TW201220588A - Fuel reforming apparatus and the method thereof - Google Patents

Fuel reforming apparatus and the method thereof Download PDF

Info

Publication number
TW201220588A
TW201220588A TW099138141A TW99138141A TW201220588A TW 201220588 A TW201220588 A TW 201220588A TW 099138141 A TW099138141 A TW 099138141A TW 99138141 A TW99138141 A TW 99138141A TW 201220588 A TW201220588 A TW 201220588A
Authority
TW
Taiwan
Prior art keywords
recombination
fuel
reaction
reactor
catalyst
Prior art date
Application number
TW099138141A
Other languages
Chinese (zh)
Other versions
TWI412172B (en
Inventor
Chiou-Hwang Lee
Chiung-Hui Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW099138141A priority Critical patent/TWI412172B/en
Priority to CN201110097384XA priority patent/CN102464300A/en
Publication of TW201220588A publication Critical patent/TW201220588A/en
Application granted granted Critical
Publication of TWI412172B publication Critical patent/TWI412172B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

The present invention provides a fuel reforming apparatus and method for the fuel cell, which includes: an autothermal reformer reforming a fuel supply into a first reformate by the autothermal reforming reaction; a steam reformer reforming the fuel supply into a second reformate by the steam reforming reaction; and a heating unit heating the fuel supply and the steam reformer; wherein operation of the apparatus in the beginning phase is mainly based on the autothermal reforming reaction to speed up the reaction of catalytic reformation, and is then regulated into the operation mainly based on the steam reforming reaction in the stable phase.

