TWI718445B - Method of manufacturing electrode structure of rechargeable battery - Google Patents

Method of manufacturing electrode structure of rechargeable battery Download PDF

Info

Publication number
TWI718445B
TWI718445B TW107142419A TW107142419A TWI718445B TW I718445 B TWI718445 B TW I718445B TW 107142419 A TW107142419 A TW 107142419A TW 107142419 A TW107142419 A TW 107142419A TW I718445 B TWI718445 B TW I718445B
Authority
TW
Taiwan
Prior art keywords
electrode structure
oxide
mesh substrate
nanomaterial
iva
Prior art date
Application number
TW107142419A
Other languages
Chinese (zh)
Other versions
TW202021185A (en
Inventor
吳季珍
陳慧蓮
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW107142419A priority Critical patent/TWI718445B/en
Publication of TW202021185A publication Critical patent/TW202021185A/en
Application granted granted Critical
Publication of TWI718445B publication Critical patent/TWI718445B/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrode structure includes a mesh substrate and a non-metal oxide nanomaterial. The non-metal oxide nanomaterial grows on the mesh substrate.

Description

充電電池電極結構的製造方法 Method for manufacturing electrode structure of rechargeable battery

本發明係關於一種充電電池的電極結構及其製造方法,特別是一種包含奈米材料的電極結構及其製造方法。 The present invention relates to an electrode structure of a rechargeable battery and a manufacturing method thereof, in particular to an electrode structure containing nanomaterials and a manufacturing method thereof.

近年來,充電電池被應用於各種技術領域中,例如由鋰金屬或鋰合金作為電極材料的鋰電池廣泛地應用於電子裝置、交通工具、國防軍事和航空航太等領域。現有的鋰電池負極多將包含奈米材料的漿料塗布於金屬箔等基底上以增加電容量。然而,為了增加漿料與基底之間的附著力,漿料一般含有黏結劑,這導致了電子與鋰離子的傳導距離增長,使得第一圈庫倫效率低落,也會影響充放電循環穩定性。即使在漿料中額外添加導電劑,也難以改善上述問題。 In recent years, rechargeable batteries have been used in various technical fields. For example, lithium batteries using lithium metal or lithium alloy as electrode materials are widely used in electronic devices, vehicles, national defense and military, aerospace and other fields. Most of the existing lithium battery negative electrodes apply a slurry containing nanomaterials on a substrate such as metal foil to increase the electric capacity. However, in order to increase the adhesion between the slurry and the substrate, the slurry generally contains a binder, which leads to an increase in the conduction distance between electrons and lithium ions, resulting in a low first-cycle coulombic efficiency, and also affects the charge-discharge cycle stability. Even if a conductive agent is additionally added to the slurry, it is difficult to improve the above-mentioned problems.

此外,目前普遍使用的高電容量奈米材料為矽或金屬氧化物,但矽與金屬氧化物在充放電過程中體積會膨脹過大,易導致電極結構崩解,進而在一定次數的充放電循環後,電池的電容量就會大幅下降。此外,矽奈米材料的製程複雜且對環境危害較大,造成充電電池之電極的製造成本無法降低。 In addition, the commonly used high-capacity nanomaterials are silicon or metal oxides, but silicon and metal oxides will expand too much during the charging and discharging process, which will easily lead to the collapse of the electrode structure, and then after a certain number of charging and discharging cycles After that, the battery's capacity will drop drastically. In addition, the manufacturing process of silicon nanomaterials is complicated and harmful to the environment, which makes it impossible to reduce the manufacturing cost of electrodes for rechargeable batteries.

鑒於以上的問題,本發明揭露一種電極結構、電極結構的製造方法以及包含此電極結構的充電電池。其中,電極結構含有高電容量、體積膨脹率低以及對環境危害小的奈米材料,並且奈米結構材料是直接成長於基底,而不需使用漿料與基底黏合,因此有助於改善上述充電電池電極的缺點。 In view of the above problems, the present invention discloses an electrode structure, a manufacturing method of the electrode structure, and a rechargeable battery including the electrode structure. Among them, the electrode structure contains nano materials with high capacitance, low volume expansion rate and low environmental hazard, and the nano structure materials are grown directly on the substrate without the need to use slurry to bond with the substrate, thus helping to improve the above Disadvantages of rechargeable battery electrodes.

