, the root having a higher nickel content is attached to the substrate -28-156769.doc

S 201238125 末端較寬且具有較高的表面粗糙度。此提供與基板之較大 接觸面積'改良黏著,及減小接觸電阻。在基板與奈米線 之間的強結合幫助保留此附著,尤其在電池循環期間在沈 積至奈米線上之活性材料體積增大及收縮且可在各種方向 上推動奈米線時。最終,在某些實施例中,矽化物奈米線 在循環期間並不經歷鋰化。 錐形奈米線(如上文所述)可由金屬在奈米線之根附在基 板上之末端附近的較大可用性引起。在某些實施例中,在 根附在基板上之末端附近的平均直徑為在自由末端附近之 平均直徑的至少約兩倍(基於奈米線之每一末端處之兩個 區段的比較,其中每一區段係以與奈米線末端相距為總奈 米線長度之約10%的距離截取)。換言之,基底可為足夠大 的以甚至在基板之表面上彼此觸碰,但由於沿著結構之自 基底至尖端之直徑的減小,尖端為自由且隔開的。在更特 定實施例中,該兩個直徑之比率為至少約4,或甚至更特 定言之至少約1 〇(表示較寬的基底錐形物)。 矽化物奈米線可與其他奈米線互連,例如在一奈米線與 另一奈米線在該兩者之生長期間路徑相交時。此外,可在 沈積矽化物奈米線之後提供額外交聯。舉例而言,另一模 板可沈積於第一模板之上,如上文所述。可在奈米線當中 引入導電添加劑(例如,碳黑、金屬粒子卜可(例如)藉由 壓縮及/或退火矽化物模板而使奈来線在沈積之後再塑形 以在奈米線當中形成更多的接觸點。最終,可在活性材料 之沈積期間出現額外互連。舉例而言,兩個緊密間隔之矽 156769.doc 3 •29· 201238125 化物奈米線可塗佈有活性材料,使得形成於鄰近奈米線上 之活性材料層重疊。在一特定實施例中,形成模板係在維 持於約50托之壓力下的處理腔室中執行。處理氣體含有約 1%之矽烷。將基板保持於約450°C。 應注意,儘管在此文件中一般參考包括奈米線之模板, 但模板可包括其他類型之結構。此外,基於線之模板可包 括平均直徑大於1微米之線。此等模板可用以沈積高容量 活性材料層’使得該層自身具有奈米尺度之尺寸,而不管 模板尺寸。然而,由奈米結構(諸如,奈米線)製成之模板 一般提供可用於沈積高容量活性材料的較大之表面積。 在形成模板之後但在沈積活性材料之前,模板可另外經 處理以遮蔽模板之某些區域’以便防止或最小化活性材料 在此等區域中的沈積。如上文所述,應在基板界面附近最 小化機械變形(諸如,活性材料體積增大及收縮),以保持 石夕化物模板與基板之間的機械及電結合。因而,活性材料 在基板界面附近之沈積一般並非合乎需要的,或至少較不 合乎需要。下文參考活性材料形成操作1〇8描述在沈積期 間輪廓化活性材料層之厚度及/或組合物的一些技術。此 外,在模板之形成之後,可在基板界面處沈積額外材料。 應注意,除了在模板之形成之前所提供之中間子層(其在 上文中被描述)之外或替代於該等子層,亦可沈積此等材 料為了區別該兩種材料,在模板之形成之後所沈積之材 料被稱為「鈍化材料」,此係因為其在某些實施例中可用 以鈍化基板界面且減少活性材料在此界面處的形成。 156769.doc 201238125 圖2E為具有經沈積之鈍化材料235的未塗佈之矽化物結 構234的示意性表示。沈積在基板232附近之鈍化材料235 塗佈矽化物結構234的根附在基板上之末端,而此等結構 之自由末端保持未塗佈。可在單獨操作期間或在活性材料 沈積之初始階段期間沈積鈍化材料235。舉例而言,可將 自組裝之氧化鋅及氧化矽粒子引入至模板中。鈍化材料 235在模板内之分佈可藉由電沈積來提供。 圖2F為矽化物結構234之示意性表示,矽化物結構塗 佈有活性材料236,使得鈍化材料235防止活性材料236在 矽化物結構234之基底附近的沈積。因而,在電極之循環 期間較小或無機械變形及應力存在於基板232處,且矽化 物結構234與基板232之間的連接傾向於更穩固。 在某些實施例中’中間子層沈積於所形成之模板結構之 上,但係在電氣化學活性材料之沈積之前進行沈積。此子 層位於模板-活性材料界面處。此中間子層可包括鈦、 銅、鐵、鎳、鎳鈦、鉻或其他類似材料。可使用電鍍、濺 鍍或蒸鍍技術來沈積材料。在不限於任何特定理論之情況 下據彳5,中間子層在此界面處之存在增大與活性材料之 冶金合金化及更好的黏著。此外,此等材料中之一些材料 可充當增黏劑及吸氧劑。最終,如鎳鈦、銅_辞_鋁_鎳及 銅-鋁-鎳之合金可用於其彈性性質,以在相對動態之活性 材料層(其在循環期間體積增大及收縮)與相對靜態之模板 層之間提供界面。 返回至圖1,程序100繼續進行在金屬矽化物模板之上形S 201238125 has a wide end and a high surface roughness. This provides a large contact area with the substrate to improve adhesion and reduce contact resistance. The strong bond between the substrate and the nanowire helps to preserve this adhesion, especially when the volume of active material deposited on the nanowire increases and shrinks during cell cycling and can push the nanowires in various directions. Finally, in certain embodiments, the germanium nanowires do not undergo lithiation during cycling. The tapered nanowire (as described above) can be caused by the greater availability of metal near the end of the substrate attached to the root of the nanowire. In certain embodiments, the average diameter near the end of the root attached to the substrate is at least about twice the average diameter near the free end (based on a comparison of the two segments at each end of the nanowire, Each of the segments is taken at a distance of about 10% of the length of the nanowire from the end of the nanowire). In other words, the substrates can be large enough to touch each other even on the surface of the substrate, but the tips are free and spaced due to the reduction in diameter from the substrate to the tip along the structure. In a more specific embodiment, the ratio of the two diameters is at least about 4, or even more specifically at least about 1 Torr (representing a wider base cone). The germanium nanowires can be interconnected with other nanowires, such as when a nanowire and another nanowire intersect the path during growth of the two. In addition, additional crosslinking can be provided after deposition of the germanium nanowires. For example, another template can be deposited over the first template as described above. A conductive additive may be introduced in the nanowire (for example, carbon black, metal particles may, for example, be formed by compressing and/or annealing the vapor template to reshape the nanowire after deposition to form in the nanowire More contact points. Finally, additional interconnections can occur during the deposition of the active material. For example, two closely spaced 矽 156769.doc 3 • 29· 201238125 can be coated with active material, The layers of active material formed on adjacent nanowires overlap. In a particular embodiment, the template is formed in a processing chamber maintained at a pressure of about 50 Torr. The process gas contains about 1% decane. At about 450 ° C. It should be noted that although a template including a nanowire is generally referred to in this document, the template may include other types of structures. Further, the line-based template may include lines having an average diameter greater than 1 micron. The template can be used to deposit a high capacity active material layer 'so that the layer itself has a nanoscale size regardless of the template size. However, it is made of a nanostructure such as a nanowire. The template generally provides a larger surface area that can be used to deposit the high capacity active material. The template can be additionally treated to mask certain regions of the template after forming the template but prior to depositing the active material to prevent or minimize active material herein. Deposition in the region. As described above, mechanical deformation (such as increased volume and shrinkage of the active material) should be minimized near the substrate interface to maintain mechanical and electrical bonding between the lithographic template and the substrate. The deposition of material near the interface of the substrate is generally not desirable, or at least less desirable. Some techniques for contouring the thickness and/or composition of the active material layer during deposition are described below with reference to active material forming operation 8.1. Additional material may be deposited at the substrate interface after formation of the template. It should be noted that in addition to or instead of the intermediate sub-layers provided before the formation of the template, which may be described above, Depositing these materials in order to distinguish the two materials, the material deposited after the formation of the template is called "passivation material" is because it can be used in certain embodiments to passivate the substrate interface and reduce the formation of active material at this interface. 156769.doc 201238125 Figure 2E is an uncoated with deposited passivation material 235 A schematic representation of the telluride structure 234. The passivation material 235 deposited adjacent the substrate 232 is coated with the root of the telluride structure 234 attached to the end of the substrate, while the free ends of the structures remain uncoated. Alternatively, passivation material 235 may be deposited during the initial stage of deposition of the active material. For example, self-assembled zinc oxide and cerium oxide particles may be introduced into the template. The distribution of passivation material 235 within the template may be provided by electrodeposition. 2F is a schematic representation of a telluride structure 234 coated with an active material 236 such that the passivation material 235 prevents deposition of the active material 236 near the substrate of the telluride structure 234. Thus, little or no mechanical deformation and stress are present at the substrate 232 during cycling of the electrodes, and the connection between the germanium structure 234 and the substrate 232 tends to be more stable. In some embodiments, the intermediate sub-layer is deposited on the formed template structure, but is deposited prior to deposition of the electrochemically active material. This sublayer is located at the template-active material interface. This intermediate sub-layer may comprise titanium, copper, iron, nickel, nickel titanium, chromium or other similar materials. The material can be deposited using electroplating, sputtering or evaporation techniques. Without being limited to any particular theory, the presence of the intermediate sub-layer at this interface increases the metallurgical alloying and better adhesion of the active material. In addition, some of these materials can act as tackifiers and oxygen absorbers. Finally, alloys such as nickel-titanium, copper-nickel-aluminum-nickel and copper-aluminum-nickel can be used for their elastic properties to achieve a relatively dynamic active material layer (which increases in volume and shrinks during cycling) and relatively static Provide an interface between the template layers. Returning to Figure 1, the routine 100 continues to form on the metal telluride template.

S 156769.doc -31- 201238125 成兩容量電氣化學活性材料(操作⑽)。電氣化學活性 之實例包括含石夕材料(例如,結晶石夕、非晶石夕、其他石夕化 物、氧化石夕、次氧化物、氮氧化物)、含錫材料(例如, 錫、氧化錫)、鍺、含碳材料、多種金屬氫化物(例如, MgH2)、石夕化物、礙化物及氮化物。其他實例包括:碳石夕 組合(例如,碳塗佈之石夕、石夕塗佈之碳、捧雜有石夕之碳、 摻雜有碳之石夕,及包括碳及石夕之合金)、碳-錯組合(例如, 礙塗佈之鍺、鍺塗佈之碳、摻雜有錯之碳及摻雜有碳之 鍺)’及碳-錫組合(例如,碳塗佈之錫、錫塗佈之碳、推雜 有錫之碳及摻雜有碳之錫)。正電氣化學活㈣料之實例 包括各種鋰金屬氧化物(例如,Uc〇〇2、阳4、S 156769.doc -31- 201238125 Two-capacity electrochemically active material (Operation (10)). Examples of electrochemical activity include a stone-containing material (for example, crystalline stone, amorphous stone, other anthrax, oxidized stone, suboxide, nitrogen oxide), tin-containing material (for example, tin, tin oxide) ), bismuth, carbonaceous materials, various metal hydrides (eg, MgH2), asahilide, barrier compounds, and nitrides. Other examples include: carbon stone combination (for example, carbon coated Shi Xi, Shi Xi coated carbon, mixed with Shi Xi carbon, doped with carbon stone, and including carbon and Shi Xi alloy) , carbon-wrong combination (for example, coated ruthenium, ruthenium coated carbon, doped carbon and doped carbon) and carbon-tin combinations (eg, carbon coated tin, tin) Coated carbon, tin mixed with tin and tin doped with carbon). Examples of positive electrical chemical (four) materials include various lithium metal oxides (for example, Uc〇〇2, Yang 4,