Description

201220588 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種燃料重組技術’特別是指一種蒸氣 重組反應及自熱重組反應的串聯結構的燃料重組裝置及方 法。 【先前技術】 高分子電解質燃料電池(Polymer Electrolyte Fuel Cell, PEFC)已於產業應用上朝向分散式定置型發電、可攜式發 電、或電動汽車動力等系統發展。定置型燃料電池發電系 統或備用電力系統是燃料電池最早的市場,而這兩種應用 系統都會需要用到燃料重組器產氫單元,且上述應用都強 調高效率、低寄生電力、高氫氣濃度、最好能兼顧快速應 答及啟動時間短等特性。 藉由燃料重組器(Fuel Reformer)可將碳氫化合物燃料 轉換成一氧化碳(C0)濃度低於20ppm之富氫重組氣,供應 PEFC發電系統所需之燃料。一般而言,燃料重組器系統包 含燃料轉換成合成氣之重組反應、水移轉反應(Water gas-shift, WGS)、選擇性氧化反應(Preferential oxidation, PrOX)或曱烷化反應、及陽極廢氫氣氧化反應等單元;而習 知的燃料重組器產氫單元幾乎都是以蒸氣重組反應 (Steam reforming reaction, SR)或自熱式重組反應 (Autothermal reforming reaction,ATR)設計,前者具有高氫 氣濃度優點,但也伴隨啟動時間長及應答速率慢的缺點, 主要發展的單位有東京瓦斯公司、日本東芝公司等;後者 201220588 雖具有啟動時間短及應答快的優點,但也同時伴隨氫氣濃 度低’以及因反應時需注入大量空氣使得寄生電力較大的 缺點’主要發展的單位有英國Johnson Matthey公司等。既 有以自熱式重組反應設計之燃料重組器系統,它是在重組 反應器前端觸媒先誘發碳氫化合物與氧發生放熱的部份氧 化反應’於重組反應器後端觸媒藉由前端部份反應產生的 高溫進行蒸氣重組反應,參與重組反應的進料如天然氣、 水及空氣經預熱汽化,是同步注入同一重組觸媒裝置,因 • 此後端觸媒催化碳氫化合物進行蒸氣重組反應的比例,完 全受制於前端部份氧化反應的氧/碳氫化合物莫耳比(〇2/C 莫耳比)’其重組氣中的氫氣濃度大多介於5〇%左右。既 有以蒸氣重組反應設計之燃料重組器系統,必須先經由間 接加熱方式,以使蒸氣重組觸媒處於可開始催化蒸氣重組 反應發生的狀態,再通入參與重組反應的燃料進料如天然 氣、水,因此啟動時間很冗長。因此,發展一套兼具啟動 時間短且兩氧氣浪度之重組器系統’乃是當前亟待發展的 I 重要技術課題。 【發明内容】 有鑑於此,在本發明的一方面,一實施例提供一種燃 料重組裝置’包含:一自熱重組反應器,用以對—燃料進 料(fuel supply)進行自熱重組反應,而形成一第_重組氣 (reformate); —蒸氣重組反應器,用以對該燃料進料進行 蒸氣重组反應,而形成一第二重組氣;及一加熱單元,用 以加熱該燃料進料及該蒸氣重組反應器;其中該燃料重組 201220588 裝置的運轉初期係以自熱重組反應為主,以縮短該燃料重 組裝置的催化重組反應時間,且在該燃料重組裝置的運轉 穩定後則以蒸氣重組反應為主。 在本發明的另一方面’另一實施例提供一種氫氣產生 裝置,包含:如上所述之燃料重組裝置;一水移轉反應單 元(Water Gas Shift Reaction,WGS),用以對該第一與第二 重組氣中所含的一氧化碳,進行與水反應而轉換成氫氣及 二氧化碳’而形成一第一輸出氣;一選擇性氧化反應單元 (Preferential Oxidation Reaction, PrOX),用以對該第一輪出 氣中所含的一氧化碳或氫進行選擇性的氧化反應,而形成 一第二輸出氣。 在本發明的又一方面,又一實施例提供一種用於燃料 電池的燃料重組方法,其包括··提供一重組反應單元及一 燃料進料,其中該重組反應單元包括:一自熱重組觸媒及 一蒸氣重組觸媒;開啟一燃燒器,以加熱該重組反應單元 及該燃料進料;當該自熱重組觸媒的入口溫度上升至90°C 〜200°C時,將該燃料進料通入該自熱重組觸媒,而產生第 一重組氣;該燃料進料導入該蒸氣重組觸媒而產生第二重 組氣;對該第一與第二重組氣進行水移轉反應及選擇性氧 化反應而產生一輸出氣;若該輸出氣所含的一氧化碳濃度 低於20 ppm,將該輸出氣通入該燃料電池的陽極,否則通 入該燃燒器;當該自熱重組觸媒的出口溫度上升至450°C 〜550°C時,降低該燃料進料的〇2/C莫耳比值;及當燃燒 尾氣流經自熱重組觸媒外側溫度上升至650°C〜750°C時, 則該燃料進料停止提供空氣,且該重組反應單元實質上只 201220588 有該蒸氣重組觸媒在進行作用。 . 【實施方式】 . 為了能對本發明之特徵、目的及功能有更進一步的認 知與瞭解’茲配合圖式詳細說明如後: 請參照圖一,為根據本發明一實施例之燃料重組裝置 100的結構示意圖。如圖一所示,本實施例包含:自熱重 組反應器110、蒸氣重組反應器120、除氧反應器131/132、 φ 及加熱單元140 ;其中,自熱重組反應器110用以對燃料 進料150進行自熱重組反應,而形成第一重組氣152 ;蒸 氣重組反應器120用以對燃料進料150進行蒸氣重組反 應’而形成第二重組氣154;除氧反應器131/132分別連接 至自熱重組反應器110及蒸氣重組反應器120,用以去除 第一重組氣152及第二重組氣154中的氧氣;及加熱單元 140用以加熱燃料進料150及蒸氣重組反應器120;其中燃 • 料重組裝置1〇〇的運轉初期係以自熱重組反應為主,以縮 Φ 短燃料重組裝置100的催化重組反應時間,且在燃料重組 裝置100的運轉穩定後則以蒸氣重組反應為主。 請參考圖一,在一實施例中,燃料重組裝置100係呈 一圓柱狀,自熱重組反應器110設置於外圈,且蒸氣重組 反應器120設置於中間層,加熱單元140設置於内圈中心, 其中,除氧反應器131/132係分別連接於自熱重組反應器 110與蒸氣重組反應器120,詳細來說,自熱重組反應器no 與蒸氣重組反應器120係由一管道135相連接,除氧反應 器131設置於自熱重組反應器110與蒸氣重組反應器120 7 201220588 之間’且與自熱重組反應器110相連接;另一除氧反應器 132設置於蒸氣重組反應器120相接於管道135的另一端, 且與蒸氣重組反應器120相連接。自熱重組反應器u〇係 包含一進料口 112,以提供燃料進料丨進入至自熱重組 反應器110中進行反應。加熱單元140係包含一熱管142, 其中熱管142係包覆在蒸氣重組反應器120與自熱重組反 應器110外,以加熱燃料進料150及蒸氣重組反應器120。 自熱重組反應器110係包含自熱重組觸媒,蒸氣重組 反應器120係包含蒸氣重組觸媒,除氧反應器131/132係 包含除氧觸媒,加熱單元140係包含燃燒器。 自熱重組反應器110的自熱重組觸媒組成包含:貴金 屬觸媒,其含有铑、鉑、或上述金屬的混合物’及觸媒載 體,其含有氧化鋁、氧化鈽、二氧化鈽、氧化鍅、二氧化 锆、或上述氧化物的混合物;其中自熱重組反應溫度為 300°C〜800°C,其化學反應的表示式如下: HC + 02 +H2〇 一 H2 + CO + C02 蒸氣重組反應器120的蒸氣重組觸媒組成包含:貴金 屬觸媒,其含有釕、铑、鉑、或至少二種的上述金屬的混 合物,及觸媒載體,其含有氧化鋁、氧化铈、二氧化鈽、 氧化鍅、二氧化結、或上述氧化物的混合物;其中蒸氣重 組反應溫度為600。(:〜800¾,其化學反應的表示式如下: HC + H20 — H2 + CO + C02 除氧反應器131/132主要係進行氧化反應’以避免氧 氣對於蒸氣重組反應或後續可能的水移轉反應觸媒的劣化 影響;其除氧觸媒組成包括:貴金屬觸媒’其含有鈀、铑、 201220588 銘或至少二種的上述金屬的混合物;及觸媒載體,JL含 有氧化紹、氧化铈、二氧化鈽、氧化錯及;:二二; 上述氧化物的混合物,其中,除氧反應溫度為1〇〇〇c〜 500 C ’其化學反應的表示式如下: H2 + 〇2 — H2〇, co + 〇2 —C02,及 HC + 〇2 —^ H20 + C02 加熱單元140係以一燃燒器或以觸媒氧化放熱反應焚 • 化燃料進料150來提供熱量,以加熱調控本實施例各反應 器的溫度。本實施例可使用的燃料進料150為水、空氣、 及燃料混合物’燃料混和物包含:天然氣、酒精、液化石 油氣(LPG)、煤油、或柴油等化石燃料,或是厭氧反應產生 之曱烷或生質能發酵產生之酒精等再生能源。 自熱重組反應器110用以對燃料進料150進行自熱重 組反應’而形成第一重組氣152 ’絡氣重組反應器12〇用 以對燃料進料150進行蒸氣重組反應,而形成一第二重組 鲁 氣154;除氧反應器131/132分別連接至自熱重組反應器 110及蒸氣重組反應器120’用以去除第一重組氣152及第 二重組氣154中的氧氣;及加熱單元140用以加熱燃料進 料150及蒸氣重組反應器120 ;詳細來說,在燃料重組裝 置100運轉初期’當燃料進料150由進料口 進入至燃 料重組裝置100中,部分的燃料進料150會先在自熱重組 反應器110中進行自熱重組反應,並產生第一重組氣152, 而另一部分未反應的燃料進料15 0會接著進入到自熱重組 反應器110後的蒸氣重組反應器120中,以進行蒸氣重組 201220588 反應,並產生第二重組氣154,期間加熱單元140會對蒸 氣重組反應器120加熱,以提升蒸氣重組反應器120的蒸 氣重組反應速率;因此,燃料重組裝置1〇〇運蜱初期係以 自熱重組反應為主,以縮短燃料重組裝置100的催化重組 反應時間,且在燃料重組裝置1〇〇的運轉穩定後則以蒸氣 重組反應為主。 接著請參照圖二,為根據本發明另一實施例之氫氣產 生裝置200的方塊示意圖。如圖二所示,本實施例包含: 重組反應單元210、加熱單元140、水移轉反應單元260、 及選擇性氧化反應單元270 ;其中,重組反應單元210與 加熱單元140之組合係為前述實施例之燃料重組裝置 100。重組反應單元210包含自熱重組反應器110、蒸氣重 組反應器120與除氧反應器131/132,而自熱重組反應器 110、蒸氣重組反應器120、及除氧反應器131/132之組成 結構及功能與前一實施例類同,並已於前文中描述,在此 不再贅述;加熱單元140用以加熱燃料進料150及重組反 應單元210 ;重組反應單元210產生的重組氣體156為自 熱重組反應器110與蒸氣重組反應器120產生的第一重組 氣152與第二重組氣154組合而成,水移轉反應單元260 用以對重組氣體156中所含的一氧化碳,進行與水反應而 轉換成氫氣及二氧化碳,而形成第一輸出氣282 ;選擇性 氧化反應單元270,用以對第一輸出氣282中所含的一氧 化碳或氫進行選擇性的氧化反應,而形成第二輸出氣284, 其中當第二輸出氣284 t的一氧化碳濃度高於20ppm時, 將會送至加熱單元140燃燒;重組反應單元210的運轉初 10 201220588 期係以自熱重組反應為主’以縮短裝置的催化重組反應時 間’且在裝置的運轉穩定後則以蒸氣重組反應為主。 加熱單元140係燃燒燃料進料150或一氧化碳濃度高 於20 ppm的第二輸出氣284中的至少一種;但並不以此為 限,加熱單元140亦可以觸媒氧化放熱反應來進行焚化, 以加熱燃料進料150及重組反應單元21〇,並調控本實施 例之氫氣產生裝置200各個指定單元或位置的溫度。本實 施例可使用的燃料進料15〇為水、空氣、及燃料的混合物, 燃料包含:天然氣、酒精、液化石油氣、煤油、或柴油等 化石燃料或疋厭氧反應產生之甲烧或生質能發酵產生之 再生能源。本實施例亦可將重組反應單元210反應 後的高溫廢氣,透過熱交換器與燃料進料15〇進行 …父奐’提高氫氣產生裝置2〇〇的熱轉換效率。 觸二d:6:包Γ移轉觸媒’其中水移轉 體㈣化飾、二氧化飾:、 為25〇t。〜ϊίοΐ化物的混合物;其中水移轉反應溫度 450 C,其化學反應的表示式如下: 水移轉反痺單-2〇 —H2 + C〇2 含:卑金260的水移轉觸媒組成也可以是包 銘氧化物,其巾次媒載體,其含有銅軸氧化物或鐵鉻 反應主要用以降以3 ::。。。〜4赃。水移轉 輕後續選擇性氧化反^ 中的—氧化碳含量’以減 加。 ’、、、負何,亦有助於氫氣生成量的增 201220588 選擇性氧化反應單元270係包含氧化觸媒,其中氧化 觸媒組成包含:貴金屬觸媒,其至少含有銘、釕、或兩者 組合;及觸媒載體,其含有氧化鋁、氧化鈽、二氧化飾、 氧化锆、二氧化锆、沸石氧化物、或上述氧化物的混合物; 其中,選擇性氧化反應溫度為1〇〇。(:〜20(TC,分別對第一 輸出氣282中所含的一氧化碳或氫進行選擇性的氧化反 應,其化學反應的表示式分別如下:201220588 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a fuel recombination technology', particularly to a fuel recombination apparatus and method of a series structure of a vapor recombination reaction and an autothermal recombination reaction. [Prior Art] Polymer Electrolyte Fuel Cell (PEFC) has been developed in industrial applications toward systems such as distributed fixed-type power generation, portable power generation, or electric vehicle power. Fixed-type fuel cell power generation systems or backup power systems are the earliest markets for fuel cells, and both applications require the use of fuel recombiner hydrogen production units, and these applications emphasize high efficiency, low parasitic power, high hydrogen concentration, It is best to combine features such as fast response and short startup time. The fuel reformer (Fuel Reformer) converts hydrocarbon fuel into a hydrogen-rich recombination gas with a carbon monoxide (C0) concentration of less than 20 ppm to supply the fuel required for the PEFC power generation system. In general, a fuel reformer system includes a recombination reaction in which fuel is converted to syngas, a water gas shift (WGS), a selective oxidation reaction (POX) or a decaneization reaction, and an anode waste. Hydrogen oxidation reaction unit, etc.; and conventional fuel reformer hydrogen production units are almost all designed by steam reforming reaction (SR) or autothermal reforming reaction (ATR), the former has high hydrogen concentration Advantages, but also with the shortcomings of long start-up time and slow response rate. The main development units are Tokyo Gas Company, Toshiba Corporation of Japan, etc.; the latter 201220588 has the advantages of short start-up time and fast response, but also accompanied by low hydrogen concentration. And the shortcomings of the parasitic power caused by the injection of a large amount of air during the reaction. The main development units are the British Johnson Matthey Company. There is a fuel recombiner system designed by autothermal recombination reaction, which is a partial oxidation reaction in which the catalyst at the front end of the recombination reactor induces the exothermic reaction of hydrocarbons and oxygen. The high temperature generated by some reactions is subjected to steam recombination reaction. The feeds involved in the recombination reaction, such as natural gas, water and air, are preheated and vaporized, and are simultaneously injected into the same recombination catalyst device, because the catalyst is catalyzed by the catalyst at the end of the catalyst for steam recombination. The ratio of the reaction is completely affected by the oxygen/hydrocarbon molar ratio (〇2/C molar ratio) of the front-end partial oxidation reaction. The hydrogen concentration in the reformed gas is mostly about 5%. A fuel recombiner system designed with a steam recombination reaction must first be indirectly heated to allow the vapor recombination catalyst to be in a state in which catalytic recombination reactions can begin to take place, and then into a fuel feed such as natural gas that participates in the recombination reaction. Water, so the startup time is very lengthy. Therefore, the development of a recombiner system with both short start-up times and two oxygen waves is an important technical issue that needs to be developed. SUMMARY OF THE INVENTION In view of the above, in one aspect of the invention, an embodiment provides a fuel recombination apparatus comprising: an autothermal recombination reactor for autothermal recombination reaction of a fuel supply, Forming a _reformate; a vapor recombination reactor for performing a vapor recombination reaction on the fuel feed to form a second reformed gas; and a heating unit for heating the fuel feed and The steam recombination reactor; wherein the fuel recombination 201220588 device is initially operated by an autothermal recombination reaction to shorten the catalytic recombination reaction time of the fuel recombination device, and is reconstituted by steam after the operation of the fuel reconstitution device is stabilized. The reaction is dominant. In another aspect of the invention, another embodiment provides a hydrogen generating device comprising: a fuel recombining device as described above; a Water Gas Shift Reaction (WGS) for the first The carbon monoxide contained in the second reformed gas is reacted with water to be converted into hydrogen and carbon dioxide to form a first output gas; a selective oxidation reaction unit (PrOX) for the first round The carbon monoxide or hydrogen contained in the gas is selectively oxidized to form a second output gas. In still another aspect of the present invention, still another embodiment provides a fuel recombining method for a fuel cell, comprising: providing a recombination reaction unit and a fuel feed, wherein the recombination reaction unit comprises: a self-heating recombination touch a medium and a vapor recombination catalyst; a burner is turned on to heat the recombination reaction unit and the fuel feed; when the inlet temperature of the autothermal recombination catalyst rises to 90 ° C to 200 ° C, the fuel is introduced Feeding the self-heating recombination catalyst to generate a first reformed gas; introducing the fuel feedstock into the vapor recombination catalyst to generate a second reformed gas; performing water transfer reaction and selection on the first and second reformed gases An oxidation reaction produces an output gas; if the output gas contains a concentration of carbon monoxide of less than 20 ppm, the output gas is introduced into the anode of the fuel cell, otherwise it is introduced into the burner; when the self-heating recombination catalyst Decrease the 〇2/C molar ratio of the fuel feed when the outlet temperature rises to 450 ° C to 550 ° C; and when the temperature of the combustion tail gas rises to 650 ° C to 750 ° C through the temperature outside the autothermal recombination catalyst , the fuel feed is stopped The air, and the