本發明揭露的電極結構包含一網狀基底以及一IVA族氧化物奈米材料。IVA族氧化物奈米材料成長於網狀基底上。 The electrode structure disclosed in the present invention includes a mesh substrate and a group IVA oxide nanomaterial. IVA group oxide nanomaterials are grown on a mesh substrate.

本發明另揭露的電極結構製造方法包含:於一網狀基底上成長一金屬氧化物奈米材料;於網狀基底上成長一IVA族氧化物奈米材料,且IVA族氧化物奈米材料包覆金屬氧化物奈米材料;以及移除金屬氧化物奈米材料。 Another disclosed method for manufacturing an electrode structure of the present invention includes: growing a metal oxide nanomaterial on a mesh substrate; growing an IVA oxide nanomaterial on the mesh substrate, and the IVA oxide nanomaterial includes Cover metal oxide nanomaterials; and remove metal oxide nanomaterials.

本發明又另揭露的充電電池包含前述的電極結構。 Another rechargeable battery disclosed in the present invention includes the aforementioned electrode structure.

根據本發明所揭露的電極結構、電極結構製造方法以及充電電池,採用成長有IVA族氧化物奈米材料的網狀基底作為電極,兼具高電容量、低體積膨脹率以及高第一圈庫倫效率的優點。此外,由於成長在網狀基底上的IVA族氧化物奈米材料與網狀基底之間存在化學鍵結,因此具有良好的附著力強度以及導電性,從而電極結構不需要額外使用黏著劑與導電劑。 According to the electrode structure, electrode structure manufacturing method, and rechargeable battery disclosed in the present invention, a mesh substrate grown with IVA oxide nanomaterials is used as an electrode, which has high capacitance, low volume expansion rate, and high first-cycle coulomb. The advantage of efficiency. In addition, due to the chemical bond between the IVA oxide nanomaterial grown on the mesh substrate and the mesh substrate, it has good adhesion strength and conductivity, so that the electrode structure does not require additional adhesives and conductive agents. .

以上之關於本揭露內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。 The above description of the disclosure and the following description of the implementation manners are used to demonstrate and explain the spirit and principle of the present invention, and to provide a further explanation of the patent application scope of the present invention.

1:電極結構 1: Electrode structure

10:網狀基底 10: Mesh substrate

20:IVA族氧化物奈米材料 20: Group IVA oxide nanomaterials

21:端部 21: End

30a:金屬氧化物晶種 30a: Metal oxide seed crystal

30b:金屬氧化物奈米材料 30b: Metal oxide nanomaterials

D:管壁厚度 D: wall thickness

圖1為根據本發明一實施例之電極結構的立體示意圖。 FIG. 1 is a three-dimensional schematic diagram of an electrode structure according to an embodiment of the present invention.

圖2為圖1之電極結構的局部放大示意圖。 Fig. 2 is a partial enlarged schematic diagram of the electrode structure of Fig. 1.

圖3至圖6為圖1之電極結構的製造方法的示意圖。 3 to 6 are schematic diagrams of the manufacturing method of the electrode structure of FIG. 1.

以下在實施方式中詳細敘述本發明之詳細特徵以及優點,其內容足以使任何熟習相關技藝者瞭解本發明之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解本發明相關之目的及優點。以下之實施例進一步詳細說明本發 明之觀點,但非以任何觀點限制本發明之範疇。 The detailed features and advantages of the present invention are described in detail in the following embodiments. The content is sufficient to enable anyone familiar with the relevant art to understand the technical content of the present invention and implement it accordingly, and in accordance with the content disclosed in this specification, the scope of patent application and the drawings Anyone who is familiar with relevant skills can easily understand the purpose and advantages of the present invention. The following examples further illustrate the present invention in detail The point of view is clear, but it does not limit the scope of the present invention in any point of view.

請同時參照圖1和圖2。圖1為根據本發明一實施例之電極結構的立體示意圖。圖2為圖1之電極結構的局部放大示意圖。在本實施例中,電極結構1例如但不限是鋰電池的負極,其包含一網狀基底10以及多個IVA族氧化物奈米材料20。IVA族氧化物奈米材料20的數量並非用以限制本發明。 Please refer to Figure 1 and Figure 2 at the same time. FIG. 1 is a three-dimensional schematic diagram of an electrode structure according to an embodiment of the present invention. Fig. 2 is a partial enlarged schematic diagram of the electrode structure of Fig. 1. In this embodiment, the electrode structure 1 is, for example, but not limited to, the negative electrode of a lithium battery, which includes a mesh substrate 10 and a plurality of group IVA oxide nanomaterials 20. The number of IVA group oxide nanomaterials 20 is not used to limit the present invention.