LiMn〇2、LiNi〇2、LiMn2〇4、uc〇p〇4、 . LiNixC〇YAlz〇2 . LiFe2(s〇4)3 ^ &quot;2 Si04 Na2Fe〇4)、氟化碳、諸如敦化鐵之金屬 氣化物、金屬氧化物、硫’及其組合。亦可使用此等正及 負活性材料之摻雜及非化學計量變化。推雜物之實例包括 來自週期表之第m族及第v族的元素(例如,侧、链、錄、 銦 '銘、磷、碎、錄及叙),以及其他適當之榜雜物(例 ^ ’疏及晒)°在某些實施例中,高容量活性材料包括非 曰曰,舉例而言,非晶♦層可沈積於石夕化錄模板之上。 °在沈積操作期間或之後換雜高容量活性材料。播雜物 :用収,活性材料之導電性且執行其他功能。舉例而 碭化氫(ph3)可添加至處理氣體,以提供石夕或其他活 性材料之鱗擦雜。在特定實施例(諸如’在處理氣體甲使 156769.docLiMn〇2, LiNi〇2, LiMn2〇4, uc〇p〇4, . LiNixC〇YAlz〇2. LiFe2(s〇4)3^ &quot;2 Si04 Na2Fe〇4), carbon fluoride, such as Dunhua Metal vapors, metal oxides, sulfur' and combinations thereof. Doping and non-stoichiometric changes in these positive and negative active materials can also be used. Examples of tweens include elements from the mth and vth groups of the periodic table (eg, side, chain, record, indium 'ming, phosphorus, broken, recorded, and narrative), as well as other appropriate inclusions (eg, ^ 'Sparse and Sun') In certain embodiments, the high capacity active material comprises non-twisted, for example, an amorphous layer may be deposited on the Shixi Chemical Template. ° Replace the high capacity active material during or after the deposition operation. Broadcasting: Use the conductivity of the active material and perform other functions. For example, hydrogen halide (ph3) can be added to the process gas to provide scale rubbing of Shixi or other active materials. In a particular embodiment (such as 'Processing Gas A 156769.doc

S •32· 201238125 用矽烷之一些實施例)中,磷化氫或另一攜載摻雜物之組 份在處理氣體中的濃度可為至少約〇·ι°/。(基於其分壓)、或 至少約0.5%,或甚至至少約1 % ^摻雜物亦可在活性材料 之沈積之後?丨入至活性層中(例如,藉由濺鍍、電鍍、離 子植入及其他技術)。在某些實施例中,含鋰之化合物沈 積至活性材料上。額外之鋰可用於鋰離子電池令以抵消與 固體電解質界面(SEI)層形成相關聯的損失及/或甚至在完 整的電池放電期間使一些剩餘的鋰存在於負活性材料中。 在負電極中保留一些鋰可幫助改良負活性材料導電性及/ 或避免負活性材料在該循環之放電部分之末尾的某些形態 改變。 ^ 在某些實施例中,多種不同的活性材料(例如,諸如錫 之高容量活性材料)可沈積於模板之上。在一實例中,矽 層可進一步塗佈有碳層以形成核殼結構。在此實例中,模 板之矽化物奈米結構充當核心,矽層充當中間層或外核 心,且碳層充當殼層。其他實例包括如下塗層:包括未必 為電氣化學活性材料但經組態以執行電極中之其他功能 (諸如,促進穩定SEI層的形成)的材料。此等材料之實例&quot;包 括碳、銅、聚合物、硫化物及金屬氧化物。 在特定實施例中,活性材料層沈積為錯及石夕之組合。此 等兩種材料之分佈沿著模板之高度而變化,使得與^由末 =附近相比’更多的鍺沈積於基板界面附近,且針對石夕而 言’與自由末端附近相比,更少的矽沈積於基板界面附 近。鍺之鐘化程度遠小於石夕’且結果,錯展現小得多的體 156769.doc -33· 201238125 曰大同時,鍺之形態結構(例如,其晶格)與石夕之形態 、’。構良好地匹配。較低之體積増大又幫助保護基板與矽化 物結構之間的界面,藉此產生更穩固之電極結構及具有改 良之循環效能的電池。 形成可變組合物之活性材料層的CVD製程可以引入含有 初始辰度之含鍺前驅體及初始濃度之含矽前驅體的處理氣 體開始。含鍺前驅體之濃度接著減小,而含矽前驅體之濃 度增大。 可使用CVD技術、電鍍、無電極電鍍或溶液沈積來沈積 高容量活性材料。在一些實施例中,高容量活性材料係以 類似於用以生長矽化物結構之方式的方式來沈積。矽化物 及活性材料兩者可沈積於同—腔室中。更特定言之,同一 腔室亦可用於基板處理。 在某些實施例中’可使用電漿增強型化學氣相沈積 (PECVD)技術來沈積活性材料。現將參考摻雜有磷之非晶 碎層來更詳細地描述此技術。然而,應理解,此技術或類 似技術亦可用於其他活性材料。含有矽化物模板(更特定 言之’石夕化鎳模板)之基板提供於pECVD腔室中。將基板 加熱至介於約200 C與400之間,或更特定言之介於約 250 C與350°C之間。含有含矽前驅體(例如,矽烷)及一或 多種載氣(例如’氬氣、氮氣、氦氣、氫氣、氧氣 '二氧 化碳及曱院)之處理氣體引入至腔室中。在一特定實例 中’石夕院在氦氣中之濃度介於約5〇/0與2〇〇/。之間,或更特定 言之介於約8%與1 5%之間。處理氣體亦可以介於約1 %與 156769.doc -34· 201238125 5%之間的濃度包括含摻雜物之材料(諸如,磷化氫)。腔室 壓力可維持於介於約0.1托至10托之間,或更特定言之介 於約0.5托與2托之間。為了增強矽烷分解,在腔室中點燃 電漿。 提供以下製程(亦即,射頻(RF)功率及流動速率)參數, 以用於可自 United Kingdom之Surface Technology Systems 購得的STS MESC Multiplex CVD系統,該CVD系統可處理 直徑高達約4英吋之基板》—般熟習此項技術者應理解, 此等製程參數可針對其他類型之腔室及基板大小而按比例 增大或減小。RF功率可維持在介於約1〇 w與10() w之間, 且總的處理氣體流動速率可保持在介於約2〇〇 ^^^與丨⑼❹ seem之間,或更特定言之介於約4〇〇 與“⑽之 間。 —在一特定實施例中,在維持於約丨托之壓力下的處理腔 至中執灯形成電氣化學活性材料層。處理氣體含有約5〇 咖m之石夕炫及約5〇〇 _之氦氣。為了換雜活性材料可 將⑽咖之15%磷化氫添加至處理氣體。將基板保持於 :灣。細功率位準設定為約5〇 w。在某些實施例 中,使用脈衝式PECVD方法。 為二達成活性材料之足夠厚度,可執行沈積歷時介於約 〇·5为鐘與3〇分鐘之間 ^ ^ 性材枓之厚度可藉由能量密度 要求、材料性質(例如,理铪宜旦亦丄 矣°W合更、應力破裂限制)、模板 表面積及其他參數來驅策。在 、 牡呆二貝施例中,沈積厚度介 於約50奈未與500奈米之 -又文特&amp; 3之厚度介於約1〇〇S 32. 201238125 In some embodiments of decane, the concentration of phosphine or another dopant-carrying component in the process gas may be at least about 〇·ι°/. (based on its partial pressure), or at least about 0.5%, or even at least about 1% ^ dopants may also be after deposition of the active material? Break into the active layer (for example, by sputtering, electroplating, ion implantation, and other techniques). In certain embodiments, the lithium-containing compound is deposited onto the active material. Additional lithium can be used in lithium ion batteries to counteract losses associated with solid electrolyte interface (SEI) layer formation and/or to allow some of the remaining lithium to be present in the negative active material during complete battery discharge. Retaining some of the lithium in the negative electrode can help improve the conductivity of the negative active material and/or avoid some morphological changes of the negative active material at the end of the discharge portion of the cycle. ^ In certain embodiments, a plurality of different active materials (e.g., high capacity active materials such as tin) can be deposited on the template. In one example, the tantalum layer may be further coated with a carbon layer to form a core-shell structure. In this example, the germanium structure of the template acts as the core, the germanium layer acts as the intermediate layer or the outer core, and the carbon layer acts as the shell layer. Other examples include coatings that include materials that are not necessarily electrochemically active materials but are configured to perform other functions in the electrode, such as to promote formation of a stable SEI layer. Examples of such materials &quot; include carbon, copper, polymers, sulfides, and metal oxides. In a particular embodiment, the active material layer is deposited as a combination of the wrong and the stone. The distribution of these two materials varies along the height of the stencil such that more 锗 is deposited near the substrate interface than at the end = and compared to the vicinity of the free end for Shi Xi Less germanium is deposited near the interface of the substrate. The degree of bellows is much smaller than that of Shi Xi, and the result is a much smaller body. 156769.doc -33· 201238125 At the same time, the morphological structure (for example, its lattice) and the shape of Shi Xi, '. The structure is well matched. The lower volume is large and helps to protect the interface between the substrate and the germanium structure, thereby producing a more stable electrode structure and a battery with improved cycle performance. The CVD process for forming the active material layer of the variable composition can be initiated by introducing a processing gas containing an initial thickness of the cerium-containing precursor and an initial concentration of the cerium-containing precursor. The concentration of the cerium-containing precursor is then decreased, while the concentration of the cerium-containing precursor is increased. High capacity active materials can be deposited using CVD techniques, electroplating, electroless plating or solution deposition. In some embodiments, the high capacity active material is deposited in a manner similar to that used to grow the telluride structure. Both the telluride and the active material can be deposited in the same chamber. More specifically, the same chamber can also be used for substrate processing. In some embodiments, the active material can be deposited using plasma enhanced chemical vapor deposition (PECVD) techniques. This technique will now be described in more detail with reference to an amorphous layer of phosphorus doped. However, it should be understood that this technique or the like can also be applied to other active materials. A substrate containing a halide template (more specifically, 'Shihua nickel template) is provided in the pECVD chamber. The substrate is heated to between about 200 C and 400, or more specifically between about 250 C and 350 °C. A process gas containing a ruthenium-containing precursor (e.g., decane) and one or more carrier gases (e.g., 'argon, nitrogen, helium, hydrogen, oxygen' carbon dioxide, and a brothel) is introduced into the chamber. In a specific example, the concentration of Shi Xi Yuan in radon is between about 5 〇 / 0 and 2 〇〇 /. Between, or more specifically between, between 8% and 15%. The process gas may also include a dopant-containing material (such as phosphine) at a concentration between about 1% and 156769.doc -34.2012381255%. The chamber pressure can be maintained between about 0.1 Torr and 10 Torr, or more specifically between about 0.5 Torr and 2 Torr. In order to enhance the decomposition of decane, the plasma is ignited in the chamber. The following processes (i.e., radio frequency (RF) power and flow rate) parameters are provided for use with the STS MESC Multiplex CVD system available from Surface Technology Systems of United Kingdom, which can process diameters up to about 4 inches. Substrates - It should be understood by those skilled in the art that such process parameters can be scaled up or down for other types of chambers and substrate sizes. The RF power can be maintained between about 1 〇w and 10 () w, and the total process gas flow rate can be maintained between about 2 〇〇 ^ ^ ^ and 丨 (9) ❹ seem, or more specifically Between about 4 〇〇 and "(10). - In a particular embodiment, the processing chamber is maintained at a pressure of about 丨 to form a layer of electrochemically active material. The process gas contains about 5 m m Shi Xi Xuan and about 5 〇〇 氦 。 。. In order to change the active material, (10) 15% phosphine can be added to the processing gas. Keep the substrate in: Bay. The fine power level is set to about 5 〇 w. In some embodiments, a pulsed PECVD method is used. To achieve a sufficient thickness of the active material, the deposition can be performed for a duration of between about 5 and 3 minutes. Driven by energy density requirements, material properties (eg, 旦 丄矣 丄矣 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 。 。 。 。 。 。 。 。 。 About 50 nanometers and 500 nanometers - and the thickness of the text &amp; 3 is between about 1 inch