recombination reaction unit is substantially only 201220588, the vapor recombination catalyst is acting. [Embodiment] In order to be able to further understand and understand the features, objects and functions of the present invention, the following is a detailed description of the following: Referring to Figure 1, a fuel reconstituting apparatus 100 according to an embodiment of the present invention is shown. Schematic diagram of the structure. As shown in FIG. 1, the embodiment comprises: an autothermal reforming reactor 110, a steam recombination reactor 120, an oxygen scavenging reactor 131/132, φ and a heating unit 140; wherein the autothermal recombination reactor 110 is used for fuel The feed 150 undergoes an autothermal reforming reaction to form a first reformed gas 152; the vapor reforming reactor 120 is used to carry out a vapor reforming reaction on the fuel feed 150 to form a second reformed gas 154; the oxygen scavenging reactors 131/132 respectively Connected to the autothermal recombination reactor 110 and the vapor recombination reactor 120 for removing oxygen from the first reformed gas 152 and the second reformed gas 154; and the heating unit 140 for heating the fuel feed 150 and the vapor reforming reactor 120 In the initial stage of operation of the fuel recombination unit, the auto-recombination reaction is mainly performed, and the catalytic recombination reaction time of the short fuel recombination device 100 is reduced, and after the operation of the fuel reconstitution device 100 is stabilized, the steam is reorganized. The reaction is dominant. Referring to FIG. 1 , in an embodiment, the fuel recombining device 100 is in a cylindrical shape, the autothermal recombination reactor 110 is disposed on the outer ring, and the vapor recombination reactor 120 is disposed on the intermediate layer, and the heating unit 140 is disposed on the inner ring. Center, wherein the oxygen scavenging reactors 131/132 are respectively connected to the autothermal recombination reactor 110 and the steam recombination reactor 120. In detail, the autothermal recombination reactor no and the vapor recombination reactor 120 are connected by a pipe 135. Connected, the oxygen scavenging reactor 131 is disposed between the autothermal recombination reactor 110 and the vapor recombination reactor 120 7 201220588 and coupled to the autothermal recombination reactor 110; the other oxygen scavenging reactor 132 is disposed in the vapor recombination reactor 120 is coupled to the other end of the conduit 135 and is coupled to the vapor reforming reactor 120. The autothermal reforming reactor u contains a feed port 112 to provide fuel feed enthalpy into the autothermal reforming reactor 110 for reaction. The heating unit 140 includes a heat pipe 142, wherein the heat pipe 142 is coated outside the steam reforming reactor 120 and the autothermal reforming reactor 110 to heat the fuel feed 150 and the vapor reforming reactor 120. The autothermal recombination reactor 110 comprises an autothermal recombination catalyst, the vapor recombination reactor 120 comprises a vapor recombination catalyst, the deoxygenation reactor 131/132 comprises an oxygen scavenging catalyst, and the heating unit 140 comprises a burner. The self-heating recombination catalyst composition of the autothermal reforming reactor 110 comprises: a noble metal catalyst containing ruthenium, platinum, or a mixture of the above metals and a catalyst carrier containing alumina, yttria, cerium oxide, cerium oxide. , zirconium dioxide, or a mixture of the above oxides; wherein the autothermal recombination reaction temperature is 300 ° C ~ 800 ° C, the chemical reaction of the formula is as follows: HC + 02 + H2 〇 H2 + CO + C02 steam recombination reaction The vapor recombination catalyst composition of the device 120 comprises: a noble metal catalyst containing ruthenium, rhodium, platinum, or a mixture of at least two of the above metals, and a catalyst carrier containing alumina, yttria, cerium oxide, oxidation a ruthenium, a dioxide, or a mixture of the above oxides; wherein the vapor recombination reaction temperature is 600. (: ~8003⁄4, the chemical reaction is expressed as follows: HC + H20 - H2 + CO + C02 The oxygen scavenging reactor 131/132 is mainly used for oxidation reaction 'to avoid oxygen recombination reaction or subsequent possible water transfer reaction The deterioration of the catalyst; the composition of the oxygen scavenging agent includes: a noble metal catalyst containing a mixture of palladium, rhodium, 201220588 or at least two of the above metals; and a catalyst carrier, JL containing oxidized bismuth, cerium oxide, and Cerium oxide, oxidized error;: two or two; a mixture of the above oxides, wherein the oxygen removal reaction temperature is 1〇〇〇c~500 C ', and the chemical reaction is expressed as follows: H2 + 〇2 — H2〇, co + 〇 2 — C02, and HC + 〇 2 — ^ H20 + C02 The heating unit 140 provides heat by a burner or by a catalyst oxidative exothermic reaction incineration fuel feed 150 to heat regulate the reactions of the present embodiment. The temperature of the device. The fuel feed 150 that can be used in this embodiment is a mixture of water, air, and fuel. The fuel mixture contains: fossil fuels such as natural gas, alcohol, liquefied petroleum gas (LPG), kerosene, or diesel, or Oxygen reaction Raw decane or renewable energy such as alcohol produced by fermentation. The autothermal recombination reactor 110 is used for autothermal recombination reaction of the fuel feed 150 to form a first reformed gas 152 'cold gas recombination reactor 12 〇 The steam recombination reaction is performed on the fuel feed 150 to form a second recombination degas 154; the deoxygenation reactors 131/132 are respectively connected to the autothermal recombination reactor 110 and the vapor recombination reactor 120' for removing the first The oxygen in the reformed gas 152 and the second reformed gas 154; and the heating unit 140 is used to heat the fuel feed 150 and the steam reforming reactor 120; in detail, at the beginning of the operation of the fuel reforming device 100, when the fuel feed 150 is advanced The feed port enters the fuel reforming unit 100, and a portion of the fuel feed 150 is first subjected to an autothermal recombination reaction in the autothermal reforming reactor 110 to produce a first reformed gas 152 and another portion of the unreacted fuel feed 15 0 will then proceed to the vapor reforming reactor 120 after the autothermal recombination reactor 110 to carry out the steam reforming 201220588 reaction and produce a second reformed gas 154 during which the heating unit 140 will recombine the vapor. The device 120 is heated to increase the vapor recombination reaction rate of the vapor recombination reactor 120; therefore, the fuel recombination device 1 is mainly based on an autothermal recombination reaction to shorten the catalytic recombination reaction time of the fuel recombination device 100, and After the operation of the fuel reconstitution device 1 is stabilized, the steam recombination reaction is mainly used. Next, please refer to FIG. 2, which is a block diagram of a hydrogen generating device 200 according to another embodiment of the present invention. As shown in FIG. Examples include: a recombination reaction unit 210, a heating unit 140, a water transfer reaction unit 260, and a selective oxidation reaction unit 270; wherein the combination of the recombination reaction unit 210 and the heating unit 140 is the fuel reconstitution device 100 of the foregoing embodiment. The recombination reaction unit 210 comprises an autothermal recombination reactor 110, a vapor recombination reactor 120 and an oxygen scavenging reactor 131/132, and an autothermal recombination reactor 110, a vapor recombination reactor 120, and a deoxygenation reactor 131/132. The structure and function are the same as those of the previous embodiment, and have been described in the foregoing, and are not described herein again; the heating unit 140 is used to heat the fuel feed 150 and the recombination reaction unit 210; the recombination reaction unit 210 generates the recombination gas 156 The first recombination gas 152 and the second recombination gas 154 generated by the autothermal recombination reactor 110 and the vapor recombination reactor 120 are combined, and the water transfer reaction unit 260 is used to perform carbon monoxide contained in the reformed gas 156 with water. The reaction is converted into hydrogen and carbon dioxide to form a first output gas 282. The selective oxidation reaction unit 270 is configured to selectively oxidize carbon monoxide or hydrogen contained in the first output gas 282 to form a second output. Gas 284, wherein when the carbon monoxide concentration of the second output gas 284 t is higher than 20 ppm, it will be sent to the heating unit 140 for combustion; the operation of the recombination reaction unit 210 is initially 10 201220588 The autothermal recombination reaction is mainly to shorten the catalytic recombination reaction time of the device, and after the operation of the device is stabilized, the steam recombination reaction is dominant. The heating unit 140 is at least one of a combustion fuel feed 150 or a second output gas 284 having a carbon monoxide concentration higher than 20 ppm; but not limited thereto, the heating unit 140 may also be incinerated by a catalyst oxidation exothermic reaction to The fuel feed 150 and the reforming reaction unit 21 are heated, and the temperatures of the respective designated units or locations of the hydrogen generating apparatus 200 of the present embodiment are regulated. The fuel feed 15 that can be used in this embodiment is a mixture of water, air, and fuel. The fuel includes: fossil fuels such as natural gas, alcohol, liquefied petroleum gas, kerosene, or diesel, or smoldering or anaerobic reaction. Renewable energy produced by mass fermentation. In this embodiment, the high-temperature exhaust gas after the reaction of the recombination reaction unit 210 can be passed through the heat exchanger and the fuel feed 15 to increase the heat conversion efficiency of the hydrogen generator 2〇〇. Touch two d:6: bagging transfer catalyst 'where the water shifting body (four) decoration, dioxide decoration:, 25〇t. a mixture of ~ϊίο ; ;; wherein the water transfer reaction temperature is 450 C, and the chemical reaction is expressed as follows: Water transfer 痹 痹 〇 〇 〇 〇 〇 H H H 含 含 含 含 含 260 260 260 260 It may also be a Baoming oxide, which has a copper-based oxide or iron-chromium reaction mainly used to reduce 3::. . . ~4赃. The water shift is lightly followed by the selective oxidation of the oxidized carbon content in the reduction. ',, and minus, which also contribute to the increase in hydrogen production 201220588. The selective oxidation reaction unit 270 includes an oxidation catalyst, wherein the oxidation catalyst composition comprises: a precious metal catalyst containing at least a mark, a ruthenium, or both And a catalyst carrier comprising alumina, cerium oxide, cerium oxide, zirconium oxide, zirconium dioxide, zeolite oxide, or a mixture of the above oxides; wherein the selective oxidation reaction temperature is 1 Torr. (: ~20 (TC, selective oxidation reaction of carbon monoxide or hydrogen contained in the first output gas 282, respectively, and the chemical reaction expressions are as follows:

