TW201202553A - Light-electric conversion device - Google Patents

Light-electric conversion device Download PDF

Info

Publication number
TW201202553A
TW201202553A TW99121983A TW99121983A TW201202553A TW 201202553 A TW201202553 A TW 201202553A TW 99121983 A TW99121983 A TW 99121983A TW 99121983 A TW99121983 A TW 99121983A TW 201202553 A TW201202553 A TW 201202553A
Authority
TW
Taiwan
Prior art keywords
photoelectric conversion
area
conversion element
electrode
conversion device
Prior art date
Application number
TW99121983A
Other languages
Chinese (zh)
Other versions
TWI467091B (en
Inventor
chun-hua Hu
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW99121983A priority Critical patent/TWI467091B/en
Publication of TW201202553A publication Critical patent/TW201202553A/en
Application granted granted Critical
Publication of TWI467091B publication Critical patent/TWI467091B/en

Links

Abstract

The present invention relates to a light-electric conversion device. The light-electric conversion device includes at least one light-electric conversion module. The light-electric conversion module includes a first light-electric conversion element and a second light-electric conversion element. The first light-electric conversion element includes a first light absorbing region and a first light non-absorbing region. The second light-electric conversion element includes a second light absorbing region and a second light non-absorbing region.

Description

201202553 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種光電轉換裝置。 [先前技術] [0002] 能源問題係當代人類社會發展面臨的重大問題,在如何 更有效地獲得能源方面人們發展了很多種方法。太陽光 能或其他光能具有投資小或者無需投資的特點,因此具 有一定的經濟效益和利用價值,但係此類能源用其他能 量轉換方式無法加以有效利用,用光電轉換裝置製成光 ° 電轉換裝置係利用此類能源的較好方式。 [0003] 太陽能電池係光能-電能轉換的典型例子,係利用半導體 材料的光生伏特原理製成的。光生伏特效應,簡稱“光 伏效應”,指光照使不均勻半導體或半導體與金屬結合 的不同部位之間產生電位差的現象。常用的一類太陽能 電池為矽基太陽能電池。在矽基太陽能電池中,作為光 電轉換的材料的矽片襯底通常採用單晶矽製成。因此, Ο 要獲得高轉換效率的矽基太陽能電池,就需要製備出高 純度的單晶矽,且太陽能電池的結構較為複雜,導致了 該太陽能電池的成本較高,限制了太陽能電池的推廣應 用0 【發明内容】 [0004] 有鑒於此,提供一種結構簡單、成本較低的光電轉換裝 置實為必要。 [0005] —種光電轉換裝置包括至少一光電轉換模組,該光電轉 換模組包括:一第一光電轉換元件;以及一第二光電轉 099121983 表單編號Α0101 第3頁/共30頁 0992038720-0 201202553 換元件;其中,該第一光電轉換元件包括一第一光照區 域及一第一非光照區域,所述第二光電轉換元件包括一 第二光照區域及一第二非光照區域,所述第一光照區域 與第二光照區域電連接。 [0006] 相較於先前技術,本發明所提供的光電轉換裝置的光電 轉換模組的第一光電轉換元件和第二光電轉換元件分別 分為光照區域和非光照區域,通過光照區域吸收光能並 升高溫度,與非光照區域之間形成溫度差,利用溫差發 電原理進行發電,結構簡單,成本較低。 【實施方式】 [0007] 以下將結合附圖詳細說明本技術方案提供的光電轉換裝 置。以下各實施例中,不同實施例之間具有相同結構的 相同元部件的標號使用相同的***數字表示,不同的 元部件或者具有不同結構的相同元部件則使用不同的阿 拉伯數字表示。 [0008] 請參閱圖1,本發明第一實施例提供了一種光電轉換裝置 10。該光電轉換裝置10包括一光電轉換模組100、一基底 110及一覆蓋結構108。該光電轉換模組100設置於該基 底110的表面。該光電轉換模組100包括一第一光電轉換 元件12、一第二光電轉換元件14、第一電極162,一第二 電極164、一第三電極166及一第四電極168。該第一光 電轉換元件12包括一第一光照區域12a及一第一非光照區 域12b,該第二光電轉換元件14包括一第二光照區域14a 及一第二非光照區域14b。所述第一光照區域12a與該第 二光照區域14a電連接。所述第一電極162與該第一光照 099121983 表單編號 A0101 第 4 頁/共 30 頁 0992038720-0 201202553 區域12a電連接,所述第二電極164與該第一非光照區域 12b電連接。所述第三電極166與該第二光照區域14a電 連接,所述第四電極168與該第二非光照區域14b電連接 。該覆蓋結構18覆蓋該光電轉換模組100的第一非光照區 域12b及該第二非光照區域14b。 [0009]201202553 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a photoelectric conversion device. [Prior Art] [0002] The energy issue is a major problem facing the development of contemporary human society, and many methods have been developed in how to obtain energy more efficiently. Solar energy or other light energy has the characteristics of low investment or no investment, so it has certain economic benefits and utilization value. However, other energy conversion methods cannot be effectively utilized, and photoelectric conversion devices are used to make light. Conversion devices are a better way to utilize such energy sources. [0003] A typical example of solar cell-based light energy-electric energy conversion is made using the photovoltaic principle