S J56769.doc -35- 201238125 奈米與300奈米之間的非晶矽層。應注意,此層沈積於直 徑介於約10奈米與1 〇〇奈米之間的矽化物奈米線上。因 此,所得結構(亦即,具有沈積於矽化物奈米線之上之活 性材料層的該等矽化物奈米線)之平均直徑可介於約100奈 米與1,100奈米之間。其他尺寸亦可為可能的。舉例而 言,藉由增大非晶矽層之孔隙率,該層厚於約500奈米為 可能的。在某些實施例中,多孔矽層之厚度可介於約500 奈米與1000奈米之間,或更特定言之厚度介於約500奈米 與750奈米之間。多孔活性材料結構之一些實例及細節提 供於2010年10月22日申請之題為 「COMPOSITE STRUCTURES CONTAINING HIGH CAPACITY POROUS ACTIVE MATERIALS CONSTRAINED IN SHELLS」的美 國臨時專利申請案61/406,049中,該案之全部内容出於描 述多孔活性材料結構之目的以引用的方式併入本文中。 已判定,厚度介於約50奈米與500奈米之間的一些活性 材料層通常在10分鐘至20分鐘内沈積。特徵化所沈積之活 性材料之量的另一方式為相對於下伏模板。在某些實施例 中,活性材料體積對金屬矽化物體積之質量比為至少約 10,或更特定言之至少約1 〇〇。如在此文件之其他部分中 所述,此比率可沿著模板之高度顯著變化。特定言之,此 比率在個別結構之基板界面附近可比在自由末端附近實質 上小。 圖3 A說明在上文所解釋之總程序之不同階段期間所產生 的結構之四個實例。可在初始階段301期間最初提供基板 156769.doc -36- 201238125 302。如上文所解釋,基板302可包括基底材料及金屬源材 料(用以形成矽化物)。上文描述了此等材料之各種實例及 組合。可接著處理基板3 02以形成適於形成矽化物奈米結 構之表面304(階段303)。若基板302為箔,則表面304可形 成於該箔之兩個側面上(圖中未展示)。在一些實例中,表 面304包括用於形成奈米線之特定長晶位點。表面3〇4亦可 包括遮罩材料。接著在基板302上形成矽化物奈米結構 3 〇6(階段3 05)。在某些實施例中,矽化物奈米結構306具有 其根附至基板302之末端。矽化物奈米結構形成用於沈積 活性材料之高表面積模板。最終,在矽化物奈米結構306 之上沈積活性材料層308(階段307)。矽化物奈米結構306可 提供對活性材料308之機械支撐及至基板302的電連接。儘 官某程度上之接觸可存在於活性材料與基板之間,但自電 池效能觀點而言其可能並非足夠的。 石夕化物奈米結構306與活性材料308之組合可被稱為活性 層3〇9,其鄰近於基板302 »總之,活性層309之特徵可為 其高度,該高度通常接近於矽化物模板之高度或製成此模 板之奈米線的長度。在某些實施例中,活性層之高度介於 約10微米與50微米之間,或更特定言之介於約2〇微米與4〇 微米之間。具有基板及沈積於該基板之兩個相對側面上之 兩個活性層的電極可具有介於約5〇微米與丨〇〇微米之間的 高度。此外,活性層309之特徵可為其孔隙率(例如,至少 約25%、或更特定言之至少約5〇%,或甚至更特定言之至 少約75%)、其每單位面積之容量及其他特性。 g 156769.doc 37· 201238125 此外塗佈模板之活性材料的量可沿著模板之高度而變 化。舉例而言,活性材料層在結構之自由末端附近可比在 基板界面附近厚。圖3B說明沈積於在基板皿上配置之模 板結構306之上的此活性材料層31〇之一實例。在不限於任 何特定理論之情況下,據信,活性材料之此分佈可藉由導 致大量輸送限制狀態之某些處理條件達成。此狀態導致活 性材料前驅體物質(例如,石夕燒)沿著模板之高度的濃度梯 度,及在結構之自由末端附近比在基板界面附近高的沈積 速率。此活性材料分佈自電氣化學循環觀點而言可為有益 的’此係因為結構之根附在基板上的末端將在鐘化期間經 歷較小之體積增大及應力’藉此保持結構與基板之間的接 觸。 特定言之,可藉由在沈積腔室内部在相對高之壓力位準 下執行CVD沈積而達成活性材料的不均勻分佈。在不限於 任何特定理論之情況下,據信,較短之平均自由路徑係在 較尚之壓力位準下達成,此又導致高的較快沈積速率及在 結構之自由末端附近之活性材料前驅體的迅速消耗。此有 效地在模板之高度方面產生大量輸送限制狀態。舉例而 §,可在約50托與760托之間、更特定言之約1〇〇托與6〇〇 托之間’或甚至更特定言之約200托與60〇托之間下執行沈 積。在一特定實例中,在約600托下執行沈積。沈積溫度 可介於约400°C與600°C之間,或更特定言之介於约斗咒^ 與550°C之間。在一特定實例中,在約5〇〇〇c下執行沈積。 此等溫度範圍係針對熱CVD技術而呈現。若pECvD技術用 -38- 156769.docS J56769.doc -35- 201238125 Amorphous tantalum layer between nano and 300 nm. It should be noted that this layer is deposited on a germanium nanowire having a diameter between about 10 nm and 1 nanometer. Thus, the resulting structure (i.e., the tantalum nanowires having a layer of active material deposited over the tantalum nanowires) may have an average diameter between about 100 nm and 1,100 nm. Other sizes are also possible. For example, by increasing the porosity of the amorphous germanium layer, it is possible that the layer is thicker than about 500 nm. In certain embodiments, the thickness of the porous tantalum layer can be between about 500 nanometers and 1000 nanometers, or more specifically between about 500 nanometers and 750 nanometers. Some examples and details of the structure of the porous active material are provided in U.S. Provisional Patent Application Serial No. 61/406,049, filed on Oct. 22, 2010, entitled &quot;COMPOSITE STRUCTURES CONTAINING HIGH CAPACITY POROUS ACTIVE MATERIALS CONSTRAINED IN SHELLS. It is incorporated herein by reference for the purpose of describing the structure of the porous active material. It has been determined that some layers of active material having a thickness between about 50 nm and 500 nm are typically deposited in 10 minutes to 20 minutes. Another way to characterize the amount of active material deposited is relative to the underlying template. In certain embodiments, the mass ratio of active material volume to metal halide volume is at least about 10, or, more specifically, at least about 1 Torr. As described elsewhere in this document, this ratio can vary significantly along the height of the template. In particular, this ratio can be substantially smaller near the substrate interface of the individual structure than near the free end. Figure 3A illustrates four examples of structures produced during the different stages of the overall procedure explained above. Substrate 156769.doc -36 - 201238125 302 may be initially provided during initial phase 301. As explained above, the substrate 302 can include a substrate material and a metal source material (to form a telluride). Various examples and combinations of such materials are described above. Substrate 302 can then be processed to form surface 304 (stage 303) suitable for forming a telluride nanostructure. If the substrate 302 is a foil, the surface 304 can be formed on both sides of the foil (not shown). In some examples, surface 304 includes specific elongated crystal sites for forming nanowires. The surface 3〇4 may also include a masking material. Next, a germanium nanostructure 3 〇 6 (stage 3 05) is formed on the substrate 302. In certain embodiments, the telluride nanostructure 306 has its root attached to the end of the substrate 302. The telluride nanostructure forms a high surface area template for depositing the active material. Finally, an active material layer 308 is deposited over the telluride nanostructure 306 (stage 307). The telluride nanostructure 306 can provide mechanical support for the active material 308 and electrical connection to the substrate 302. A certain degree of contact may exist between the active material and the substrate, but it may not be sufficient from a battery efficiency standpoint. The combination of the Sihua nanostructure 306 and the active material 308 may be referred to as an active layer 3〇9 adjacent to the substrate 302. In summary, the active layer 309 may be characterized by its height, which is generally close to the telluride template. Height or the length of the nanowire made into this template. In certain embodiments, the height of the active layer is between about 10 microns and 50 microns, or more specifically between about 2 microns and 4 microns. The electrode having the substrate and the two active layers deposited on the opposite sides of the substrate may have a height of between about 5 Å and 丨〇〇. Moreover, active layer 309 can be characterized by a porosity (eg, at least about 25%, or more specifically at least about 5%, or even more specifically at least about 75%), its capacity per unit area, and Other features. g 156769.doc 37· 201238125 The amount of active material applied to the stencil can vary along the height of the stencil. For example, the active material layer can be thicker near the free end of the structure than near the substrate interface. Figure 3B illustrates an example of such an active material layer 31 deposited on a template structure 306 disposed on a substrate. Without being limited to any particular theory, it is believed that this distribution of active material can be achieved by certain processing conditions that result in a large number of delivery restriction states. This state results in a concentration gradient of the active material precursor material (e.g., Shixi) along the height of the template, and a higher deposition rate near the free end of the structure than near the substrate interface. This active material distribution may be beneficial from the point of view of the electrochemical cycle 'this is because the end of the structure attached to the substrate will undergo a small volume increase and stress during the bellization' thereby maintaining the structure and the substrate Contact between. In particular, uneven distribution of the active material can be achieved by performing CVD deposition at a relatively high pressure level inside the deposition chamber. Without being limited to any particular theory, it is believed that a shorter average free path is achieved at a higher pressure level, which in turn results in a higher faster deposition rate and active material precursor near the free end of the structure. Rapid consumption. This effectively produces a large number of delivery restriction states in terms of the height of the template. By way of example, §, deposition can be performed between about 50 Torr and 760 Torr, more specifically between about 1 Torr and 6 Torr, or even more specifically between about 200 Torr and 60 Torr. . In a particular example, the deposition is performed at about 600 Torr. The deposition temperature can be between about 400 ° C and 600 ° C, or more specifically between about 550 ° C. In a particular example, the deposition is performed at about 5 〇〇〇c. These temperature ranges are presented for thermal CVD techniques. If pECvD technology is used -38- 156769.doc