CO + 〇2 —► C〇2 及 H2 + 〇2 -^ H2O 以使經過重組後之第二輸出氣284中所含的一氧化碳濃度 降至20ppm以下,甚至可達1〇pprn以下。 請參照圖三,為根據本發明又一實施例之用於燃料電 池的燃料重組方法300的流程示意圖。請一併參考圖二, 如圖二、圖三所示,本方法實施例包含:步驟31〇提供重 組反應單元210及燃料進料15〇,其中重組反應單元21〇 包括.自熱重組觸媒11〇及蒸氣重組觸媒12〇 ;步驟32〇 開啟一燃燒器140,以加熱重組反應單元21〇及燃料進料 150;步驟330當自熱重組觸媒11〇的入口(即進料口 112) 溫度上升至90°C〜200°C時,將燃料進料15〇通入自熱重 組觸媒則’而產生第—重組氣152 ;步驟340燃料進料 150導入⑨氣重組觸媒12〇而產生第二重組氣154 ;步驟 350對第-與第二重組氣152、154進行水移轉反應及選擇 性氧化反應而產生輸出氣,若輸出氣所含的一氧化碳淚度 低於20 ppm’將輸出氣通入燃料電池的陽極,否則通入二 燒器140;步驟360當自熱重組觸媒11〇的出口溫度上^ 12 201220588 至450〇C〜550°C時’降低燃料谁极 1虔枓15〇的氧碳_莫耳bl·# (02/C);及步驟370當燃燒尾氣流 ㈣反具斗比值CO + 〇 2 — ► C 〇 2 and H 2 + 〇 2 - ^ H 2 O are such that the concentration of carbon monoxide contained in the recombined second output gas 284 is reduced to below 20 ppm, even below 1 〇 pprn. Referring to Figure 3, there is shown a flow diagram of a fuel recombination method 300 for a fuel cell in accordance with yet another embodiment of the present invention. Referring to FIG. 2 together, as shown in FIG. 2 and FIG. 3, the method embodiment includes: Step 31: providing a recombination reaction unit 210 and a fuel feed 15〇, wherein the recombination reaction unit 21 includes: an autothermal recombination catalyst. 11〇 and the vapor recombination catalyst 12〇; step 32〇opens a burner 140 to heat the recombination reaction unit 21〇 and the fuel feed 150; step 330 when the autothermal recombination catalyst 11〇 is inlet (ie, the feed port 112) When the temperature rises to 90 ° C to 200 ° C, the fuel feed 15 〇 is passed into the autothermal recombination catalyst to generate a first recombination gas 152; and step 340 the fuel feed 150 is introduced into the 9 gas recombination catalyst 12 〇 And generating a second reformed gas 154; step 350 performing a water transfer reaction and a selective oxidation reaction on the first and second reformed gases 152, 154 to generate an output gas, if the output gas contains a carbon monoxide tear of less than 20 ppm' The output gas is passed into the anode of the fuel cell, otherwise it is passed into the second burner 140; in step 360, when the outlet temperature of the self-heating recombination catalyst 11 is on the temperature of 12 201220588 to 450 〇C to 550 ° C, the fuel is lowered.虔枓15〇 of oxygen carbon_mole bl·# (02/C); and step 370 when burning tail gas With the ratio of anti-Doo