網狀基底10是具有編織微結構或是孔隙微結構的導電基板。在本實施例中,網狀基底10為可撓性的碳纖維布或導電不織布,其包含由碳纖維交錯編織而成的二維度網狀結構。在部分實施例中,網狀基底10為可撓性的發泡鎳網,其包含形成有多個大小不一或大小相近之孔洞的三維度網狀結構。上述列舉網狀基底10的具體態樣,但其並非用以限制本發明。 The mesh base 10 is a conductive substrate with a woven microstructure or a porous microstructure. In this embodiment, the mesh substrate 10 is a flexible carbon fiber cloth or a conductive non-woven cloth, which includes a two-dimensional mesh structure formed by interlacing carbon fibers. In some embodiments, the mesh substrate 10 is a flexible foamed nickel mesh, which includes a three-dimensional mesh structure formed with a plurality of holes of different sizes or similar sizes. The specific aspects of the mesh substrate 10 are listed above, but they are not intended to limit the present invention.

IVA族氧化物奈米材料20成長於網狀基底上。在本實施例中,IVA族氧化物奈米材料20為氧化矽(SiOx)奈米材料,更具體來說為氧化矽(SiOx)奈米管,例如是二氧化矽奈米管。在部分實施例中,IVA族氧化物奈米材料20例如是錫氧化物奈米材料。在部分實施例中,IVA族氧化物奈米材料20為奈米帶或奈米線。 The IVA group oxide nanomaterial 20 is grown on a mesh substrate. In this embodiment, the group IVA oxide nanomaterial 20 is a silicon oxide (SiOx) nanomaterial, more specifically a silicon oxide (SiOx) nanotube, such as a silicon dioxide nanotube. In some embodiments, the group IVA oxide nanomaterial 20 is, for example, a tin oxide nanomaterial. In some embodiments, the group IVA oxide nanomaterial 20 is a nanobelt or a nanowire.

相較於以金屬箔等平滑基底作為成長奈米材料的基底,網狀基底10的二維度網狀結構或三維度網狀結構具有較高的比表面積,而有助於在網狀基底10上成長高密度的IVA族氧化物奈米材料20,進而電極結構1能更有效地提升充電電池的電容量。 Compared with the use of a smooth substrate such as a metal foil as the substrate for growing nanomaterials, the two-dimensional network structure or three-dimensional network structure of the mesh substrate 10 has a higher specific surface area, which is helpful for the structure on the mesh substrate 10 Growing high-density IVA group oxide nanomaterials 20, and then the electrode structure 1 can more effectively increase the capacity of the rechargeable battery.

此外,如圖2所示,在本實施例中,IVA族氧化物奈米材料20(氧化矽奈米管)的管壁厚度D為5.0奈米至20.0奈米,較佳地為5.0奈米至15.0奈米,更佳地為10.0奈米至12.0奈米。藉此,有助於在提升電容量以及縮短電子與鋰離子傳導距離之間取得良好平衡。在部分實施例中,當氧化矽奈米管的管壁過薄時,電極結構1無法有效提升電容量;當氧化矽奈米管的管壁過厚時,電子與鋰離子的傳導距離會過長而不利於充放電 循環。 In addition, as shown in FIG. 2, in this embodiment, the wall thickness D of the group IVA oxide nanomaterial 20 (silica nanotube) is 5.0 nanometers to 20.0 nanometers, preferably 5.0 nanometers To 15.0 nanometers, more preferably 10.0 nanometers to 12.0 nanometers. This helps to achieve a good balance between increasing the electric capacity and shortening the conduction distance between electrons and lithium ions. In some embodiments, when the wall of the silicon oxide nanotube is too thin, the electrode structure 1 cannot effectively increase the capacitance; when the wall of the silicon oxide nanotube is too thick, the conduction distance between electrons and lithium ions will be too large. Long and not conducive to charging and discharging cycle.