S 201238125 於沈積’則溫度可在介於約20(TC與450°C之間的範圍内。 氬氣或氫氣_之石夕烧濃度可在介於約0.5%與20%之間、或 更特定言之介於約0.5%與10%之間,或甚至更特定言之介 於約1%與5%之間的範圍内。 另一方法為在低溫下使用PECVD技術來執行沈積。 PECVD產生具有短於熱激發之自由基之壽命的定域自由 基。因此,平均自由路徑據信為較短的且沈積變成較不等 形的,此供在棋板頂部(在該處,自由基濃度較大)處的 更多沈積。又’ PECVD允許在較低溫度下之沈積,如上文 所提及。較低溫度幫助減少與基板之副反應及不合需要之 過量的矽化物(其可變得易碎)在基板界面處的形成。可以 介於約1托與50托之間的壓力位準、介於約2〇〇。(:與45〇t: 之間的溫度範圍,及矽烷在氫氣、氦氣、氮氣、氬氣或其 各種組合中之介於約1 %與20%之間的濃度來執行PECVD沈 積。腔室内部之電漿可被加偏壓以提供反應性物質之更合 乎需要的分佈。 此外,遠端電漿產生器可用以自活性材料前驅體(諸 如,離子及自由基)產生活化物質。活化物質(例如,-2SiH2) 與其未活化對應物(例如,SiH4)相比更具反應性且傾向於 在結構之自由末端處更快地消耗,藉此有效地產生大量輸 送限制狀態。遠端電漿產生器之一些實例包括ASTRON® i Type AX7670、ASTRON® e Type AX7680、ASTRON® ex Type AX7685、ASTRON® hf-s Type AX7645,其皆可自 MKS Instruments(Andover,Massachusetts)購得。該產生器通 5 156769.doc ·39· 201238125 常為使用所供應之活性材料前驅體產生離子化電漿的自含 式器件。該產生器亦包括用於將能量供應至電漿中之電子 的高功率RF產生器。此能量可接著傳送至中性活性材料前 驅體分子(例如,矽烷),從而使得此等分子之溫度上升至 2000 K位準且導致分手的熱解離。該產生器可由於其高的 RF能量及使得前驅體吸附大部分此能量的特殊通道幾何形 狀而解離大於90%之所供應前驅體分子。該產生器可單獨 使用(例如,連同熱CVD腔室)或與PECVD反應器結合使 用,此可提供物質(例如,在遞送線路及簇射頭中重新組 合的物質)的進一步解離。 圖4A為如自上方檢視之矽化物奈米線的SEM影像。此等 奈米線直接沈積於可自Carl Schlenk AG Company(Roth, Germany)購得之硬捲動鎳箔上。首先將該箔在50托之壓力 下在含有空氣之處理腔室中於300°C下氧化歷時1分鐘。接 著將該箔加熱至450°C,且將含有1體積%之矽烷的處理氣 體引入至腔室中歷時10分鐘。所得之矽化物奈米線之直徑 為約10奈米至50奈米且長度為约1微米至30微米。奈米線 之密度介於約10%至70%之間。如在SEM影像中可見,奈 米線形成極高表面積模板。此等模板接著塗佈有非晶矽且 用以建構硬幣型電池。 圖4B為塗佈有非晶矽之奈米線的SEM影像。該影像係自 與圖4 A相同之方向取得。用於沈積矽之初始矽化物模板與 圖4A中相同。非晶矽沈積係在300°C及1托下執行歷時1〇分 鐘。處理氣體包括50 seem之100%石夕烧、500 seem之氦 -40· 156769.docS 201238125 at deposition' then the temperature may be in the range of between about 20 (TC and 450 ° C. The concentration of argon or hydrogen may be between about 0.5% and 20%, or Specifically, it is between about 0.5% and 10%, or even more specifically between about 1% and 5%. Another method is to perform deposition using PECVD technology at low temperatures. a localized free radical having a lifetime shorter than that of the thermally excited free radical. Therefore, the mean free path is believed to be shorter and the deposit becomes less asymmetrical, which is provided at the top of the board (where the free radical concentration More deposition at larger). Also 'PECVD allows deposition at lower temperatures, as mentioned above. Lower temperatures help reduce side reactions with the substrate and undesirable excess telluride (which can become Fragile) formation at the substrate interface. Can be between a pressure level of between about 1 Torr and 50 Torr, between about 2 〇〇. (: with a temperature range between 45 〇 t:, and decane in hydrogen PECVD is performed at a concentration between about 1% and 20% in helium, nitrogen, argon or various combinations thereof. The plasma inside the chamber can be biased to provide a more desirable distribution of reactive species. Furthermore, the remote plasma generator can be activated from active material precursors such as ions and free radicals. The substance. The activating substance (eg, -2SiH2) is more reactive than its unactivated counterpart (eg, SiH4) and tends to be consumed more quickly at the free ends of the structure, thereby effectively producing a large number of delivery restriction states. Some examples of remote plasma generators include ASTRON® i Type AX7670, ASTRON® e Type AX7680, ASTRON® ex Type AX7685, ASTRON® hf-s Type AX7645, all available from MKS Instruments (Andover, Massachusetts). The generator is commonly used as a self-contained device for producing ionized plasma using the supplied active material precursor. The generator also includes electrons for supplying energy to the plasma. High-power RF generator. This energy can then be transferred to a neutral active material precursor molecule (eg, decane), causing the temperature of these molecules to rise to 2000 K and cause Thermal dissociation of the hand. The generator can dissociate more than 90% of the supplied precursor molecules due to its high RF energy and the special channel geometry that causes the precursor to absorb most of this energy. The generator can be used alone (eg, In conjunction with a thermal CVD chamber or in combination with a PECVD reactor, this provides for further dissociation of materials (eg, materials that are recombined in the delivery line and showerhead). Figure 4A is a telluride nanometer as viewed from above. SEM image of the line. These nanowires were deposited directly onto hard rolled nickel foil available from Carl Schlenk AG Company (Roth, Germany). The foil was first oxidized at 300 ° C for 1 minute in a chamber containing air at a pressure of 50 Torr. The foil was then heated to 450 ° C and a process gas containing 1% by volume of decane was introduced into the chamber for 10 minutes. The resulting germanide nanowires have a diameter of from about 10 nm to 50 nm and a length of from about 1 micron to 30 microns. The density of the nanowires is between about 10% and 70%. As can be seen in the SEM image, the nanowires form a very high surface area template. These templates are then coated with amorphous germanium and used to construct a coin-type battery. 4B is an SEM image of a nanowire coated with amorphous germanium. This image was taken in the same direction as Fig. 4A. The initial telluride template for depositing tantalum is the same as in Figure 4A. The amorphous tantalum deposition system was carried out at 300 ° C and 1 Torr for 1 〇 minutes. The treatment gas includes 50% of 100% Shi Xizhuo, 500 seem of 氦 -40· 156769.doc