7cn°r D± 生自熱重組觸媒110外側 溫度上升至650C〜750C時,則燁 MMJ 氣,且重組反應單兀210實質上σ 捉供工 工,、有瘵氣重組觸媒120在 進行作用。 以下進二:〇述^:實施步驟’請同時參照圖2的 氫氣產生裝置的燃料進料⑼、自熱重組觸媒 110、蒸氣重組觸媒120、除氧觸媒131心、加執單元燃 燒器140、水移轉反應單元260、及g 久選擇性氧化反應單元 270之組成結構及知與前1施例_,並已於前文中 描述’在此不再贅述。首先點燃作為加熱單元的辦燒与 140’以間接加熱的方式加熱自熱重組觸媒11()、蒸氣重組 觸媒12G、或除氧觸媒131/132’其尾氣再經熱交換器排出, 所得之熱量可透過傳導方式對燃料進料丨5%水、空氣及碳 氫化合物)進行預熱。待自熱重組觸媒11〇的入口端(即進 料口 112)溫度上升至9〇C〜200¾時,則將燃料進料15〇 通入氫氣產生裝置2〇〇,而依序流經自熱重組觸媒11〇、除 氧觸媒131、蒸氣重組觸媒120、除氧觸媒132、水移轉反 應單元260、及選擇性氧化反應單元270。若此第二輸出氣 284中的一氧化板含莖》辰度未低於20 ppm時,則導致燃燒 器140進行燃燒。當燃料進料150被加熱至300t:〜4〇〇t:, 會在自熱重組觸媒110先發生部份氧化反應,而消耗掉大 部份的氧氣’旅產生第一重組氣15 2 ;剩餘的氧氣將在後 續的除氧觸媒131/132及蒸氣重組觸媒12〇氧化掉,並可 加速預熱後續的水移轉反應單元260,使水移轉反應單元 13 201220588 260、及選擇性氧化反應早儘早 度。接著燃料及水再經過處於高温度狀態 媒120,導致第二重組氣154的產生,复 重、、且觸 為富氩重組氣。若重組第二輸出氣284所 化 度低於20 ppm,將其通入燃料電池28〇 孔亿反艰 W I苟極,否則i 入燃燒器14〇將其燃燒掉。t自熱重組觸媒 = ,度上升至4筑〜5耽時,逐次降低燃料進料的〇2/c 莫耳比值;自熱重組觸媒110的出口端溫度亦可在5 =降低㈣進料的〇2/c莫耳比值,端視實際需 要而疋。當燃燒尾亂流經自熱重組觸媒11〇外側^ 至6机〜7贼時,可停止供應簡 := 單元"Ο實質上只有蒸氣重組觸請進= π 2 i 〇 _ _ 〇2/c莫耳比值低 且寄生電力低,但本實施例可於較短時間即;i 氧化奴濃度低於20 ppm之重組氣 280發電。春爯拄娣此讲并必从 』通入燃枓電池 租及奸从 維持低〇2/C莫耳比之自孰式重 、、且反應刼作模式運轉’待系統各單元 二、 設定值時,再轉換成 “ ^乍 作時的空氣二\\電又力可避免自熱〜^ 及一施例以天!!氣作為燃料之重組氣的氨氣 重组反;® 組反應單元啟用時間的量測數據圖。 在啟啟動初期係以自熱式重組反應操作模式運轉, 氫重组十氣,\分鐘内即可產生一氧化碳濃度低2〇_的富 、、,雖然此時重組氣的氫氣濃度並不高,但已可通 201220588 入燃料電池組發電。之後再持續升載並維持低〇2/c莫耳比 之自,式重組反應操作模式運轉,重組氣的氫氣濃度可快 4岐應各單元反紅趨賴作溫度設 疋^夺,在啟動後約55分鐘時,即可轉換成以蒸氣重組反 應^主的,作模式運轉,此時重組氣的氫氣濃度也再快速 提南至7〇%左^。由此實驗數據可更加驗證本實施例以串 聯蒸氣重組反應及自熱4組反應的型式,確可絲之蒸氣 及自熱兩者燃料重組器的優點。7cn°r D± When the temperature outside the thermal recombination catalyst 110 rises to 650C~750C, then 烨MMJ gas, and the recombination reaction unit 210 is substantially σ for the workers, and the helium recombination catalyst 120 is in progress. effect. The following two: Description: The implementation step 'Please refer to the fuel feed (9) of the hydrogen generating device of FIG. 2, the self-heating recombination catalyst 110, the vapor recombination catalyst 120, the deoxidizing catalyst 131, and the heating unit. The structure of the device 140, the water transfer reaction unit 260, and the g-long-selective oxidation reaction unit 270, and the first embodiment _, have been described above, and will not be described herein. First, the heating unit as the heating unit and the 140' are heated indirectly to heat the autothermal recombination catalyst 11 (), the vapor recombination catalyst 12G, or the deoxygenation catalyst 131/132', and the exhaust gas is discharged through the heat exchanger. The heat obtained can be preheated by means of a conductive feed of 5% water, air and hydrocarbons. When the temperature of the inlet end of the auto-recombination catalyst 11〇 (ie, the feed port 112) rises to 9〇C~2003⁄4, the fuel feed 15〇 is introduced into the hydrogen generating device 2〇〇, and sequentially flows through The thermal recombination catalyst 11 〇, the oxygen scavenging catalyst 131, the vapor recombination catalyst 120, the oxygen scavenging catalyst 132, the water shift reaction unit 260, and the selective oxidation reaction unit 270. If the oxidation plate of the second output gas 284 contains no less than 20 ppm, the burner 140 is burned. When the fuel feed 150 is heated to 300t: 〜4〇〇t:, a partial oxidation reaction occurs in the autothermal recombination catalyst 110, and most of the oxygen is consumed, and the first recombination gas 15 2 is generated; The remaining oxygen will be oxidized in the subsequent deoxygenation catalyst 131/132 and the vapor recombination catalyst 12〇, and the preheating of the subsequent water transfer reaction unit 260 can be accelerated, the water transfer reaction unit 13 201220588 260, and selection The sexual oxidation reaction is as early as possible. The fuel and water then pass through the medium 120 at a high temperature, resulting in the second reformed gas 154 being produced, re-weighted, and exposed to an argon-rich reformed gas. If the second output gas 284 is less than 20 ppm, it is passed to the fuel cell 28 孔 亿 反 反 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , t Self-heating recombination catalyst =, when the degree rises to 4 to 5 ,, the 〇2/c molar ratio of the fuel feed is successively reduced; the temperature of the outlet end of the autothermal recombination catalyst 110 can also be lowered at 5 = (four) The 〇2/c molar ratio of the material depends on the actual needs. When the combustion tail flows through the self-heating recombination catalyst 11 〇 outside to 6 machine ~ 7 thieves, the supply can be stopped simply: = unit " Ο essentially only vapor recombination touches in = π 2 i 〇 _ _ 〇 2 The /c molar ratio is low and the parasitic power is low, but this embodiment can generate electricity at a shorter time, i.e., a recombination gas 280 having an ioxidon concentration of less than 20 ppm. This is a must-have from the "burning battery" and the smuggling from the low battery 2/C molar ratio, and the reaction mode is running. At the same time, it is converted into "the air of the 乍 乍 又 又 又 又 又 又 〜 ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ! ! ! ! ! ! ! ! ! ! In the initial stage of the start-up, the operation is carried out in the self-heating recombination reaction mode. Hydrogen recombination is ten gas, and the concentration of carbon monoxide is lower than 2 〇 in the minute, although the hydrogen of the reformed gas at this time The concentration is not high, but it can be used to generate electricity into the fuel cell stack in 201220588. After that, it will continue to be upgraded and maintained at a low 〇2/c molar ratio. The recombination reaction mode operates, and the hydrogen concentration of the reformed gas can be as fast as 4岐. According to the anti-redness of each unit, the temperature is set to 夺^, and after about 55 minutes after the start, it can be converted into a steam recombination reaction, and the mode is operated. At this time, the hydrogen concentration of the reformed gas is also rapidly increased. Up to 7〇% left ^. This experimental data can further verify the embodiment Tandem type steam reforming reaction and auto-thermal reaction of 4 groups, advantages, and indeed may be filaments of both the autothermal steam reformer of the fuel.