of semiconductor materials. The photovoltaic effect, abbreviated as "optical volt effect", refers to the phenomenon that light causes a potential difference between a different semiconductor or a semiconductor-to-metal bond. A commonly used type of solar cell is a germanium based solar cell. In the ruthenium-based solar cell, the ruthenium substrate as a material for photoelectric conversion is usually made of single crystal ruthenium. Therefore, in order to obtain a high conversion efficiency bismuth-based solar cell, it is necessary to prepare a high-purity single crystal germanium, and the structure of the solar cell is relatively complicated, resulting in a high cost of the solar cell, which limits the promotion and application of the solar cell. [Invention] [0004] In view of the above, it is necessary to provide a photoelectric conversion device having a simple structure and a low cost. [0005] A photoelectric conversion device includes at least one photoelectric conversion module including: a first photoelectric conversion element; and a second photoelectric conversion 099121983 Form No. 1010101 Page 3 / Total 30 Page 0992038720-0 201202553, wherein the first photoelectric conversion element includes a first illumination area and a first non-illumination area, and the second photoelectric conversion element includes a second illumination area and a second non-illumination area, A light area is electrically connected to the second light area. [0006] Compared with the prior art, the first photoelectric conversion element and the second photoelectric conversion element of the photoelectric conversion module of the photoelectric conversion device provided by the present invention are respectively divided into an illumination region and a non-illumination region, and absorb light energy through the illumination region. And the temperature is raised, and the temperature difference is formed between the non-illuminated area, and the power generation principle is used for power generation, the structure is simple, and the cost is low. [Embodiment] Hereinafter, a photoelectric conversion device provided by the present technical solution will be described in detail with reference to the accompanying drawings. In the following embodiments, the same reference numerals of the same components in the different embodiments are denoted by the same numerals, and different components or the same components having different structures are represented by different Arabic numerals. Referring to FIG. 1, a first embodiment of the present invention provides a photoelectric conversion device 10. The photoelectric conversion device 10 includes a photoelectric conversion module 100, a substrate 110, and a cover structure 108. The photoelectric conversion module 100 is disposed on a surface of the substrate 110. The photoelectric conversion module 100 includes a first photoelectric conversion element 12, a second photoelectric conversion element 14, a first electrode 162, a second electrode 164, a third electrode 166 and a fourth electrode 168. The first photoelectric conversion element 12 includes a first illumination area 12a and a first non-illumination area 12b. The second photoelectric conversion element 14 includes a second illumination area 14a and a second non-illumination area 14b. The first illumination area 12a is electrically coupled to the second illumination area 14a. The first electrode 162 is electrically connected to the first light 099121983 Form No. A0101, and the second electrode 164 is electrically connected to the first non-illuminated area 12b. The third electrode 166 is electrically connected to the second illumination region 14a, and the fourth electrode 168 is electrically connected to the second non-illumination region 14b. The cover structure 18 covers the first non-illuminated area 12b and the second non-illuminated area 14b of the photoelectric conversion module 100. [0009]