以下提供電極結構1的製造方法。圖3至圖6為圖1之電極結構的製造方法的示意圖。在圖3中,網狀基底10以碳纖維布作為例子繪示。將網狀基底10浸入含有金屬乙酸鹽的乙醇溶液中,並且加熱網狀基底10與溶液,以於網狀基底10上成長出多個金屬氧化物晶種30a。金屬乙酸鹽例如但不限於是乙酸鋅(Zn(OAc)2)或乙酸鎳(Ni(OAc)2),且金屬氧化物晶種30例如但不限於是氧化鋅(ZnO)或氧化鎳(NiO)。 The manufacturing method of the electrode structure 1 is provided below. 3 to 6 are schematic diagrams of the manufacturing method of the electrode structure of FIG. 1. In FIG. 3, the mesh substrate 10 is illustrated with carbon fiber cloth as an example. The mesh substrate 10 is immersed in an ethanol solution containing metal acetate, and the mesh substrate 10 and the solution are heated to grow a plurality of metal oxide seed crystals 30 a on the mesh substrate 10. The metal acetate is, for example, but not limited to, zinc acetate (Zn(OAc) 2 ) or nickel acetate (Ni(OAc) 2 ), and the metal oxide seed crystal 30 is, for example, but not limited to, zinc oxide (ZnO) or nickel oxide (NiO ).

接著,如圖4所示,於網狀基底10上成長金屬氧化物奈米材料30b。詳細來說,將含有金屬氧化物晶種30a的網狀基底10浸入含有金屬乙酸鹽的水溶液中,並且加熱網狀基底10與溶液,以使位於網狀基底10上的金屬氧化物晶種30a與金屬乙酸鹽反應生成金屬氧化物奈米材料30b。在金屬氧化物晶種30a是氧化鋅的情況下,生成氧化鋅奈米材料。本實施例示例性地提供了一種生成金屬氧化物奈米材料30b的方法,但此方法並非用以限制本發明。 Next, as shown in FIG. 4, a metal oxide nanomaterial 30b is grown on the mesh substrate 10. In detail, the mesh substrate 10 containing the metal oxide seed crystals 30a is immersed in an aqueous solution containing metal acetate, and the mesh substrate 10 and the solution are heated so that the metal oxide seed crystals 30a on the mesh substrate 10 are heated. It reacts with metal acetate to produce metal oxide nanomaterial 30b. In the case where the metal oxide seed crystal 30a is zinc oxide, a zinc oxide nanomaterial is generated. This embodiment exemplarily provides a method for generating metal oxide nanomaterial 30b, but this method is not intended to limit the present invention.

接著,如圖5所示,於網狀基底10上成長IVA族氧化物奈米材料20,且IVA族氧化物奈米材料20包覆金屬氧化物奈米材料30b。舉例來說,可以採用溶膠凝膠法(Sol-gel method)或原子層沉積法(atomic layer deposition method)在網狀基底10上合成氧化矽殼包覆金屬氧化物奈米材料30b。 Next, as shown in FIG. 5, a group IVA oxide nanomaterial 20 is grown on the mesh substrate 10, and the group IVA oxide nanomaterial 20 covers the metal oxide nanomaterial 30b. For example, the sol-gel method or atomic layer deposition method can be used to synthesize the silica shell-coated metal oxide nanomaterial 30b on the mesh substrate 10.

接著,如圖6所示,將成長有IVA族氧化物奈米材料20以及金屬氧化物奈米材料30b的網狀基底10浸入合適的蝕刻液中,以移除金屬氧化物奈米材料30b。移除金屬氧化物奈米材料30b後,形成內部中空的IVA族氧化物奈米材料20。可選擇地,進一步採用乾蝕刻或濕蝕刻移除IVA族氧化物奈米材料20遠離網狀基底10的端部21,以使電池電解液較容易流入IVA族氧化物奈米材料20中間的空腔。 Next, as shown in FIG. 6, the mesh substrate 10 on which the group IVA oxide nanomaterial 20 and the metal oxide nanomaterial 30b are grown is immersed in a suitable etching solution to remove the metal oxide nanomaterial 30b. After the metal oxide nanomaterial 30b is removed, a group IVA oxide nanomaterial 20 with a hollow inside is formed. Optionally, dry etching or wet etching is further used to remove the IVA oxide nanomaterial 20 away from the end 21 of the mesh substrate 10, so that the battery electrolyte can easily flow into the void in the IVA oxide nanomaterial 20. Cavity.