本發明有別於既有以自熱式重組反應設計之燃料重組 器系統。本發㈣料重組裝置是由自熱式重組反應器及蒸 氣重組反應器串聯而成,燃料重組裝置令心有一加熱單 凡’可燃燒天‘然氣、液化石油氣、或含有氫氣的尾氣等氣 te可燃性氣體,透過燃燒可提供熱能給予熱管所包覆的蒸 氣重組反應器’可讓蒸氣重組反應器中的蒸氣重組觸媒進 行催化吸熱的蒸氣重組反應,此外,同樣由熱管所包覆的 自熱重組反應器’可藉由燃燒所提供的熱能,經熱管將燃 料進料如天然氣、水或空氣預熱與汽化。由於蒸氣重組反 應器中催化吸熱的蒸氣重組反應所需的熱源,主要是來自 高溫的燃燒氣體(即加熱單元所提供),而非依賴前段的自 熱式重組觸媒熱能,使得蒸氣重組觸媒得以獨立催化蒸氣 重組反應產生高氫氣濃度(大於70%)的重組氣體。 本發明另又有別於既有以蒸氣重組反應設計之燃料重 組器系統。本發明於燃料重組裝置啟動之初,除了同步藉 由燃燒預熱蒸氣重組反應器、自熱重組反應器、以及參與 重組反應的燃料進料如天然氣及水,藉由自熱式重組反應 15 201220588 觸媒具有低溫催化部份氧化反應的特性,於燃料重組裝置 啟動初期即通人空氣’讓自熱式重組反應觸媒先催化重組 反應’雖然此時產生之重組氣的氫氣濃度偏低($聊小但 可大幅縮短重組器系統產生⑺遭度低於2G ppm之合格富 氫重組氣的時間,待蒸氣重組觸媒已達可催化蒸氣重組反 應時,再停止通人參與重域應的空氣,㈣組$统 以蒸氣重組反應運轉。 范乐、·死叹 然而在蒸氣4組反應及自熱式4組反應操作模式變 更過程中,可能衍生的最大問題是重組反應、水移轉反應、 以及CO選擇性氧化反應的各單元觸媒,是否會因接觸* 氣導致活劣化的問題,特別是水移轉㈣。因為有= 或論文提到當重組反應、水移轉反應、以及選擇性 應單。元觸媒接觸到空氣,觸媒活性點可能純化 性’嚴重會影響到觸媒的壽命。 」 傳統以自熱式重組反應設計之燃料重組器系 ,動透過鎳絡絲通電數分鐘或以火星塞點火後,即通父空 氣、燃料及水,先誘發氧化放熱反應,讓觸媒快速^ 始反應溫度’由於自熱式重組反應是結合部份氧化及^ 重、、且反應,催化碳氫化合物進行重組反應產生水合^ (m,為了提供足夠的熱量或是讓觸媒可以快速達: ^ G氣重組反應溫度,系統啟動初期的〇2/C莫耳比會偏 但於系統啟動初期的觸媒反應溫度不高,氧不會▲完 全肖耗掉,殘存之氧氣會接觸後續的WGS及pr0X觸媒^ 因此’自熱式重組反應設計之燃料重組器系統大多選用具 有抗氧特性之WGS及ΡΓ〇χ觸媒,但因自熱式重組反應為 201220588 了能維持重組反應的轉化率,於穩態操作時仍需維持一定 的02/C莫耳比(0.3〜0.6),若以3瓧天然氣重組器系統為 例,燃料進料之天然氣至少需達18 L/min以上,此時需通 入之空氣量介於25〜50 L/min,系統即需要可產生高靜壓及 高風量之空氣泵浦,且其寄生電力理應不小。 因為本發明的燃料重組裝置是由具有低溫反應特性 之自熱式重組觸媒及高溫之蒸氣重組觸媒串聯而成,又因 燃料重組裝置中心有燃燒器,可透過燃燒直接預熱燃料進 φ 料及重組觸媒,其預熱速率不小,所以系統啟動初期進料 的02/C莫耳比值可比單純以自熱式重組反應設計之系統 低,o2/c莫耳比低代表空氣泵浦可以處於低功率操作狀態。 由於本發明可以透過燃燒間接傳熱暨自熱式重組反 應氧化放熱,加速重組觸媒快速產生重組反應,又因於自 熱式重組觸媒暨蒸氣重組觸媒出口,各佈置一層氧化型觸 媒,使得燃料進料中大部份氧氣於重組反應區即被消耗 掉,而未反應之氧氣也會與重組反應產生之氫氣或一氧化 φ 碳,在含有貴金屬之前端WGS觸媒發生氧化反應除去,由 於含有貴金屬之WGS觸媒活性比較不會因接觸氧氣而下 降,如此一來即可免除殘氧造成WGS觸媒活性劣化的問 題。 唯以上所述者,僅為本發明之較佳實施例,當不能以 之限制本發明的範圍。即大凡依本發明申請專利範圍所做 之均等變化及修飾,仍將不失本發明之要義所在,亦不脫 離本發明之精神和範圍,故都應視為本發明的進一步實施 狀況。 17 201220588 【圖式簡單說明】 圖一根據本發明一實施例之燃料重組裝置的結構示意圖。 圖二根據本發明另一實施例之氫氣產生裝置的方塊示意 圖。 圖三根據本發明又一實施例之用於燃料電池的燃料重組 方法的流程不意圖。 圖四以天然氣作為燃料之重組氣的氫氣及一氧化碳濃度 與重組反應單元啟用時間的量測數據圖。 【主要元件符號說明】 100燃料重組裝置 110自熱重組反應器 112進料口 120蒸氣重組反應器 131/132除氧反應器 135管道 140加熱單元 _ 142熱管 150燃料進料152第一重組氣 154第二重組氣 200氫氣產生裝置 210重組反應單元 110自熱重組反應器/自熱重組觸媒 120蒸氣重組反應器/蒸氣重組觸媒 18 201220588 131/132除氧反應器/除氧觸媒 140加熱單元/燃燒器 156重組氣體 260水移轉反應單元 270選擇性氧化反應單元 280燃料電池 282第一輸出氣 284第二輸出氣 300燃料重組方法 步驟 310--370The present invention differs from a fuel recombiner system that is designed with an autothermal recombination reaction. The regenerative device of the present invention is composed of a self-heating recombination reactor and a steam recombination reactor. The fuel recombination device has a heating unit that can heat the gas, liquefied petroleum gas, or tail gas containing hydrogen. A gas recombustible gas that provides thermal energy to a steam reforming reactor coated with a heat pipe through combustion. A vapor recombination reaction that allows a vapor recombination catalyst in a steam reforming reactor to undergo catalytic endotherm, and is also covered by a heat pipe. The autothermal recombination reactor 'can preheat and vaporize a fuel feed such as natural gas, water or air through a heat pipe by the heat energy provided by the combustion. The heat source required for the catalytic endothermic steam recombination reaction in the steam recombination reactor is mainly from the high temperature combustion gas (provided by the heating unit), rather than relying on the front stage self-heating recombination catalyst thermal energy, so that the vapor recombination catalyst It is possible to independently catalyze the vapor recombination reaction to produce a high hydrogen concentration (greater than 70%) of the reformed gas. The invention is further distinguished from a fuel reassembler system that is designed with a vapor recombination reaction. The invention is initiated at the beginning of the fuel recombination device by synchronizing the combustion by preheating the steam recombination reactor, the autothermal recombination reactor, and the fuel feeds involved in the recombination reaction, such as natural gas and water, by autothermal recombination reaction 15 201220588 The catalyst has the characteristics of low-temperature catalytic partial oxidation reaction, and the air is allowed to pass the initial stage of the fuel recombination device to allow the autothermal recombination reaction catalyst to catalyze the recombination reaction first, although the hydrogen concentration of the recombination gas generated at this time is low ($ Xiaoxiao can greatly shorten the time for the recombiner system to produce (7) qualified hydrogen-rich recombination gas with a degree lower than 2G ppm. When the vapor recombination catalyst has reached the catalytic recombination reaction, the air in the heavy domain should be stopped. (4) Group $ is operated by steam recombination reaction. Fan Le,· sighs, however, in the process of steam 4 group reaction and self-heating group 4 reaction mode change, the biggest problem that may be derived is recombination reaction, water transfer reaction, And whether the catalysts of each unit of CO selective oxidation reaction cause deterioration due to contact with * gas, especially water transfer (4). Because there is = or paper When the recombination reaction, water transfer reaction, and selectivity are met. The elemental catalyst is exposed to air, and the catalytic activity of the catalyst may be 'severely affecting the life of the catalyst.' Traditionally fuel designed by autothermal recombination reaction The recombiner system, after being energized through the nickel wire for several minutes or after ignition with the spark plug, that is, through the parent air, fuel and water, first induces an oxidative exothermic reaction, allowing the catalyst to quickly react to the reaction temperature 'because the self-heating recombination reaction is Combined with partial oxidation and weight, and reaction, catalyze the reaction of hydrocarbons to produce hydration ^ (m, in order to provide enough heat or allow the catalyst to reach: ^ G gas recombination reaction temperature, early system start-up 〇2/C molar ratio will be biased at the initial stage of the system, the catalyst reaction temperature is not high, oxygen will not completely ▲, the residual oxygen will contact the subsequent WGS and pr0X catalyst ^ So 'self-heating reorganization Most of the fuel recombiner systems for reaction design use WGS and antimony catalysts with anti-oxidation properties, but the autothermal recombination reaction is 201220588, which can maintain the conversion rate of the recombination reaction during steady state operation. It is necessary to maintain a certain 02/C molar ratio (0.3 to 0.6). If the 3 瓧 natural gas recombiner system is taken as an example, the natural gas to be fed by the fuel must be at least 18 L/min or more. At 25~50 L/min, the system needs air pumping that can generate high static pressure and high air volume, and its parasitic power is not small. Because the fuel recombining device of the invention is composed of self-heating recombination with low temperature reaction characteristics. Catalyst and high-temperature steam recombination catalyst are connected in series, and because the fuel recombination device has a burner at the center, it can directly preheat the fuel into the φ material and the recombination catalyst through combustion, and the preheating rate is not small, so the system starts feeding early. The 02/C molar ratio can be lower than that of a system designed solely for autothermal recombination, and the low o2/c molar ratio means that the air pump can be in a low power operating state. Since the invention can accelerate the regenerative reaction of the recombination catalyst through the indirect heat transfer and the autothermal recombination reaction, and accelerate the recombination reaction of the recombination catalyst, and arrange the oxidation catalyst of each layer due to the autothermal recombination catalyst and vapor recombination catalyst outlet. So that most of the oxygen in the fuel feed is consumed in the recombination reaction zone, and the unreacted oxygen is also reacted with the hydrogen or oxidized φ carbon produced by the recombination reaction, and the WGS catalyst is removed before the noble metal is contained. Since the WGS catalyst activity containing precious metals is not reduced by contact with oxygen, the problem of deterioration of WGS catalyst activity caused by residual oxygen can be eliminated. The above is only the preferred embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention, and should be considered as a further implementation of the present invention. 17 201220588 [Schematic Description of the Drawings] Fig. 1 is a schematic structural view of a fuel reconstituting apparatus according to an embodiment of the present invention. Fig. 2 is a block diagram showing a hydrogen generating apparatus according to another embodiment of the present invention. Fig. 3 is a flow chart of a fuel recombination method for a fuel cell according to still another embodiment of the present invention. Figure 4 is a graph showing the measured data of hydrogen and carbon monoxide concentrations of recombination gas with natural gas as fuel and the activation time of the recombination reaction unit. [Main component symbol description] 100 fuel recombination device 110 autothermal recombination reactor 112 feed port 120 steam recombination reactor 131/132 deoxidation reactor 135 pipe 140 heating unit _ 142 heat pipe 150 fuel feed 152 first recombination gas 154 Second Recombinant Gas 200 Hydrogen Generation Device 210 Recombination Reaction Unit 110 Autothermal Recombination Reactor/Autothermal Recombination Catalyst 120 Vapor Recombination Reactor/Vapor Recombination Catalyst 18 201220588 131/132 Oxygen Reactor/Deoxygenation Catalyst 140 Heating Unit/burner 156 Recombinant gas 260 Water transfer reaction unit 270 Selective oxidation reaction unit 280 Fuel cell 282 First output gas 284 Second output gas 300 Fuel recombination method Step 310--370