S 201238125 氣,及50 seem之15體積。/。的磷化氳e RF功率為5〇 w。經 塗佈之奈米線之平均直徑估計為271奈米至28〇奈米。圖4A 及圖4B兩者之SEM影像係以相同的放大倍率提供,以說明 未塗佈之模板奈米線(圖4A中)及在此等奈米線之上所形成 之非aa矽結構(圖4B中)的相對大小。如自該兩個SEM影像 可見,非晶矽結構實質上厚於未塗佈之矽化物奈米線。 圖4C為含有類似於圖4八中之奈米線的矽塗佈之奈米線 的活性層之側視SEM影像,奈米線具有相對高的縱橫比, 甚至在塗佈有活性材料之後亦如此。活性層之高度一般係 藉由奈米線之長度來界定。此外,活性層具有相對高的孔 隙率,此允許奈米線在不會在活性層中產生過量應力且不 會彼此破壞的情況下在經化期間體積增大。隙率亦允許 電解質組份自由地遷移穿過活性層。 圖4D說明圖4B中最初呈現之活性層的較高放大倍率 SEM影像。黑箭頭指向奈米線之間的接觸點(在本文中有 時稱為「互連」)。此等互連可已在沈積矽化鎳奈米線及/ 或用非BB石夕塗佈奈米線期間形成。如上文所指示,此等互 連增強活性層之機械強度及導電性。 、,圖4E為相對於電極之頂部表面成一角度而獲得且說明奈 只線在八自由末知處比在其根附在基板上之末端處厚得多 的SEM⑥像1成此電極之活性材料結構具有比基板界面 末鳊厚得夕的自由末端。此等結構示意性地說明於圖3B中 田述於上文中。已估計,圖4E中所示之結構具有直徑為 約1微米之自由末端,而根附在基板之末端的直徑為約200 156769.doc •41 · 201238125 奈米。結構之長度估計為約12微米至20微米。 電極通常裝配至堆疊或電極卷(jelly roll)中。圖5A及圖 5B說明根據某些實施例的包括正電極502 '負電極504及兩 個分離器薄片506a及506b之對準堆疊的側視圖及俯視圖。 正電極502可具有正活性層5023及正未塗佈之基板部分 502b。類似地,負電極504可具有負活性層5〇“及負未塗 佈之基板部分504b。在許多實施例中,負活性層5〇4a之曝 露區域稍大於正活性層502a之曝露區域,以確保自正活性 層502a所釋放的大多數或所有鋰離子進入至負活性層5〇4a 中。在一實施例中,負活性層504&amp;在一或多個方向(通常 所有方向)上超越正活性層502a延伸至少介於約〇 25 mm與 5 mm之間。在一更特定實施例中,該負層在一或多個方向 上超越正層延伸介於約1 mm與2 mm之間。在某些實施例 中,分離器薄片506a及506b之邊緣延伸超越至少負活性層 504a之外邊緣,以提供電極與其他電池組件的電子絕緣。 正未塗佈之基板部分5〇2b可用於連接至正端子,且可延伸 超越負電極504及/或分離器薄片50^及5〇613。同樣,負未 塗佈之部分504b可用於連接至負端子,且可延伸超越正電 極502及/或分離器薄片506&amp;及5〇613。 正電極502展示為在平坦之正集電器5〇2b之相對側面上 具有兩個正活性層512a及512b。類似地,負電極5〇4展示 為在平坦之負集電器之相對側面上具有兩個負活性層51乜 及514b。在正活性層512a、其相應之分離器薄片5〇以及相 應之負活性層514a之間的任何間隙通常為極小的(幾乎不 156769.doc -42- 201238125 存在),尤其在電池之第—猶環之後。電極及分離器—起 緊密地捲繞在電極卷中或位於接著***至緊密外殼中之堆 叠中。電極及分離器傾向於在引入電解質之後在外殼内部 體積增大,且隨著鐘離子猶環通過該兩個電極且通過分離 器,第一循環移除任何間隙或乾燥區域(dry area)。 捲繞設計料用配置。長且窄之電極與兩個分離器薄片 -起捲繞至子總成(有時稱為電極卷)中,該子總成根據彎 曲(常常為圓柱形)外殼之内部尺寸而塑形且定大小。圖从 展示包含正電極6G6及負電極咖之電極卷的俯視圖。在該 等電極之間的白色空間表示分離器薄片。將電極卷***至 外殼602中。在-些實施例中,電極卷可具有在中心*** 之心軸6〇8 ’心軸_建立初始捲繞直徑且防止内部捲繞佔 據中心轴區。心軸608可由導電材料製成,且在一些實施 例中,其可為電池端子之-部分。圖6B呈現具有自電極卷 ^伸之正突&gt;;612及負突片614之該電極卷的透視圖。該等 突片可焊接至電極基板之未塗佈之部分。 電極之長度及寬度取決於電池之總尺寸及活性層與集電 益的同度。舉例而言,具有18 mm之直徑及65瓜瓜之長度 的習知18650電池可具有長度介於約·麵與刪麵之 間的電極。對應於低速率/較高容量應用之較短電極係較 厚的且具有較少捲繞。 圓柱形設計針對一些鋰離子電池可為合乎需要的,此係 因為電極在循環期間體積增大且對套管施加壓力。圓形套 官可被製成為足夠薄的且仍維持足夠壓力。稜柱形電池可 156769.doc 5 -43- 201238125 類似地捲繞,但其外殼可因内部壓力沿著較長之側面彎 曲。此外,壓力在電池之不同部分内可能並非均勻的,且 稜柱形電池之隅角可保持為空。空的凹穴在鋰離子電池内 可能並非合乎需要的,此係因為電極傾向於在電極體積增 大期間不均勻地推入至此等凹穴中。此外,電解質可聚集 且在凹穴中於電極之間留下乾燥區域,此不利地影響在電 極之間的鋰離子輸送。然而,針對某些應用(諸如,由矩 形形狀因數所指示之應用),棱柱形電池為適當的。在一 些實施例中,稜柱形電池使用矩形電極及分離器薄片之堆 疊,以避免捲繞式稜柱形電池所遇到之困難中的一些困 難。 圖7說明在外殼702中之捲繞式稜柱形電極卷位置的俯視 圖。電極卷包含正電極704及負電極706。在該等電極之間 的白色空間表示分離器薄片。將電極卷***至矩形稜柱外 殼中。不同於圖6A及圖6B中所示之圓柱形電極卷,棱柱 形電極卷之捲繞以在電極卷中間之平坦延伸區段開始。在 一實施例中,電極卷可在該電極卷中間包括心軸(圖中未 展示),電極及分離器捲繞至該心軸上。 圖8 A說明包括交替之正電極及負電極以及在該等電極之 間的分離器之複數個集合(801a、80lb及801c)的堆疊電池 800的侧視圖。堆疊電池可製成為幾乎任何形狀,其尤其 適用於稜柱形電池。然而,此電池通常需要正電極及負電 極之多個集合,及電極之更複雜對準。集電器突片通常自 每一電極延伸且連接至通向電池端子之整體集電器。 156769.doc -44-S 201238125 gas, and 50 seem 15 volume. /. The phosphine 氲e RF power is 5 〇 w. The average diameter of the coated nanowires is estimated to be 271 nm to 28 Å. The SEM images of both Figures 4A and 4B are provided at the same magnification to illustrate the uncoated template nanowires (in Figure 4A) and the non-aa structure formed over the nanowires ( The relative size of Figure 4B). As can be seen from the two SEM images, the amorphous tantalum structure is substantially thicker than the uncoated tantalum nanowire. Figure 4C is a side SEM image of an active layer containing a ruthenium coated nanowire similar to the nanowire of Figure 4, the nanowire having a relatively high aspect ratio, even after application of the active material in this way. The height of the active layer is generally defined by the length of the nanowire. In addition, the active layer has a relatively high porosity, which allows the nanowires to increase in volume during the warping without causing excessive stress in the active layer and not destroying each other. The gap ratio also allows the electrolyte component to migrate freely through the active layer. Figure 4D illustrates a higher magnification SEM image of the active layer initially presented in Figure 4B. The black arrow points to the point of contact between the nanowires (sometimes referred to as "interconnect" in this article). Such interconnections may have been formed during the deposition of the deuterated nickel nanowires and/or during the coating of the nanowires with non-BB. As indicated above, these interconnections enhance the mechanical strength and electrical conductivity of the active layer. 4E is obtained at an angle with respect to the top surface of the electrode and shows that the nematic line is much thicker than the SEM6 image at the end of the substrate attached to the substrate. The structure has a free end that is thicker than the end of the substrate interface. These structures are schematically illustrated in Figure 3B above. It has been estimated that the structure shown in Fig. 4E has a free end having a diameter of about 1 micron, and the diameter of the root attached to the end of the substrate is about 200 156769.doc • 41 · 201238125 nm. The length of the structure is estimated to be from about 12 microns to 20 microns. The electrodes are typically assembled into a stack or a jelly roll. 5A and 5B illustrate side and top views of an alignment stack including a positive electrode 502 'negative electrode 504 and two separator sheets 506a and 506b, in accordance with some embodiments. The positive electrode 502 can have a positive active layer 5023 and a substrate portion 502b that is not being coated. Similarly, the negative electrode 504 can have a negative active layer 5"" and a negative uncoated substrate portion 504b. In many embodiments, the exposed area of the negative active layer 5A4a is slightly larger than the exposed area of the positive active layer 502a to It is ensured that most or all of the lithium ions released from the positive active layer 502a enter the negative active layer 5〇4a. In one embodiment, the negative active layer 504&amp; exceeds the positive in one or more directions (usually all directions) The active layer 502a extends at least between about 25 mm and 5 mm. In a more particular embodiment, the negative layer extends between about 1 mm and 2 mm beyond the positive layer in one or more directions. In some embodiments, the edges of the separator sheets 506a and 506b extend beyond at least the outer edges of the negative active layer 504a to provide electronic insulation of the electrodes from other battery components. The uncoated substrate portions 5〇2b can be used for connection. To the positive terminal, and extending beyond the negative electrode 504 and/or the separator sheets 50 and 5 613. Similarly, the negative uncoated portion 504b can be used to connect to the negative terminal and can extend beyond the positive electrode 502 and/or Separator sheets 506 &amp; and 5 613. Positive electrode 502 is shown with two positive active layers 512a and 512b on opposite sides of flat positive current collector 5〇2b. Similarly, negative electrode 5〇4 is shown with two on opposite sides of a flat negative current collector. Negative active layers 51 and 514b. Any gap between the positive active layer 512a, its corresponding separator sheet 5〇, and the corresponding negative active layer 514a is typically extremely small (almost no 156769.doc -42-201238125 exists) ), especially after the battery - the helium ring. The electrodes and separators are wound tightly in the electrode coil or in a stack that is then inserted into the tight casing. The electrodes and separators tend to be in the outer casing after the electrolyte is introduced The internal volume increases, and as the clock ions pass through the two electrodes and through the separator, the first cycle removes any gaps or dry areas. The winding design is configured. Long and narrow electrodes and The two separator sheets are wound into a subassembly (sometimes referred to as an electrode roll) that is shaped and sized according to the internal dimensions of the curved (often cylindrical) outer casing. A top view of the electrode 6G6 and the electrode roll of the negative electrode. The white space between the electrodes represents the separator sheet. The electrode roll is inserted into the housing 602. In some embodiments, the electrode roll can have a central insert The mandrel 6〇8' mandrel_ establishes the initial winding diameter and prevents the inner winding from occupying the central shaft region. The mandrel 608 can be made of a conductive material, and in some embodiments, can be a portion of the battery terminal. 6B presents a perspective view of the electrode roll having the positive protrusions &lt; 612 and the negative tabs 614. The tabs can be soldered to the uncoated portions of the electrode substrate. The length and width of the electrode depend on the total size of the battery and the same degree of active layer and collector power. For example, a conventional 18650 battery having a diameter of 18 mm and a length of 65 melons can have electrodes having a length between about a face and a face. The shorter electrodes corresponding to low rate/high volume applications are thicker and have less winding. A cylindrical design may be desirable for some lithium ion batteries because the electrode increases in volume during cycling and applies pressure to the sleeve. The circular sleeve can be made thin enough and still maintain sufficient pressure. Prismatic batteries can be wound similarly, but their outer casing can be bent along the longer side due to internal pressure. In addition, the pressure may not be uniform across different portions of the battery and the corners of the prismatic battery may remain empty. An empty pocket may not be desirable in a lithium ion battery because the electrode tends to push unevenly into the pocket during the increase in electrode volume. In addition, the electrolyte can collect and leave a dry area between the electrodes in the pocket, which adversely affects lithium ion transport between the electrodes. However, for certain applications, such as those indicated by the rectangular form factor, prismatic batteries are suitable. In some embodiments, a prismatic battery uses a stack of rectangular electrodes and separator sheets to avoid some of the difficulties encountered with wound prismatic batteries. Figure 7 illustrates a top view of the position of the wound prismatic electrode coil in the outer casing 702. The electrode roll includes a positive electrode 704 and a negative electrode 706. The white space between the electrodes represents the separator sheet. Insert the electrode roll into the rectangular prism housing. Unlike the cylindrical electrode roll shown in Figures 6A and 6B, the winding of the prismatic electrode roll begins with a flat extension of the middle of the electrode roll. In one embodiment, the electrode roll may include a mandrel (not shown) intermediate the electrode roll onto which the electrode and separator are wound. Figure 8A illustrates a side view of a stacked battery 800 including alternating positive and negative electrodes and a plurality of sets (801a, 80bb, and 801c) of separators between the electrodes. Stacked batteries can be made in almost any shape, which is especially suitable for prismatic batteries. However, such batteries typically require multiple sets of positive and negative electrodes, as well as more complex alignment of the electrodes. The current collector tabs typically extend from each electrode and are connected to an integral current collector that leads to the battery terminals. 156769.doc -44-

S 201238125 一旦電極如上文所述而配置,則電池填充有電解質。鋰 離子電池中之電解質可為液體、固體或凝膠β具有固體電 解質之鋰離子電池被稱為鋰聚合物電池。 典型之液體電解質包含一或多種溶劑及一或多種鹽,其 中至少一者包括鋰。在第一充電循環(有時稱為形成循環) 期間,電解質中之有機溶劑可在負電極表面上部分地分解 以形成SEI層。相間相一般為電絕緣但離子導電的,藉此 允許Μ離子通過。相間相亦防止電解質在稍後之充電子循 環中的分解。 適用於一些鋰離子電池之非水溶劑之一些實例包括以下 各者:環狀碳酸酯類(例如,碳酸伸乙酯(EC)、碳酸伸丙 酯(PC)、碳酸伸丁酯(BC)及碳酸乙烯基乙烯酯(VEC))、碳 酸伸乙烯酯(VC)、内酯類(例如,γ-丁内酯(Gbl)、γ-戊内 酯(GVL)及α-當歸内酯(AGL))、直鏈碳酸酯類(例如,碳酸 二甲酯(DMC)、碳酸曱乙酯(MEC) '碳酸二乙酯(DEC)、 碳酸甲丙酯(MPC)、碳酸二丙酯(DPC)、碳酸曱丁酯(NBC) 及碳酸二丁酯(DBC)) '醚類(例如,四氫呋喃(THF)、2-甲 基四氫呋喃、1,4-二噁烷、1,2-二甲氧乙烷(DME)、1,2·二 乙氧乙烷及1,2-二丁氧乙烷)、亞硝酸鹽類(例如,乙腈及 己二腈)、直鏈酯類(例如,丙酸曱酯、特戊酸甲酯、特戊 酸丁酯及特戊酸辛酯)、醯胺類(例如,二甲基甲醯胺)、有 機璃酸S旨類(例如,碟酸三甲g旨及填酸三辛i旨)、含有s=〇 基之有機化合物(例如,二甲礙及二乙烯颯)’及其組合》 非水性液體溶劑可以組合形式使用。此等組合之實例包 156769.doc 5 • 45- 201238125 括環狀碳酸酯-直鏈碳酸酯、環狀碳酸酯-内酯、環狀碳酸 酯-内酯-直鏈碳酸酯、環狀碳酸酯-直鏈碳酸酯-内酯、環 狀碳酸酯-直鏈碳酸酯-醚,及環狀碳酸酯-直鏈碳酸酯-直 鏈酯的組合。在一實施例中,環狀碳酸酯可與直鏈酯組 合。此外,環狀碳酸酯可與内酯及直鏈酯組合。在一特定 實施例中,環狀碳酸酯對直鍵酯之體積比介於約1:9至 10:0、較佳2:8至7:3之間。 液體電解質之鹽可包括以下各者中之一或多者: LiPF6、LiBF4 ' LiC104 LiAsF6、LiN(CF3S02)2 ' LiN(C2F5S02)2、LiCF3S03、LiC(CF3S02)3、LiPF4(CF3)2、 LiPF3(C2F5)3、LiPF3(CF3)3、LiPF3(異 C3F7)3、LiPF5(異 C3F7) ' .具有環烷基之鋰鹽(例如,(CF2)2(S〇2)2xLi及 (CF2)3(S02)2xLi),及其組合。常用組合包括LiPF6與 LiBF4、LiPFALiN(CF3S02)2、LiBF4與LiN(CF3S02)2。 在貫施例中’液體非水溶劑(或溶劑之組合)中之鹽的 總濃度為至少約〇.3 M ;在一更特定實施例中,鹽濃度為 至少約0.7 Μ ^濃度上限可由溶解度限制來驅策或可不大 於約2.5 Μ ;在一更特定實施例中,其可不超過約丨$ Μ。 固體電解質通常在無分離器之情況下使用,此係因為其 自身充當分離器。固體電解質為電絕緣、離子導電且電氣 化‘ C疋的。在固體電解質組態中’使用含經之鹽(其與 針對上文所述之液體電解質電池之鹽相同),但並非將其 ♦解於有機溶劑中’而是將其保持於固體聚合物複合物 中固體聚合物電解質之實例可為自含有原子之單體所製 156769.docS 201238125 Once the electrodes are configured as described above, the battery is filled with electrolyte. The electrolyte in a lithium ion battery can be a liquid, solid or gel. A lithium ion battery having a solid electrolyte is called a lithium polymer battery. A typical liquid electrolyte comprises one or more solvents and one or more salts, at least one of which comprises lithium. During the first charging cycle (sometimes referred to as forming a cycle), the organic solvent in the electrolyte may partially decompose on the surface of the negative electrode to form an SEI layer. The phase-to-phase phase is generally electrically insulating but ionically conductive, thereby allowing helium ions to pass. The phase-to-phase also prevents decomposition of the electrolyte in later charge sub-cycles. Some examples of non-aqueous solvents suitable for use in some lithium ion batteries include the following: cyclic carbonates (eg, ethyl carbonate (EC), propyl carbonate (PC), butylene carbonate (BC), and Vinyl vinyl carbonate (VEC)), vinyl carbonate (VC), lactones (eg, γ-butyrolactone (Gbl), γ-valerolactone (GVL), and α-angelica lactone (AGL) ), linear carbonates (eg, dimethyl carbonate (DMC), ethyl lanthanum carbonate (MEC) 'diethyl carbonate (DEC), methyl propyl carbonate (MPC), dipropyl carbonate (DPC), Butyl carbonate (NBC) and dibutyl carbonate (DBC)) 'ethers (eg, tetrahydrofuran (THF), 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane (DME), 1,2,2-diethoxyethane and 1,2-dibutoxyethane), nitrites (for example, acetonitrile and adiponitrile), linear esters (for example, decyl propionate) , methyl pivalate, butyl pivalate and octyl pivalate), guanamines (for example, dimethylformamide), and organic acid S (for example, trimethyl sulphate and acid Sanxin i), containing s=〇基Compounds (e.g., divinyl dimethyl obstruction and SA '), and combinations thereof "non-aqueous liquid solvent can be combined form. Examples of such combinations 156769.doc 5 • 45- 201238125 includes cyclic carbonate-linear carbonates, cyclic carbonate-lactones, cyclic carbonate-lactone-linear carbonates, cyclic carbonates a combination of a linear carbonate-lactone, a cyclic carbonate-linear carbonate-ether, and a cyclic carbonate-linear carbonate-linear ester. In one embodiment, the cyclic carbonate can be combined with a linear ester. Further, a cyclic carbonate can be combined with a lactone and a linear ester. In a particular embodiment, the volume ratio of cyclic carbonate to linear bond is between about 1:9 and 10:0, preferably between 2:8 and 7:3. The salt of the liquid electrolyte may include one or more of the following: LiPF6, LiBF4 'LiC104 LiAsF6, LiN(CF3S02)2 'LiN(C2F5S02)2, LiCF3S03, LiC(CF3S02)3, LiPF4(CF3)2, LiPF3 (C2F5)3, LiPF3(CF3)3, LiPF3(iso C3F7)3, LiPF5(iso C3F7)'. Lithium salt having a cycloalkyl group (for example, (CF2)2(S〇2)2xLi and (CF2)3 (S02) 2xLi), and combinations thereof. Common combinations include LiPF6 and LiBF4, LiPFALiN (CF3S02)2, LiBF4 and LiN(CF3S02)2. In the examples, the total concentration of the salt in the 'liquid nonaqueous solvent (or combination of solvents) is at least about 〇3 M; in a more specific embodiment, the salt concentration is at least about 0.7 Μ. The restriction may be no more than about 2.5 Μ; in a more specific embodiment, it may not exceed about 丨$ Μ. The solid electrolyte is usually used without a separator because it acts as a separator itself. Solid electrolytes are electrically insulating, ionically conductive and electrically conductive. In the solid electrolyte configuration 'use the salt containing salt (which is the same as the salt for the liquid electrolyte battery described above), but do not dissolve it in the organic solvent' but keep it in the solid polymer composite An example of a solid polymer electrolyte may be 156769.doc made from a monomer containing atoms.

