TW201248976A - Multidimensional electrochemically active structures for battery electrodes - Google Patents

Multidimensional electrochemically active structures for battery electrodes Download PDF

Info

Publication number
TW201248976A
TW201248976A TW100120410A TW100120410A TW201248976A TW 201248976 A TW201248976 A TW 201248976A TW 100120410 A TW100120410 A TW 100120410A TW 100120410 A TW100120410 A TW 100120410A TW 201248976 A TW201248976 A TW 201248976A
Authority
TW
Taiwan
Prior art keywords
layer
electrochemically active
nanowires
battery
active material
Prior art date
Application number
TW100120410A
Other languages
Chinese (zh)
Inventor
Ghyrn E Loveness
Constantin I Stefan
Song Han
Original Assignee
Amprius Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/114,413 external-priority patent/US9172088B2/en
Application filed by Amprius Inc filed Critical Amprius Inc
Publication of TW201248976A publication Critical patent/TW201248976A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Provided are novel multidimensional electrode structures containing high capacity active materials for use in rechargeable electrochemical cells. These structures include main support structures and multiple nanowires attached to the support structures and extending into different directions away from these supports. The active material may be deposited as a layer (uniform or non-uniform) surrounding the nanowires and, in certain embodiments, the main supports and even substrate. The active material layer may be sufficiently thin to prevent pulverization of the layer at given operating conditions. Interconnections between the electrode structures and/or substrate may be provided by overlaps formed during deposition of the active layer. Silicide-based nanowires structures may be formed on the main supports in a fluidized bed reactor by suspending the metal-containing main supports in a silicon-containing process gas. A layer of silicon may be then deposited over these silicide nanowires.