1919

Claims (1)

201220588 七、申請專利範圍: 1. 一種燃料重組裝置’其包括: 一自熱重組反應器,用以對一燃料進料(比^⑽卯丨幻進 行自熱重組反應,而形成一第-重組氣(reformate); 一蒸氣重組反應器,用以對該燃料進料進行蒸氣重組 反應,而形成一第二重組氣;及 一加熱單元,用以加熱該燃料進料及該蒸氣重組反應 器; 其中,該燃料重組裝置的運轉初期係以自熱重組反應 籲 為主,以縮短該燃料重組裴置的催化重組反應時 間,且在該燃料重組裝置的運轉穩定後則以蒸氣重 組反應為主。 2. 如請求項1之燃料重組裝置’其中該燃料重組裝置係呈 一圓柱狀,該自熱重組反應器設置於外圈,且該蒸氣重 組反應器設置於中間層’該加熱單元設置於内圈中心, 其中該加熱單元係包含一熱管’該熱管係包覆在該蒸氣 重組反應器與該自熱重組反應器外。 鲁 3. 如請求項1或2之燃料重組裝置,其中部分的該燃料進 料係先在該自熱重組反應器中進行自熱重組反應,另一 部分未反應的該燃料進料會接著進入到該自熱重組反應 器後的該蒸氣重組反應器中,以進行蒸氣重組反應。 4. 如請求項1或2之燃料重組裝置,更包括至少一除氧反 應器,連接至該自熱重組或蒸氣重組反應器,用以去除 該第一或第二重組氣中的氧氣。 5. 如請求項4之燃料重組裝置,包括二除氧反應器,其中 20 201220588 該熱重組反應器與該蒸氣重組反應器係由一管道相連 接’其一之該除氧反應器設置於該自熱重組反應器與該 蒸氣重組反應器之間’且另一之該除氧反應器設置於該 蒸氣重組反應器相接於該管道的另一端。 6.如請求項4之燃料重組裝置’其中該除氧反應器主要係 進行氧化反應,其中該除氧反應器包括: 一貴金屬觸媒,其含有鈀、鍺、鉑、或至少二種的上 述金屬的混合物;及 一觸媒載體’其含有氧化鋁、氧化鈽、二氧化鈽、氧 化錯、或二氧化鍅、或上述氧化物的混合物; 7 =中’該除氧反應溫度為l〇〇t〜500°C。 •如晴求項1或2之燃料4組裝置,其中該自熱重組反座 器包括: 一 貝金屬觸媒,其含有铑、鉑、或上述金屬的混合物; 及 觸媒載體’其含有氧化銘、氧化鈽、二氧化鈽、氧 化錯、二氧化錯、或上述氧化物的混合物; 8 ^中’該自熱重組反應溫度為300t〜800°C。 „〇 求項1或2之燃料重組裝置,其中該蒸氣重組反應 盗包括: 〜 貝金屬觸媒,其含有釕、铑、鉑、或至少二種的上 述金屬的混合物;及 觸媒載體’其含有氧化鋁、氧化鈽、二氧化鈽、氧 化錯、二氧化錘、或上述氧化物的混合物燃料重組; 其中’該蒸氣重組反應溫度為600。(:〜800°C。如請求 21 201220588 項1或2之燃料重組裝置,其中該燃料進料包括:水、 空氣、及燃料混和物,該燃料混和物包括天然氣、酒精、 液化石油氣(LPG)、煤油、或柴油等化石燃料,或是厭氧 反應產生之曱烷或生質能發酵產生之酒精等再生能源。 10. 如請求項1或2之燃料重組裝置,其中該加熱單元係以 一燃燒器或以觸媒氧化放熱反應焚化至少該燃料進料來 提供熱量。 11. 一種氫氣產生裝置,其包括: 一燃料重組裝置,係為任一請求項1-10之燃料重組裝 置; 一水移轉反應單元,用以對該第一與第二重組氣中所 含的一氧化碳,進行與水反應而轉換成氫氣及二氧 化碳,而形成一第一輸出氣;及 一選擇性氧化反應單元,用以對該第一輸出氣中所含 的一氧化碳或氫進行選擇性的氧化反應,而形成一 第二輸出氣。 12. 如請求項11之氫氣產生裝置,其中該加熱單元係以燃 燒該燃料進料或一氧化碳濃度高於20 ppm的該第二輸 出氣來提供熱量。 13. 如請求項11之氫氣產生裝置,其中該水移轉反應單元 進一步包括: 一貴金屬觸媒,其至少含有鉑、銖、或銅;及 一觸媒載體,其含有氧化鋁、氧化鈽、二氧化鈽、氧 化锆、二氧化鍅、或上述氧化物的混合物; 其中,該水移轉反應溫度為250〜450°C。 22 201220588 14. 如請求項11之氫氣產生裝置,其中該水移轉反應單元 進一步包括: 一卑金屬觸媒;及 一觸媒載體’其含有銅鋅Is氧化物或鐵鉻紹氧化物; 其中’該水移轉反應溫度為20(TC〜450。(:。 15. 如請求項u之氫氣產生裝置,其中該選擇性氧化反應 單元進一步包括: 一貴金屬觸媒,其至少含有鉑或釕;及 • 一觸媒載體’其含有氧化鋁、氧化鈽、二氧化鈽、氧 化锆、二氧化锆、沸石氧化物、或上述氧化物的混 合物; 其中’該選擇性氧化反應溫度為100°C〜200¾。 16. 如請求項丨丨之氫氣產生裝置,其中該第二輸出氣所含 的一氧化碳濃度小於20 ppm。 17. —種用於燃料電池的燃料重組方法,其包括: 提供一重組反應單元及一燃料進料,其中該重組反應 • 單元包括:一自熱重組觸媒及一蒸氣重組觸媒; 開啟一燃燒器,以加熱該重組反應單元及該燃料進料; 當該自熱重組觸媒的入口溫度上升至9〇。(^〜2〇〇它 時,將該燃料進料通入該自熱重組觸媒,而產生第 一重組氣; 該燃料進料導入該蒸氣重組觸媒而產生第二重組氣; 對該第一及第二重組氣進行水移轉反應及選擇性氧化 反應而產生一輸出氣;若該輸出氣所含的一氧化碳 /辰度低於20 ppm,將該輸出氣通入該燃料電池的陽 23 201220588 極,否則通入該燃燒器; 當該自熱重組觸媒的出口溫度上升至450°C〜550°C 時,降低該燃料進料的02/C莫耳比值;及 當燃燒尾氣流經自熱重組觸媒外侧溫度上升至650°C 〜750°C時,則該燃料進料停止提供空氣,且該重組 反應單元實質上只有該蒸氣重組觸媒在進行作用。 18.如請求項17之用於燃料電池的燃料重組方法,其中該 自熱重組觸媒的出口溫度亦可在550°C〜650°C時,才降 低燃料進料的02/C莫耳比值。 24201220588 VII. Patent application scope: 1. A fuel reconstitution device comprising: an autothermal recombination reactor for feeding a fuel (self-heating recombination reaction to ^(10) illusion, forming a first-recombination a reforming reactor for performing a vapor reforming reaction on the fuel feed to form a second reformed gas; and a heating unit for heating the fuel feed and the vapor reforming reactor; Among them, the initial stage of operation of the fuel recombination device is mainly based on the self-heating recombination reaction, so as to shorten the catalytic recombination reaction time of the fuel recombination device, and the steam recombination reaction is mainly after the operation of the fuel reconstitution device is stabilized. 2. The fuel reconstituting device of claim 1, wherein the fuel recombining device is in a cylindrical shape, the autothermal recombination reactor is disposed on the outer ring, and the vapor recombination reactor is disposed in the intermediate layer, wherein the heating unit is disposed a circle center, wherein the heating unit comprises a heat pipe wrapped around the steam reforming reactor and the self-heating recombination reactor. a fuel recombination unit of 1 or 2, wherein a portion of the fuel feed is first subjected to an autothermal recombination reaction in the autothermal recombination reactor, and another portion of the unreacted fuel feed is subsequently passed to the autothermal recombination reactor The steam reforming reactor is followed by a steam reforming reaction. 4. The fuel recombining apparatus according to claim 1 or 2, further comprising at least one oxygen scavenging reactor, connected to the autothermal recombination or steam recombination reactor, To remove oxygen from the first or second reformed gas. 5. The fuel recombining apparatus of claim 4, comprising a two oxygen scavenging reactor, wherein 20 201220588 the thermal recombination reactor and the vapor recombination reactor are connected by a pipeline Connecting the same one, wherein the oxygen scavenging reactor is disposed between the autothermal recombination reactor and the vapor recombination reactor, and the other deoxygenation reactor is disposed in the vapor recombination reactor to be connected to the pipeline 6. The fuel reconstitution device of claim 4, wherein the oxygen scavenging reactor is mainly subjected to an oxidation reaction, wherein the oxygen scavenging reactor comprises: a noble metal catalyst containing palladium, rhodium, platinum Or a mixture of at least two of the above metals; and a catalyst carrier comprising alumina, cerium oxide, cerium oxide, oxidized ox, or cerium oxide, or a mixture of the foregoing oxides; The oxygen reaction temperature is l〇〇t~500 ° C. • The fuel 4 group device according to the item 1 or 2, wherein the self-heating reversal device comprises: a shell metal catalyst containing bismuth, platinum, or a mixture of the above metals; and a catalyst carrier comprising a mixture of oxidized, cerium oxide, cerium oxide, oxidized ox, dioxin, or the above oxide; 8 ^ 'the autothermal recombination reaction temperature is 300 t 〜 800 °C. The fuel recombination apparatus of claim 1 or 2, wherein the vapor recombination reaction includes: a shell metal catalyst comprising a mixture of ruthenium, rhodium, platinum, or at least two of the foregoing metals; and a catalyst The carrier 'recombines alumina, yttria, cerium oxide, oxidized ox, oxidized hammer, or a mixture of the above oxides; wherein the vapor recombination reaction temperature is 600. (: 〜800 ° C. The fuel reconstitution device of claim 21 201220588, item 1 or 2, wherein the fuel feed comprises: water, air, and a fuel mixture including natural gas, alcohol, liquefied petroleum gas (LPG) a fossil fuel such as kerosene or diesel, or a renewable energy such as decane produced by anaerobic reaction or alcohol produced by fermentation of biomass. 10. The fuel reconstitution device of claim 1 or 2, wherein the heating unit is A burner or a catalyst oxidative exothermic reaction incinerating at least the fuel feed to provide heat. 11. A hydrogen generating device comprising: a fuel recombining device, the fuel recombining device of any of claims 1-10; a water transfer reaction unit for reacting carbon monoxide contained in the first and second reformed gases with water to convert into hydrogen and carbon dioxide to form a first output gas; and a selective oxidation reaction unit, And a selective oxidation reaction of carbon monoxide or hydrogen contained in the first output gas to form a second output gas. 12. The hydrogen generating device according to claim 11 The heating unit is configured to combust the fuel feed or the second output gas having a carbon monoxide concentration of more than 20 ppm. 13. The hydrogen generating device of claim 11, wherein the water transfer reaction unit further comprises: a noble metal catalyst comprising at least platinum, rhodium, or copper; and a catalyst carrier comprising alumina, cerium oxide, cerium oxide, zirconium oxide, cerium oxide, or a mixture of the foregoing; wherein the water The transfer reaction temperature is 250 to 450 ° C. 22 201220588 14. The hydrogen generation device of claim 11, wherein the water transfer reaction unit further comprises: a base metal catalyst; and a catalyst carrier containing copper zinc Is oxide or iron chromium oxide; wherein the water transfer reaction temperature is 20 (TC~450. (: 15. The hydrogen generating device of claim u, wherein the selective oxidation reaction unit further comprises: a noble metal catalyst comprising at least platinum or rhodium; and a catalyst carrier comprising alumina, cerium oxide, cerium oxide, zirconium oxide, zirconium dioxide, zeolite oxide, or oxygen a mixture of compounds; wherein 'the selective oxidation reaction temperature is from 100 ° C to 2003⁄4. 16. The hydrogen generating device of claim 2, wherein the second output gas contains a carbon monoxide concentration of less than 20 ppm. A fuel recombining method for a fuel cell, comprising: providing a recombination reaction unit and a fuel feed, wherein the recombination reaction unit comprises: an autothermal recombination catalyst and a vapor recombination catalyst; opening a burner to Heating the recombination reaction unit and the fuel feed; when the inlet temperature of the autothermal recombination catalyst rises to 9 〇. (^~2〇〇, the fuel feed is passed to the autothermal recombination catalyst, and Generating a first reformed gas; introducing the vapor reforming catalyst into the vapor recombination catalyst to generate a second reformed gas; performing a water transfer reaction and a selective oxidation reaction on the first and second reformed gases to generate an output gas; The output gas contains less than 20 ppm of carbon monoxide/min, and the output gas is introduced into the anode 23 201220588 of the fuel cell, otherwise it is introduced into the burner; when the outlet temperature of the self-heating recombination catalyst When the temperature is raised to 450 ° C to 550 ° C, the 02/C molar ratio of the fuel feed is lowered; and when the temperature of the combustion tail gas rises to 650 ° C to 750 ° C outside the autothermal recombination catalyst, then The fuel feed ceases to provide air, and the recombination reaction unit is essentially only the vapor recombination catalyst. 18. The fuel recombination method for a fuel cell according to claim 17, wherein the outlet temperature of the autothermal recombination catalyst is also from 550 ° C to 650 ° C to reduce the 02/C molar ratio of the fuel feed. . twenty four
TW099138141A 2010-11-05 2010-11-05 Fuel reforming apparatus and the method thereof TWI412172B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099138141A TWI412172B (en) 2010-11-05 2010-11-05 Fuel reforming apparatus and the method thereof
CN201110097384XA CN102464300A (en) 2010-11-05 2011-04-15 Fuel reforming apparatus and method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099138141A TWI412172B (en) 2010-11-05 2010-11-05 Fuel reforming apparatus and the method thereof