ο 所述基底110用於支撐第一光電轉換元件12和第二光電轉 換元件14,可以理解,當第一光電轉換元件12和第二光 電轉換元件14為自支撐結構時,該基底110可以省略。所 述基底110用於支撐第一光電轉換元件12和第二光電轉換 元件14的表面的面積可以大於、等於或小於第一光電轉 換元件12和第二光電轉換元件14的一個表面的面積。所 述基底110的材料為絕緣材料,可以為玻璃、陶瓷、聚合 物或木質材料。所述基底110的材料還可以為表面塗覆有 絕緣材料的導電金屬材料等。優選地,該基底110的材料 應基本不吸收紅外線或者完全不吸收紅外線。該基底110 的厚度不限,優選為1毫米至2厘米,本實施例中,基底 110的厚度為5毫米,所述基底110用於支撐第一光電轉換 元件12和第二光電轉換元件14的表面的面積的面積大於 所述第一光電轉換元件12和第二光電轉換元件14的總面 積。 [0010] 所述第一光電轉換元件12被分為兩個區域,分別為第一 光照區域12a和第一非光照區域12b。所述第一光照區域 12a和第一非光照區域12b的大小不限,第一光照區域 12a的面積可以大於、小於或等於第一非光照區域12b的 面積。所述第二光電轉換元件14被分為兩個區域,分別 099121983 表單編號A0101 第5頁/共30頁 0992038720-0 201202553 為第一光照區域14 a和第二非光照區域14 b。所述第二光 照區域14a和第二非光照區域14b的大小不限,第二光照 區域14a的面積可以大於、小於或等於第二非光照區域 14b的面積。本實施例中’第一光照區域丨2a的面積等於 第一非光照區域12b的面積,第二光照區域14a的面積等 於第二非光照區域14b的面積。 [0011]所述第一光電轉換元件12的第一光照區域12a用於接收光 能’並將光能轉換為熱能’使第一光照區域丨2a的溫度升 南’從而在第一光照區域12a和第·-非光照區域1 2b之間 產生溫度差’利用温差電效應,在第一光電轉換元件! 2 的兩端產生電勢差。所述光能可以為太陽光、可見光、 紅外線 '紫外線或電磁波等。所述第一光電轉換元件j 2 的材料為一空穴導電型材料,所述第二光電轉換元件14 為一電子導電型材料。所述第二光電轉換元件14的第二 光照區域14a用於接收光能,並將光能轉換為熱能,使第 二光照區域14a的溫度升高,從而在第二光照區域14a和 第二非光照區域14b之間產生溫度差,利用溫差電效應, 在第二光電轉換元件14的兩端產生電勢差。當光線照射 第一光照區域12a和第二光照區域14a時,第一光照區域 12a吸收光能,溫度升高時,根據溫差電轉換原理,由於 第一光電轉換元件12為一空穴導電型材料,第一光照區 域12a的電勢高於第一非光照區域12b ;第二光照區域 14a吸收光能,溫度升高,根據溫差電轉換原理,由於第 二光電轉換元件14為一電子導電型材料,第二光照區域 14a的電勢低於第二非光照區域14t^由於第一光照區域 099121983 表單編號A0101 第6頁/共30頁 0992038720-0 201202553 12a和第二光照區域14a電連接,第一非光照區域12b和 第二非光照區域14b之間的電勢差等於第一光照區域12a 與第一非光照區域1 2 b之間的電勢差與第二光照區域14 a 和第二非光照區域14b之間的電勢差的和。 [0012] 所述第一光電轉換元件12和第二光電轉換元件14的材料 應滿足溫差電轉換係數較大、具有較強的光吸收性能及 具有較小的熱容。優選地,該第一光電轉換元件12和第 二光電轉換元件14均為一半導體材料。 0 [0013] 所述第一光電轉換元件12為一奈米碳管層,該奈米碳管 層包括複數個均勻分佈的奈米碳管,奈米碳管為空穴型 導電材料。奈米碳管為絕對的黑體,因此,具有非常強 的光吸收性能。該奈米碳管可以為單壁奈米碳管、雙壁 奈米碳管、多壁奈米碳管中的一種或幾種。該奈来碳管 層可以為一由奈米碳管構成的純奈米碳管結構。當該奈 米碳管層僅包括單壁奈米碳管時,該奈米碳管層為一P型 半導體層,當奈米碳管層包括雙壁奈米碳管或多壁奈米 Ο 碳管時,該奈米碳管層為一導體層。優選地,所述奈米 碳管層為由單壁奈米碳管組成的結構。單壁奈米碳管具 有半導體性,溫差電轉換吸收較大。 [0014] 所述奈米碳管層中的奈米碳管之間可以通過凡得瓦力(The substrate 110 is for supporting the first photoelectric conversion element 12 and the second photoelectric conversion element 14. It can be understood that when the first photoelectric conversion element 12 and the second photoelectric conversion element 14 are self-supporting structures, the substrate 110 can be omitted. . The area of the surface of the substrate 110 for supporting the first photoelectric conversion element 12 and the second photoelectric conversion element 14 may be larger than, equal to, or smaller than the area of one surface of the first photoelectric conversion element 12 and the second photoelectric conversion element 14. The material of the substrate 110 is an insulating material and may be glass, ceramic, polymer or wood material. The material of the substrate 110 may also be a conductive metal material or the like whose surface is coated with an insulating material. Preferably, the material of the substrate 110 should not substantially absorb infrared light or absorb infrared light at all. The thickness of the substrate 110 is not limited, preferably 1 mm to 2 cm. In the present embodiment, the substrate 110 has a thickness of 5 mm, and the substrate 110 is used to support the first photoelectric conversion element 12 and the second photoelectric conversion element 14. The area of the area of the surface is larger than the total area of the first photoelectric conversion element 12 and the second photoelectric conversion element 14. [0010] The first photoelectric conversion element 12 is divided into two regions, a first