Description

201248976 六、發明說明: 【先前技術】 高容量電化學活性材料針對電池應用係非常合乎需要 的。然而,此等材料在電池循環期間展現大的體積改變, 諸如在鋰化期間之體積增大及在去鋰化期間之收縮。舉例 而言,矽在鋰化期間體積增大多達400%,其對應於約 4200 mAh/g之理論容量或Li44Si結構。此量值之體積改變 引起活性材料結構之粉碎、電連接之損失,及容量衰退。 提供高容量材料作為奈米結構可解決此等問射之一些 問題。奈米結構之小尺寸引起較小的總尺寸改變,此可: 較小機械破壞性的。然而,將奈米結構整合至商業規模之 電池電極層中已為複雜困難的。舉例而言,沈積於習知平 坦基板(諸如,金屬落)上之奈米薄膜-般不提供足夠的負 載。此外,針對製造奈米結構 、 ί常涉及昂貝的材料。舉例而言,自塊狀粒子物夺 未線需要銀催化劑及昂貴的飯刻溶液。使長的結晶石夕結構 生長亦可為相對緩慢之 如,金)。 且了涉及叩貝的催化劑(諸 【發明内容】 提供新穎的多維度電極社 學電池中y曰. 其含有用於可再充電電化 从 问奋罝活性材料。此等結構包括主支撐社構, 及附著至該等支撐社槿日、〜 又讶、,。構’ 上之多個奈等支撐件延伸至不同方向 在草此fH尤積為圍繞該等奈米線且 貫施例中圍繞該等主支擇件及甚至基板之一層(均 156770.doc 201248976 勻或非均勻)β該活性材料層可為足夠薄的,以防止該層 在、’·σ疋操作條件下之粉碎。該等電極結構及/或基板之間 的互連可藉由在該活性層之沈積期間所形成的重疊來提 供。可藉由使該等含金屬之主支撐件懸置於一含矽之處理 氣體中而在-流體化床反應器中使基於石夕化物的奈米線結 構形成於該等主支撑件上。一石夕層可接著沈積於此等石夕化 物奈米線之上。 在某些實施例中,一種用於一電池中之電池電極結構包 括:一導電基板;及複數個多維度電化學活性結構,該複 數個多維度電化學活性結構附著至該導f基板且與該導電 基板電子連通。每一多維度電化學活性結構包括··一支撐 件,其具有一金屬(例如,一含金屬之材料);及奈米線, 其具有附著至該支撐件之根附在支撐件上的末端及遠離該 支樓件延伸至不同方向上的自由末端。該等奈米線包含該 金屬之金屬矽化物。該電池電極結構亦包括一塗佈該等奈 米線之層。此層包括用於在該電池之循環期間***及釋放 電化學活性離子之一電化學活性材料。 該等奈米線之該金屬矽化物可為以下矽化物中之一或多 者:矽化鎳、矽化鈷、矽化銅、矽化銀、矽化鉻、矽化 鈦、碎化銘、矽化辞及矽化鐵。一些更特定實例包括 Niji、NiSi、Nidi2及/或NiSiy該電化學活性材料之實例 包括結晶矽、非晶矽、氧化矽、氮氧化矽、含錫材料、含 鍺材料及含碳材料。在某些實施.例中,奈米線之長度平均 而言介於約1微米與200微米之間。在相同或其他實施例 156770.doc 201248976 中奈米線之直役平均而言小於約⑽奈米。該電化學活 性材料之該層之厚度平均而言可為至少約⑽奈米。在某 些實施例中’胃電化學活性材料對該金W化物之-體積 比為至少約5。在該雷;^夕油 電/之# Ϊ衣之刖,該電化學活性材料 可摻雜有選自由以下各物組成之群的—或多種材料:鱗、 删、嫁及裡。纟某些實施财,—電池電極結構亦包括形 成於該電化學活性材料之該層之上的一殼層。該殼層可包 括碳、銅、氟、聚合物、硫化物、氮氧化鋰磷(Lip〇N)、 鐘鹽,及/或金屬氧化物。 在某些實施例中’-電池電極結構包括形成於一導電基 板之上且包括電化學活性材料之一基板層。該基板層與 塗佈該等奈米線之該層形成接合結構,^此等接合結構提 供-些多維度電化學活性結構至該導電基板的附著及此等 結構與該導電基板的電子連通。在相同或其他實施例中, 塗佈該等奈米線之該等電化學活性材料的該層之部分彼此 形成接合結構。 在某些實施例中,-電池電極結構亦包括一聚合黏合 劑,該聚合黏合劑將該複數個多維度電化學活性結構附著 至該導電基板。一電池電極結構可用於一鋰離子電池中。 在某些實施例中,該電化學活性材料具有至少約5〇〇 mAh/g、或更特定s之至少約8〇〇 mAh/g或甚至至少約1000 mAh/g之一理論鋰化容量。 在某些貫施例中,一電池電極結構包括具有根附至該基 板之模板奈米線的一奈米結構模板》該電化學活性材料之 156770.doc 201248976 一層塗佈此等模板奈米線以及該等多維度電化學活性結構 之奈米線。該等模板奈米線提供該等多維度電化學活性結 構相對於該導電基板之附著及電子連通。 在某些實施例中,該電化學活性材料之一層在該等奈米 線之該等自由末端處的厚度為在該等根附在支撐件上之末 端處之厚度的至少兩倍。在相同或其他實施例中,該電化 學活性材料之—層包括非晶碎及錯,使得在該等奈米線之 該等自由末端處比在該等根附在支料上之末端處存在更 多的矽及更少之鍺。一電池電極結構亦可包括一中間子 層,該中間子層位於該等奈米線與該電化學活性材料之該 層之間m態以改良該等奈米線與該電化學活性材料 之該層之間的冶金附著及電子導電性。在某些實施例中, 此中間子層包括一或多種金屬、各種氧化物,及/或硫化 物相同或不同的中間子層可位於該等奈米線與該電化學 活性材料之該層之間, 且、!組態以在該等奈米線與該電化 學活性材料之該層之間提供—彈性界面。在相同或其他實 :例中’―電池電極結構亦可包括鄰近於該基板之一基底 層。該基底支樓結構可實暂 貫負上不含為該等奈米線之該金屬 石夕化物之一部分的金屬。 在某些實施例中,—導雷 土. 等電基板包括以下材料中之一或多 者:銅、鎳、鈦及不鏽鈿。 .,, 鋼在相同或其他實施例中,一電 池電極結構為一負電極一 a + #刀。在其他實施例中,一電 池4極結構為一正電極之一部分。 亦提供一種鋰離子雷^ , 池,其包括:一導電基板;及複數 156770.doc 201248976 個多維度電化學活性結構,該複數個多維度電化學活性結 構附著至該導電基板且與該導電基板電子連通。每一多^ 度電化學活性結構可包括:-支樓件,其具有金屬或含金 屬之材料;奈米線,其具有附著至該支撐件之根附在支撐 件上的末端及遠離該支撐件延伸至不同方向上的自由末 端;及一層,其塗佈該等奈米線。在某些實施例中,多維 度電化學活性結構可包括附著至—支撐件之多個碳奈米 管。替代於含矽化物之奈米線或除含矽化物之奈米線之 外,亦可使用碳奈米管。該層包括用於在該鋰離子電池之 循環期間***及釋放電化學活性離子之一電化學活性材 料。該等奈米線包含該金屬之金屬矽化物。 亦提供一種製造多維度電化學活性結構之方法。在某些 貫施例中,該方法涉及:接收包含金屬之支撐件;形成奈 米線,該等奈米線包含附著至該等支撐件之根附在支撐件 上的末端及遠離該等支樓件延伸至不同方向上的自由末 端;及形成一塗佈該等奈米線之層。該等奈米線包含該金 屬之金屬矽化物。該層包括用於在一電化學活性材料之循 環期間***及釋放電化學活性離子之該電化學活性材料。 該方法亦可涉及,在形成該等奈米線之前,使用以下技 術中之一或多者來處理該等支撐件:氧化、退火、還原、 粗糙化、濺鍍、蝕刻、電鍍、反電鍍、化學氣相沈積、氮 化物形成’及一中間層之沈積。在某些實施例中,支撐件 具有以下形狀中之一或多者:粒子、棒及片。形成奈米線 可涉及使含有一矽前驅體之一處理氣體流過一流體化床反 156770.doc 201248976 應器,且使該等支撐件懸置在該處理氣體中歷時一預定時 間週期。形成一電化學活性材料層可涉及使含有一矽前驅 體之一處理氣體在包括該支撐件及該等奈米線之中間結構 之上流動,而此等中間結構懸置於該處理氣體中(亦即, 在該反應器中浮動)或位於一導電基板上。 下文參看圖式進一步描述此等及其他實施例。 【實施方式】 在以下搖述中,闡述眾多特定細節,以便提供對所呈現 之概念的透徹理解。可在無此等特定細節中之一些或全部 的情況下實踐所呈現之概念。在其他例子中,並未詳細描 «知的程序操作,以便不會不必要地混淆所述之概念。 儘管將結合特定實施例來描述—些概念,但應理解,此等 實施例並不意欲為限制性的。 引言 為了使活性材料結構在電池循環期間之《及粉碎減至 最少’高容量之電化學活性材料可形成為奈米結構。献 =,=米結構形式提供足夠量之活性材料可為具挑戰性 與攜載相同量之活性材料的—些較大結構相比,難以 難:m、支樓及電互連多個奈米結構。此外,可能 =在涉及奈米結構之體積増大·收縮之大f電池循環内 保留此等初始配置及互連。 牛例而。’直徑僅為0 05微米至〇1〇微米之奈 須依賴於許多粒子間電連接,且在某 …、 添加劑結構來將電流傳遞至基板…提::參考依= 156770.doc 201248976 之商業上可行之電極在基板的每一側面上具有厚度介於約 20微米與200微米之間的層。在此等電極中,當奈米粒子 開始重複地體積增大及收縮時’在電極製造(例如,毀料 塗佈)期間於奈米結構之間所形成的初始連接在電池循環 期間快速地損失。特定言之,奈米粒子在鋰化期間體積增 大’且將其他鄰近奈米粒子(及/或其他組份,諸如導電添 加劑)推開以允許更大空間用於體積增大的奈米粒子。接 著,奈米粒子在去鋰化/放電期間縮小。鄰近奈米粒子及/ 或其他組份可能不會跟隨該等奈米粒子,且間隙可在電極 内形成於鄰近奈米粒子及/或其他組份與該等奈米粒子之 間。結果,許多初始連接可能損失,從而產生稍後不會涉 及於鋰化中且有效地變為「非活性」的電「未連接」奈米 粒子。 奈米結構之另一實例為奈米薄膜,其厚度通常為約〇 〇5 微米至1微米。此有限厚度幫助在循環期間避免粉碎。然 而,當薄膜沈積於典型之平坦表面基板(諸如,箔)上時, 此等薄膜未能提供足夠量之活性材料以達到電池的商業上 可行之容量。用奈米薄膜所建置之原型電池針對大多數電 池應用一般並非實際的。 已發現,某些高表面積模板可用以提供用於將活性材料 沈積為奈米薄膜之較大表面。在某些實施例中,相對平坦 之金屬基板(諸如,箔)經處理以形成自基板表面延伸且形 成模板的矽化物奈米結構。此等矽化物奈米結構可塑形為 具有根附(root)在基板上之末端(或中間部分)的奈米線其 156770.doc -10- 201248976 、土板表面形成整體結構。然而,超過某些尺寸之金屬碎 化物、,·。構可施難以生長。在不限於任何特定理論之情況 下,據信,矽化物奈米線之長度可藉由矽(通常自氣相供 應)及在各別矽化物相下之金屬(通常由金屬基板供應)的擴 散率限制。所得之模板具有對應於奈米線之長度的有限厚 度,其針對矽化鎳奈米線可小於约丨0微米至2〇微米◊即使 是由矽化物奈米線所形成之此表面積(其遠大於金屬羯基 板之表面積)可此仍不足以提供足夠量之高容量活性材 料。舉例而言,已估計,用可提供約l〇〇〇 mAh/g之高容量 材料所製造的電極之厚度需要為至少4〇微米至6〇微米(未 慮及基板),以達成每電極面積之每一平方公分35〇〇 mAh 的商業上可行之容量。 亦=發現,與連續金屬基板(諸如,猪)相反,模板結構 可由單獨之金屬粒子形成。有效地將金屬粒子之所有側面 曝露至反應性氣體允許形成多維度結構。此等金屬粒子常 常被稱為多維度結構之主支撐件(或簡單地,支撐件)。舉 例而言,含金屬之支撐件可曝露至含矽之前驅體,以形^ 具有附著至支撐件之根附在支撐件上的末端及遠離該等支 樓件延伸至不同方向上之自由末端的奈米線。奈米線係由 金屬之金屬石夕化物製成’且保持附著至支樓件且遠離支樓 件延伸至不同方向上’從而形成「模糊球(fuzzy _)」/ 「海膽」狀結構。此等中間(或部分製造之)結構可具有為 如上文所述的奈米結構化之矽化物模板之厚度的兩倍大的 直徑,此係簡單地因為奈米線係在所有方向上而非:僅一 156770.doc 11 201248976 個方向上生長n簡單地藉由將額外結構沈積於彼此 頂部直至達成所要厚度為止’中間結構(或具有所沈積之 活性材料的最終結構)可形成為具有任何厚度的電極。此 等新穎之「模糊球」結構亦可添加於上文所述之單層奈米 線模板結構之上D Μ 圖1A為中間結構之掃描電子顯微鏡(sem)影像,該等中 間結構在用活性材料層塗佈此等結構之前含有附著至鎳支 樓件(不可見)㈣化㈣米線。此等兩個「模糊球」結構 中之每一者具有約2〇微米之直徑。在所有方向上延伸之夺 米線的分佈及定向形成用於用電化學活性材料塗佈的良好 模板°此外’係獨立物件之中間結構允許被堆疊,以達成 各種電極厚度且避免與矽化物形成相關聯的限制。 電化干活性材料層之層接著形成於此等中間結構之表面 上,以形成多維度電化學活性結構(或完全製造之結構)。 此等完全製造之結構亦可看❿「模糊球」/「海膽」. 構,但具有實質上較厚之延伸,例如,圖ia中所示之石夕: 物不米線現㈣有活性材料層之相對厚的層。舉例而言, 直徑僅為Η)奈米至5Q奈米之梦化物奈米線可塗佈有厚^ 至少約_奈米且在某些實施例中厚度甚至為至少約ι微米 :活性材料層。此導致具有直徑為至少約2微米之分支的 模糊球」。圖1B為多維度電化學活性結構之隨影像, 、包括塗佈有非晶#層之碎㈣巾間結構(*可見 夕”隹度電化學活性結構之特徵可能較易於自允許表明站 構之所有主組份㈣意性表㈣析。特定言之,圖叫: 156770.doc 201248976 據某些實施例之多維度電化學活性結構100的示意性二維 (2D)表示。多維度電化學活性結構10〇包括支撐結構1〇2, 支撑結構10 2可為奈米粒子、奈米線,或任何其他類型之 奈米結構。支撐結構102可包括在奈米線1〇6之形成期間用 作金屬源的一或多種金屬。下文進一步描述支撐結構1〇2 之金屬及其他特徵的各種實例。奈米線1 〇6係自支撐結構 102生長且在稍後處理期間保持附著至支撐結構1〇2,且用 於電池中。奈米線被定義為具有大於1、通常至少約2且更 常吊至少約4之縱橫比的結構。奈米線】〇6遠離支撐件1 〇2 延伸至不同方向上(例如,所有三個維度)。奈米線1〇6塗佈 有活性材料,該活性材料形成活性材料層丨〇8。在某些實 施例中’纟支撑件102附近之奈米線1〇6的密度防止活性材 料層⑽塗佈支#件1()2。保持活性材料區域遠離支樓件 1〇2可幫助保留奈米線106與支撐件1〇2之間的連接。圖⑴ 中所示之多維度f化學輯結構〗轉著㈣其他此等結 構配置為電池電極,以達成任何合乎需要之厚度。 結構及組合物 可自t造此等結構之程序更好地理解多維度電化學活性 結構的額外特徵。圖2A為根據某些實施例之多,維度電化風 :性結構在其製造之不同階段期間的示意性表示。在初: 階段201中,提供支撐結構1〇2。支 ° 後階段中形成石夕化物結構之—或多種金屬。^ =在^ ㈣1〇2應與電極基板(諸如,金屬_別,料絲用^ 整體電極之機械切及電子導電性 、 …而,在某些實施例 156770.doc 13 201248976 申,支#結構可為電極基板之一部分或整合至電極其板 中。舉例而言,支撐結構可為由網格基板所支撐之粒^, 或可為該基板之股線。 支撐件102通常(但未必)為金屬的。其可發揮多種作 用,諸如支撐自其延伸之奈米線106及提供用於生長矽化 物奈米線106的金屬。在一些實施例中,相同材料(亦即, 金屬)發揮支撐及「金屬源」兩種作用。在其他實施例 中,多種材料組合於同一支撐結構中且發揮單獨之作用。 舉例而言,基底或支撐材料可為非金屬。在其他實施例 令,基底材料係金屬或某其他導電材料,但其在矽化物奈 米線106之形成期間並未被消耗。基底材料之實例包2 銅、塗佈有金屬氧化物之銅、不鏽鋼、鈦、鋁、鎳'鉻、 鎢、金屬氮化物、金屬碳化物、碳、碳纖維、石墨、石墨 薄膜、碳網格、多孔金屬網格、多孔二氧化矽、導電聚合 物,或包括多層結構之以上各者的組合。此等複合支撐結 構中之另一材料為源金屬,其在矽化物奈米線1〇6之形成 期間至少部分地消耗。含金屬之源材料的實例包括鎳、 鈷、銅、銀、鉻、鈦、鐵、鋅、鋁、錫,及其各種組合。 一些合金之實例包括鎳/磷、鎳/鎢、鎳/鉻、鎳/鈷、鎳/鐵 及鎳/鉬。在某些實施例中,源材料在基底材料結構之上 形成外部子層。此層之厚度可為至少約1〇 nm、更特定言 之至少約50 nm,或介於約1〇奈米與5〇微米之間。舉例而 言,沈積於銅支撐件之上之2〇奈米厚的鎳子層可足以產生 長度為20微米至200微米之矽化錦奈米線的稠密墊。在某 \56770.doc 201248976 些實施例中,源材料在模板生長期間被大量地消耗以最大 化可用於活性材料的體積(亦即,最大化活性材料體積分 率以便最大化電極之能量密度)。源材料之消耗將不會犧 牲模板結構之強度及導電性。舉例而言,銅粒子可塗佈有 錄層,且用以形成自銅支樓件延伸之石夕化錦奈米線。在另 一實例中,次微米多孔二氧化矽粒子或片可塗佈有鎳,其 接著用以在二氧化矽支撐件上生長矽化物奈米線。在其他 實施例中,源材料與基底材料相同。換言之,初始支擇結 構可包括僅-種材料。源材料可在模板結構之形成期間部 分地或大量地消耗。當源材料僅部分地被消耗時,剩餘材 料充當操作電極中之支#結構1源材料大量地/完全消 耗時,矽化物或其他類型之模板結構可在其基底處形成接 合結構且保持連接至其他模板結構,從而形成「模糊球」 狀結構。此等接合結構亦可被稱為支撐結構,即使其組合 物不同於在模板結構之形成期間所消耗的最初引入之結構 亦如此。 在其他實施例中,支撐件不包括基底材料且完全由含金 之源材料製成。上文呈現此等材料之一些實例。支樓件 \02亦可包括增強矽化物奈米線106至支撐件1〇2之黏著及/ °某二貫施例中,在所得之電化學電池之進一步處理及/ 或循環期間保護支撐件102的各種材料。此等額外材料在 本文中破稱為子;I,但此等材料之其他結構性配置亦為可 能的。 舉例而言,各種中間子層可提供於基底材料與金屬源中 15677〇.d〇e •15· 201248976 間。在某些實施例中,含有銅及/或鎳之子層可沈積於基 底子層與金屬源子層之間,以改良稍後形成之模板至基底 支撐結構的冶金及電子連接。在一特定實施例中,含有導 電材料(例如,不鏽鋼)之基底支撐結構塗佈有薄的銅子 層,繼之以較厚的鎳子層(例如,在約1〇奈米與3微米之 間)。鎳子層接著用以形成矽化鎳模板,而銅子層充當黏 著及導電中間物。 在某些實施例中,使用PVD或某其他沈積技術來形成遮 罩材料之薄的子層。此子層之厚度可介於約丨埃與15埃之 間。已發現,在此等厚度下之某些材料並不形成連續層, 而是形成小的分離島狀物或塊狀物之集合。特定言之遮 罩材料可沈積為小的島狀物,且用於遮蔽下伏之支撐件以 防止在此等區域中沈積含金屬之子層。另外或替代地遮 罩材料可沈積於含金屬之子層之頂部以遮蔽模板生長。 基板了 έ有可用以進行以下操作之其他材料:增強隨後 形成之矽化物奈米結構至基底支撐結構的黏著;在處理及 電池循環期間保護基底支撐結構;促進模板結構之長晶; 防止活性材料在基板界面處(或附近)的沈積丨在矽化物形 成期間充當額外矽源;及其他功能。中間子層之一些實例 及細節提供於2〇〇9年丨i月丨丨日申請之頒予Demagen等人之 題為「interMEDIATE layers F0R electr〇de fabrication」的美國臨時專利申請案61/260,297中,該 案之全部内容出於描述中間子層之目的以引用的方式併入 本文中。再其他材料及子層可提供作為基板之一部分。舉 156770.doc • 16 - 201248976 例而言,含金屬之子層可具有金屬氧化物子層或保護性子 層。 返回至圖1C,支撐件102可呈低縱橫比粒子之形式,諸 如具有小於約4、或小於2、或大約!之縱橫比的結構。在 其他實施射,切件102可呈高縱冑比線或棒之形式, 諸如具有大於約4或甚至大於約1〇之縱橫比的結構❶支撐 件102的其他類型之結構包括線、管、片及其他形狀。: 某些實施例中,支撐件具有介於約1〇〇奈米與1〇微米之 間、或更特定言之介於約0 5微米與5微米之間,或大約工 微米至2微米的總尺寸。 在圖2A之下一階段203中,支撐件1〇2被展示為具有矽化 物奈米線106。其他類型之矽化物奈米結構亦可自支撐件 形成。在所描繪之實施例中,矽化物奈米線丨〇6具有附著 至支撐件102之根附在支撐件上的末端及遠離支撐件1〇2延 伸至不同方向上之自由末端。矽化物奈米線1〇6之直徑可 介於約5奈米與1 〇〇奈米之間(亦即,在沈積活性材料之 刖)’或更特定言之,介於約10奈米與5〇奈米之間。此 外’奈米線之長度可介於約i微米與1 〇〇微米之間,或更特 定言之’長度介於約2微米與25微米之間。 石夕化物奈米線106沿著其奈米線長度(亦即,在其根附在 支撐件上之末端與自由末端之間)可具有可變材料組合 物。特定言之’已發現’矽化物奈米線一般在根附在支撐 件上之末端附近具有較高的金屬濃度,此係因為在奈米線 之形成期間更多金屬在該末端處可用。自由末端附近之金 156770.doc •17- 201248976 屬濃度為較小的’此係因為金屬必須沿著奈米線擴散 達此等末端。此現象亦據信為至少部分地受矽之可用性在 自由末端附近比較接近支撑件處高所影響。金屬切濃度 之此可變性可反映於石夕化物之不同的形態及化學計量: 中。舉例而言’石夕化錄奈米線可包括石夕化錄之一個、兩個 或所有三個相(亦即,犯而、卿及咖2)。據信,較高錄 含量相形成與鎳金屬的較強之結合。因此,此可變性可加 強至鎳支樓件(或鎮塗佈之支撑件)的石夕化錄奈米線黏著且° 減小接觸電阻。 另外’各種金屬矽化物、奈米線,或更一般而言附著至 支撐件之奈米結構可由其他材料製造’諸如碳(例如,笑 型奈米結構)、錯及其他材料。舉例而言,可使用單壁碳 奈米管(CNT)或多壁CNT。CNT針對沈積活性材料於其表 面之上提供足夠的導電性及表面積1得之電極結構可循 環,使得CNT有助於總容量(亦即,CNT經鋰化及去鋰化) 或可保持實質上惰性的。CNT可以類似於在此文件中其他 處所述之石夕化物奈米線的方式形成於支撐結構上。舉例而 言,含鎳、鐵或鈷之材料可用作CNT生長的催化劑。各種 含碳之前驅體(諸如,CH4、C^2及醇類)可流動至處理腔 室中,而形成結構維持在介於約5〇t與9〇〇〇c之間的溫度 下。此等基於CNT之「模糊球」結構可形成於金屬粒子、 線及薄膜上。亦可使用其他類型之奈米線、纖維及柱狀結 構(諸如,氧化鋅奈米線)。可藉由重複之樹枝狀電鍍來形 成此等模板結構中之一些模板結構。 156770.doc 201248976 金屬擴散限制亦可使得奈米線如圖2B中示意性展示而 為錐形的。特定言之,矽化物奈米線可具有稍微寬於自 由末端的根附在支撐件上的末端。在某些實施例中,根 附在支樓件上之末端附近的平均直徑(如圖2B中所示為 Dnw bottom)為自由末端附近之平均直徑(如圖2B中所示為 DNW T0P)的至少約兩倍。在更特定實施例中,Dnw⑽打⑽ 對dnw Τ0Ρ之比率為至少約4 ’或更特定言之,至少約ι〇。 較寬之根附在支撐件上之末端幫助維持奈米線至支撐件的 附著。根附在基板上之末端可為足夠大的以彼此觸碰且覆 蓋支撐件之整個表面,且防止活性材料層在支撐件上的形 成。此特徵亦可幫助加強在奈米線與支撐件之間的界面。 返回至圖2Α,矽化物奈米線106形成高表面積中間結構/ 模板,該中間結構/模板稍後用於塗佈有活性材料層1〇8, 如階段205中所示。在此階段所示之結構可為用以形成更 好之電極的最終結構,且可被稱為多維度電化學活性結 構。具有活性層之一部分的每一奈米線可被稱為此多維度 結構的分支。矽化物奈米線106對活性材料層1〇8提供機械 支撐及/或至支撐件102及其他奈米線的電連通。一結構之 一些矽化物奈米線可具有與其他多維度結構之矽化物奈米 線及/或與導電基板的直接接觸。在相同或其他實施例 中,類似之接觸係藉由在矽化物奈米線周圍所形成之活性 材料層提供。總之,多維度電化學活性結構可形成電池電 極中之結構的互連網路。 在某些實施例中,活性材料層108之厚度為至少約⑺奈 156770.doc •19· 201248976 米、或更特定言之至少約100奈米,或甚 一 An. -tl 〆 夕、,'勺 1 微米。 超過對所使用之活性材料為特定的破 裂L限值。可藉由使活 丄^ 叶之組合物、形態結構(例 如,非晶對結晶)及某些其他物 六瓜砌埋特性(例如,孔隙 而調整此臨限值。此外,該 吸值取决於電池之循環條 1已發現,夕維度電化學活性結構可在不犧牲循環效能 之情況下製造為具有厚於i微米之非晶矽多孔層。 電化學活性材料之實例包括含矽材料(例如結晶矽、 非晶石夕、其他石夕化物、氧化石夕、次氧化物、氮氧化物)、 含錫材料(例如’錫、氧化錫)、錯、含碳材料、多種金屬 氫化物(例如,MgH2)、石夕化物、嶙化物及氮化物。其他實 例包括:碳-矽組合(例如,碳塗佈之矽、矽塗佈之碳、摻 雜有矽之碳、摻雜有碳之矽,及包括碳及矽之合金)、碳; 鍺組合(例如,碳塗佈之鍺、鍺塗佈之碳、掺雜有鍺之碳 及摻雜有碳之鍺),及碳-錫組合(例如,碳塗佈之錫、錫塗 佈之碳、摻雜有錫之碳及摻雜有碳之錫)。正電化學活性 材料之實例包括各種鋰金屬氧化物(例如,Lic〇〇2、 LiFeP〇4 > LiMn02 ' LiNi〇2 > LiMn204 ' LiCoP04 ^201248976 VI. INSTRUCTIONS: [Prior Art] High capacity electrochemically active materials are highly desirable for battery applications. However, such materials exhibit large volume changes during battery cycling, such as volume increase during lithiation and shrinkage during delithiation. For example, helium increases in volume by as much as 400% during lithiation, which corresponds to a theoretical capacity of about 4200 mAh/g or a Li44Si structure. The volume change of this magnitude causes comminution of the structure of the active material, loss of electrical connection, and capacity degradation. Providing a high-capacity material as a nanostructure can solve some of these problems. The small size of the nanostructure causes a small overall size change, which can be: Less mechanically destructive. However, integrating nanostructures into commercially available battery electrode layers has been complicated. For example, nanofilms deposited on conventional flat substrates such as metal drops generally do not provide sufficient loading. In addition, for the manufacture of nanostructures, ί often involves Amber's materials. For example, silver catalysts and expensive meal solutions are required for bulk particles. The growth of the long crystallographic structure can also be relatively slow, such as gold. And a catalyst relating to mussels (inventions) provides a novel multi-dimensional electrode in a bioscientific battery. It contains a material for recharging electrification from the active material. These structures include the main supporting structure, And attached to the support society on the following day, ~ and surprised, the support of the plurality of supports on the structure extends to different directions in the grass, the fH is especially concentrated around the nanowires and surrounds the embodiment. The main support member and even one layer of the substrate (both 156770.doc 201248976 uniform or non-uniform) β the active material layer may be sufficiently thin to prevent the layer from being pulverized under the ' σ 疋 operating conditions. The interconnection between the electrode structures and/or the substrate may be provided by an overlap formed during deposition of the active layer. The metal-containing main support may be suspended in a process gas containing ruthenium. In the fluidized bed reactor, a silicon-based nanowire structure is formed on the main support members, and a layer of stone can be deposited on the nanowires. In the example, a battery electrode for use in a battery The structure comprises: a conductive substrate; and a plurality of multi-dimensional electrochemically active structures attached to the conductive substrate and in electrical communication with the conductive substrate. Each multi-dimensional electrochemically active structure comprises a support member having a metal (for example, a metal-containing material); and a nanowire having a tip attached to the support member and attached to the support member and extending away from the support member to different directions The free ends of the upper layers. The nanowires comprise a metal halide of the metal. The battery electrode structure also includes a layer coated with the nanowires. The layer includes an insertion and release electrification during cycling of the battery. An electrochemically active material of one of the active ions. The metal halide of the nanowires may be one or more of the following tellurides: nickel telluride, cobalt telluride, copper telluride, silver telluride, chromium telluride, titanium telluride, Fragmentation, phlegm and bismuth iron. Some more specific examples include Niji, NiSi, Nidi2 and/or NiSiy. Examples of such electrochemically active materials include crystalline cerium, amorphous cerium, cerium oxide, nitrogen oxides.矽, tin-containing materials, cerium-containing materials, and carbon-containing materials. In some embodiments, the length of the nanowires is on average between about 1 micrometer and 200 micrometers. In the same or other embodiments 156770.doc The average direct line of the nanowires of 201248976 is less than about (10) nanometers on average. The thickness of the layer of the electrochemically active material can be at least about (10) nanometers on average. In certain embodiments, the stomach electrochemically active material The volume-to-volume ratio of the gold compound is at least about 5. In the ray, the electrochemically active material may be doped with a group selected from the group consisting of - or A variety of materials: scales, deletions, marry and in. In some implementations, the battery electrode structure also includes a shell formed on the layer of the electrochemically active material. The shell layer may include carbon, copper, fluorine. , polymers, sulfides, lithium oxynitride (Lip〇N), bell salts, and/or metal oxides. In some embodiments the 'battery electrode structure comprises a substrate layer formed over a conductive substrate and comprising one of electrochemically active materials. The substrate layer forms a bonding structure with the layer to which the nanowires are applied, and the bonding structures provide adhesion of the plurality of dimensionally active electrochemical structures to the conductive substrate and electronic communication of the structures with the conductive substrate. In the same or other embodiments, portions of the layers of the electrochemically active materials that coat the nanowires form a joined structure with each other. In some embodiments, the battery electrode structure also includes a polymeric binder that attaches the plurality of multi-dimensional electrochemically active structures to the conductive substrate. A battery electrode structure can be used in a lithium ion battery. In certain embodiments, the electrochemically active material has a theoretical lithiation capacity of at least about 5 mAh/g, or more preferably at least about 8 mAh/g, or even at least about 1000 mAh/g. In some embodiments, a battery electrode structure includes a nanostructure template having a template nanowire attached to the substrate. The electrochemically active material is 156770.doc 201248976 layer coated with the template nanowires And the nanowires of the multi-dimensional electrochemically active structures. The template nanowires provide adhesion and electrical communication of the multi-dimensional electrochemically active structures relative to the conductive substrate. In some embodiments, one of the layers of electrochemically active material has a thickness at the free ends of the nanowires that is at least twice the thickness at the end of the roots attached to the support. In the same or other embodiments, the layer of the electrochemically active material comprises amorphous and wrong, such that at the free ends of the nanowires, at the ends of the roots attached to the support More 矽 and less. A battery electrode structure can also include a middle sub-layer between the nanowires and the layer of the electrochemically active material to modify the nanowires and the layer of the electrochemically active material. Metallurgical adhesion and electronic conductivity. In certain embodiments, the intermediate sub-layer comprises one or more metals, various oxides, and/or intermediate or different intermediate sub-layers of the sulfide may be located between the nanowires and the layer of the electrochemically active material, And,! It is configured to provide an elastic interface between the nanowires and the layer of the electrochemically active material. In the same or other embodiments, the battery electrode structure may also include a substrate layer adjacent to the substrate. The base wrap structure can be temporarily negatively free of metal that is part of the metal stellate of the nanowires. In certain embodiments, the conductive substrate comprises one or more of the following materials: copper, nickel, titanium, and stainless steel. In the same or other embodiments, a battery electrode structure is a negative electrode - a + # knife. In other embodiments, a battery 4-pole structure is part of a positive electrode. A lithium ion lightning cell is also provided, comprising: a conductive substrate; and a plurality of 156770.doc 201248976 multi-dimensional electrochemical active structures, the plurality of multi-dimensional electrochemical active structures attached to the conductive substrate and the conductive substrate Electronically connected. Each of the plurality of electrochemically active structures may comprise: a branch member having a metal or metal containing material; a nanowire having an end attached to the support and attached to the end of the support and away from the support The pieces extend to free ends in different directions; and a layer that coats the nanowires. In certain embodiments, the multi-dimensional electrochemically active structure can include a plurality of carbon nanotubes attached to a support. Instead of the germanide containing niobium wire or in addition to the telluride containing nanowire, a carbon nanotube can also be used. The layer includes an electrochemically active material for inserting and releasing one of the electrochemically active ions during the cycle of the lithium ion battery. The nanowires comprise a metal halide of the metal. A method of making a multi-dimensional electrochemically active structure is also provided. In some embodiments, the method involves: receiving a support comprising a metal; forming a nanowire comprising a tip attached to the support and attached to the end of the support and away from the support The floor extends to free ends in different directions; and forms a layer that coats the nanowires. The nanowires comprise metal halides of the metal. The layer includes the electrochemically active material for inserting and releasing electrochemically active ions during the cycling of an electrochemically active material. The method may also involve treating the supports using one or more of the following techniques prior to forming the nanowires: oxidation, annealing, reduction, roughening, sputtering, etching, electroplating, reverse plating, Chemical vapor deposition, nitride formation, and deposition of an intermediate layer. In certain embodiments, the support has one or more of the following shapes: particles, rods, and sheets. Forming the nanowires can involve flowing a process gas containing one of the precursors through a fluidized bed, and suspending the supports in the process gas for a predetermined period of time. Forming an electrochemically active material layer may involve flowing a process gas containing a precursor of a ruthenium over an intermediate structure including the support member and the nanowires, and the intermediate structures are suspended in the process gas ( That is, floating in the reactor or on a conductive substrate. These and other embodiments are further described below with reference to the drawings. [Embodiment] In the following description, numerous specific details are set forth to provide a thorough understanding of the concepts presented. The concepts presented may be practiced without some or all of these specific details. In other instances, well-known program operations have not been described in detail so as not to unnecessarily obscure the concepts described. Although the concept is described in conjunction with the specific embodiments, it should be understood that these embodiments are not intended to be limiting. INTRODUCTION An electrochemically active material that has a high capacity of "and minimizes pulverization" of the active material structure during battery cycling can be formed into a nanostructure. Providing a sufficient amount of active material to provide a sufficient amount of active material to be challenging compared to the larger structures carrying the same amount of active material: m, branch and electrical interconnection of multiple nanoparticles structure. In addition, it is possible to retain these initial configurations and interconnections within the large f battery cycle involving large volume and shrinkage of the nanostructure. The cow is a case. 