以下提供有具體參數之本發明實施例,以說明本發明所揭露 之電極結構的具體製造方法以及功效。 The following provides embodiments of the present invention with specific parameters to illustrate the disclosure of the present invention The specific manufacturing method and effect of the electrode structure.

[實施例] [Example]

本實施例提供一種電極結構,包含碳纖維布以及成長於碳纖維布上的氧化矽奈米管。此電極結構的製造方法如下所述。 This embodiment provides an electrode structure including carbon fiber cloth and silicon oxide nanotubes grown on the carbon fiber cloth. The manufacturing method of this electrode structure is as follows.

步驟一:碳纖維布浸入含有乙醇、乙酸鋅(Zn(OAc)2)以及氫氧化鈉的混合溶液中。加熱碳纖維布與混合溶液至攝氏150度並維持至少40分鐘,而在碳纖維布上成長氧化鋅晶種。 Step 1: The carbon fiber cloth is immersed in a mixed solution containing ethanol, zinc acetate (Zn(OAc) 2 ) and sodium hydroxide. The carbon fiber cloth and the mixed solution are heated to 150 degrees Celsius for at least 40 minutes, and zinc oxide seeds are grown on the carbon fiber cloth.

步驟二:將生成有氧化鋅晶種的碳纖維布浸入含有Milli-Q水(超純水)、乙酸鋅(Zn(OAc)2)以及六亞甲基四胺(HMTA)的混合溶液中。加熱碳纖維布與混合溶液至攝氏95度並維持至少3小時,而使碳纖維布上的氧化鋅晶種反應生成氧化鋅奈米線。 Step 2: Immerse the carbon fiber cloth with zinc oxide seed crystals in a mixed solution containing Milli-Q water (ultra-pure water), zinc acetate (Zn(OAc) 2 ) and hexamethylenetetramine (HMTA). The carbon fiber cloth and the mixed solution are heated to 95 degrees Celsius and maintained for at least 3 hours, so that the zinc oxide seed crystals on the carbon fiber cloth react to form zinc oxide nanowires.

步驟三:將生成有氧化鋅奈米線的碳纖維布浸入含有四乙氧基矽烷(TEOS)以及氨水的混合溶液中,並以溶膠凝膠法在網狀基底10上生長氧化矽奈米管包覆氧化鋅奈米線。 Step 3: Immerse the carbon fiber cloth with zinc oxide nanowires in a mixed solution containing tetraethoxysilane (TEOS) and ammonia, and grow silica nanotube packages on the mesh substrate 10 by the sol-gel method Coated with zinc oxide nanowires.

步驟四:於生成氧化矽奈米管後,將碳纖維布浸入鹽酸水溶液中,以濕蝕刻方式移除氧化鋅奈米線,而得到成長於網狀基底10上的中空氧化矽奈米管。氧化矽奈米管的平均管壁厚度為11.0奈米。 Step 4: After the silicon oxide nanotubes are generated, the carbon fiber cloth is immersed in the hydrochloric acid aqueous solution, and the zinc oxide nanowires are removed by wet etching to obtain hollow silicon oxide nanotubes grown on the mesh substrate 10. The average wall thickness of silica nanotubes is 11.0 nm.

[比較例一] [Comparative Example 1]

比較例一為一種電極結構,包含碳纖維布以及成長於碳纖維布上的氧化鋅奈米線。 Comparative Example 1 is an electrode structure including carbon fiber cloth and zinc oxide nanowires grown on the carbon fiber cloth.

[比較例二] [Comparative Example 2]

比較例二為一種電極結構,包含碳纖維布以及成長於碳纖維布上的矽奈米線。 Comparative Example 2 is an electrode structure including carbon fiber cloth and silicon nanowires grown on the carbon fiber cloth.

[比較例三] [Comparative example three]

比較例三為一種電極結構,包含碳纖維布以及塗布於碳纖維布上的漿料,其中漿料包含氧化矽奈米管、黏結劑以及導電劑。黏結劑例 如是苯乙烯丁二烯橡膠(SBR),且導電劑例如為石墨烯粉末。 Comparative Example 3 is an electrode structure, which includes a carbon fiber cloth and a slurry coated on the carbon fiber cloth, wherein the slurry includes silicon oxide nanotubes, a bonding agent, and a conductive agent. Examples of adhesives Such as styrene butadiene rubber (SBR), and the conductive agent is graphene powder, for example.