illumination region 12a and a first non-illumination region 12b. The size of the first illumination area 12a and the first non-illumination area 12b is not limited, and the area of the first illumination area 12a may be larger than, smaller than or equal to the area of the first non-illumination area 12b. The second photoelectric conversion element 14 is divided into two regions, respectively 099121983 Form No. A0101 Page 5 / Total 30 pages 0992038720-0 201202553 is the first illumination area 14 a and the second non-illumination area 14 b. The size of the second illumination area 14a and the second non-illumination area 14b is not limited, and the area of the second illumination area 14a may be larger than, smaller than or equal to the area of the second non-illumination area 14b. In the present embodiment, the area of the first illumination area 丨 2a is equal to the area of the first non-illumination area 12b, and the area of the second illumination area 14a is equal to the area of the second non-illumination area 14b. [0011] The first illumination region 12a of the first photoelectric conversion element 12 is for receiving light energy 'converting light energy into thermal energy' to raise the temperature of the first illumination region 丨2a to the first illumination region 12a. A temperature difference occurs between the first and the non-illuminated area 1 2b' using the thermoelectric effect, in the first photoelectric conversion element! A potential difference is generated at both ends of 2. The light energy may be sunlight, visible light, infrared light, ultraviolet light, electromagnetic waves, or the like. The material of the first photoelectric conversion element j 2 is a hole conduction type material, and the second photoelectric conversion element 14 is an electron conductive type material. The second illumination region 14a of the second photoelectric conversion element 14 is for receiving light energy, and converting the light energy into thermal energy to raise the temperature of the second illumination region 14a, thereby being in the second illumination region 14a and the second non- A temperature difference is generated between the illumination regions 14b, and a potential difference is generated at both ends of the second photoelectric conversion element 14 by the thermoelectric effect. When the light illuminates the first illumination area 12a and the second illumination area 14a, the first illumination area 12a absorbs light energy. When the temperature rises, according to the principle of thermoelectric conversion, since the first photoelectric conversion element 12 is a hole-conducting type material, The first illumination region 12a is higher in electrical potential than the first non-illuminated region 12b; the second illumination region 14a absorbs light energy and the temperature is increased. The potential of the second illumination area 14a is lower than the second non-illumination area 14t^. The first non-illuminated area is electrically connected due to the first illumination area 099121983, form number A0101, page 6 of 30, 0992038720-0 201202553 12a, and the first non-illuminated area. The potential difference between 12b and the second non-illuminated area 14b is equal to the potential difference between the first illumination area 12a and the first non-illuminated area 1 2 b and the potential difference between the second illumination area 14 a and the second non-illuminated area 14 b with. [0012] The materials of the first photoelectric conversion element 12 and the second photoelectric conversion element 14 should satisfy a large temperature difference electric conversion