'The diameter of only 0 05 micron to 〇 1 〇 micron must depend on the electrical connection between many particles, and in a..., additive structure to transfer current to the substrate... mention:: Ref. = 156770.doc 201248976 Commercially feasible The electrodes have a layer having a thickness between about 20 microns and 200 microns on each side of the substrate. In these electrodes, the initial connection formed between the nanostructures during electrode fabrication (eg, smearing) is rapidly lost during battery cycling as the nanoparticles begin to repeatedly increase in volume and shrink. . In particular, the nanoparticles increase in volume during lithiation' and push away other adjacent nanoparticles (and/or other components, such as conductive additives) to allow more space for the increased volume of nanoparticles. . Next, the nanoparticles are shrunk during delithiation/discharge. Neighboring nanoparticles and/or other components may not follow the nanoparticles, and a gap may be formed in the electrode between adjacent nanoparticles and/or other components and the nanoparticles. As a result, many initial connections may be lost, resulting in electrically "unconnected" nanoparticles that are not later involved in lithiation and effectively become "inactive". Another example of a nanostructure is a nanofilm having a thickness of typically from about 5 microns to about 1 micron. This limited thickness helps to avoid comminution during cycling. However, when films are deposited on a typical flat surface substrate such as a foil, such films fail to provide a sufficient amount of active material to achieve the commercially viable capacity of the battery. Prototype batteries built with nanofilm are generally not practical for most battery applications. It has been discovered that certain high surface area templates can be used to provide a larger surface for depositing active materials into nanofilms. In some embodiments, a relatively flat metal substrate, such as a foil, is processed to form a germanium nanostructure that extends from the surface of the substrate and forms a template. These telluride nanostructures can be shaped as a nanowire having a root (or intermediate portion) on the substrate. 156770.doc -10- 201248976, the surface of the soil plate forms a monolithic structure. However, metal fragments exceeding certain sizes, . It is difficult to grow. Without being limited to any particular theory, it is believed that the length of the germanide nanowire can be diffused by hydrazine (usually supplied from the gas phase) and by metals under various telluride phases (usually supplied by metal substrates). Rate limit. The resulting template has a finite thickness corresponding to the length of the nanowire, which may be less than about 丨0 μm to 2 μm for the nickel-neutralized nickel nanowire, even if it is formed by the tantalum nanowire (which is much larger than The surface area of the metal tantalum substrate can still be insufficient to provide a sufficient amount of high capacity active material. For example, it has been estimated that the thickness of an electrode fabricated from a high capacity material that provides about 10 mAh/g needs to be at least 4 Å to 6 Å (without regard to the substrate) to achieve an area per electrode. A commercially viable capacity of 35 mAh per square centimeter. Also, it was found that, in contrast to a continuous metal substrate such as pig, the template structure can be formed of individual metal particles. Effectively exposing all sides of the metal particles to the reactive gas allows for the formation of a multi-dimensional structure. These metal particles are often referred to as the main support (or simply the support) of the multi-dimensional structure. For example, the metal-containing support can be exposed to the ruthenium-containing precursor to form an end attached to the support with the root attached to the support and a free end extending in different directions away from the support member. Nano line. The nanowire is made of a metal metal slab and remains attached to the branch and extends away from the branch to different directions to form a "fuzzy _" / "sea urchin" structure. Such intermediate (or partially fabricated) structures may have a diameter that is twice as large as the thickness of the nanostructured telluride template as described above, simply because the nanowires are in all directions rather than : only one 156770.doc 11 201248976 growth in the direction n simply by depositing additional structures on top of each other until the desired thickness is reached 'the intermediate structure (or the final structure with the deposited active material) can be formed to have any thickness Electrode. These novel "blurred sphere" structures can also be added to the single-layer nanowire template structure described above. D Μ Figure 1A is a scanning electron microscope (Sem) image of the intermediate structure. The material layer before coating these structures contains a (four) rice noodle that is attached to the nickel branch (not visible). Each of these two "blurred ball" structures has a diameter of about 2 microns. The distribution and orientation of the rice noodles extending in all directions forms a good template for coating with electrochemically active materials. Furthermore, the intermediate structure of the separate objects allows stacking to achieve various electrode thicknesses and avoid formation with tellurides. Associated restrictions. A layer of the electrochemically dry active material layer is then formed on the surface of the intermediate structures to form a multi-dimensional electrochemically active structure (or fully fabricated structure). These fully manufactured structures can also be viewed as "blurred balls" / "sea urchins". They have a substantially thicker extension. For example, the stone eve shown in Figure ia: the material is not the rice line (4) active A relatively thick layer of material layers. For example, a dream nanowire having a diameter of only Η) nanometers to 5Q nanometers may be coated with a thickness of at least about _ nanometers and in some embodiments even a thickness of at least about ι: micron active material layer . This results in a blurred sphere having a branch having a diameter of at least about 2 microns. Figure 1B is an image of a multi-dimensional electrochemically active structure, including the structure of a (four) towel structure coated with an amorphous # layer (* visible 隹 隹 隹 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学 电化学All main components (4) are intended to be analyzed (IV). In particular, the figure is called: 156770.doc 201248976 A schematic two-dimensional (2D) representation of the multi-dimensional electrochemically active structure 100 according to certain embodiments. Multi-dimensional electrochemical activity The structure 10A includes a support structure 1〇2, which may be a nanoparticle, a nanowire, or any other type of nanostructure. The support structure 102 may be included during formation of the nanowire 1〇6 One or more metals of the metal source. Various examples of metals and other features of the support structure 1 〇 2 are further described below. The nanowires 1 〇 6 are grown from the support structure 102 and remain attached to the support structure 1 during later processing. 2, and used in batteries. The nanowire is defined as a structure having an aspect ratio greater than 1, usually at least about 2 and more often at least about 4. The nanowire 〇6 extends away from the support 1 〇2 to different Direction (for example, all three Dimensions). The nanowire 1〇6 is coated with an active material which forms an active material layer 8. In some embodiments, the density of the nanowire 1〇6 near the support member 102 prevents the active material. Layer (10) coats #1()2. Keeping the active material area away from the branch member 1〇2 helps preserve the connection between the nanowire 106 and the support 1〇2. The multi-dimensional f shown in Figure (1) Chemical Structures Turn (4) Other such structures are configured as battery electrodes to achieve any desired thickness. Structures and compositions can better understand the additional features of multi-dimensional electrochemically active structures from the process of making such structures. Figure 2A is a schematic representation of a dimensioned electrified wind during a different phase of its manufacture, in accordance with some embodiments. In the initial stage: a support structure 1〇2 is provided. The structure of the lithium compound—or a plurality of metals. ^ = at ^ (4) 1 〇 2 should be with the electrode substrate (such as metal, other, the wire is mechanically cut and electronically conductive, ... and, in some embodiments 156770.doc 13 201248976 Shen, branch #structure can One portion of the electrode substrate is integrated into the plate of the electrode. For example, the support structure may be a particle supported by the grid substrate, or may be a strand of the substrate. The support member 102 is typically (but not necessarily) metallic. It can serve a variety of functions, such as supporting a nanowire 106 extending therefrom and providing a metal for growing the germanium nanowire 106. In some embodiments, the same material (ie, metal) acts as a support and "metal." In other embodiments, multiple materials are combined in the same support structure and function as a separate. For example, the substrate or support material can be non-metallic. In other embodiments, the substrate material is metal or Some other conductive material, but it is not consumed during the formation of the germanium nanowire 106. Examples of base materials include copper, copper coated with metal oxides, stainless steel, titanium, aluminum, nickel 'chromium, tungsten, metal nitrides, metal carbides, carbon, carbon fibers, graphite, graphite films, carbon grids, A porous metal mesh, a porous ceria, a conductive polymer, or a combination of the above including a multilayer structure. Another material in such composite support structures is the source metal that is at least partially consumed during the formation of the telluride nanowires 1〇6. Examples of metal-containing source materials include nickel, cobalt, copper, silver, chromium, titanium, iron, zinc, aluminum, tin, and various combinations thereof. Examples of some alloys include nickel/phosphorus, nickel/tungsten, nickel/chromium, nickel/cobalt, nickel/iron, and nickel/molybdenum. In some embodiments, the source material forms an outer sub-layer over the substrate material structure. The thickness of this layer can be at least about 1 〇 nm, more specifically at least about 50 nm, or between about 1 〇 nanometer and 5 〇 micron. For example, a 2 inch nano-thick nickel sub-layer deposited on a copper support may be sufficient to produce a dense pad of tantalum-coated nylon nanowires having a length of from 20 microns to 200 microns. In some embodiments, the source material is consumed in large quantities during template growth to maximize the volume available for the active material (ie, to maximize the active material volume fraction in order to maximize the energy density of the electrode). . The consumption of the source material will not compromise the strength and electrical conductivity of the template structure. For example, the copper particles can be coated with a recording layer and used to form a Shihua Huanian nanowire extending from the copper branch. In another example, the sub-micron porous ceria particles or sheets may be coated with nickel, which is then used to grow the tantalum nanowires on the ceria support. In other embodiments, the source material is the same as the substrate material. In other words, the initial support structure can include only a variety of materials. The source material can be partially or largely consumed during the formation of the template structure. When the source material is only partially consumed, the remaining material acts as a branch in the operating electrode. When the source material of the structure 1 is consumed in a large amount/completely, the telluride or other type of template structure can form a joint structure at its base and remain connected to Other template structures form a "blurred ball" structure. Such joint structures may also be referred to as support structures, even if the composition is different from the initially introduced structure that was consumed during the formation of the formwork structure. In other embodiments, the support does not comprise a base material and is made entirely of a gold-containing source material. Some examples of such materials are presented above. The slab member \02 may also include an adhesion of the reinforced telluride nanowire 106 to the support member 〇2 and/or a secondary embodiment for protecting the support during further processing and/or cycling of the resulting electrochemical cell. 102 various materials. Such additional materials are referred to herein as sub-I; however, other structural configurations of such materials are also possible. For example, various intermediate sub-layers can be provided between the substrate material and the metal source 15677〇.d〇e •15· 201248976. In some embodiments, a sub-layer comprising copper and/or nickel may be deposited between the sub-sublayer and the metal source sub-layer to improve the metallurgical and electrical connections of the later formed template to the substrate support structure. In a particular embodiment, a substrate support structure comprising a conductive material (eg, stainless steel) is coated with a thin copper sublayer followed by a thicker nickel sublayer (eg, at about 1 nanometer and 3 micrometers) between). The nickel sublayer is then used to form a nickel telluride template, while the copper sublayer acts as an adhesive and conductive intermediate. In some embodiments, PVD or some other deposition technique is used to form a thin sub-layer of the masking material. The thickness of the sub-layer may be between about 丨 and 15 Å. It has been found that certain materials at these thicknesses do not form a continuous layer, but rather form a collection of small discrete islands or lumps. In particular, the mask material can be deposited as small islands and used to shield the underlying support to prevent deposition of metal-containing sub-layers in such areas. Additionally or alternatively a masking material may be deposited on top of the metal containing sublayer to mask template growth. The substrate has other materials that can be used to: enhance the adhesion of the subsequently formed germanide nanostructure to the substrate support structure; protect the substrate support structure during processing and battery cycling; promote the growth of the template structure; prevent active materials The deposition germanium at (or near) the substrate interface acts as an additional source of germanium during the formation of the telluride; and other functions. Some examples and details of the intermediate sub-layer are provided in U.S. Provisional Patent Application Serial No. 61/260,297, entitled "interMEDIATE layers F0R electr〇de fabrication", to Demagen et al. The entire content of this application is incorporated herein by reference for the purpose of describing the intermediate sub-layers. Still other materials and sub-layers can be provided as part of the substrate. For example, the metal-containing sublayer may have a metal oxide sublayer or a protective sublayer. Returning to Figure 1C, the support member 102 can be in the form of low aspect ratio particles, such as a structure having an aspect ratio of less than about 4, or less than 2, or about! In other implementations, the cutting member 102 can be in the form of a high median ratio line or rod, such as other types of structures having a structural ankle support 102 having an aspect ratio greater than about 4 or even greater than about 1 inch, including wires, tubes, Pieces and other shapes. In some embodiments, the support has a relationship between about 1 〇〇 nanometer and 1 〇 micron, or more specifically between about 0 5 micrometers and 5 micrometers, or about micron to 2 micrometers. Total size. In a stage 203 below Figure 2A, the support member 1 2 is shown with a wafer nanowire 106. Other types of telluride nanostructures can also be formed from the support. In the depicted embodiment, the telluride nanowire 6 has an end attached to the support member with the root attached to the support member 102 and a free end extending away from the support member 1〇2 in different directions. The diameter of the germanium nanowire 1〇6 may be between about 5 nm and 1 nanometer (i.e., after deposition of active material) or, more specifically, between about 10 nm and 5 〇 between the nano. Further, the length of the nanowire may be between about 1 micrometer and 1 micrometer, or more specifically, a length of between about 2 micrometers and 25 micrometers. The Sihuaite nanowire 106 may have a variable material composition along its length of the nanowire (i.e., between its distal end and the free end attached to the support). Specifically, it has been found that the telluride nanowires generally have a higher metal concentration near the end of the root attached to the support because more metal is available at the end during the formation of the nanowire. Gold near the free end 156770.doc •17- 201248976 The genus is less concentrated. This is because the metal must diffuse along the nanowire to reach these ends. This phenomenon is also believed to be at least partially affected by the availability of the near-free end near the support. This variability in metal cut concentration can be reflected in the different forms and stoichiometry of the Shi Xi compound: medium. For example, the 'Shi Xihua recorded nano line can include one, two or all three phases of Shi Xihua (ie, Gui, Qing and Cai 2). It is believed that the higher recorded content phase forms a stronger bond with nickel metal. Therefore, this variability can be enhanced to adhere to the nickel slab (or the coated support of the town) and reduce the contact resistance. In addition, various metal halides, nanowires, or more generally nanostructures attached to the support may be fabricated from other materials, such as carbon (e.g., laughing nanostructures), and other materials. For example, single-walled carbon nanotubes (CNTs) or multi-walled CNTs can be used. The CNTs provide sufficient conductivity and surface area for the deposited active material over its surface. The electrode structure can be recycled, so that the CNT contributes to the total capacity (ie, the CNT is lithiated and delithiated) or can remain substantially Inert. The CNTs can be formed on the support structure in a manner similar to the Shihua nanowires described elsewhere in this document. For example, a material containing nickel, iron or cobalt can be used as a catalyst for CNT growth. Various carbonaceous precursors (e.g., CH4, C^2, and alcohols) can flow into the processing chamber while the formation structure is maintained at a temperature between about 5 Torr and 9 Torr. These CNT-based "blurred ball" structures can be formed on metal particles, wires, and films. Other types of nanowires, fibers, and columnar structures (such as zinc oxide nanowires) can also be used. Some of the template structures in these template structures can be formed by repeated dendritic plating. 156770.doc 201248976 Metal diffusion limitations can also cause the nanowires to be tapered as shown schematically in Figure 2B. In particular, the telluride nanowire may have a tip that is slightly wider than the free end attached to the support. In some embodiments, the average diameter of the root attached to the end of the slab member (Dnw bottom as shown in Figure 2B) is the average diameter near the free end (DNW TOP as shown in Figure 2B). At least about twice. In a more particular embodiment, the ratio of Dnw(10) to (10) to dnw Τ0 is at least about 4' or more specifically, at least about ι. The wider root attached to the end of the support helps to maintain the attachment of the nanowire to the support. The ends of the roots attached to the substrate may be sufficiently large to touch each other and cover the entire surface of the support and prevent the formation of the active material layer on the support. This feature can also help to strengthen the interface between the nanowire and the support. Returning to Figure 2, the telluride nanowire 106 forms a high surface area intermediate structure/template that is later used to coat the active material layer 1〇8 as shown in stage 205. The structure shown at this stage can be the final structure used to form a better electrode and can be referred to as a multi-dimensional electrochemically active structure. Each nanowire having a portion of the active layer can be referred to as a branch of this multi-dimensional structure. The telluride nanowire 106 provides mechanical support to the active material layer 1〇8 and/or electrical communication to the support member 102 and other nanowires. Some of the germanide nanowires of a structure may have direct contact with other nano-structured germanium nanowires and/or with a conductive substrate. In the same or other embodiments, a similar contact is provided by a layer of active material formed around the germanium nanowire. In summary, a multi-dimensional electrochemically active structure can form an interconnected network of structures in a battery electrode. In certain embodiments, the thickness of the active material layer 108 is at least about (7) 156770.doc • 19·201248976 meters, or, more specifically, at least about 100 nanometers, or even an An.-tl 〆 、,, ' Spoon 1 micron. Exceeding the specific fracture L limit for the active material used. This threshold can be adjusted by making the composition of the active leaf, the morphological structure (for example, amorphous versus crystalline), and some other six-buried properties (for example, pores). The battery cycle strip 1 has been found that an electrochemically active structure can be fabricated as an amorphous tantalum porous layer having a thickness of one micron without sacrificing cycle efficiency. Examples of electrochemically active materials include germanium-containing materials (e.g., crystallization).矽, Amorphous 夕, other lithium, oxidized oxide, suboxide, oxynitride), tin-containing materials (such as 'tin, tin oxide), wrong, carbonaceous materials, various metal hydrides (for example, Other examples include: carbon-coated ruthenium, carbon coated ruthenium, ruthenium-doped carbon, doped carbon, ruthenium-doped carbon, ruthenium, ruthenium, and ruthenium. And carbon and tantalum alloys, carbon; tantalum combinations (eg, carbon coated tantalum, tantalum coated carbon, tantalum doped carbon and doped carbon), and carbon-tin combinations (eg , carbon coated tin, tin coated carbon, tin doped carbon and Heteroaryl tin to carbon) electrochemically positive active materials include a variety of examples of a lithium metal oxide (e.g., Lic〇〇2, LiFeP〇4 >. LiMn02 'LiNi〇2 > LiMn204' LiCoP04 ^