S -46· 201238125 備的離子導電聚合物,該等原子具有孤電子對,電解質鹽 之鋰離子可附著至該孤電子對且在導電期間在該等電子之 間移動,該等固體聚合物電解質諸如聚偏二氟乙烯(PVDF) 或其衍生物之氯化物或共聚物、聚(三氟氣乙烯)、聚(乙 烯-三氟氣-乙烯)、或聚(氟化乙嫦-丙烯)、聚氧化乙烯 (PEO)及氧亞曱基鍵聯PEO、與三官能胺基曱酸酯交聯之 PEO-PPO-PEO、聚(雙(甲氧基-乙氧基-乙醇鹽))-磷氮烯 (MEEP)、與雙官能胺基曱酸酯交聯之三醇型PEO、聚((寡 聚)氧伸乙基)曱基丙烯酸酯-共-鹼金屬甲基丙烯酸酯、聚 丙烯腈(PAN)、聚甲基丙烯酸甲酯(PNMA)、聚甲基丙烯腈 (PMAN)、聚矽氧烷及其共聚物及衍生物、基於丙烯酸酯 之聚合物、其他類似的無溶劑聚合物、縮合或交聯以形成 不同聚合物之前述聚合物的組合,及前述聚合物中之任一 者的物理混合物。可與以上聚合物組合使用以改良薄層疊 物之強度的其他較不導電聚合物包括:聚酯(PET)、聚丙 烯(PP)、聚2,6萘二甲酸乙二酯(PEN)、聚偏二氟乙烯 (PVDF)、聚碳酸酯(PC)、聚苯硫醚(PPS)及聚四氟乙烯 (PTFE)。 圖9說明根據一實施例之捲繞式圓柱形電池之橫截面 圖。電極卷包含螺旋捲繞之正電極902、負電極904,及兩 個分離器薄片906。將電極卷***至電池外殼916中,且頂 蓋918及密封墊920用以密封電池。應注意,在某些實施例 中,直至後續操作之後才密封電池。在一些狀況下,頂蓋 918或電池外殼916包括安全器件。舉例而言,若過量之壓 3 156769.doc • 47· 201238125 力積累於電池中,則 些實施財,包括單 ^暴破閥可用以打開。在某 活化期間已釋放之氧/ 放間,以釋放在正性材料之 入至頂蓋-之導電二又以 況下可發生之損壞。項二=在電池遭受短路之情 只益yi8之外表面可用^令 電池外殼916之外声而飞 囬J用作正鳊子,而 中,電池之極性顛倒,且頂葚…“在#代貫施例 頂^918之外表面用作負端子, 而電池外殼916之外表 f負端子 兄田正鳊子0突片908及910可用 以在正電極及自雷糕&amp;』 •之絕緣密封執一目μ端子之間建立連接。可***適 田邑緣检封塾914及912以防止内部短接之可能性。舉例 而5 ’ Κ&amp;Ρί〇ηΤΜ薄膜可用於内部絕緣。在製造期間,頂罢 ㈣可捲曲至電池外殼916,以便密封電池1而,在此^ 作之前,添加電解質(圖中未展示)以填充電極 間。 硬質外殼通常用於經離子電池,而鐘聚合物電池可包裝 至可撓性箔型(聚合物層疊物)外殼中。可針對外殼選擇 多種材料。針對鋰離子電池’ τ““、其他乃合金、Α卜 A1合金及300系列不鏽鋼可適用於正導電外殼部分及端 帽,且商業上之純Ti、Ti合金、Cu、A1、A1合金、见、抑 及不鏽鋼可適用於負導電外殼部分及端帽。 除了上文所述之電池應用之外,金屬矽化物亦可用於燃 料電池(例如,用於陽極、陰極及電解質)、異質接面太陽 能電池活性材料、各種形式之集電器,及/或吸收塗層 中。此等應用中之一些應用可得益於由金屬矽化物結構所 156769.docS-46·201238125 An ion-conducting polymer having a lone pair of electrons to which a lithium ion of an electrolyte salt can adhere and move between the electrons during conduction, the solid polymer electrolyte a chloride or copolymer such as polyvinylidene fluoride (PVDF) or a derivative thereof, poly(trifluoroethylene), poly(ethylene-trifluoroethylene-ethylene), or poly(fluorene fluoride-propylene), Polyethylene oxide (PEO) and oxyarylene-bonded PEO, PEO-PPO-PEO, poly(bis(methoxy-ethoxy-ethanolate))-phosphorus crosslinked with trifunctional amine phthalate Nitrene (MEEP), triol type PEO crosslinked with difunctional amine phthalate, poly((oligo)oxyethyl) decyl acrylate-co-alkali metal methacrylate, polyacrylonitrile (PAN), polymethyl methacrylate (PNMA), polymethacrylonitrile (PMAN), polyoxyalkylene and its copolymers and derivatives, acrylate-based polymers, other similar solvent-free polymers, a combination of the foregoing polymers condensed or crosslinked to form different polymers, and a physical mixing of any of the foregoing polymers Thereof. Other less conductive polymers that can be used in combination with the above polymers to improve the strength of the thin laminate include: polyester (PET), polypropylene (PP), polyethylene 2,6 naphthalate (PEN), poly Divinylidene fluoride (PVDF), polycarbonate (PC), polyphenylene sulfide (PPS), and polytetrafluoroethylene (PTFE). Figure 9 illustrates a cross-sectional view of a wound cylindrical battery in accordance with an embodiment. The electrode roll comprises a spirally wound positive electrode 902, a negative electrode 904, and two separator sheets 906. The electrode roll is inserted into the battery case 916, and the top cover 918 and the gasket 920 are used to seal the battery. It should be noted that in some embodiments, the battery is not sealed until after subsequent operations. In some cases, the top cover 918 or battery housing 916 includes a security device. For example, if the excess pressure is accumulated in the battery, then some implementations, including single-break valves, can be opened. The oxygen/release that has been released during an activation period releases the damage that can occur if the positive material enters the top cover. Item 2 = In the case of the battery being short-circuited, only the surface of the battery can be used yi8, so that the battery casing 916 is sounded and flies back to J for use as a positive scorpion, and the polarity of the battery is reversed, and the top 葚..." The outer surface of the top surface 918 is used as a negative terminal, and the outer surface of the battery case 916 is the negative terminal of the f-terminal 906 and 910, which can be used for the insulation of the positive electrode and the self-slip cake. A connection can be established between the terminals and the terminals. The Optimum Seals 914 and 912 can be inserted to prevent the possibility of internal shorting. For example, 5 ' Κ &amp; Ρ 〇 〇 ΤΜ film can be used for internal insulation. During manufacturing, top (4) can be crimped to the battery casing 916 to seal the battery 1 and, prior to this, an electrolyte (not shown) is added to fill the electrodes. The hard casing is usually used for ion batteries, while the bell polymer battery can be packaged. In the flexible foil type (polymer laminate) housing. A variety of materials can be selected for the housing. For lithium-ion batteries 'τ', other alloys, aluminum alloys and 300 series stainless steel can be applied to the positive conductive housing part. And end caps, and The pure Ti, Ti alloy, Cu, A1, A1 alloy, see, and stainless steel can be applied to the negative conductive outer casing part and the end cap. In addition to the battery application described above, the metal telluride can also be used for the fuel cell. (for example, for anodes, cathodes and electrolytes), heterojunction solar cell active materials, various forms of current collectors, and/or absorbing coatings. Some of these applications can benefit from metal telluride structures. 156769.doc