coefficient, have strong light absorption performance, and have a small heat capacity. Preferably, the first photoelectric conversion element 12 and the second photoelectric conversion element 14 are each a semiconductor material. [0013] The first photoelectric conversion element 12 is a carbon nanotube layer, and the carbon nanotube layer includes a plurality of uniformly distributed carbon nanotubes, and the carbon nanotubes are hole-type conductive materials. The carbon nanotubes are absolutely black, so they have very strong light absorption properties. The carbon nanotube may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotube layer may be a pure carbon nanotube structure composed of a carbon nanotube. When the carbon nanotube layer comprises only a single-walled carbon nanotube, the carbon nanotube layer is a P-type semiconductor layer, and the carbon nanotube layer comprises a double-walled carbon nanotube or a multi-walled nano-carbon In the tube, the carbon nanotube layer is a conductor layer. Preferably, the carbon nanotube layer is a structure composed of a single-walled carbon nanotube. The single-walled carbon nanotubes are semiconducting, and the thermoelectric conversion is relatively large. [0014] The carbon nanotubes in the carbon nanotube layer can pass between the van der Waals (

Van der Waals attractive force)緊密結合。該奈 米碳管層中的奈米碳管為無序或有序排列。這裏的無序 排列指奈米碳管的排列方向無規律,這裏的有序排列指 至少多數奈米碳管的排列方向具有一定規律。具體地, 當奈米碳管層包括無序排列的奈米碳管時,奈米碳管相 099121983 表單編號A0101 第7頁/共30頁 0992038720-0 201202553 互纏繞或者各向同性排列;當奈米碳管層包括有序排列 的奈米碳管時,奈米碳管沿一個方向或者複數個方向擇 優取向排列。所述奈米碳管層的厚度為100奈米至5毫米 。所述奈米碳管層的單位面積熱容可以小於2x1 (Γ4焦耳 每平方厘米開爾文,甚至可以小於等於1. 7xl(T6焦耳每 平方厘米開爾文。由於奈米碳管的熱容較小,所以該奈 米碳管層狀結構具有較快的熱回應速度,即在吸收光能 之後能快速的升高溫度,從而在第一光照區域12a和第一 非光照區域12b之間形成較大的溫度差,進而產生較大的 電勢差。 [0015] 所述奈米碳管層可包括至少一層奈米碳管膜。當奈米碳 管層包括多層奈米碳管膜時,該多層奈米碳管膜可層疊 設置或者並列設置。所述奈米碳管膜可以為一奈米碳管 拉膜。該奈米碳管拉膜為從奈米碳管陣列中直接拉取獲 得的一種奈米碳管膜。每一奈米碳管膜係由若干奈米碳 管組成的自支撐結構。所述若干奈米碳管為基本沿同一 方向擇優取向排列。所述擇優取向係指在奈米碳管膜中 大多數奈米碳管的整體延伸方向基本朝同一方向。而且 ,所述大多數奈米碳管的整體延伸方向基本平行於奈米 碳管膜的表面。進一步地,所述奈米碳管膜中多數奈米 碳管係通過凡得瓦力首尾相連。具體地,所述奈米碳管 膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米 碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾 相連。當然,所述奈米碳管膜中存在少數隨機排列的奈 米$炭管,這些奈米碳管不會對奈米破管膜中大多數奈米 099121983 表單編號A0101 第8頁/共30頁 0992038720-0 201202553 碳管的整體取向排職成明顯影響。所述自切為奈米 碳管膜不需要大面積的載體支#,而只要相對兩邊提供 支標力即能整體上懸空而保持自身膜狀狀態,即將該奈 米碳管膜置於(或固定於)間隔-固定距離設置的兩: 支撐體上時,位於兩個支撐體之_奈織管臈能夠懸 空保持自身膜狀狀態。所述自支稽主要通過奈米碳管膜 中存在連續的通過凡得瓦力首尾相連延伸排列的奈米碳 管而實現。 Ο 剛具體地,所述奈米碳管膜中基本朝同-方向延伸的多數 奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者 並非完全按照延伸方向上排列,可以適當的偏離延伸方 向。因此’不能排除奈米碳管膜的基本朝同-方向延伸 的多數奈米碳管中並觸奈米碳管之㈣歸在部分接 觸。 [00Γ7]所述奈米碳管拉膜的厚度為〇· 5奈米至1〇〇微米,寬度與 ~ *有關 ’長度 〇 不限。 [0018]當所述奈米碳管層狀結構採用奈米碳管拉膜時,其可以 包括層疊設置的多層奈米碳管拉膜,且相鄰兩層奈米碳 管拉膜中的奈米碳管之間沿各層中奈米碳管的軸向形成 一父又角度α,α大於等於〇度小於等於9〇度(〇» “ 90 )。所述複數個奈米碳管拉骐之間或一個奈米碳管拉 膜之中的相鄰的奈米碳管之間具有間隙,從而在奈米碳 管結構中形成複數個微孔,微孔的孔徑約小於1 〇微米。 099121983 表單編號Α0101 第9頁/共30頁 0992038720-0 201202553 [0019]所述奈米碳管膜還可以為一奈米碳管絮化膜。所述奈米 碳管絮化膜為通過一絮化方法形成的奈米碳管膜。該奈 米碳·管絮化膜包括相互纏繞且均勻分佈的奈米碳管。所 述奈米碳管之間通過凡得瓦力相互吸引、纏繞,形成網 路狀結構。所述奈米碳管絮化膜各向同性。所述奈米碳 管絮化膜的長度和寬度不限。由於在奈米碳管絮化膜中 ,奈米碳管相互纏繞,因此該奈米碳管絮化膜具有很好 的柔韌性,且為一自支撐結構,可以彎曲折疊成任意形 狀而不破裂。所述奈米碳管絮化膜的面積及厚度均不限 ’厚度為1微米至1毫米。 [〇〇2〇]所述奈米碳管膜還可以為通過碾壓一奈米碳管陣列形成 的奈米碳管碾壓膜。該奈米碳管碾壓膜包括均勻分佈的 奈米碳管,奈米碳管沿同一方向或不同方向擇優取向排 列。奈米碳管也可以係各向同性的。所述奈米碳管礙壓 膜中的奈米碳管相互部分交疊,並通過凡得瓦力相互吸 引,緊岔結合。所述奈米碳管礙壓聽中的奈米碳管與形 成奈米碳管陣列的生長基底的表面形成一夾角冷,其中 ,召大於等於〇度且小於等於15度(〇 β 15。)。依據 碾壓的方式不同,該奈米碳管礙壓膜中的奈米碳管具有 不同的排列形式。當沿同一方向碾壓時,奈米碳管沿一 固定方向擇優取向排列。可以理解,當沿不同方向碾壓 時,奈米碳管可沿複數個方向擇優取向排列。該奈米碳 管碾壓膜厚度不限,優選為為丨微米至丨毫米。該奈米碳 管碾壓膜的面積不限,由碾壓出膜的奈米碳管陣列的大 小決定。當奈米碳管陣列的尺寸較大時,可以碾壓制得 099121983 表單編號Α0101 第10頁/共30頁 0992038720-0 201202553 較大面積的奈米碳管碾壓膜。本實施例中,所述光電轉 換元件106為一純的奈米碳管層,該奈米碳管層由單壁奈 米碳管構成,厚度為1mm。單壁奈米碳管為Ρ型半導體材 料,其具有較大的溫差電轉換吸收和較強的光吸收性能 〇 [0021] Ο 所述第二光電轉換元件14可以為金屬材料或N型半導體材 料。