LiNi 丨/3C〇W3Mn 丨/302、LiNixCoYAlz〇2、LiFe2(S04)3、LiNi 丨/3C〇W3Mn 丨/302, LiNixCoYAlz〇2, LiFe2(S04)3,

Li2FeSi〇4、Na2Fe04)、氟化碳、諸如氟化鐵(FeFj之金屬 說化物、金屬氧化物、硫,及其組合。亦可使用此等正及 負活性材料之摻雜及非化學計量變化。摻雜物之實例包括 來自週期表之第III族及第V族的元素(例如,硼、鋁、鎵、 銦、蛇、磷、砷、銻及鉍),以及其他適當之摻雜物(例 156770.doc -20- 201248976 如’硫及硒)。在某些實施例中,高容量活性材料包括非 晶矽。舉例而言’非晶矽層可沈積於矽化鎳模板之上。 此外,已提出各種技術來保護奈米線與支撐件之間的電 連接。在一類別之技術中,多維度電化學活性結構之分支 具有「上重」形狀’其中根附在支撐件上之末端與自由末 端相比相對較薄(考慮奈米線及活性材料層兩者卜舉例而 5,自由末端可具有實質上多於根附在支撐件上之末端的 活性材料。在另一類別之技術中,奈米線之間距受到控 制,使得個別線在支撐件之表面上相對均勻地間隔。在特 疋貫施例中,一機構用以防止模板奈米線在其附著區域處 在其根附在支撐件上的末端附近彼此接近而群聚。在又一 類別中,某些「鈍化」技術及/或材料用以最小化在支撐 件界面處的機械變形及應力,其一般由活性材料之體積增 大及收縮引起。 上重形狀之一些實例包括具有自根附在基板上之末端至 自由末端逐漸及連續增大之橫截面尺寸(例如,直徑)(類似 於圖2B中所示之尺寸)的形狀。在其他實施例中,橫截面 尺寸可逐漸地但非連續地增大。其他實例包括突然但連續 地增大其橫截面尺寸的形狀。此外,其他實例包括突然且 非連續地增大其橫截面尺寸的形狀。整體形狀㈣可藉由 活性材料層之厚度、模板結構之橫截面尺寸,或此等^固 參數之組合來驅策。舉例而言,模板結構可具有寬於自由 末端之基底’而活性材料塗層之分佈可使得整體電極結構 具有寬於基底之自由末端》 156770.doc -21- 201248976 圖2B為根據某些實施例的例示電化學活性材料芦2丨4中 之變化的附著至支撐件210且塗佈有該層之奈米線212的示 意性表示。活性材料層214在此分支之自由末端附近實質 上比在支撐件21〇附近厚。在不限於任何特定理論之情況 下,據信,活性材料之此分佈可藉由導致大量輸送限制狀 態(mass transport limiting regime)之某些處理條件達成。 此狀態導致活性材料前驅體物質(例如,矽垸)沿著奈米線 212之長度(如圖2B中所識別而為Lnw)之濃度梯度,及在分 支之自由末端附近比在支撐件21〇附近高的沈積速率。此 活性材料分佈自電化學循環觀點而言可為有益的,此係因 為結構之根附在支撐件上的末端將在鋰化期間經歷較小之 體積增大及應力,藉此保持奈米線212與支撐件21〇之間的 接觸。 在某些實施例中,可藉由在沈積腔室内部在相對高之壓 力位準下執行CVD沈積而達成活性材料的不均勻分佈。在 不限於任何特定理論之情況下’據信,較短之平均自由路 徑係在較高之壓力位準下達成,此又導致高的較快沈積速 率及在結構之自由末端附近之活性材料前驅體的迅速消 耗。此有效地在模板之高度方面產生大量輸送限制狀態。 舉例而言,可在約50托與760托之間、更特定言之約1〇〇托 與600托之間,或甚至更特定言之約2〇〇托與6〇〇托之間下 執行沈積。在一特定實例中,在約6〇0托下執行沈積。沈 積溫度可介於約40CTC與600。(:之間,或更特定言之介於約 450 C與550°C之間。在一特定實例中,在約5〇〇。〇下執行 156770.doc -22- 201248976 沈積。此等溫度範圍係針對熱CVD技術而呈現。若PECVD 技術用於沈積,則溫度可在介於約2〇〇t;與45〇〇c之間的範 圍内。鼠氣或風氣中之石夕院濃度可在介於約0.5%與%之 間、或更特定言之介於約〇.5%與1〇%之間,或甚至更特定 言之介於約1%與5%之間的範圍内。亦可使用其他含矽前 驅體,諸如二石夕烧》 在某些實施例中,中間子層係在所形成之中間矽化物結 構之上但在電化學活性材料之沈積之前沈積。此子層位於 模板-活性材料界面處》此中間子層可包括鈦、銅、鐵、 鎳、鎳鈦、鉻、氧化物(例如,Si〇2、Ti〇2、α12〇3)、氮化 物(例如,TiN、WN、Si#3)或其他類似材料。可使用電 鍍、濺鍍或蒸鍍技術來沈積材料。在不限於任何特定理論 之情況下,據信,中間子層在此界面處之存在增大與活性 材料之冶金合金化及更好的黏著。此外,此等材料中之一 些材料可充當增黏劑及吸氧劑。最終,如鎳鈦、銅·鋅_鋁_ 鎳及銅-鋁-鎳之合金可用於其彈性性質,以在相對動態之 活性材料層(其在循環期間體積增大及收縮)與相對靜態之 模板層之間提供界面。 電池電極結構 圖3Α及圖3Β說明包括多維度電化學活性結構之電池電 極結構或簡單地電池電極的兩個實例。如上文所提及,可 以多層形式來配置多維度結構,以製造具有任何厚度之電 池電極。舉例而S ’電極可具有多維度結構之單層配置, 在該狀況下,電極厚度一般對應於多維度結構的總尺寸。 156770.doc •23· 201248976 j某些實施例中’多維度結構之支#件可在形成奈米線之 前位於基板之正上方,在該狀況下,奈米線僅在基板表面 上方延伸,從而產生為在先前實例中之電極厚度之約一半 的電極厚度。另-方面,多維度結構可以多個層配置於基 板表面上方,且電極厚度可實質上大於多維度結構之總尺 寸,例如,為介於約2至5倍之間。可用無需對應於矽化物 奈米線之最大生長限制的相對小之直徑來製造多維度結 構。此特徵連同製造多層電極結構之能力在電極設計中呈 現大得多的靈活性。舉例而言,高容量應用可能需要較厚 之電極層,而高循環速率(高的充電及/或放電電流)應用可 能需要較薄的更導電電池電極結構。 圖3Α說明根據某些實施例之包括使用聚合黏合劑3〇6黏 合至基板302之多維度電化學活性結構1〇〇的電極結構3〇4 之一實例。類似之電極結構(圖中未展示)可提供於基板3〇2 之另一側面上。可使用多種沈積技術(諸如,刀片刮抹、 漿料塗佈、膠合及其類似者)將電極結構3〇4沈積於基板 302上。基板可為具有介於約5微米與5〇微米之間,或更特 定S之介於約10微米與30微米之間的厚度之薄箔。在其他 實施例中,基板層係網格、穿孔薄片、發泡體、多孔材料 及其類似者》基板材料之實例包括銅及/或銅樹枝狀結構、 塗佈及未塗佈之金屬氧化物、不鏽鋼、鈦、鋁、鎳、鉻、 鎢、金屬氮化物、金屬碳化物、碳、碳纖維、石墨、石墨 薄膜、碳網格、導電聚合物,或包括多層結構之以上各者 的組合。在某些實施例中,基板可具有功能層及/或保護 156770.doc • 24 - 201248976 層,例如,催化劑層、擴散障壁層及/或黏著層。此等層 之各種實例描述於在2009年n月u日申請之題為 「Intermediate Layers for Electrode Fabricad〇n」的美國臨 時專利申請案第61/260,297號(該案以引用的方式併入本文 中)中以及下文進一步所述之此詳細描述中。 在某些實施例中,電極結構304包括導電添加劑3〇8以增 大整體結構304之導電性。此導電性取決於多維度結構1〇〇 S中之電互連,其可為直接的電互連或經由導電添加劑的 電互連。另一導電性考慮係介於多維度結構100與基板302 之間。導電添加劑之實例包括各種含碳材料,諸如焦炭、 乙炔黑、碳黑、Ketjen黑、槽法碳黑、爐法碳黑、燈碳黑 及熱奴黑或峡纖維。其他實例包括銅、不鏽鋼、錄或其他 相對惰性之金屬的金屬片或粒子,導電金屬氧化物(諸 如,氧化鈦或氧化釕),或電子導電聚合物(諸如,聚笨胺 或聚吡咯)。導電添加劑之重量負載可高達電極層之2〇重 I百分比,更特疋言之,1至1〇重量百分比。在特定實施 例中,導電添加劑為具有介於i )1111與7〇 μιη之間,更特定 言之介於約5 μηι與30 間的平均粒徑之碳黑,其係以 介於總電極層之約1重量百分比與5重量百分比之間的量使 用。 黏合劑306用以將多維度結構1〇〇及導電添加劑3〇8(若使 用一導電添加劑308)固持於基板3〇2上。一般而言,基於 黏合劑之固體含i (亦即,排除溶劑),可以介於電極層之 約2重量百分比與25重量百分比之間的量使用黏合劑。黏 156770.doc •25· 201248976 合劑可為可溶於水或非水溶劑中的,其在製造期間使用以 調整黏合劑之黏度及(例如)衆料之黏纟。「#水性黏合劑」 之一些實例包括聚(四氟乙烯)(PTFE)、聚(偏二σ氟1 烯)(pvDF)、苯乙燁_丁二稀共聚物(SBR)、丙婦猜_丁二稀 共聚物(NBR)或羧f基纖維素(CMC)、聚丙烯、及聚氧化 乙烯,及其組合。舉例而言’可使用溶解於义甲基_2_吡 咯㈣(NMP)中之10重量百分比至2〇重量百分比pvDF。作 為另一實例,可相對於電極層中之材料的總重量而使用— 使用以下兩者的組合黏合劑:i重量百分比至1〇重量百分 比聚四氟乙烯(PTFE)及1重量百分比至丨5重量百分比羧甲 基纖維素(CMC)。 「水性黏合劑」之實例包括羧甲基纖維素及聚(丙烯 酸),及/或丙烯腈-丁二烯共聚物乳膠。水性黏合劑之—特 定實例為結合以下共聚物中之至少一者的聚丙稀醯胺:羧 化苯乙烯-丁二烯共聚物及苯乙烯_丙烯酸酯共聚物。聚丙 烯醯胺對此共聚物之比率以乾重計可介於約〇 2:1至約 之間。在另一特定實例中’水性黏合劑可包含羧酸酯單體 及甲基丙烯腈單體。 在其他特定實例中,黏合劑3〇6可包括含氟聚合物及金 屬螯合化合物。含氟聚合物可自氟化單體聚合而成,諸如 氟乙烯(VF)、偏二氟乙烯(VdF)、四氟乙烯(TFE)、三氟乙 烯(TrFE)、三氟氣乙烯(CTFE)、氟化乙烯醚、氟化丙烯酸 烷酯/曱基丙烯酸酯、具有3至丨〇個碳原子之全氟烯烴、全 氟C1-C8烷基乙烯及氟化(間)二氧雜環戊烯。金屬螯合化 156770.doc -26- 201248976 口物可呈如下雜環的形式:具有藉由配位鍵附著至至少兩 個電子對供體非金屬離子(諸如,N、〇及S)的電子對受體 金屬離子(諸如,鈦及錯離子)。 圖3B說明根據某些實施例之包括經由接合結構3 1以及 3 12b、纟„合至且電連接至基板3〇2之多維度電化學活性結構 310的電極結構314之另一實例。接合結構312&及3^係藉 由由活性材料層3lla及3Ub所形成之重疊及/或實體接觸而 形成。可藉由多種方法來形成此類型之電極結構。在某些 貫施例中,將中間矽化物結構(亦即,具有所附著之奈米 線的核〜)置放至基板表面上且使其彼此緊密接近。活性 材料層接著形成於此等中間結構及基板之表面上。一旦層 在此等表面上增厚,則該層之一些部分將重疊,此係因為 此等表面中之一些表面彼此緊密接近且甚至彼此接觸。此 等重疊在所得之電極結構314中被稱為接合結構312a及 3 12b。互連技術及結構之一些實例描述於在2010年3月22 日申請之題為「INTERCONNECTING ACTIVE MATERIAL NANOSTRUCTURES」的美國臨時專利申請案第 61/316,104號中’該案以引用的方式併入本文中。 程序 圖4 A為說明根據某些實施例之用於製造含有多維度電化 學活性結構之電極層的程序之一實例的流程圖。程序4〇〇 可以接收多個支撐結構(區塊402)開始。上文提供了支撐件 之各種實例。支撐件可饋入至反應腔室(諸如,流體化床 反應器或流體化浴)中,該反應腔室經組態以使支撐件懸 156770.doc -27- 201248976 置於氣流中歷時預料間週期。基於支標件之大小、形狀 及重量密度、氣體之黏度及其他特性、腔室之尺寸、所要 之駐留時間’ a其他製程參數來射流動速率。亦應注 意,電磁場、機械混合及其他技術可用以使支撐結構^置 於氣流中。此彳’應注意’用以使經處理之結構(例如, 支撑件、中間結構、所得結構)懸置於反應器中的處理條 件可基於此等結構之改變的形狀及重量來難。反應腔室 可經組態以執行化學氣相沈積(CVD)裝置(例如,埶cvd或 電漿增強型CVD)及/或其他沈積技術。 程序400可視情況繼續進行處理支撐件之表面(區塊 404)。該等表®可經處王里以增大其粗糙度、?文冑其組合物 及將(例如)增強矽化物奈米線在此等表面上之形成的其他 特性。處理技術之實例包括將矽化物前驅體引入至表面中 (例如,>5夕、金屬,及/或含催化劑之材料)、化學改質該等 表面(例如,形成氧化物、氮化物、碳化物、初始矽化物 結構,及用各種氧化劑及還原劑來處理),及物理改質該 等表面(例如,用雷射切除及/或電漿處理來增大表面粗糙 度)。其他實例包括改變晶粒定向、退火、音波處理、摻 雜及離子植入。 在某些實施例中’金屬支撐結構係在介於約150°C與 500°C之間(更特定言之,大約3〇(rc)的溫度下氧化,同時 懸置於含有氧或其他合適氧化劑的氣流中歷時介於約〇. 1 分鐘與10分鐘之間(更特定言之,大約1分鐘)。已發現,一 些氧化藉由(例如)粗糙化支撐件之表面而幫助形成矽化鎳 156770.doc -28 · 201248976 結構。粗糙之氧化物邊緣可在石夕化物形成期間充當長晶位 點。此外,氧化物可充當遮罩以允許僅在孔隙處的長晶。 氧化物之另一功能可為調節金屬至反應位點之擴散速率。 亦已發現,過量之氧化對矽化物形成可為有害的β因而, 氧化條件可針對每一含金屬之材料及含有此等材料之結構 而最4:化。 程序400可繼續進行形成矽化物奈米結構(區塊4〇6),其 亦可執行於上文所述之流體化床CVD反應器中。包括含石夕 前驅體(例如,矽烷)之處理氣體以使支撐件懸置於沈積區 中歷時預定時間的流動速率流動至腔室中。在某些實施例 中,矽烷在處理氣體中之體積濃度小於約1〇0/〇、或更特定 言之小於約5%,或甚至小於約1%。在特定實施例中,矽 烷之濃度為約1% »處理氣體亦可包括一或多種載氣,諸 如乱氣、氮氣、氦氣、氫氣、氧氣(但通常不具有矽烷卜 二氧化碳,及甲烷。可將該氣體維持在介於約35(TC與 500 C之間’或更特定言之介於約425t與475°C之間的溫 度下。沈積之持續時間可介於約i分鐘與3〇分鐘之間,或 更特定言之介於約5分鐘與15分鐘之間。在使用非石夕化物 ’丁、米”’σ構之只施例中,可使用對氣相前驅體及其他處理條 件之適當調整。 ’ 在某些實施例中,步押欲1 + t 處理條件可在相同的矽化物形成操作 期間變^ °舉例而言’最初可以相對高之濃度引入石夕院, 以便促_化物以結狀長晶。當進m線生長受 到自,丁米線之根附末端朝向生長尖端之金屬擴散限制時, 156770.doc •29· 201248976 可接著減小(例如,朝向矽化物沈積操作之末尾)矽烷濃 度。此外,氣體溫度可最初保持為低且接著升高,以便促 進此金屬擴散《總之,可使處理條件變化,以控制所沈積 之奈米線的實體(例如,長度、直徑、形狀、定向)及形態 (例如,控制化學計量相以確保石夕化物之高導電性例 如,沿著長度之分佈、結晶/非晶)性質。待考慮之其他處 理條件係氣體混合物之組合物、流動速率、流動型樣、腔 室壓力、基板溫度及電場特性。在某些實施例中,調整處 理條件(例如,溫度、壓力及矽烷濃度),以促進非晶矽之 側壁沈積或矽粒子至矽化物結構(一旦其已長晶)上的沈 積。應改變之條件可包括處理溫度'壓力及矽烷濃度。 程序4〇〇繼續進行在金屬矽化物奈米線之上形成活性材 料層(區塊408),其亦可使用CVD技術在流體化床反應器中 進打《取決於活性層之類型,其他沈積技術包括物理氣相 沈積、電鍍、無電極電鍍或溶液沈積。 在某些實施例中’可使用PECVD技術來沈積活性材料, 現將參考摻雜有磷之非晶矽層的沈積更詳細地描述該技 術。然而,應理解,此技術亦可用於其他材料之沈積。將 中間矽化物奈米結構/模板(或更特定言之在此實例之背 尽下的矽化鎳奈米線)提供至反應器中。處理氣體被加熱 至’I於約200 C與4〇〇。(:之間,或更特定言之介於約25〇〇c 與350°C之間。該氣體可包括含石夕前驅體(例如,石夕炫)及一 或多種載氣(例如,氬氣、氮氣、氣氣、氮氣、二氧化碳 及曱烧)。在一特定實例中,矽烷在氦氣中之濃度介於約 156770.doc 201248976 5%與20%之間,或更特定言之介於約8%與15%之間。該氣 體亦可包括含摻雜物之材料,諸如膦化氫。該氣體以足以 使中間結構懸置歷時預定時間週期的流動速率而引入至腔 室中。RF功率可以約1〇冒與1〇〇〇 w之間遞送此一般取 決於腔至之大小及其他因素。 在程序流程圖400中未反映出之其他操作可包括多維度 電化學活性結構至基板之互連及/或附著。此等操作之各 種實例呈現於在2010年3月22曰申請之題為 「interconnects active material NANOSTRUCTURES」的美國臨時專利申請案第 61/3 16,104號中,該案之全部内容出於所有目的以引用的 方式併入本文中。 裝置 圖4B說明根據某些實施例之用於製造多維度電化學活性 結構的處理裝置實例。處理裝置之一實例為具有兩個處理 腔室410及412之流體化床反應器,該等處理腔室中之每一 者經組態以在上文所述之不同處理條件下操作。舉例而 言,腔室410可用以使用熱CVD技術在金屬支撐件上形成 矽化物奈米線。具有矽化物奈米線之中間結構可接著饋入 (例如’直接饋入)至第二腔室412中以用活性材料層來塗佈 該等結構。處理裝置亦可用以將最終多維度結構引導至電 極基板且將此專結構沈積於基板上。 電極及電池配置 電極通常裝配至堆疊或電極卷(jeUy r〇丨l)t。圖5A及圖 156770.doc 201248976 5B說明根據某些實施例的包括正電極5〇2、負電極5〇4及兩 個分離器薄片506a及506b之對準堆疊的側視圖及俯視圖。 正電極502可具有正活性層502a及正未塗佈之基板部分 502b。類似地,負電極504可具有負活性層5〇4&及負未塗 佈之基板部分504b。在許多實施例中’負活性層5〇4a之曝 露區域稍大於正活性層502a之曝露區域,以確保自正活性 層502 a所釋放的大多數或所有鐘離子進入至負活性層 中。在一實施例中,負活性層504&在_或多個方向(通常 所有方向)上超越正活性層5〇2a延伸至少介於約〇 25 mm與 5 mm之間。在一更特定實施例中,該負層在一或多個方向 上超越正層延伸介於約丨mm與2 mm之間。在某些實施例 中,分離器薄片506a及506b之邊緣延伸超越至少負活性層 504a之外邊緣,以提供電極與其他電池組件的電子絕緣。 正未塗佈之基板部分502b可用於連接至正端子,且可延伸 超越負電極504及/或分離器薄片5〇6a&5〇6b。同樣,負未 塗佈之部分504b可用於連接至負端子,且可延伸超越正電 極502及/或分離器薄片5〇63及5〇61)。 正電極502展示為在平坦之正集電器5〇2b之相對側面上 具有兩個正活性層512a及512b。類似地,負電極5〇4展示 為在平坦之負集電器之相對側面上具有兩個負活性層㈣ 及。在正活㈣5123、其相應之分離器“场及相 應之負活性層514a之間的任何間隙通常為極小的(幾乎不 存在),尤其在電池之第—循環之後。電極及分離器4 緊密地捲繞在電極卷中或位於接著***至緊密外殼中之堆 156770.doc •32- 201248976 疊中。電極及分離器傾向於在引入電解質之後在外殼内部 體積增大,.且隨著經離子循環通過該兩個電極且通過分離 器,第一循環移除任何間隙或乾燥區域(dryarea)。Li2FeSi〇4, Na2Fe04), carbon fluoride, such as iron fluoride (metals of FeFj, metal oxides, sulfur, and combinations thereof. Doping and non-stoichiometric changes of such positive and negative active materials may also be used. Examples of dopants include elements from Groups III and V of the periodic table (eg, boron, aluminum, gallium, indium, snake, phosphorus, arsenic, antimony, and antimony), as well as other suitable dopants ( Example 156770.doc -20- 201248976 such as 'sulfur and selenium.' In certain embodiments, the high capacity active material comprises amorphous germanium. For example, an 'amorphous germanium layer can be deposited on the nickel halide template. Various techniques have been proposed to protect the electrical connection between the nanowire and the support. In a class of techniques, the branches of the multi-dimensional electrochemically active structure have a "upper weight" shape with the root attached to the end of the support and The free end is relatively thin compared (considering both the nanowire and the active material layer, by way of example 5, the free end may have substantially more active material than the end attached to the support. In another category of technology , the distance between the nanowires is controlled The individual wires are relatively evenly spaced on the surface of the support. In a particular embodiment, a mechanism is used to prevent the template nanowires from approaching each other near the end of their attachment to the support at their attachment regions. In another category, certain "passivation" techniques and/or materials are used to minimize mechanical deformation and stress at the interface of the support, which is generally caused by an increase in volume and shrinkage of the active material. Some examples of shapes include shapes having a cross-sectional dimension (e.g., diameter) that gradually and continuously increases from the end of the substrate attached to the substrate to the free end (similar to the dimensions shown in Figure 2B). In other embodiments The cross-sectional dimension may be gradually but non-continuously increased.Other examples include shapes that suddenly and continuously increase their cross-sectional dimensions. Further, other examples include shapes that suddenly and non-continuously increase their cross-sectional dimensions. The shape (4) can be driven by the thickness of the active material layer, the cross-sectional dimension of the template structure, or a combination of such solid parameters. For example, the template structure can be wider than free. The base of the end and the distribution of the active material coating may be such that the overall electrode structure has a wider end than the free end of the substrate. 156770.doc -21 - 201248976 FIG. 2B is an illustration of an electrochemically active material in a reed 2丨4 according to some embodiments. A variation of the variation of the nanowire 212 coated to the support 210 and coated with the layer. The active material layer 214 is substantially thicker near the free end of the branch than near the support 21 。. In the case of a particular theory, it is believed that this distribution of active material can be achieved by certain processing conditions that result in a mass transport limiting regime. This state results in active material precursor species (eg, 矽垸) along The concentration gradient of the length of the nanowire 212 (Lnw as identified in Figure 2B) and the deposition rate near the free end of the branch is higher than near the support 21〇. This active material distribution may be beneficial from the point of view of the electrochemical cycle, since the end of the structure attached to the support will experience less volume increase and stress during lithiation, thereby maintaining the nanowire Contact between 212 and support member 21〇. In some embodiments, non-uniform distribution of active material can be achieved by performing CVD deposition at a relatively high pressure level inside the deposition chamber. Without being limited to any particular theory, it is believed that a shorter average free path is achieved at a higher pressure level, which in turn results in a higher faster deposition rate and active material precursors near the free end of the structure. Rapid consumption of the body. This effectively produces a large number of delivery restriction states in terms of the height of the template. For example, it can be performed between about 50 Torr and 760 Torr, more specifically between about 1 Torr and 600 Torr, or even more specifically between about 2 Torr and 6 Torr. Deposition. In a particular example, the deposition is performed at about 6 Torr. The deposition temperature can be between about 40 CTC and 600. (Between, or more specifically between about 450 C and 550 ° C. In a particular example, 156770.doc -22- 201248976 deposition is performed at about 5 〇〇. These temperature ranges It is presented for thermal CVD technology. If PECVD technology is used for deposition, the temperature can be in the range between about 2〇〇t; and 45〇〇c. The concentration of the stone in the rat or the atmosphere can be Between about 0.5% and %, or more specifically between about 5% and 1%, or even more specifically between about 1% and 5%. Other niobium-containing precursors may be used, such as Ershi Xia. In some embodiments, the intermediate sub-layer is deposited over the formed intermediate vapor structure but prior to deposition of the electrochemically active material. This sub-layer is located in the template. - at the interface of the active material. This intermediate sublayer may include titanium, copper, iron, nickel, nickel titanium, chromium, oxides (eg, Si〇2, Ti〇2, α12〇3), nitrides (eg, TiN, WN). , Si#3) or other similar materials. Electroplating, sputtering or evaporation techniques can be used to deposit materials. Without being limited to any particular theory. It is believed that the presence of the intermediate sub-layer at this interface increases metallurgical alloying and better adhesion to the active material. In addition, some of these materials can act as tackifiers and oxygen absorbers. Finally, such as nickel-titanium , copper, zinc, aluminum, nickel and copper-aluminum-nickel alloys can be used for their elastic properties to provide between a relatively dynamic active material layer (which increases in volume during shrinkage and shrinkage) and a relatively static template layer. Interface. Battery Electrode Structure FIGS. 3A and 3B illustrate two examples of a battery electrode structure or a simple battery electrode including a multi-dimensional electrochemically active structure. As mentioned above, the multi-dimensional structure can be configured in a multilayer form to have Battery electrodes of any thickness. For example, the S' electrode may have a single layer configuration of a multi-dimensional structure, in which case the electrode thickness generally corresponds to the total size of the multi-dimensional structure. 