對於分別包含有實施例與比較例一之電極結構的充電電池而言,以相同電流密度進行一定次數的充放電循環後,電容量的大小如下表一所示。 For the rechargeable batteries respectively including the electrode structures of the embodiment and the comparative example 1, after a certain number of charge and discharge cycles at the same current density, the capacitance is shown in Table 1 below.

Figure 107142419-A0305-02-0007-1
Figure 107142419-A0305-02-0007-1

從表一可知,實施例的電極結構能提供充電電池較高的電容量。此外,在100次的充放電循環後,實施例之電極結構的電容量衰退幅度也低於比較例一之電極結構。 It can be seen from Table 1 that the electrode structure of the embodiment can provide a higher capacity of the rechargeable battery. In addition, after 100 charge-discharge cycles, the capacitance decay of the electrode structure of the example is also lower than that of the electrode structure of the comparative example 1.

對於實施例與比較例二之電極結構而言,以相同電流密度進行一定次數的充放電循環後,電極結構的體積膨脹率(Volume expansion)如下表二所示。 For the electrode structures of the embodiment and the comparative example 2, after a certain number of charge and discharge cycles with the same current density, the volume expansion of the electrode structure is shown in Table 2 below.

Figure 107142419-A0305-02-0007-2
Figure 107142419-A0305-02-0007-2

從表二可知,相較於比較例二的電極結構,實施例的電極結構具有較小的體積膨脹率,因此電極結構不容易崩解而能延長使用壽命。 It can be seen from Table 2 that compared to the electrode structure of Comparative Example 2, the electrode structure of the embodiment has a smaller volume expansion rate, so the electrode structure is not easy to disintegrate and can prolong the service life.

對於包含有實施例與比較例三之電極結構而言,以相同電流密度進行第一次的充放電循環後,第一圈庫倫效率如下表三所示。 For the electrode structure including the embodiment and the comparative example three, after the first charge-discharge cycle at the same current density, the first cycle of coulombic efficiency is shown in Table 3 below.

Figure 107142419-A0305-02-0007-3
Figure 107142419-A0305-02-0007-3
Figure 107142419-A0305-02-0008-4
Figure 107142419-A0305-02-0008-4

綜上所述,根據本發明所揭露的電極結構、電極結構製造方法以及充電電池,採用成長有IVA族氧化物奈米材料的網狀基底作為充電電池的電極,具有高電容量、低體積膨脹率以及高第一圈庫倫效率的優點。此外,由於IVA族氧化物奈米材料直接成長在網狀基底而與網狀基底之間存在穩固的化學鍵結,因此具有良好的附著力強度以及導電性,從而電極結構不需要額外使用黏著劑與導電劑。 In summary, according to the electrode structure, electrode structure manufacturing method, and rechargeable battery disclosed in the present invention, the mesh substrate grown with IVA oxide nanomaterials is used as the electrode of the rechargeable battery, which has high capacitance and low volume expansion. The advantages of high first-lap Coulomb efficiency. In addition, since the IVA oxide nanomaterials directly grow on the mesh substrate and there is a strong chemical bond with the mesh substrate, it has good adhesion strength and conductivity, so that the electrode structure does not require additional adhesives and Conductive agent.

雖然本發明以前述之實施例揭露如上,然而這些實施例並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention is disclosed above with the foregoing embodiments, these embodiments are not intended to limit the present invention. All changes and modifications made without departing from the spirit and scope of the present invention fall within the scope of the patent protection of the present invention. For the scope of protection defined by the present invention, please refer to the attached scope of patent application.

1:電極結構 1: Electrode structure

10:網狀基底 10: Mesh substrate

20:IVA族氧化物奈米材料 20: Group IVA oxide nanomaterials

D:管壁厚度 D: wall thickness

Claims (2)