所述N型半導體包括N型矽、N型碲化鉍、N鉍或者N型 奈米碳管複合材料層。所述N型奈米碳管複合材料層可以 由上述奈米碳管層和多胺聚合物複合形成。該多胺聚合 物可以為多聚乙二亞胺、多聚乙二胺、曱基多胺聚乙烯 醚等。本實施例中,所述第二光電轉換元件14的材料為 多聚乙二胺與奈米碳管層形成的複合材料。 [0022]Van der Waals attractive force). The carbon nanotubes in the carbon nanotube layer are disordered or ordered. The disordered arrangement here means that the arrangement direction of the carbon nanotubes is irregular, and the ordered arrangement here means that at least most of the arrangement of the carbon nanotubes has a certain regularity. Specifically, when the carbon nanotube layer includes a disordered arrangement of carbon nanotubes, the carbon nanotube phase 099121983 Form No. A0101 Page 7 / Total 30 Page 0992038720-0 201202553 Intertwined or isotropically arranged; When the carbon nanotube layer comprises an ordered arrangement of carbon nanotubes, the carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. The carbon nanotube layer has a thickness of from 100 nm to 5 mm. The heat capacity per unit area of the carbon nanotube layer may be less than 2x1 (Γ4 joules per square centimeter Kelvin, or even less than or equal to 1. 7xl (T6 joules per square centimeter Kelvin. Since the heat capacity of the carbon nanotubes is small, The carbon nanotube layered structure has a faster thermal response speed, that is, a temperature can be rapidly increased after absorbing light energy, thereby forming a larger temperature between the first illumination region 12a and the first non-illumination region 12b. Poor, which in turn produces a large potential difference. [0015] The carbon nanotube layer may include at least one layer of carbon nanotube film. When the carbon nanotube layer comprises a plurality of layers of carbon nanotube film, the multilayer carbon nanotube The membrane may be stacked or arranged in parallel. The carbon nanotube membrane may be a carbon nanotube membrane. The carbon nanotube membrane is a carbon nanotube obtained by directly pulling from a carbon nanotube array. Membrane. Each nanocarbon tube membrane is a self-supporting structure composed of a plurality of carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along substantially the same direction. The preferred orientation refers to a carbon nanotube membrane. The overall extension of most of the carbon nanotubes The directions are substantially in the same direction. Moreover, the overall extension direction of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube film pass through The wattages are connected end to end. Specifically, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction and the carbon nanotubes adjacent in the extending direction pass through The watts are connected end to end. Of course, there are a few randomly arranged nanometer carbon tubes in the carbon nanotube membrane. These carbon nanotubes do not have the majority of the nanotube 099121983 form number A0101 on the nanotube membrane. 8 pages / total 30 pages 0992038720-0 201202553 The overall orientation of the carbon tube is obviously affected. The self-cutting of the carbon nanotube film does not require a large area of the carrier branch #, but as long as the opposite sides provide the supporting force As a whole, it is suspended to maintain its own membranous state, that is, when the carbon nanotube film is placed (or fixed) on the two fixed-distance distances: the support body, the lye tube can be suspended in the two supports. Self-membranous state It is mainly realized by the presence of continuous carbon nanotubes extending through the end of the van der Waals force in the carbon nanotube film. 