156770.doc • 23· 201248976 j Certain embodiments The 'multi-dimensional structure of the branch can be located directly above the substrate before forming the nanowire, in which case the nanowire extends only above the surface of the substrate, resulting in The thickness of the electrode is about half of the thickness of the electrode in the previous example. In another aspect, the multi-dimensional structure may be disposed above the surface of the substrate in a plurality of layers, and the thickness of the electrode may be substantially larger than the total size of the multi-dimensional structure, for example, about Between 2 and 5 times, a multi-dimensional structure can be fabricated with a relatively small diameter that does not correspond to the maximum growth limit of the germanide nanowire. This feature, along with the ability to fabricate a multilayer electrode structure, is much more flexible in electrode design. For example, high volume applications may require thicker electrode layers, while high cycle rate (high charge and/or discharge current) applications may require thinner, more conductive battery electrode structures. Figure 3A illustrates some implementations An example of an electrode structure 3〇4 comprising a multi-dimensional electrochemically active structure bonded to a substrate 302 using a polymeric binder 3〇6 is exemplified. A similar electrode structure (not shown) may be provided on the other side of the substrate 3〇2. The electrode structure 3〇4 can be deposited on the substrate 302 using a variety of deposition techniques such as blade scraping, slurry coating, gluing, and the like. The substrate can be a thin foil having a thickness between about 5 microns and 5 microns, or more specifically between S and about 10 microns and 30 microns. In other embodiments, substrate layer mesh, perforated sheet, foam, porous material, and the like, examples of substrate materials include copper and/or copper dendritic structures, coated and uncoated metal oxides. , stainless steel, titanium, aluminum, nickel, chromium, tungsten, metal nitride, metal carbide, carbon, carbon fiber, graphite, graphite film, carbon mesh, conductive polymer, or a combination of the above including a multilayer structure. In some embodiments, the substrate can have a functional layer and/or a layer of protection 156770.doc • 24 - 201248976, such as a catalyst layer, a diffusion barrier layer, and/or an adhesive layer. Various examples of such layers are described in U.S. Provisional Patent Application Serial No. 61/260,297, entitled "Intermediate Layers for Electrode Fabricad〇n", filed on Nov. 9, 2009, which is incorporated herein by reference. And in the detailed description described further below. In some embodiments, electrode structure 304 includes a conductive additive 3〇8 to increase the conductivity of monolithic structure 304. This conductivity depends on the electrical interconnections in the multi-dimensional structure 1 〇〇 S, which may be direct electrical interconnections or electrical interconnections via conductive additives. Another conductivity consideration is between the multi-dimensional structure 100 and the substrate 302. Examples of the conductive additive include various carbonaceous materials such as coke, acetylene black, carbon black, Ketjen black, channel black, furnace black, lamp carbon black, and heat black or gorge fibers. Other examples include copper, stainless steel, metal flakes or particles of a relatively inert metal, conductive metal oxides (such as titanium oxide or cerium oxide), or electronically conductive polymers (such as polyphenylamine or polypyrrole). The weight loading of the conductive additive can be as high as 2% by weight of the electrode layer, and more particularly, 1 to 1% by weight. In a particular embodiment, the conductive additive is a carbon black having an average particle size between i1111 and 7〇μηη, more specifically between about 5 μηι and 30, which is interposed between the total electrode layers It is used in an amount between about 1 weight percent and 5 weight percent. The adhesive 306 is used to hold the multi-dimensional structure 1 and the conductive additive 3〇8 (if a conductive additive 308 is used) on the substrate 3〇2. In general, the binder-based solid contains i (i.e., excludes the solvent), and the binder may be used in an amount of between about 2 weight percent and 25 weight percent of the electrode layer. Adhesive 156770.doc •25· 201248976 Mixtures can be used in water or non-aqueous solvents, which are used during manufacturing to adjust the viscosity of the adhesive and, for example, the viscosity of the bulk material. Some examples of "#aqueous binders" include poly(tetrafluoroethylene) (PTFE), poly(p-sigma-fluorine-ene) (pvDF), styrene-butadiene copolymer (SBR), and propylene Butadiene copolymer (NBR) or carboxyf-based cellulose (CMC), polypropylene, and polyethylene oxide, and combinations thereof. For example, 10% by weight to 2% by weight of pvDF dissolved in the meaning of methyl-2-pyrrole (tetra) (NMP) can be used. As another example, it can be used with respect to the total weight of the material in the electrode layer - a combination of the following two binders: i weight percent to 1 weight percent polytetrafluoroethylene (PTFE) and 1 weight percent to 丨5 Weight percent carboxymethyl cellulose (CMC). Examples of the "aqueous binder" include carboxymethylcellulose and poly(acrylic acid), and/or acrylonitrile-butadiene copolymer latex. A specific example of the aqueous binder is a polypropylene amide which is bonded to at least one of the following copolymers: a carboxylated styrene-butadiene copolymer and a styrene-acrylate copolymer. The ratio of polypropylene decylamine to the copolymer may range from about 2:1 to about 10,000 by dry weight. In another specific example, the aqueous binder may comprise a carboxylate monomer and a methacrylonitrile monomer. In other specific examples, the binder 3〇6 may include a fluoropolymer and a metal chelate compound. Fluoropolymers can be polymerized from fluorinated monomers such as vinyl fluoride (VF), vinylidene fluoride (VdF), tetrafluoroethylene (TFE), trifluoroethylene (TrFE), trifluoroethylene (CTFE). , fluorinated vinyl ether, fluorinated alkyl acrylate / mercapto acrylate, perfluoroolefin with 3 to 1 carbon atom, perfluoro C1-C8 alkyl ethylene and fluorinated (meta) dioxolene . Metal chelation 156770.doc -26- 201248976 The oral material may be in the form of a heterocyclic ring having electrons attached to at least two electron-pair donor non-metal ions (such as N, 〇, and S) by a coordinate bond. For acceptor metal ions (such as titanium and stray ions). 3B illustrates another example of an electrode structure 314 including a multi-dimensional electrochemically active structure 310 that is bonded to and electrically connected to a substrate 3〇2 via bonding structures 31 and 3 12b, in accordance with certain embodiments. 312& and 3^ are formed by overlapping and/or physical contact formed by active material layers 3lla and 3Ub. This type of electrode structure can be formed by a variety of methods. In some embodiments, the middle The telluride structure (i.e., the core with the attached nanowires) is placed on the surface of the substrate and brought into close proximity to each other. The active material layer is then formed on the surface of the intermediate structure and the substrate. Once the layer is If these surfaces are thickened, some portions of the layer will overlap because some of the surfaces are in close proximity to each other and even in contact with each other. These overlaps are referred to as joint structures 312a in the resulting electrode structure 314. And 3 12b. Some examples of interconnection techniques and structures are described in U.S. Provisional Patent Application Serial No. 61/316,104, filed on March 22, 2010, entitled "INTERCONNECTING ACTIVE MATERIAL NANOSTRUCTURES" The case is incorporated herein by reference. Procedure Figure 4A is a flow diagram illustrating one example of a procedure for fabricating an electrode layer containing a multi-dimensional electrochemically active structure in accordance with some embodiments. Program 4〇〇 can begin by receiving multiple support structures (block 402). Various examples of supports are provided above. The support can be fed into a reaction chamber, such as a fluidized bed reactor or fluidization bath, which is configured to allow the support suspension 156770.doc -27- 201248976 to be placed in the gas stream for an unexpected period of time. cycle. The flow rate is based on the size, shape and weight density of the support, the viscosity and other characteristics of the gas, the size of the chamber, the desired residence time, and other process parameters. It should also be noted that electromagnetic fields, mechanical mixing, and other techniques can be used to place the support structure in the gas stream. It should be noted that the processing conditions used to suspend the treated structure (e.g., support, intermediate structure, resulting structure) in the reactor can be difficult based on the altered shape and weight of such structures. The reaction chamber can be configured to perform a chemical vapor deposition (CVD) device (e.g., 埶cvd or plasma enhanced CVD) and/or other deposition techniques. The process 400 continues to process the surface of the support (block 404) as appropriate. Can these watches be used in the king to increase their roughness? The compositions and compositions that will, for example, enhance the formation of the ruthenium nanowires on such surfaces. Examples of processing techniques include introducing a telluride precursor into a surface (e.g., >, metal, and/or catalyst-containing material), chemically modifying the surface (e.g., forming oxides, nitrides, carbonization) Materials, initial telluride structures, and treatment with various oxidizing agents and reducing agents), and physical modification of such surfaces (eg, laser ablation and/or plasma treatment to increase surface roughness). Other examples include changing grain orientation, annealing, sonication, doping, and ion implantation. In certain embodiments the 'metal support structure is oxidized at a temperature between about 150 ° C and 500 ° C (more specifically, about 3 Torr) while suspended in oxygen or other suitable The oxidant gas stream has a duration of between about 1 minute and 10 minutes (more specifically, about 1 minute). It has been found that some oxidation aids in the formation of nickel telluride 156770 by, for example, roughening the surface of the support. .doc -28 · 201248976 Structure. Rough oxide edges can act as long crystal sites during the formation of the lithosphrodite. In addition, the oxide can act as a mask to allow crystal growth only at the pores. It is also possible to adjust the diffusion rate of the metal to the reaction site. It has also been found that excessive oxidation can be detrimental to the formation of telluride. Thus, the oxidation conditions can be for each metal-containing material and the structure containing such materials. The process 400 can continue to form a telluride nanostructure (block 4〇6), which can also be performed in a fluidized bed CVD reactor as described above, including a Zeolite precursor (eg, decane). Processing gas The flow rate of the support suspended in the deposition zone for a predetermined time flows into the chamber. In certain embodiments, the volume concentration of decane in the process gas is less than about 1 〇 0 / 〇, or, more specifically, less than about 5%, or even less than about 1%. In a particular embodiment, the concentration of decane is about 1%. » The process gas may also include one or more carrier gases, such as gas, nitrogen, helium, hydrogen, oxygen (but usually Does not have deuterated carbon dioxide, and methane. The gas can be maintained at a temperature between about 35 (TC and 500 C' or more specifically between about 425 and 475 ° C. Duration of deposition It may be between about 1 minute and 3 minutes, or more specifically between about 5 minutes and 15 minutes. In the case of using only non-ishixi compound 'ding, rice' and 'sigma structure, Appropriate adjustments to the gas phase precursor and other processing conditions are used. In some embodiments, the step 1 + t treatment conditions can be varied during the same telluride formation operation. For example, the initial can be relatively high. The concentration is introduced into Shi Xiyuan, in order to promote the formation of a long crystal When the growth of the m-line is taken from the metal diffusion limit of the root end of the butadibar line toward the growth tip, 156770.doc •29·201248976 can then be reduced (for example, toward the end of the telluride deposition operation) decane concentration. The gas temperature may initially be kept low and then increased to promote diffusion of the metal. "In summary, the processing conditions may be varied to control the entities (eg, length, diameter, shape, orientation) and morphology of the deposited nanowires. (For example, controlling the stoichiometric phase to ensure high conductivity of the ceramsite, for example, distribution along the length, crystallization/amorphous) properties. Other processing conditions to be considered are the composition of the gas mixture, flow rate, flow pattern , chamber pressure, substrate temperature and electric field characteristics. In some embodiments, the processing conditions (e.g., temperature, pressure, and decane concentration) are adjusted to promote sidewall deposition of the amorphous germanium or deposition of germanium particles to the germanide structure (once it has grown). Conditions that should be changed may include treatment temperature 'pressure and decane concentration. Procedure 4 continues by forming an active material layer (block 408) over the metal telluride nanowire, which can also be used in a fluidized bed reactor using CVD techniques, depending on the type of active layer, other depositions Techniques include physical vapor deposition, electroplating, electroless plating, or solution deposition. In some embodiments, the active material can be deposited using PECVD techniques, which will now be described in more detail with reference to the deposition of a layer of amorphous germanium doped with phosphorus. However, it should be understood that this technique can also be used for the deposition of other materials. An intermediate telluride nanostructure/template (or more specifically a deuterated nickel nanowire under the back of this example) is provided to the reactor. The process gas is heated to 'I at about 200 C and 4 Torr. (between, or more specifically between about 25 ° C and 350 ° C. The gas may include a Zeolite precursor (eg, Shi Xi Xuan) and one or more carrier gases (eg, argon) Gas, nitrogen, gas, nitrogen, carbon dioxide and helium. In a specific example, the concentration of decane in helium is between about 156770.doc 201248976 5% and 20%, or more specifically Between about 8% and 15%. The gas may also include a dopant-containing material, such as hydrogen hydride, which is introduced into the chamber at a flow rate sufficient to suspend the intermediate structure for a predetermined period of time. Power can be delivered between about 1 Torr and 1 〇〇〇w. This generally depends on the size of the cavity and other factors. Other operations not reflected in the flowchart 400 can include multi-dimensional electrochemically active structures to the substrate. Interconnections and/or attachments. Examples of such operations are presented in U.S. Provisional Patent Application No. 61/3 16,104, filed on March 22, 2010, entitled "interconnects active material NANOSTRUCTURES" The entire content is cited for all purposes Incorporated herein. Apparatus FIG. 4B illustrates an example of a processing apparatus for fabricating a multi-dimensional electrochemically active structure in accordance with certain embodiments. One example of a processing apparatus is a fluidized bed reactor having two processing chambers 410 and 412. Each of the processing chambers is configured to operate under different processing conditions as described above. For example, chamber 410 can be used to form a germanium nanoparticle on a metal support using thermal CVD techniques. The intermediate structure having the germanide nanowires can then be fed (eg, 'directly fed') into the second chamber 412 to coat the structures with the active material layer. The processing device can also be used to bring the final multi-dimensional The structure is directed to the electrode substrate and the specific structure is deposited on the substrate. The electrodes and the battery configuration electrode are typically assembled to a stack or electrode roll (jeUy r〇丨l) t. Figure 5A and Figure 156770.doc 201248976 5B illustrates according to certain implementations Examples include a positive electrode 5〇2, a negative electrode 5〇4, and a side view and a top view of an aligned stack of two separator sheets 506a and 506b. The positive electrode 502 can have a positive active layer 502a and a portion of the substrate that is not being coated. 5 02b. Similarly, the negative electrode 504 can have a negative active layer 5〇4& and a negative uncoated substrate portion 504b. In many embodiments, the exposed area of the negative active layer 5〇4a is slightly larger than the exposure of the positive active layer 502a. a region to ensure that most or all of the clock ions released from the positive active layer 502a enter the negative active layer. In one embodiment, the negative active layer 504 & exceeds in _ or multiple directions (usually all directions) The positive active layer 5〇2a extends at least between about 25 mm and 5 mm. In a more particular embodiment, the negative layer extends beyond the positive layer in one or more directions by between about 丨mm and 2 mm. between. In some embodiments, the edges of separator sheets 506a and 506b extend beyond at least the outer edges of negative active layer 504a to provide electrical insulation of the electrodes from other battery components. The uncoated substrate portion 502b can be used to connect to the positive terminal and can extend beyond the negative electrode 504 and/or the separator sheets 5〇6a & 5〇6b. Similarly, the negative uncoated portion 504b can be used to connect to the negative terminal and can extend beyond the positive electrode 502 and/or the separator sheets 5〇63 and 5〇61). Positive electrode 502 is shown with two positive active layers 512a and 512b on opposite sides of flat positive current collector 5〇2b. Similarly, negative electrode 5〇4 is shown with two negative active layers (4) and on opposite sides of a flat negative current collector. In the positive (4) 5123, any gap between its corresponding separator "field and the corresponding negative active layer 514a is typically extremely small (almost non-existent), especially after the first cycle of the battery. The electrode and separator 4 are tightly Wrap in the electrode roll or in a stack 156770.doc •32- 201248976 stack that is then inserted into the tight casing. The electrode and separator tend to increase in volume inside the shell after introduction of the electrolyte, and with ion cycling Through the two electrodes and through the separator, the first cycle removes any gaps or dry areas.