S -48 * 201238125 提供之高表面積、石夕化物材料之高導電性,及快速之不昂 貴的沈積技術。 【圖式簡單說明】 圖1說明製造含有金屬矽化物模板及高容量活性材料之 電氣化學活性材料的程序實例。 圖2A為三層基板實例之示意性表示。 圖2B為叢集矽化物結構之示意性表示,該等叢集矽化物 結構塗佈有在該等矽化物結構之基底附近重疊的活性材料 層’從而形成龐大的活性材料聚結。 圖2C為根據某些實施例之經由遮罩中間子層所形成之分. 離的矽化物結構之示意性表示。 圖2D為分離之矽化物結構的示意性表示,該等矽化物結 構塗佈有並未在該等矽化物結構之基底附近重疊的活性材 料層。 圖2E及圖2F為具有所沈積之純化材料的未塗佈之石夕化物 結構及經塗佈之梦化物結構的示意性表示,其中該純化材 料防止活性材料在矽化物結構之基底附近的沈積。 圖3A說明初始、中間及最終電極結構之一實例,其可在 於圖1之背景下所述之製造程序的不同階段呈現。 之電極結構 圖3B说明具有高容量活性材料之不均勻分佈 的一實例。 圖4A為在錦塗層之上形成高表面積模板切化錄奈米線 的自上而下掃描電子顯微鏡(SEM)影像。 圖4B為沈積於類似於圖4A中所示之石夕化轉奈米線之石夕 156769.doc •49· 201238125 化鎳奈米線之上的非晶矽之自上而下SEM影像。 圖4C為含有塗佈有非晶矽之矽化鎳奈米線之電極活性層 的側視SEM影像。S -48 * 201238125 Provides high surface area, high electrical conductivity of the ceramsite material, and fast and inexpensive deposition techniques. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 illustrates an example of a procedure for producing an electrochemically active material containing a metal halide template and a high capacity active material. 2A is a schematic representation of an example of a three-layer substrate. Figure 2B is a schematic representation of a clustered telluride structure coated with an active material layer&apos; that overlaps adjacent the substrate of the germanide structure to form a bulky active material coalescence. 2C is a schematic representation of a separated telluride structure formed via a mask intermediate sub-layer, in accordance with some embodiments. Figure 2D is a schematic representation of an isolated telluride structure coated with an active material layer that does not overlap near the substrate of the germanide structure. 2E and 2F are schematic representations of an uncoated lithi structure having a deposited purified material and a coated dream structure, wherein the purified material prevents deposition of the active material near the substrate of the telluride structure. . Figure 3A illustrates an example of initial, intermediate, and final electrode structures that may be presented at different stages of the fabrication process described in the context of Figure 1. Electrode Structure Figure 3B illustrates an example of an uneven distribution of high capacity active materials. Figure 4A is a top down scanning electron microscope (SEM) image of a high surface area template-cut nanowire formed over a ruthenium coating. Fig. 4B is a top-down SEM image of an amorphous crucible deposited on a nickel-like 156769.doc •49·201238125 nickel nanowire line similar to the Shi Xihuan nanowire shown in Fig. 4A. Fig. 4C is a side SEM image of an electrode active layer containing a nickel germanium wire coated with amorphous germanium.

圖4D為類似於圖4B中所呈現之影像的高放大倍率SEM 影像。 圖4E為相對於電極之頂部表面成一角度而獲得且說明奈 米線在其自由末端處比在其根附在基板上之末端處厚得多 的SEM影像。 圖5 A至圖5B為根據某些實施例之說明性電極配置的俯 視示意圖及側視示意圖。 圖6A至圖6B為根據某些實施例之說明性圓形捲繞式電 池的俯視示意圖及透視示意圖。 圖7為根據某些實施例之說明性稜柱形捲繞式電池的俯 視示意圖。 圖8A至圖8B為根據某些實施例之電極及分離器薄片之 說明性堆疊的俯視示意圖及透視示意圖。 圖9為根據實施例之捲繞式電池之一實例的示意性橫截 面圖。 【主要元件符號說明】 100 製造含有金屬矽化物模板及高容量活性材料 之電氣化學活性電極的程序 200 三層基板 202 子層 204 子層Figure 4D is a high magnification SEM image similar to the image presented in Figure 4B. Figure 4E is an SEM image obtained at an angle relative to the top surface of the electrode and illustrating that the nanowire is much thicker at its free end than at its end attached to the substrate. 5A-5B are top and bottom schematic views of an illustrative electrode configuration in accordance with some embodiments. 6A-6B are top and schematic perspective views of an illustrative circularly wound battery in accordance with some embodiments. Figure 7 is a top plan view of an illustrative prismatic wound battery in accordance with some embodiments. 8A-8B are top and schematic perspective views of an illustrative stack of electrodes and separator sheets, in accordance with some embodiments. Fig. 9 is a schematic cross-sectional view showing an example of a wound battery according to an embodiment. [Explanation of main component symbols] 100 Procedure for manufacturing electrochemically active electrodes containing metal halide templates and high-capacity active materials 200 Three-layer substrate 202 Sub-layer 204 Sub-layer

156769.doc -50- S 201238125 206 含金屬材料子層 212 基板 214 叢集矽化物結構 216 活性材料層 222 基板 224 矽化物結構 225 遮罩中間子層 226 活性材料層 232 基板 234 矽化物結構 235 鈍化材料 236 活性材料 301 初始階段 302 基板 303 階段 304 表面 305 階段 306 矽化物奈米結構/模板結構 307 階段 308 活性材料層/活性材料 309 活性層 310 活性材料層 502 正電極 502a 正活性層 3 156769.doc 51 - 201238125 502b 正未塗佈之基板部分/正集電器 504 負電極 504a 負活性層 504b 負未塗佈之基板部分 506a 分離器薄片 506b 分離器薄片 512a 正活性層 512b 正活性層 514a 負活性層 514b 負活性層 602 外殼 604 負電極 606 正電極 608 心轴 612 正突片 614 負突片 702 外殼 704 正電極 706 負電極 800 堆疊電池 801a 電極集合 801b 電極集合 801c 電極集合 902 螺旋捲繞之正電極 156769.doc -52 - s 201238125 904 負電極 906 分離器薄片 908 突片 910 突片 912 絕緣密封墊 914 絕緣密封墊 916 電池外殼 918 頂蓋 920 密封墊 156769.doc156769.doc -50- S 201238125 206 Metal-containing material sub-layer 212 substrate 214 cluster germanide structure 216 active material layer 222 substrate 224 germanide structure 225 mask intermediate sub-layer 226 active material layer 232 substrate 234 germanide structure 235 passivation material 236 Active Material 301 Initial Stage 302 Substrate 303 Stage 304 Surface 305 Stage 306 Telluride Nanostructure/Template Structure 307 Stage 308 Active Material Layer/Active Material 309 Active Layer 310 Active Material Layer 502 Positive Electrode 502a Positive Active Layer 3 156769.doc 51 - 201238125 502b Uncoated substrate portion / positive collector 504 Negative electrode 504a Negative active layer 504b Negative uncoated substrate portion 506a Separator sheet 506b Separator sheet 512a Positive active layer 512b Positive active layer 514a Negative active layer 514b Negative active layer 602 Shell 604 Negative electrode 606 Positive electrode 608 Mandrel 612 Positive tab 614 Negative tab 702 Housing 704 Positive electrode 706 Negative electrode 800 Stacked battery 801a Electrode assembly 801b Electrode assembly 801c Electrode assembly 902 Spiral wound positive electrode 156769 .doc -52 - s 2012 38125 904 Negative Electrode 906 Separator Sheet 908 Tab 910 Tab 912 Insulation Gasket 914 Insulation Gasket 916 Battery Housing 918 Top Cover 920 Gasket 156769.doc

Claims (1)