刚 Just specifically, the majority of the carbon nanotube film extends substantially in the same direction The carbon nanotubes are not absolutely linear and can be bent properly; or they are not completely aligned in the direction of extension, and can be appropriately deviated from the direction of extension. Therefore, the majority of the carbon nanotube film can not be excluded from the same direction. The carbon nanotubes in the carbon nanotubes are in partial contact with the carbon nanotubes. [00Γ7] The thickness of the carbon nanotube film is 〇·5 nm to 1 μm, and the width is related to the length of ~*. [0018] When the carbon nanotube layered structure is formed by a carbon nanotube film, it may include a laminated multilayer carbon nanotube film, and two adjacent layers of carbon nanotubes are pulled. The carbon nanotubes in the membrane form a parent angle α along the axial direction of the carbon nanotubes in each layer, and α is greater than or equal to 9 degrees (〇» "90". a gap is formed between the plurality of carbon nanotubes or between adjacent carbon nanotubes in a carbon nanotube film, thereby forming a plurality of micropores in the carbon nanotube structure. The pores have a pore size of less than about 1 μm. 099121983 Form No. Α0101 Page 9 of 30 0992038720-0 201202553 [0019] The carbon nanotube film may also be a carbon nanotube film. The carbon nanotube flocculation membrane is a carbon nanotube membrane formed by a flocculation method. The nanocarbon tube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed. The carbon nanotubes are attracted and entangled by van der Waals forces to form a network structure. The carbon nanotube flocculation membrane is isotropic. The length and width of the carbon nanotube film are not limited. Since the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded into any shape without breaking. . The area and thickness of the carbon nanotube flocculation film are not limited to a thickness of 1 micrometer to 1 millimeter. [〇〇2〇] The carbon nanotube film may also be a carbon nanotube rolled film formed by rolling an array of carbon nanotubes. The carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are arranged in the same direction or in different directions. The carbon nanotubes can also be isotropic. The carbon nanotubes in the carbon nanotubes are partially overlapped with each other and are attracted to each other by van der Waals force, and are tightly bonded. The carbon nanotubes in the carbon nanotubes form an angle of cold with the surface of the growth substrate forming the carbon nanotube array, wherein the sum is greater than or equal to 15 degrees and less than or equal to 15 degrees (〇β 15). . Depending on the way of rolling, the carbon nanotubes in the nano-carbon nanotubes have different arrangements. When rolled in the same direction, the carbon nanotubes are arranged in a preferred orientation along a fixed direction. It can be understood that when crushed in different directions, the carbon nanotubes can be aligned in a plurality of directions. The thickness of the carbon nanotube rolled film is not limited, and is preferably from 丨micron to 丨mm. The area of the carbon nanotube rolled film is not limited, and is determined by the size of the carbon nanotube array that is rolled out of the film. When the size of the carbon nanotube array is large, it can be crushed and pressed. 