捲繞設計係、常用配置。長且窄之電極與兩個分離器薄片 -起捲繞至子總成(有時稱為電極卷)中’該子總成根據彎 ' 曲(常常為圓柱形)外殼之内部尺寸而塑形且定大小。圖6A 展示包含正電極606及負電極604之電極卷的俯視圖。在該 等電極之間的白色空間表示分離器薄片。將電極卷***至 外殼602中。在-些實施例中,電極卷可具有在中心*** 之心軸608,心軸608建立初始捲繞直徑且防止内部捲繞佔 據中心軸區。心軸608可由導電材料製成,且在一些實施 例中,其可為電池端子之一部分。圖6B呈現具有自電極卷 延伸之正突片612及負突片614之該電極卷的透視圖。該等 突片可焊接至電極基板之未塗佈之部分。 電極之長度及寬度取決於電池之總尺寸及活性層與集電 器的高度。舉例而言,具有18 mm之直徑及65 mm之長度 的習知18650電池可具有長度介於約3〇〇 mm與丨〇〇〇爪⑺之 間的電極。對應於低速率/較高容量應用之較短電極係較 • 厚的且具有較少捲繞。 _ 圓柱形設計針對一些鋰離子電池可為合乎需要的,此係 因為電極在循環期間體積增大且對套管施加壓力。圓形套 管可被製成為足夠薄的且仍維持足夠壓力。稜柱形電池可 類似地捲繞,但其外殼可因内部壓力沿著較長之側面彎 曲。此外,壓力在電池之不同部分内可能並非均勻的,且 I56770.doc -33- 201248976 牙文柱形電池之隅角可保持為空。空的凹穴在鋰離子電池内 可能並非合乎需要的’此係因為電極傾向於在電極體積增 大期間不均勻地推入至此等凹穴中。此外,電解質可聚集 且在凹穴中於電極之間留下乾燥區域,此不利地影響在電 極之間的鋰離子輸送。然而,針對某些應用(諸如,由矩 形形狀因數所指示之應用),稜柱形電池為適當的。在一 些實施例中,稜柱形電池使用矩形電極及分離器薄片之堆 疊,以避免捲繞式稜柱形電池所遇到之困難中的一些困 難0 圖7說明在外殼702中之捲繞式稜柱形電極卷位置的俯才 圖。電極卷包含正電極7〇4及負電極706。在該等電極之R ,白色空間表示分離器薄片。將電極卷***至矩形稜柱夕 成中。不同於圖6A及圖6B中所示之圓柱形電極卷,稜木 形電極卷之捲繞以在電極卷中間之平坦延伸區段開始。^ 一貫施例中’電極卷可在該電極卷中間包括心軸(圖中4 展示),電極及分離器捲繞至該心軸上。 圖8A說明包括交替之正電極及負電極以及在該等電極戈 間的分離器之複數個集合(_、8〇1b及801c)的堆疊電対 _的側視圖。堆疊電池可製成為幾乎任何形狀,盆尤其 適用於稜柱形電池 '然而,此電池通常需要正電極:負零 極之多個集合’及電極之更複雜對準。集電器突片通常自 每電極K申且連接至通向電池端子之整體集電器。 -旦電極如上文所述而配置,則電池填充有電解質。鐘 離子電池中之電解質可為液體、固體或凝膠。具有 156770.doc •34· 201248976 解質之鋰離子電池被稱為鋰聚合物電池β 典型之液體電解質包含一或多種溶劑及一或多種鹽,其 中至少一者包括鋰。在第一充電循環(有時稱為形成循環) 期間,電解質中之有機溶劑可在負電極表面上部分地分解 以形成SEI層。相間相一般為電絕緣但離子導電的,藉此 允許鋰離子通過。相間相亦防止電解質在稍後之充電子循 環中的分解。 適用於一些鋰離子電池之非水溶劑之一些實例包括以下 各者··環狀碳酸酯類(例如,碳酸伸乙酯(EC)、碳酸伸丙 酯(PC)、碳酸伸丁酯(BC)及碳酸乙烯基乙稀酯(VEC))、碳 酸伸乙浠酯(VC)、内酯類(例如,γ-丁内酯(GBL)、γ-戊内 酯(GVL)及α-當歸内酯(AGL))、直鏈碳酸酯類(例如,碳酸 二甲酯(DMC)、碳酸曱乙酯(MEC)、碳酸二乙酯(DEC)、 碳酸甲丙酯(MPC)、碳酸二丙酯(DPC)、碳酸甲丁酯(NBC) 及碳酸二丁酯(DBC))、醚類(例如,四氫呋喃(THF)、2-曱 基四氫呋喃、1,4-二噁烷、1,2-二曱氧乙烷(DME)、1,2-二 乙氧乙烷及1,2-二丁氧乙烷)、亞硝酸鹽類(例如,乙腈及 己二腈)、直鏈酯類(例如,丙酸甲酯、特戊酸甲酯、特戊 酸丁酯及特戊酸辛酯)、醯胺類(例如,二曱基甲醯胺)、有 機磷酸酯類(例如,磷酸三甲酯及磷酸三辛酯)、含有s=o 基之有機化合物(例如,二甲颯及二乙稀礙),及其組合。 非水性液體溶劑可以組合形式使用。此等組合之實例包 括環狀碳酸酯-直鏈碳酸酯、環狀碳酸酯-内酯、環狀碳酸 酯-内酯-直鏈碳酸酯、環狀碳酸酯-直鏈碳酸酯-内酯、環 156770.doc • 35· 201248976 狀碳酸酯-直鏈碳酸酯-醚,及環狀碳酸酯直鏈碳酸酯-直 鏈酯的組合。在一實施例中,環狀碳酸酯可與直鏈酯組 合。此外,環狀碳酸酯可與内酯及直鏈酯組合。在一特定 實施例中’環狀碳酸酯對直鏈酯之體積比介於約1:9至 10:0、較佳2:8至7:3之間。 液體電解質之鹽可包括以下各者中之一或多者: LiPF6 、LiBF4、LiC104 LiAsF6、LiN(CF3S02)2、 LiN(C2F5S02)2、LiCF3S03、LiC(CF3S02)3、LiPF4(CF3)2、 LiPF3(C2F5)3、LiPF3(CF3)3、LiPF3(異 C3F7)3 ' LiPF5(異 C3F7)、具有環院基之鋰鹽(例如,(CF2)2(s〇2)2xLi及 (CF2)3(S〇2)2xLi),及其組合。常用組合包括LipF6與Winding design system, common configuration. The long and narrow electrode and the two separator sheets - wound into a sub-assembly (sometimes referred to as an electrode roll) - the sub-assembly is shaped according to the internal dimensions of the curved (usually cylindrical) outer casing And the size. FIG. 6A shows a top view of an electrode roll including a positive electrode 606 and a negative electrode 604. The white space between the electrodes represents the separator sheet. The electrode roll is inserted into the outer casing 602. In some embodiments, the electrode coil can have a mandrel 608 that is centrally inserted, the mandrel 608 establishing an initial winding diameter and preventing internal winding from occupying the central shaft region. The mandrel 608 can be made of a conductive material and, in some embodiments, can be part of a battery terminal. Figure 6B presents a perspective view of the electrode roll having positive tabs 612 and negative tabs 614 extending from the electrode coil. The tabs can be soldered to the uncoated portion of the electrode substrate. The length and width of the electrode depend on the overall size of the battery and the height of the active layer and the collector. For example, a conventional 18650 battery having a diameter of 18 mm and a length of 65 mm can have electrodes having a length between about 3 mm and the pawl (7). The shorter electrodes corresponding to low rate/higher capacity applications are thicker and have less winding. _ Cylindrical design may be desirable for some lithium ion batteries because the electrode increases in volume during cycling and applies pressure to the sleeve. The circular sleeve can be made thin enough and still maintain sufficient pressure. A prismatic battery can be wound similarly, but its outer casing can be bent along the longer side due to internal pressure. In addition, the pressure may not be uniform across different parts of the battery, and the corner angle of the I56770.doc -33- 201248976 dent cylindrical battery may remain empty. An empty pocket may not be desirable in a lithium ion battery' because the electrode tends to push unevenly into such pockets during the increase in electrode volume. In addition, the electrolyte can collect and leave a dry area between the electrodes in the pocket, which adversely affects lithium ion transport between the electrodes. However, for certain applications, such as those indicated by the rectangular form factor, prismatic batteries are suitable. In some embodiments, a prismatic battery uses a stack of rectangular electrodes and separator sheets to avoid some of the difficulties encountered with wound prismatic cells. FIG. 7 illustrates a wound prismatic shape in the outer casing 702. The elevation of the electrode roll position. The electrode roll includes a positive electrode 7〇4 and a negative electrode 706. At the R of the electrodes, the white space represents the separator sheet. Insert the electrode roll into the rectangular prism. Unlike the cylindrical electrode roll shown in Figures 6A and 6B, the winding of the prismatic electrode roll begins with a flat extension of the middle of the electrode roll. ^ In a consistent embodiment, the electrode roll may include a mandrel (shown in Figure 4) in the middle of the electrode roll onto which the electrode and separator are wound. Figure 8A illustrates a side view of a stacked stack of a plurality of sets (_, 8〇1b, and 801c) including alternating positive and negative electrodes and separators between the electrodes. Stacked cells can be made in almost any shape, and the basin is particularly suitable for prismatic batteries. 'However, this battery typically requires a positive electrode: multiple sets of negative zeros' and more complex alignment of the electrodes. The current collector tabs are typically from each electrode K and are connected to an integral current collector that leads to the battery terminals. The electrode is configured as described above, and the battery is filled with an electrolyte. The electrolyte in the ion battery can be a liquid, a solid or a gel. A lithium ion battery having a 157770.doc • 34· 201248976 solution is referred to as a lithium polymer battery. A typical liquid electrolyte contains one or more solvents and one or more salts, at least one of which includes lithium. During the first charging cycle (sometimes referred to as forming a cycle), the organic solvent in the electrolyte may partially decompose on the surface of the negative electrode to form an SEI layer. The phase-to-phase phase is generally electrically insulating but ionically conductive, thereby allowing lithium ions to pass. The phase-to-phase also prevents decomposition of the electrolyte in later charge sub-cycles. Some examples of non-aqueous solvents suitable for some lithium ion batteries include the following: cyclic carbonates (for example, ethyl carbonate (EC), propyl carbonate (PC), butylene carbonate (BC) And vinyl vinyl carbonate (VEC)), acetaminophen (VC), lactones (eg, γ-butyrolactone (GBL), γ-valerolactone (GVL), and α-angelica lactone (AGL)), linear carbonates (for example, dimethyl carbonate (DMC), cesium carbonate (MEC), diethyl carbonate (DEC), methyl propyl carbonate (MPC), dipropyl carbonate ( DPC), methyl butyrate (NBC) and dibutyl carbonate (DBC), ethers (for example, tetrahydrofuran (THF), 2-mercaptotetrahydrofuran, 1,4-dioxane, 1,2-dioxin Oxyethane (DME), 1,2-diethoxyethane and 1,2-dibutoxyethane), nitrites (for example, acetonitrile and adiponitrile), linear esters (for example, C Methyl ester, methyl pivalate, butyl pivalate and octyl pivalate, guanamines (eg, dimethylformamide), organophosphates (eg, trimethyl phosphate and phosphoric acid) Octyl ester), containing s=o Compounds (e.g., dimethyl ethylene obstacle Sa and two), and combinations thereof. Non-aqueous liquid solvents can be used in combination. Examples of such combinations include cyclic carbonate-linear carbonates, cyclic carbonate-lactones, cyclic carbonate-lactone-linear carbonates, cyclic carbonate-linear carbonate-lactones, Ring 156770.doc • 35· 201248976 Combination of carbonate-linear carbonate-ether, and cyclic carbonate linear carbonate-linear ester. In one embodiment, the cyclic carbonate can be combined with a linear ester. Further, a cyclic carbonate can be combined with a lactone and a linear ester. In a particular embodiment, the volume ratio of cyclic carbonate to linear ester is between about 1:9 and 10:0, preferably between 2:8 and 7:3. The salt of the liquid electrolyte may include one or more of the following: LiPF6, LiBF4, LiC104 LiAsF6, LiN(CF3S02)2, LiN(C2F5S02)2, LiCF3S03, LiC(CF3S02)3, LiPF4(CF3)2, LiPF3 (C2F5)3, LiPF3(CF3)3, LiPF3(iso C3F7)3' LiPF5 (iso C3F7), lithium salt having a ring-based base (for example, (CF2)2(s〇2)2xLi and (CF2)3 ( S〇2) 2xLi), and combinations thereof. Common combinations include LipF6 and