201238125 七、申請專利範圍: 1· 一種用於一鋰離子電池中之電氣化學活性電極材料,該 電氣化學活性電極材料包含: 一奈米結構化模板,其包含一金屬矽化物,·及 -電氣化學活性材料之一層,其塗佈該奈米結構化模 板,该電氣化學活性材料經組態以在該鋰離子電池之循 環期間接納及釋放鐘離子, 其中該奈米結構化模板促進電流至及自該電氣化學活 味材料之導電’且對該電氣化學活性材料之該層提供支 撐。 2.如凊求項1之電氣化學活性電極材料,其中該金屬矽化 物係選自由以下各物組成之—群:珍化錄、石夕化銘、石夕 化鋼、錢銀、⑦化鉻1化鈦1仙、⑦化鋅及石夕 化鐵。 :长項2之電氣化學活性電極材料,其中該金屬矽化 物包含選自由以下各物組成之群的至少兩個不同的矽化 錄相:Ni2Si、NiSi&amp;NiSi2。 、求項1之電氣化學活性電極材料,纟中該電氣化學 矽〖f料係選自由以下各物組成之群:結晶矽、非晶 氣化石夕、氮氧化石夕、含錫材料、含錯材料及含碳材 5, 項1之電氣化學活性電極材料,其中該奈米結構 ^板包含切化物之奈米線β 如明求項5之電氣化學活性電極材料,纟中該等含矽化 156769.doc 201238125 物之不来線之長度平均而言介於約i微米與謂微 間。 7·如凊求項5之電氣化學活性電極材料,其中該等含矽化 物之奈米線之直徑平均而言小於約1〇〇奈米。 8.如^月求項1之電氣化學活性電極材料,其中該電氣化學 活性材料之該層之厚度平均而言為至少約1〇〇奈米。 9·如請求項1之電氣化學活性電極材料,其中該活性材料 對该模板之一體積比為至少約5。 1〇.如請求項1之電氣化學活性電極材料,其中該電氣化學 !·生材料之遠層包含非晶砂,該層具有平均而言為至少 、、/'米之厚度,且其中該奈米結構化模板包含長 又平均而言介於約1G㈣與顺米之間且直徑平均而言 :於約50奈米、3G奈米、2Q奈来及1()奈米㈣化錄奈米 線。 請求項i之電氣化學活性電極材料,其中,在使該兹 ^ :也中之》玄電氣化學活性電極材料循環之前,該電 氣化學活性材料之該層摻雜有以下材料中之—或多者: 鱗、硼、鎵及鋰。 月求項1之電乳化學活性電極材料,其進—步包含形 ::該電氣化學活性材料之該層之上的一殼層,其中該 山、選自由以下各物組成之群的一或多種材料: ^ 5聚。物、硫化物、氮氧化鋰磷(LIPON)、金屬 軋化物,及含氟化合物。 β求項1之電氣化學活性電極材料,其中該電氣化學 156769.doc S 201238125 材料具有至少約500 mAh/g之一理論裡化容量。 14. -種用於一鋰離子電池中之鋰離子電極,該鋰離子電極 包含: —電氣化學活性電極材料,其包含: 一奈米結構化模板,其包含一金屬矽化物丨及 • 一電氣化學活性材料之—層,其塗佈該奈米結構化 模板,該電氣化學活性材料經組態以在該鋰離子電池 之循環期間接納及釋放經離子,其中該奈米結構化模 板促進电〃IL至及自該電氣化學活性材料之導電;及 一集電器基板,其與該電氣化學活性電極材料電連通 且包含該金屬矽化物之該金屬。 15. 如請求項14之鋰離子電極,其中該奈米結構化模板包含 根附至該基板之奈米線,該等奈米線包含自由末端及根 附在基板上之末端。 16. 如請求項15之經離子電極,其中該電氣化學活性材料之 該層在料奈轉之該等自由末端處的厚度為在該等根 附在基板上之末端處之厚度的至少兩倍。 17. 如請求項15之經離子電極,其中該電氣化學活性材料之 該層包含非晶⑦及鍺’且其巾該層在料奈米線之該等 自由末端處比在該等根附在基板上之末端處具有更多的 矽及更少之鍺。 18·如請求項14之鋰離子電極,其進一步包含—中間子層’ 該中間子層位於該奈米結構化模板與該集電器基板之 間,且經組態以改良該奈米結構化模板與該集電器基板 S 156769.doc 201238125 之間的冶金附著及電子導電性β 19.如請求項】4之鋰離子電極,其進一步包含一中間子層, 該中間子層位於該奈米結構化模板與該電氣化學活性材 料之該層之間,且經組態以改良該奈米結構化模板與該 電氣化學活性材料之該層之間的冶金附著及電子導電 性。 20. 如請求項14之鋰離子電極,其進一步包含一中間子層, «亥中間子層位於該奈米結構化模板與該電氣化學活性材 料之該層之間,且經組態以在該奈米結構化模板與該電 氣化學活性材料之該層之間提供一彈性界面。 21. 如請求項14之鋰離子電極,其中該奈米結構化模板之一 表面積對該基板之一表面積的一比率為至少約2〇。 22·如請求項14之㈣子電極,其中該基板包含鄰近於該基 板之基底層,該基底層實質上不含該金屬矽化物之該 金屬。 23. 如請求項14之經離子電極,其中該基板包含選自由以下 各物組成之群的-或多種材料:銅、錄、鈦及不鑛鋼。 24. 如D月求項14之鐘離子電極’其中該链離子電極為一負電 〇 25. 如請求項14之輯子電極,其中該輯子電極為一正電 〇 26. —種鋰離子電池,其包含 一電氣化學活性電極材料,其包含: 一奈米結構化模板,其包含一金屬石夕化物;及 156769.doc 201238125 一電氣化學活性材料之一層,其塗佈該奈米結構化 模板’該電氣化學活性材料經組態以在該鋰離子電池 之循環期間接納及釋放鐘離子,其中該奈米結構化模 板促進電流至及自該電乳化學活性材料之導電;及 一集電器基板,其與該電氣化學活性電極材料電連通 且包含該金屬石夕化物之該金屬。 27. -種製造用於一鐘離子電池中之一鐘離子電池電極的方 法’該方法包含: 接收一基板; 在該基板之-表面上形$包含一金屬石夕化物之一奈米 結構化拉板;及 在該奈米結構化模板上形成—電氣化學活性材料之一 該電氣化學活性材料經組態以在該鋰離子電池之循 環期間接納及釋放鐘離子, 其中該奈米結構化模板促進電流至及自該電氣化學活 性材料之導電。 28.如印求項27之方法,其進一步包含,在形成該金屬石夕化 物模板之前,使用選自由以下各者組成之群的…戈多種 Γ來處理該基板:氧化、退火、還原、粗韃化、滅 ,刻、電鍍、反電鍍、化學氣相沈積、氣化物形 成,及一中間層之沈積。 29. 如請求項27之方法 形成一金屬組件, 金屬石夕化物時消耗 ,其進一步包含在該基板之該表面上 其中該金屬組件之一部分係在形成該 156769.doc 201238125 3〇.如請求項27 &lt;万法’其中形成該奈米結構化模板包含將 3夕則驅體弓丨入於該基板之該表面之上。 如月求項27之方法,其進一步包含在形成該電氣化學活 材料之該層之前,在該奈米結構化模板之上選擇性地 沈積一鈍化層。 如月求項27之方法,其令形成該電氣化學活性材料之該 層係在-大量輸送狀態下執行,使得與該奈米結構化模 板之自由末端處相比,一實質上較低濃度之—活性材科 前驅體可用於該基板之該表面處。 33.如請求項27之方法,其進—步包含在形成該電氣化學活 性材料之該層的同時’改變活性材料前驅體之一組合 物0 156769.doc s201238125 VII. Patent application scope: 1. An electro-chemical active electrode material for use in a lithium ion battery, the electro-chemical active electrode material comprising: a nanostructured template comprising a metal telluride, and - electrical a layer of a chemically active material coated with the nanostructured template, the electrochemically active material configured to receive and release a clock ion during cycling of the lithium ion battery, wherein the nanostructured template promotes current to Conducting from the electrochemical active material and providing support to the layer of the electrochemically active material. 2. The electrochemically active electrode material of claim 1, wherein the metal halide is selected from the group consisting of: Zhenhua Lu, Shi Xihua, Shi Xihua, Qian Yin, 7 Chromium 1 Titanium 1 sen, 7 zinc, and Shixi iron. An electrochemically active electrode material of long term 2, wherein the metal halide comprises at least two different deuterated phases selected from the group consisting of Ni2Si, NiSi&amp;NiSi2. The electrochemical active electrode material of claim 1, wherein the electrochemistry is selected from the group consisting of: crystalline germanium, amorphous gas fossil, nitrous oxide oxide, tin-containing material, and error Materials and carbonaceous materials 5, Item 1 of the electrochemically active electrode material, wherein the nanostructured plate comprises a nanowire of the cut compound β, such as the electrochemically active electrode material of the fifth item, and the sputum containing 156769 .doc 201238125 The length of the unrecognized line is on average between about i microns and the micro. 7. The electrochemically active electrode material of claim 5, wherein the diameter of the nanowires containing the telluride is on average less than about 1 nanometer. 8. The electrochemically active electrode material of claim 1, wherein the thickness of the layer of the electrochemically active material is on average at least about 1 nanometer. 9. The electrochemically active electrode material of claim 1 wherein the active material has a volume ratio to the template of at least about 5. 1) The electrochemically active electrode material of claim 1, wherein the electrochemistry! the far layer of the raw material comprises amorphous sand, the layer having an average of at least, /' meters thickness, and wherein the The rice structured template contains a long and average between about 1G (four) and cis meters and the diameter is average: about 50 nm, 3G nanometer, 2Q Nailai and 1 () nano (four) nai nanowire . The electrochemically active electrode material of claim i, wherein the layer of the electrochemically active material is doped with - or more of the following materials prior to circulating the chemically active electrode material : Scale, boron, gallium and lithium. The electro-milk chemically active electrode material of claim 1, wherein the step comprises: a shell on the layer of the electrochemically active material, wherein the mountain is selected from the group consisting of: A variety of materials: ^ 5 poly. Materials, sulfides, lithium oxynitride (LIPON), metal rolled compounds, and fluorine-containing compounds. The electrochemically active electrode material of claim 1, wherein the electrochemical 156769.doc S 201238125 material has a theoretical liquefaction capacity of at least about 500 mAh/g. 14. A lithium ion electrode for use in a lithium ion battery, the lithium ion electrode comprising: - an electrochemically active electrode material comprising: a nanostructured template comprising a metal telluride and an electrical a layer of a chemically active material that coats the nanostructured template, the electrochemically active material configured to accept and release ions during cycling of the lithium ion battery, wherein the nanostructured template promotes electrophoresis IL to and from the electrochemistry active material; and a current collector substrate in electrical communication with the electrochemically active electrode material and comprising the metal of the metal halide. 15. The lithium ion electrode of claim 14, wherein the nanostructured template comprises a nanowire attached to the substrate, the nanowires comprising free ends and ends attached to the substrate. 16. The ion electrode of claim 15 wherein the layer of the electrochemically active material has a thickness at the free ends of the feed to at least twice the thickness at the ends of the roots attached to the substrate . 17. The ion electrode of claim 15, wherein the layer of the electrochemically active material comprises amorphous 7 and 锗' and the layer of the towel is attached to the free ends of the nanowires at the free ends There are more defects and fewer defects at the ends on the substrate. 18. The lithium ion electrode of claim 14, further comprising - an intermediate sublayer" between the nanostructured template and the current collector substrate, and configured to modify the nanostructured template and Metallurgical attachment and electronic conductivity between current collector substrates S 156769.doc 201238125. 19. The lithium ion electrode of claim 4, further comprising a middle sub-layer located in the nanostructured template and the electrical Between the layers of the chemically active material, and configured to improve metallurgical attachment and electronic conductivity between the nanostructured template and the layer of the electrochemically active material. 20. The lithium ion electrode of claim 14 further comprising a middle sublayer between the nanostructured template and the layer of the electrochemically active material and configured to be in the nano The structured template provides an elastic interface with the layer of the electrochemically active material. 21. The lithium ion electrode of claim 14, wherein a ratio of a surface area of the nanostructured template to a surface area of the substrate is at least about 2 Å. 22. The sub-electrode of claim 4, wherein the substrate comprises a substrate layer adjacent to the substrate, the substrate layer being substantially free of the metal of the metal halide. 23. The ion electrode of claim 14, wherein the substrate comprises - or a plurality of materials selected from the group consisting of copper, copper, titanium, and non-mineral steel. 24. For example, in the case of D month, the ion electrode of the clock 14 is in which the ion electrode of the chain is a negative electrode. 25. The sub-electrode of claim 14, wherein the set of electrodes is a positive electrode. 26. A lithium ion battery An electrochemically active electrode material comprising: a nanostructured template comprising a metalloid compound; and 156769.doc 201238125 a layer of an electrochemically active material coated with the nanostructured template 'The electrochemically active material is configured to receive and release clock ions during cycling of the lithium ion battery, wherein the nanostructured template promotes electrical current to and from the electroless chemically active material; and a current collector substrate And electrically contacting the electrochemically active electrode material and comprising the metal of the metallite. 27. A method of fabricating an electrode for a one-time ion battery in an ion battery. The method comprises: receiving a substrate; forming a nanostructure on the surface of the substrate comprising a metal cerium Pulling a sheet; and forming on the nanostructured template - one of the electrochemically active materials configured to receive and release a clock ion during cycling of the lithium ion battery, wherein the nanostructured template Promoting electrical current to and from the electrochemistry active material. 28. The method of claim 27, further comprising, prior to forming the metal lithium template, treating the substrate with a plurality of cerium selected from the group consisting of: oxidation, annealing, reduction, coarse Deuteration, extinction, engraving, electroplating, reverse plating, chemical vapor deposition, vapor formation, and deposition of an intermediate layer. 29. The method of claim 27, wherein the metal component is formed, the metal lithium is consumed, further comprising the surface of the substrate, wherein a portion of the metal component is formed to form the 156769.doc 201238125 3〇. 27 &lt; Wanfa' wherein the formation of the nanostructured template comprises impinging on the surface of the substrate. The method of claim 27, further comprising selectively depositing a passivation layer over the nanostructured template prior to forming the layer of the electrochemical active material. The method of claim 27, wherein the layer forming the electrochemically active material is performed in a mass transport state such that a substantially lower concentration is compared to the free end of the nanostructured template. A reactive material precursor can be used at the surface of the substrate. 33. The method of claim 27, further comprising: altering the composition of the active material precursor while forming the layer of the electrochemically active material. 0 156769.doc s
TW100120247A 2011-03-02 2011-06-09 Template electrode structures for depositing active materials TWI536640B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/039,031 US8257866B2 (en) 2009-05-07 2011-03-02 Template electrode structures for depositing active materials

Publications (2)

Publication Number Publication Date
TW201238125A true TW201238125A (en) 2012-09-16
TWI536640B TWI536640B (en) 2016-06-01

Family

ID=47226531

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120247A TWI536640B (en) 2011-03-02 2011-06-09 Template electrode structures for depositing active materials

Country Status (1)

Country Link
TW (1) TWI536640B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556996B2 (en) 2009-05-07 2013-10-15 Amprius, Inc. Template electrode structures for depositing active materials
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
TWI718445B (en) * 2018-11-28 2021-02-11 國立成功大學 Method of manufacturing electrode structure of rechargeable battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8556996B2 (en) 2009-05-07 2013-10-15 Amprius, Inc. Template electrode structures for depositing active materials
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US10544041B2 (en) 2011-08-19 2020-01-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US11248307B2 (en) 2011-08-19 2022-02-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US11898261B2 (en) 2011-08-19 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
TWI718445B (en) * 2018-11-28 2021-02-11 國立成功大學 Method of manufacturing electrode structure of rechargeable battery

Also Published As

Publication number Publication date
TWI536640B (en) 2016-06-01

Similar Documents

Publication Publication Date Title
US11024841B2 (en) Template electrode structures for depositing active materials
US10096817B2 (en) Template electrode structures with enhanced adhesion characteristics
US20180090755A1 (en) High capacity battery electrode structures
US9774033B2 (en) Process for producing silicon nanowires directly from silicon particles
TWI575800B (en) Battery electrode structures for high mass loadings of high capacity active materials
JP3733070B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP2008098157A (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
TW201238125A (en) Template electrode structures for depositing active materials
US20220020979A1 (en) Template electrode structures for depositing active materials
US20220149379A1 (en) High capacity battery electrode structures
TW201248976A (en) Multidimensional electrochemically active structures for battery electrodes