一種電極結構的製造方法,包含:於一網狀基底上成長一金屬氧化物奈米材料;於該網狀基底上成長一IVA族氧化物奈米材料,且該IVA族氧化物奈米材料包覆該金屬氧化物奈米材料;以及移除該金屬氧化物奈米材料,而使該IVA族氧化物奈米材料為中空奈米管。 A method for manufacturing an electrode structure includes: growing a metal oxide nanomaterial on a mesh substrate; growing an IVA oxide nanomaterial on the mesh substrate, and the IVA oxide nanomaterial is packaged Covering the metal oxide nanomaterial; and removing the metal oxide nanomaterial so that the IVA group oxide nanomaterial is a hollow nanotube. 如申請專利範圍第1項所述之電極結構的製造方法,其中該網狀基底為碳纖維布、導電不織布或是發泡鎳網,該金屬氧化物奈米材料為氧化鋅奈米線,且該IVA族氧化物奈米材料為氧化矽奈米管。 The method for manufacturing an electrode structure as described in the first item of the scope of patent application, wherein the mesh substrate is carbon fiber cloth, conductive non-woven cloth or foamed nickel mesh, the metal oxide nanomaterial is zinc oxide nanowire, and the IVA group oxide nanomaterials are silicon oxide nanotubes.
TW107142419A 2018-11-28 2018-11-28 Method of manufacturing electrode structure of rechargeable battery TWI718445B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107142419A TWI718445B (en) 2018-11-28 2018-11-28 Method of manufacturing electrode structure of rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107142419A TWI718445B (en) 2018-11-28 2018-11-28 Method of manufacturing electrode structure of rechargeable battery

Publications (2)

Publication Number Publication Date
TW202021185A TW202021185A (en) 2020-06-01
TWI718445B true TWI718445B (en) 2021-02-11

Family

ID=72175726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107142419A TWI718445B (en) 2018-11-28 2018-11-28 Method of manufacturing electrode structure of rechargeable battery

Country Status (1)

Country Link
TW (1) TWI718445B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201238125A (en) * 2011-03-02 2012-09-16 Amprius Inc Template electrode structures for depositing active materials
CN107370645A (en) * 2017-07-18 2017-11-21 广东美的制冷设备有限公司 Intelligent bracelet, air-conditioning, Intelligent bracelet and air-conditioning binding method and system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201238125A (en) * 2011-03-02 2012-09-16 Amprius Inc Template electrode structures for depositing active materials
CN107370645A (en) * 2017-07-18 2017-11-21 广东美的制冷设备有限公司 Intelligent bracelet, air-conditioning, Intelligent bracelet and air-conditioning binding method and system

Also Published As

Publication number Publication date
TW202021185A (en) 2020-06-01

Similar Documents

Publication Publication Date Title
TWI664774B (en) Anode of lithium-ion battery and flexible lithium-ion battery using the same
Tao et al. A review of advanced flexible lithium‐ion batteries
Rahman et al. Nanostructured silicon anodes for high‐performance lithium‐ion batteries
Yin et al. Silicon-based nanomaterials for lithium-ion batteries
JP4834814B2 (en) Method for producing structured particles composed of silicon or silicon-based materials and their use in lithium batteries
US20140234722A1 (en) Si/C COMPOSITE MATERIAL, METHOD FOR MANUFACTURING THE SAME, AND ELECTRODE
WO2018059071A1 (en) Negative electrode piece of lithium-ion battery and preparation method therefor, and lithium-ion secondary battery
US20130078508A1 (en) Lithium ion batteries based on nanoporous silicon
US20120034524A1 (en) Nano-Composite Anode for High Capacity Batteries and Methods of Forming Same
Qiu et al. Fabrication of ordered NiO coated Si nanowire array films as electrodes for a high performance lithium ion battery
CN105489394B (en) The graphene nano wall preparation method for the plasma activated chemical vapour deposition strengthened based on electromagnetic field
TW201228077A (en) Energy storage composite particle, battery anode material and battery
BR112013029242B1 (en) LITHIUM METALLIC BATTERY CELL
CN101790804A (en) Production
WO2018032974A1 (en) Method of preparing material of negative electrode of lithium ion battery
CN103779581A (en) Porous negative pole piece and preparation method thereof, and lithium ion battery
TW201547091A (en) Cathode materials of lithium-sulfur battery and methods for making the same
CN110600688A (en) Silene-copper-silylene composite material, preparation method, application and lithium ion battery
CN108539153B (en) Metal lithium composite negative electrode material and preparation method thereof
CN111354929A (en) Preparation of carbon fiber-tin disulfide electrode material with multilayer core-shell structure
CN108735979A (en) The preparation method of negative electrode of lithium ion battery
JP7215526B2 (en) metal negative electrode secondary battery
CN109346672B (en) Cobalt monoxide and multi-walled carbon nanotube integrated electrode and preparation method thereof
CN108091866B (en) Preparation method of silicon-carbon negative electrode material for lithium ion battery
TWI718445B (en) Method of manufacturing electrode structure of rechargeable battery