LiBF4、LiPF6與 LiN(CF3S02)2、LiBF4與 LiN(CF3S02)2。 在貫施例中,液體非水溶劑(或溶劑之組合)中之鹽的 總濃度為至少約〇·3 Μ ;在一更特定實施例中,鹽濃度為 至 &gt; 約0.7 Μ。濃度上限可由溶解度限制來驅策(drive)或 可不大於約2·5 Μ ;在一更特定實施例中,其可不超過約 1.5 Μ。 固體電解質通常在無分離器之情況下使用,此係因為 自身充田刀離器。固體電解質為電絕緣、離子導電且電 學穩定的。在固體電解質組態中,使用含經之鹽(其與 對上文所述之液體電解質電池之鹽相同),但並非將其 二:機’谷劑中’而是將其保持於固體聚合物複合物中 離子2物電解f之實例可為自含有原子之單體所製備 聚合物,該等原子具有孤電子對,電解質鹽之 156770.doc • 36 · 201248976 離子可附著至該孤電子對且在導電期間在該等電子之間移 動&quot;亥等固體聚合物電解質諸如聚偏二氟乙稀(pvDF)或其 何生物之氣化物或共聚物、聚(三氟氯乙烯)、聚(乙烯-三 氟氯乙烯)、或聚(氟化乙烯-丙烯)、聚氧化乙烯(PEO)及 氧亞甲基鍵聯PEO、與三官能胺基甲酸酯交聯之pE〇_pp〇_ PEO、聚(雙(甲氧基_乙氧基_乙醇鹽))_磷氮烯、與 雙B能胺基甲酸酯交聯之三醇型pE〇、聚((寡聚)氧伸乙 基)曱基丙烯酸酯-共-鹼金屬甲基丙烯酸酯、聚丙烯腈 (PAN)、聚曱基丙烯酸甲酯(pNMA)、聚曱基丙烯腈 (PMAN)、聚矽氧烷及其共聚物及衍生物' 基於丙烯酸酯 之聚合物、其他類似的無溶劑聚合物、縮合或交聯以形成 不同聚合物之前述聚合物的組合,及前述聚合物中之任一 者的物理混合物。可與以上聚合物組合使用以改良薄層疊 物之強度的其他較不導電聚合物包括:聚酯(ρΕτ)、聚丙 烯(ΡΡ)、聚2,6萘二甲酸乙二酯(ΡΕΝ)、聚偏二氟乙烯 (PVDF)、聚碳酸酯(PC)、聚苯硫醚(pps)及聚四氟乙烯 (PTFE)。 圖9說明根據一實施例之捲繞式圓柱形電池之橫截面 圖。電極卷包含螺旋捲繞之正電極9〇2、負電極9〇4,及兩 個分離器薄片906。將電極卷***至電池外殼916中,且頂 蓋918及密封墊920用以密封電池,應注意,在某些實施例 中,直至後續操作之後才密封電池。在一些狀況下,頂蓋 918或電池外殼916包括安全器件。舉例而言,若過量之壓 力積累於電池中,則安全排氣或***閥可用以打開。在某 156770.doc -37· 201248976 些實施例中,包括單向 活化期間已釋&quot;明放在正性材料之 乳乳。又,可將正熱 入至頂蓋918之導電通 、 I比)态件併 路中’以減小在雷、冰;曹為 況下可發生之損壞。頂蓋918…在電池遭心路之情 貝盍918之外表面可用作 電池外殼916之外表面 乍&amp;子而 兄田員端子。在一替代膏 中,電池之極性顛倒, 貫&amp;例 頂蓋918之外表面用作負端 而電池外殼916之外表而古# χ山 子 卜表面充當正端子。突片908及910可用 以在正電極及負電極與相應端子之間建立連接。可插 當:絕緣密封她及912以防止内部短接之可能性。舉例 σ ροη薄膜可用於内部絕緣。在製造期間,頂蓋 918可捲曲至電池外殼916,以便密封電池。然而,在此操 作之前,添加電解質(圖中未展示)以填充電極卷之多孔* 間。 二 硬質外殼通常用於鋰離子電池,而鋰聚合物電池可包裝 至可撓性、落型(聚合物層疊物)外殼中。可針對外殼選擇 多種材料。針對鋰離子電池,Ti_6_4、其他Ti合金' 、 A1合金及300系列不鏽鋼可適用於正導電外殼部分及端 帽’且商業上之純Ti、Ti合金、Cu、Al、A1合金、Ni、|&gt;b 及不鏽鋼可適用於負導電外殼部分及端帽。 除了上文所述之電池應用之外’金屬石夕化物亦可用於燃 料電池(例如,用於陽極、陰極及電解質)、異質接面太陽 能電池活性材料、各種形式之集電器’及/或吸收塗層 中°此等應用中之一些應用可得益於由金屬矽化物結構所 供之南表面積、♦化物材料之高導電性,及快速之不昂 -38- 156770.doc 201248976 貴的沈積技術。 結論 儘管已出於理解清晰之目的而以某詳細程度描述了前述 概念,但應顯而易見,可在所附申請專利範圍之範疇内實 踐某些改變及修改。應注意,存在實施程序、系統及裝置 之許多替代方式。因此,當前實施例應視為說明性的而非 限制性的。 【圖式簡單說明】 圖1A為中間結構之掃描電子顯微鏡(SEM)影像,該中間 結構在用電化學活性材料層塗佈該中間結構之前包括附著 至支撐件的矽化鎳奈米線。 圖1B為在用非晶矽塗佈矽化鎳奈米線之後的多維度電化 學活性結構之一部分的SEM影像。 圖1C為根據某些實施例之多維度電化學活性結構的示意 性二維(2D)表示。 圖2 A為根據某些實施例之多維度電化學活性結構在其製 造之不同階段期間的示意性表示。 圖2B為根據某些實施例的例示電化學活性材料層中之變 化的附著至支樓件且塗佈有該層之—奈米線的示意性表 示0 圖3A說明根據某些實施例之具有使用聚合黏合劑黏合且 電連接至基板之多維度電化學活性結構的電池電極結構之 一實例。 圖3B 6兒明根據某些實施例之具有經由接合結構而黏合且 156770.doc 39· 201248976 電連接至基板的多維度電化學活性結構之電池電極結構的 另一實例’該等接合結構係藉由重疊活性材料層部分而形 成。 圖4A說明根據某些實施例之對應於製造包括多維度電化 學活性結構之電池電極結構的方法之程序流程圖。 圖4B說明根據某些實施例之用於製造多維度電化學活性 結構的處理裝置。 圖5 A至圖5B為根據某些實施例之說明性電極配置的俯 視示意圖及側視示意圖。 圖6A至圖6B為根據某些實施例之說明性圓形捲繞式電 池的俯視示意圖及透視示意圖。 圖7為根據某些實施例之說明性稜柱形捲繞式電池的俯 視不意圖。 圖8A至圖8B為根據某些實施例之電極及分離器薄片之 說明性堆疊的俯視示意圖及透視示意圖。 圖9為根據實施例之捲繞式電池之一實例的示意性橫截 面圖。 【主要元件符號說明】 100 多維度電化學活性結構 102 支撐結構/支撐件 奈米線 108 活性材料層 21〇 支撐件 212 奈米線 156770.doc • 40· 201248976 214 302 304 306 308 310 311a 311b 312a 312b 314 400 410 412 502 502a 502b 504 504a 504b 506a 506b 512a 電化學活性材料層 基板 電極結構 聚合黏合劑 導電添加劑 多維度電化學活性結構 活性材料層 活性材料層 接合結構 接合結構 電極結構 用於製造含有多維度電化學活性結構之電極 層的程序 處理腔室 處理腔室 正電極 正活性層 正未塗佈之基板部分/正集電器 負電極 負活性層 負未塗佈之基板部分 分離器薄片 分離器薄片 正活性層 156770.doc -41 · 201248976 512b 正活性層 514a 負活性層 514b 負活性層 602 外殼 604 負電極 606 正電極 608 心轴 612 正突片 614 負突片 702 外殼 704 正電極 706 負電極 800 堆疊電池 801a 電極集合 801b 電極集合 801c 電極集合 902 螺旋捲繞之正電極 904 負電極 906 分離器薄片 908 突片 910 突片 912 絕緣密封墊 914 絕緣密封墊 916 電池外殼 156770.doc -42- 201248976 918 頂蓋 920 密封墊 156770.doc -43-LiBF4, LiPF6 and LiN(CF3S02)2, LiBF4 and LiN(CF3S02)2. In the examples, the total concentration of the salt in the liquid non-aqueous solvent (or combination of solvents) is at least about 〇·3 Μ; in a more specific embodiment, the salt concentration is &gt; about 0.7 Μ. The upper concentration limit may be driven by a solubility limit or may be no greater than about 2.5 Μ; in a more specific embodiment, it may not exceed about 1.5 Μ. Solid electrolytes are usually used without a separator because of their own filling of the knife. The solid electrolyte is electrically insulating, ionically conductive and electrically stable. In a solid electrolyte configuration, the salt containing salt (which is the same as the salt of the liquid electrolyte battery described above) is used, but not the second: it is in the 'valency agent' but is kept in the solid polymer. An example of the electrolysis of the ion 2 in the composite may be a polymer prepared from a monomer containing atoms having a lone pair of electrons, 156770.doc • 36 · 201248976 ions may be attached to the lone pair Moving a solid polymer electrolyte such as polyvinylidene fluoride (pvDF) or a biogas or copolymer thereof, poly(chlorotrifluoroethylene), poly(ethylene) between the electrons during conduction. - chlorotrifluoroethylene), or poly(fluorinated ethylene-propylene), polyethylene oxide (PEO) and oxymethylene bonded PEO, pE〇_pp〇_PEO crosslinked with trifunctional urethane , poly(bis(methoxy-ethoxy-ethanolate))_phosphazene, triol type pE〇, poly((oligo)oxy-extended ethyl group crosslinked with bis-B urethane. ) mercapto acrylate-co-alkali metal methacrylate, polyacrylonitrile (PAN), polymethyl methacrylate (pN) MA), polydecyl acrylonitrile (PMAN), polyoxyalkylene and copolymers and derivatives thereof - acrylate-based polymers, other similar solvent-free polymers, condensation or cross-linking to form different polymers a combination of polymers, and a physical mixture of any of the foregoing polymers. Other less conductive polymers that can be used in combination with the above polymers to improve the strength of the thin laminate include: polyester (ρΕτ), polypropylene (ΡΡ), polyethylene 2,6 naphthalate (ΡΕΝ), poly Divinylidene fluoride (PVDF), polycarbonate (PC), polyphenylene sulfide (pps) and polytetrafluoroethylene (PTFE). Figure 9 illustrates a cross-sectional view of a wound cylindrical battery in accordance with an embodiment. The electrode roll comprises a spirally wound positive electrode 9〇2, a negative electrode 9〇4, and two separator sheets 906. The electrode roll is inserted into the battery housing 916, and the top cover 918 and the gasket 920 are used to seal the battery. It should be noted that in some embodiments, the battery is not sealed until after subsequent operations. In some cases, the top cover 918 or battery housing 916 includes a security device. For example, if excessive pressure builds up in the battery, a safe vent or blast valve can be opened. In some embodiments of 156770.doc -37· 201248976, breast milk which has been released during the one-way activation has been placed on the positive material. Moreover, it can be heated into the conductive cover of the top cover 918 and in the middle of the state to reduce the damage that can occur in the case of lightning or ice; The top cover 918 is in the heart of the battery. The outer surface of the bei 918 can be used as the outer surface of the battery case 916 乍 & In an alternative paste, the polarity of the battery is reversed, and the outer surface of the top cover 918 is used as the negative end and the outer surface of the battery case 916 is used as the positive terminal. Tabs 908 and 910 can be used to establish a connection between the positive and negative electrodes and the respective terminals. Pluggable: Insulate her and 912 to prevent the possibility of internal shorting. An example σ ροη film can be used for internal insulation. During manufacture, the top cover 918 can be crimped to the battery housing 916 to seal the battery. However, prior to this operation, an electrolyte (not shown) was added to fill the pores* of the electrode roll. Two rigid housings are typically used for lithium-ion batteries, while lithium polymer batteries can be packaged into flexible, drop-off (polymer laminate) housings. A variety of materials can be selected for the housing. For lithium-ion batteries, Ti_6_4, other Ti alloys, A1 alloys and 300 series stainless steels can be applied to positively conductive outer casing parts and end caps' and commercially pure Ti, Ti alloys, Cu, Al, Al alloys, Ni, |&gt ;b and stainless steel can be applied to the negative conductive housing part and end cap. In addition to the battery applications described above, 'metal stellite can also be used in fuel cells (eg, for anodes, cathodes, and electrolytes), heterojunction solar cell active materials, various types of current collectors' and/or absorption Some of these applications in coatings can benefit from the south surface area provided by the metal telluride structure, the high conductivity of the material, and the fastness of the -38-156770.doc 201248976 expensive deposition technique . </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; It should be noted that there are many alternative ways of implementing programs, systems, and devices. Therefore, the present embodiments are to be considered as illustrative and not restrictive. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A is a scanning electron microscope (SEM) image of an intermediate structure comprising a nickel germanium nanowire attached to a support prior to coating the intermediate structure with a layer of electrochemically active material. Figure 1B is an SEM image of a portion of a multi-dimensional electrochemically active structure after coating a nickel bead nitride wire with amorphous germanium. 1C is a schematic two-dimensional (2D) representation of a multi-dimensional electrochemically active structure in accordance with some embodiments. 2A is a schematic representation of a multi-dimensional electrochemically active structure during various stages of its manufacture, in accordance with certain embodiments. 2B is a schematic representation of a nanowire attached to a branch and coated with the layer, exemplified in a variation of the electrochemically active material layer, in accordance with some embodiments. FIG. 3A illustrates An example of a battery electrode structure that uses a polymeric binder to bond and electrically connect to a multi-dimensional electrochemically active structure of a substrate. FIG. 3B illustrates another example of a battery electrode structure having a multi-dimensional electrochemically active structure that is bonded via a bonding structure and 156770.doc 39·201248976 electrically connected to a substrate, according to certain embodiments. It is formed by overlapping portions of the active material layer. 4A illustrates a process flow diagram corresponding to a method of fabricating a battery electrode structure comprising a multi-dimensional electrochemically active structure, in accordance with some embodiments. 4B illustrates a processing apparatus for fabricating a multi-dimensional electrochemically active structure in accordance with some embodiments. 5A-5B are top and bottom schematic views of an illustrative electrode configuration in accordance with some embodiments. 6A-6B are top and schematic perspective views of an illustrative circularly wound battery in accordance with some embodiments. Figure 7 is a top view of an illustrative prismatic roll-up battery in accordance with some embodiments. 8A-8B are top and schematic perspective views of an illustrative stack of electrodes and separator sheets, in accordance with some embodiments. Fig. 9 is a schematic cross-sectional view showing an example of a wound battery according to an embodiment. [Main component symbol description] 100 multi-dimensional electrochemical active structure 102 support structure / support nanowire 108 active material layer 21 〇 support 212 nanowire 156770.doc • 40· 201248976 214 302 304 306 308 310 311a 311b 312a 312b 314 400 410 412 502 502a 502b 504 504a 504b 506a 506b 512a Electrochemically active material layer substrate electrode structure polymeric binder conductive additive multi-dimensional electrochemical active structure active material layer active material layer joint structure joint structure electrode structure for manufacturing containing Process of Electrode Layer of Dimensional Electrochemically Active Structure Processing Chamber Processing Chamber Positive Electrode Positive Active Layer Uncoated Substrate Part/Positive Collector Negative Electrode Negative Active Layer Negative Uncoated Substrate Part Separator Sheet Separator Sheet Positive active layer 156770.doc -41 · 201248976 512b Positive active layer 514a Negative active layer 514b Negative active layer 602 Shell 604 Negative electrode 606 Positive electrode 608 Mandrel 612 Positive tab 614 Negative tab 702 Housing 704 Positive electrode 706 Negative electrode 800 Stacked battery 801a electrode set 801b electrode set 801c electrode Set 902 Spiral-wound positive electrode 904 Negative electrode 906 Separator sheet 908 Tab 910 Tab 912 Insulation gasket 914 Insulation gasket 916 Battery housing 156770.doc -42- 201248976 918 Top cover 920 Seal 156770.doc -43 -