Publications (2)

Publication Number Publication Date
TW201220588A true TW201220588A (en) 2012-05-16
TWI412172B TWI412172B (en) 2013-10-11

Family

ID=46068472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099138141A TWI412172B (en) 2010-11-05 2010-11-05 Fuel reforming apparatus and the method thereof

Country Status (2)

Country Link
CN (1) CN102464300A (en)
TW (1) TWI412172B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549600B2 (en) * 2013-11-06 2019-07-24 ワット・フューエル・セル・コーポレイションWatt Fuel Cell Corp. Liquid fuel CPOX reformer and fuel cell integrated system and method of generating electricity
JP6477638B2 (en) * 2016-09-14 2019-03-06 トヨタ自動車株式会社 Heat, hydrogen generator
DK180247B1 (en) * 2018-11-20 2020-09-14 Blue World Technologies Holding ApS Fuel cell system, its use and method of its operation
CN109638324B (en) * 2018-11-26 2020-06-23 南京航空航天大学 Pure hydrogen catalytic device and PEMFC power generation system of many sleeve structures of integration to multiple hydrocarbon fuel
CN114597442B (en) * 2020-12-03 2023-11-03 中国科学院大连化学物理研究所 Quick starting device and method for fuel cell
CN115650169A (en) * 2022-11-18 2023-01-31 中海石油气电集团有限责任公司 Integrated hydrogen production device for fuel cell

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ302007B6 (en) * 1998-07-08 2010-09-01 Toyota Jidosha Kabushiki Kaisha Fuel reforming apparatus and method for producing gaseous fuel enriched with hydrogen carried out in this apparatus
DE69808521T2 (en) * 1998-07-21 2003-01-30 Haldor Topsoe As SYNTHESIS GAS PRODUCTION BY STEAM REFORMING
JP4147659B2 (en) * 1998-12-24 2008-09-10 トヨタ自動車株式会社 Control device for reformer
EP1473272B1 (en) * 2001-03-30 2007-04-25 Ishikawajima-Harima Heavy Industries Co., Ltd. Apparatus for reforming fuel
US7967878B2 (en) * 2002-01-04 2011-06-28 Meggitt (Uk) Limited Reformer apparatus and method
TWM246204U (en) * 2003-12-03 2004-10-11 Rong-Fang Hong Hydrocarbon fuel reformer capable of automatic operation mode switching
WO2006009495A1 (en) * 2004-07-19 2006-01-26 Ab Volvo Method of starting a fuel reforming process and a fuel reforming system
US8216323B2 (en) * 2005-06-30 2012-07-10 General Electric Company System and method for hydrogen production
JP5055734B2 (en) * 2005-09-27 2012-10-24 カシオ計算機株式会社 Fuel reformer for fuel cell
JP4724029B2 (en) * 2006-03-27 2011-07-13 アイシン精機株式会社 Method for shutting down reformer
TW200736082A (en) * 2006-03-31 2007-10-01 Rong-Fang Hong Energy saving hydrocarbon fuel reformer
TW200838611A (en) * 2007-03-21 2008-10-01 Ying-Chieh Liu Fuel reformer
JP4787357B2 (en) * 2007-04-13 2011-10-05 八代工業株式会社 Fuel reforming method and apparatus
CN101565167A (en) * 2008-04-21 2009-10-28 财团法人工业技术研究院 Hydrogen generator system

Also Published As

Publication number Publication date
CN102464300A (en) 2012-05-23
TWI412172B (en) 2013-10-11

Similar Documents

Publication Publication Date Title
JP5607302B2 (en) Heat-prepared hydrogen generation fuel cell system
US20050003247A1 (en) Co-production of hydrogen and electricity using pyrolysis and fuel cells
JP4864902B2 (en) Thermal neutral process for improving petroleum-based liquid hydrocarbons
US7131264B2 (en) Method of operating a reformer and a vehicle
US6551732B1 (en) Use of fuel cell cathode effluent in a fuel reformer to produce hydrogen for the fuel cell anode
TW201220588A (en) Fuel reforming apparatus and the method thereof
CN110739471B (en) Cogeneration system based on reforming hydrogen production device and fuel cell
JP5165832B2 (en) Hydrogen generating apparatus and method
JP2006206383A (en) Reformer for hydrocarbon-based gas
JP2000277139A (en) Fuel cell power generating system and its operating method
US20050037245A1 (en) Method for hydrogen and electricity production using steam-iron process and solid oxide fuel cells
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
JP2000268832A (en) Two-temperature-control-connection type solid oxide fuel cell
CN205944261U (en) Methanol reforming reactor and small -size fuel cell power generation system
JP4008051B2 (en) Power generation method
US9102535B2 (en) Flameless steam reformer
TW201014786A (en) Self-started OSRM process at room temperature for low temperature hydrogen production
KR101571982B1 (en) Refomer with improving durability of fuel cell system
TWI403459B (en) Process for producing hydrogen with high yield under low temperature
JP2004299939A (en) Fuel reformer, and fuel battery generator
JP2000327304A (en) Hydrogen generation apparatus
JPH11149931A (en) Starting method of reforming equipment for fuel cell
JP2009286666A (en) Method and apparatus for producing synthesis gas, and fuel cell system
JP5301265B2 (en) Fuel cell system comprising an oxygen generator and a hydrogen generator
Majewski et al. Catalytic reforming system suitable for transportation applications