Claims (1)

201248976 七、申請專利範圍: 1 _ 一種用於一電池中之電池電極結構,該電池電極結構包 含: 一導電基板;及 複數個多維度電化學活性結構,該複數個多維度電化 學活性結構附著至該導電基板且與該導電基板電子連 通,其中該等多維度電化學活性結構中之每一者包含: 一支撐件,其包含金屬; 奈米線,其包含附著至該支撐件之根附在支撐件上 的末端及遠離該支撐件延伸至不同方向上的自由末 端,該等奈米線包含該金屬之金屬矽化物;及 一層’其塗佈該等奈米線,該層包含用於在該電池 之循環期間***及釋放電化學活性離子之一電化學活 性材料。 2.如印求項1之電池電極結構,其中該金屬矽化物係選自 由以下各物組成之群:矽化鎳、矽化鈷、矽化銅、矽化 銀石夕化鉻、石夕化鈦、石夕化銘、石夕化辞及石夕化鐵。 月长項1之包池電極結構,其中該金屬矽化物包含選 自由以下各物組成之群的至少兩個不同的矽化鎳相: Ni2Si、NiSi及NiSi2。 4.如》月求項!之電池電極結構,其中該電化學活性材料係 選^由以下各物組成之群:結晶發、非晶$、氧化石夕、 氣乳化石夕、含錫材料 '含錯材料及含碳材料。 5·如請求項1之電池電極結構,其中該等奈米線之長度平 156770.doc 201248976 均而言介於約丨微米與2〇〇微米之間。 6·如請求項1 $带 之電池電極結構,其中該等奈米線之直徑平 均而言小於約100奈米。 ▲月长項1之電池電極結構,其中該電化學活性材料之 Λ層之厚度平均而言為至少約1 00奈米。 ▲月求項1之電池電極結構,其中該電化學活性材料對 該金屬石夕化物之—體積比為至少約5。 9.=請求項R電池電極結構,《中,在該電池之循環之 J該電化學活性材料係摻雜有選自由以下各物組成之 群的—或多種材料:磷、硼、鎵及鋰。 1〇·如凊求項1之電池電極結構’其進一步包含形成於該電 化學活性材料之該層之上的—殼層,該殼層包含選自由 以下各物組成之群的一或多種材料:碳、銅、氟、聚合 物、硫化物、氮氧化鋰磷(LIp〇N)及金屬氧化物。 11 ·如叫求項i之電池電極結構,其進一步包含形成於該導 電基板之上且包含該電化學活性材料之一基板層,該基 板層與塗佈a玄等奈米線之該層形成接合結構,該等接合 結構提供該複數個多維度電化學活性結構中之一些多維 度電化學活性結構至該導電基板的附著及與該導電基板 的電子連通。 12.如請求項丨之電池電極結構,其中塗佈該等奈米線之該 等電化學活性材料的該層之部分彼此形成接合結構。 13·如請求項1之電池電極結構,其進一步包含一聚合黏合 劑’該聚合黏合劑將該複數個多維度電化學活性結構附 156770.doc 201248976 著至該導電基板。 14.如請求項1之電池電極結構,其中該電池為一鋰離子電 池。 15·如請求項1之電池電極結構,其中該電化學活性材料具 有至少約800 mAh/g之一理論鋰化容量。 16. 如請求項1之電池電極結構,其進一步包含包括根附至 °亥基板之模板奈米線的一奈米結構模板,其中該電化學 活性材料之該層塗佈該等模板奈米線,該等模板奈米線 提供該複數個多維度電化學活性結構相對於該導電基板 之附著及電子連通。 17. 如請求項丨之電池電極結構,其中該電化學活性材料之 該層在該等奈米線之該等自由末端處的厚度為在該等根 附在支撐件上之末端處之厚度的至少兩倍。 18. 如請求们之電池電極結構,《中該電化學活性材料之 該層包含非晶矽及鍺,且其中該層在該等奈米線之該等 自由末端處比在該等根附在支揮件上之末端處具有更多 的矽及更少之鍺。 19·如請求項丨之電池電極結構,其進_步包含—中間子 層’該中間子層位於料奈料與該電化學活性材料之 :層之間,且經組態以改良該等奈米線與該電化學活性 材料之s亥層之間的冶金附著及電子導電性。 2〇.Γ求項1之電池電極結構,其進—步包含—中間子 間子層位於該^米線與該電化學活性材料之 〜 經‘㈣以在該等奈米線與該電化學活性# 156770.doc 201248976 料:該層之間提供一彈性界面。 ♦求項1之電池電極結構,其進一步包含鄰近於該基 基底子層’該基底子層實質上不含該金屬矽化物 之該金屬。 、青长項1之電池電極結構,其中該導電基板包含選自 由以下各物組成之群的-或多種材料:銅、鎳、鈦及不 鑛鋼。 2 3 ·如請求項1之電池雷社 電極、,·。構’其中該電池電極結構為一 負電極之一部分。 2 4 ·如请求項1之電池雷搞姓槐 電枉、·Ό構’其中該電池電極結構為一 正電極之一部分。 25. —種經離子電池,其包含: 一導電基板;及 複數個多維度電化學活性姓 兮$虹,々 、,,。構’该複數個多維度電化 子活I。構附者至該導電基板且與該導電基板電子連 通’其中該等多维度電化學活性結構中之每—者包含: 支撑件,其包含金屬; 奈米線,其包切著㈣切件之根时支撑件上 的末端及遠離該支撐件延 呷主不冋方向上的自由末 端’該等奈米線包含選自由以下各物組成之群的一材 料:該金屬之金屬石夕化物、碳奈米管及其組合·及 一層,其塗佈該等奈米線 忒層包含用於在該鋰離 子電池之循環期間***及釋 评双電化學活性離子之一雷 化學活性材料。 I56770.doc 201248976 26. -種製造多維度電化學活性結構之方法,該方法包含: 接收包含金屬之支揮件; 形成奈轉,料奈米線包含附著至該等支料之根 附在支料上的末端及遠離料支撐件延伸至不同方向 上的自由末端,該等奈米線包含該金屬之金屬石夕化物;及 形成-塗佈該等奈米線之層,該層包含用於在一電化 學活性材料之循環期間插人及釋放電化學活性離子之該 電化學活性材料。 27. 如請求項26之方法,其進—步包含,在形成該等奈求線 之前,使用選自由以下各者組成之群的 處理該等支…氧化、氣化、退火、還原、粗J來 濺鍍、_、電鍍、反電鍍、化學氣相沈積、氮化物形 成’及一中間層之沈積。 28. 如請求項26之方法,其中該等支撐件具有選自由以下各 物組成之群的一或多種形狀:粒子、棒及片。 29. 如請求項26之方法,其中形成該等奈米線包含:使含有 一矽前驅體之一處理氣體流過一流體化床反應器,且使 该等支撐件懸置在該處理氣體中歷時一預定時間週期。 3〇·如請求項26之方法,其中形成該電化學活性材料之該 層.包含使含有一矽前驅體之一處理氣體在包含該支撐 件及該等奈米線之中間結構之上流動,該等中間結構位 於一導電基板上。 156770.doc201248976 VII. Patent application scope: 1 _ A battery electrode structure used in a battery, the battery electrode structure comprises: a conductive substrate; and a plurality of multi-dimensional electrochemical active structures, the plurality of multi-dimensional electrochemical active structures are attached To the conductive substrate and in electronic communication with the conductive substrate, wherein each of the multi-dimensional electrochemically active structures comprises: a support comprising metal; a nanowire comprising a root attached to the support a tip on the support member and a free end extending away from the support member in different directions, the nanowires comprising a metal halide of the metal; and a layer 'coating the nanowires, the layer comprising One of the electrochemically active ions is inserted and released during the cycling of the battery. 2. The battery electrode structure of claim 1, wherein the metal telluride is selected from the group consisting of nickel telluride, cobalt telluride, copper telluride, silver telluride, lithiated chromium, shixi titanium, and stone eve Huaming, Shi Xihua and Shi Xihua Iron. The cell structure of the moon-length item 1 wherein the metal halide comprises at least two different nickel-deposited nickel phases selected from the group consisting of Ni2Si, NiSi and NiSi2. 4. The battery electrode structure of the "monthly item", wherein the electrochemically active material is selected from the group consisting of: crystalline hair, amorphous $, oxidized stone, gas emulsified stone, tin-containing material' Incorrect materials and carbonaceous materials. 5. The battery electrode structure of claim 1, wherein the length of the nanowires is 156770.doc 201248976, both between about 丨 microns and 2 〇〇 microns. 6. The battery electrode structure of claim 1 wherein the diameter of the nanowires is less than about 100 nanometers in average. ▲ The battery electrode structure of Moon Length Item 1, wherein the thickness of the bismuth layer of the electrochemically active material is on average at least about 100 nm. The battery electrode structure of item 1 wherein the ratio of the electrochemically active material to the metallide is at least about 5. 9. = claim item R battery electrode structure, "in the cycle of the battery, the electrochemically active material is doped with a group selected from the group consisting of: - or a plurality of materials: phosphorus, boron, gallium and lithium . The battery electrode structure of claim 1 further comprising a shell layer formed over the layer of the electrochemically active material, the shell layer comprising one or more materials selected from the group consisting of: : carbon, copper, fluorine, polymers, sulfides, lithium oxynitride (LIp〇N) and metal oxides. 11. The battery electrode structure of claim i, further comprising a substrate layer formed on the conductive substrate and comprising one of the electrochemically active materials, the substrate layer and the layer coated with the abundance nanowire Bonding structures that provide adhesion of some of the plurality of multi-dimensional electrochemically active structures to the conductive substrate and electronic communication with the conductive substrate. 12. The battery electrode structure of claim 1, wherein the portions of the layer of the electrochemically active material coating the nanowires form a joined structure with each other. 13. The battery electrode structure of claim 1 further comprising a polymeric binder. The polymeric binder attaches the plurality of multi-dimensional electrochemically active structures to the electrically conductive substrate. 14. The battery electrode structure of claim 1, wherein the battery is a lithium ion battery. 15. The battery electrode structure of claim 1 wherein the electrochemically active material has a theoretical lithiation capacity of at least about 800 mAh/g. 16. The battery electrode structure of claim 1, further comprising a nanostructure template comprising a template nanowire attached to the substrate, wherein the layer of the electrochemically active material coats the template nanowire The template nanowires provide adhesion and electronic communication of the plurality of multi-dimensional electrochemically active structures relative to the conductive substrate. 17. The battery electrode structure of claim 1, wherein a thickness of the layer of the electrochemically active material at the free ends of the nanowires is at a thickness of the ends of the roots attached to the support At least twice. 18. The cell electrode structure of the request, wherein the layer of the electrochemically active material comprises amorphous germanium and germanium, and wherein the layer is attached to the free ends of the nanowires at the free ends There are more defects and fewer defects at the end of the support. 19. The battery electrode structure of claim 1, wherein the intermediate sub-layer is located between the material and the electrochemically active material: and is configured to modify the nanowires Metallurgical adhesion and electronic conductivity between the s layer of the electrochemically active material. 2〇. The battery electrode structure of claim 1, wherein the step further comprises: the intermediate sub-layer is located on the ^ m line and the electrochemically active material ~ via '(4) to the electrochemical activity on the nanowires # 156770.doc 201248976 Material: Provides a flexible interface between the layers. The battery electrode structure of claim 1 further comprising a metal adjacent to the base substrate sub-layer wherein the base sub-layer is substantially free of the metal telluride. The battery electrode structure of the cyanoid 1, wherein the conductive substrate comprises - or a plurality of materials selected from the group consisting of copper, nickel, titanium, and non-mineral steel. 2 3 · As required, the battery of the Ray 1 electrode, , ·. The battery electrode structure is a portion of a negative electrode. 2 4 · If the battery of claim 1 has a surname of 电池, Ό Ό, where the electrode structure of the battery is a part of a positive electrode. 25. An ion battery comprising: a conductive substrate; and a plurality of multi-dimensional electrochemical activity surnames 虹$虹, 々, ,,. Constructing the plurality of multi-dimensional positrons I. Having a constructor to the conductive substrate and in electronic communication with the conductive substrate, wherein each of the multi-dimensional electrochemically active structures comprises: a support comprising a metal; a nanowire enclosing the (four) cut piece The end of the root support member and the free end of the support member extending in the direction of the main untwisted line. The nanowires comprise a material selected from the group consisting of: metal ceramsite, carbon of the metal The nanotubes and combinations thereof, and a layer, which coats the nanowire layer, comprises a material for inserting and releasing a double electrochemically active ion during the cycle of the lithium ion battery. I56770.doc 201248976 26. A method of making a multi-dimensional electrochemically active structure, the method comprising: receiving a support comprising a metal; forming a nanowire, the nanowire comprising a root attached to the support The ends of the material and the free ends extending away from the material support to different directions, the nanowires comprising the metal metallization of the metal; and the layer forming and coating the nanowires, the layer comprising The electrochemically active material of the electrochemically active ions is inserted and released during the cycle of an electrochemically active material. 27. The method of claim 26, further comprising, prior to forming the nematic line, treating the branches using a group selected from the group consisting of: oxidation, gasification, annealing, reduction, coarse J Sputtering, _, electroplating, reverse plating, chemical vapor deposition, nitride formation, and deposition of an intermediate layer. 28. The method of claim 26, wherein the supports have one or more shapes selected from the group consisting of: particles, rods, and sheets. 29. The method of claim 26, wherein forming the nanowires comprises flowing a process gas containing one of the precursors through a fluidized bed reactor and suspending the supports in the process gas It lasts for a predetermined period of time. The method of claim 26, wherein the layer of the electrochemically active material is formed, comprising flowing a process gas containing a precursor of a precursor over an intermediate structure comprising the support and the nanowires, The intermediate structures are located on a conductive substrate. 156770.doc
TW100120410A 2011-05-24 2011-06-10 Multidimensional electrochemically active structures for battery electrodes TW201248976A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/114,413 US9172088B2 (en) 2010-05-24 2011-05-24 Multidimensional electrochemically active structures for battery electrodes

Publications (1)

Publication Number Publication Date
TW201248976A true TW201248976A (en) 2012-12-01

Family

ID=48138875

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120410A TW201248976A (en) 2011-05-24 2011-06-10 Multidimensional electrochemically active structures for battery electrodes

Country Status (1)

Country Link
TW (1) TW201248976A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403889B2 (en) 2014-10-21 2019-09-03 RAMOT AT TEL-AVIV UNlVERSITY LTD. High-capacity silicon nanowire based anode for lithium-ion batteries
WO2021091507A1 (en) * 2019-11-06 2021-05-14 İzmi̇r Yüksek Teknoloji̇ Ensti̇tüsü A battery with dendritic shaped tabs

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10403889B2 (en) 2014-10-21 2019-09-03 RAMOT AT TEL-AVIV UNlVERSITY LTD. High-capacity silicon nanowire based anode for lithium-ion batteries
WO2021091507A1 (en) * 2019-11-06 2021-05-14 İzmi̇r Yüksek Teknoloji̇ Ensti̇tüsü A battery with dendritic shaped tabs

Similar Documents

Publication Publication Date Title
US10811675B2 (en) Electrode including nanostructures for rechargeable cells
JP6494558B2 (en) Electrodes and electrochemically active electrode materials
US9172088B2 (en) Multidimensional electrochemically active structures for battery electrodes
US20180090755A1 (en) High capacity battery electrode structures
TWI642225B (en) Battery electrode structures for high mass loadings of high capacity active materials
US10096817B2 (en) Template electrode structures with enhanced adhesion characteristics
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
KR101665154B1 (en) Core-shell high capacity nanowires for battery electrodes
WO2011149958A2 (en) Multidimensional electrochemically active structures for battery electrodes
TW201225389A (en) Composite structures containing high capacity porous active materials constrained in shells
KR20130012021A (en) Interconnecting electrochemically active material nanostructures
US20220149379A1 (en) High capacity battery electrode structures
TW201248976A (en) Multidimensional electrochemically active structures for battery electrodes
TWI536640B (en) Template electrode structures for depositing active materials
US20220020979A1 (en) Template electrode structures for depositing active materials
KR102249754B1 (en) Electrode Structure for Secondary Battery Comprising Potential Sheath and Method for Manufacturing Same
Lu et al. Low-Dimensional Nanostructures for Silicon-Based Anode Materials in Lithium-Ion Batteries
TW201251181A (en) Variable capacity cell assembly