099121983 Form No. Α0101 Page 10 of 30 0992038720-0 201202553 Large area of carbon nanotube rolled film. In this embodiment, the photoelectric conversion element 106 is a pure carbon nanotube layer, and the carbon nanotube layer is composed of a single-walled carbon nanotube having a thickness of 1 mm. The single-walled carbon nanotube is a bismuth type semiconductor material, which has large temperature difference electric conversion absorption and strong light absorption performance. [0021] 第二 The second photoelectric conversion element 14 may be a metal material or an N-type semiconductor material. . The N-type semiconductor includes an N-type germanium, an N-type germanium telluride, an N-type or an N-type carbon nanotube composite layer. The N-type carbon nanotube composite layer may be formed by combining the above-mentioned carbon nanotube layer and a polyamine polymer. The polyamine polymer may be polyethylenimine, polyethylenediamine, mercaptopolyamine polyvinyl ether or the like. In this embodiment, the material of the second photoelectric conversion element 14 is a composite material formed of a polyethylenediamine and a carbon nanotube layer. [0022]

該第一電極162、第二電極164均為線狀或帶狀結構,分 別設置於第一光電轉換元件12的兩端。該第一電極162、 第二電極164可以設置於該第一光電轉換元件12的表面, 分別與第一光電轉換元件12的兩個邊齊平。該第一電極 162、第二電極164也可以設置於該第一光電轉換元件12 的側面。該第三電極166、第四電極168均為為線狀或帶 狀結構,分別設置於第二光電轉換元件14的兩端。該第 三電極166、第四電極168可以設置於該第二光電轉換元 件14的表面,分別與第二光電轉換元件14的兩個邊齊平 。該第三電極166、第四電極168也可以設置於該第二光 電轉換元件14的侧面。該第一電極162、第二電極164、 第三電極166和第四電極168可以分別為一層導電膜。該 導電膜的材料可以為金屬、合金、銦錫氧化物(ITO)、 099121983 表單編號A0101 第11頁/共30頁 0992038720-0 201202553 録錫氧化物(ΑΤΟ)、導電銀膠、導電聚合物或導電性奈 米碳管等。該金屬或合金材料可以為鋁、銅、鎢、淘、 金、欽、鉉、把、鏠或其任意組合的合金。本實施例中 ,第一電極162、第二電極164、第三電極166和第四電 極168分別為導電銀漿印刷形成的線狀結構,第一電極 162位於第一光照區域12a並與第一光電轉換元件12的一 個邊齊平’第二電極164位於第一非光照區域i2b,並與 第一光電轉換元件12的另一個邊齊平。第三電極166位於 第二光照區域14a並與第二光電轉換元件14的一個邊齊平 ’第四電極168位於第.二非.光照.辱域1 _4七.,...並與第二光電 轉換元件14的另一個邊齊平。所述第一電極162與第三電 極166通過一導電片160電連接,從而使所述第一光照區 域12a與第二光照區域14a通過第一電極162和第三電極 166電連接’第二電極164與第四電極168分別為該光電 轉換裝置10的電壓輸出端。 [0023] 5玄光電轉換裝置10可進一步包括一第一電極引線(圖未 示)及一第二電極引線(圖未示)。第一電極引線與第 二電極164電連接。第二電極引線與第四電極168電連接 。第二電極引線一部分位於覆蓋結構1〇8内部,一部分延 伸至覆蓋結構108的外部。第一電極引線和第二電極引線 可使第二電極和第四電極方便地向外輸出電壓或者與外 部電連接。 所述覆蓋結構108用於覆蓋該光電轉換模組1〇〇的第一非 光照區域12b和第二非光照區域14b,防止第一非光照區 域1 2b和第一非光照區域丨4b被光照射到。覆蓋結構1 〇8 099121983 表單編號A0101 第12頁/共30頁 0992038720-0 [0024] 201202553 ΟThe first electrode 162 and the second electrode 164 are both linear or strip-shaped and are disposed at both ends of the first photoelectric conversion element 12, respectively. The first electrode 162 and the second electrode 164 may be disposed on the surface of the first photoelectric conversion element 12 and are respectively flush with the two sides of the first photoelectric conversion element 12. The first electrode 162 and the second electrode 164 may be disposed on the side surface of the first photoelectric conversion element 12. The third electrode 166 and the fourth electrode 168 are both linear or strip-shaped, and are respectively disposed at both ends of the second photoelectric conversion element 14. The third electrode 166 and the fourth electrode 168 may be disposed on the surface of the second photoelectric conversion element 14 and are respectively flush with the two sides of the second photoelectric conversion element 14. The third electrode 166 and the fourth electrode 168 may be provided on the side surface of the second photoelectric conversion element 14. The first electrode 162, the second electrode 164, the third electrode 166, and the fourth electrode 168 may each be a conductive film. The material of the conductive film may be metal, alloy, indium tin oxide (ITO), 099121983 Form No. A0101 Page 11 / Total 30 Page 0992038720-0 201202553 Recorded tin oxide (ΑΤΟ), conductive silver paste, conductive polymer or Conductive carbon nanotubes, etc. The metal or alloy material may be an alloy of aluminum, copper, tungsten, pan, gold, chin, tantalum, niobium, tantalum or any combination thereof. In this embodiment, the first electrode 162, the second electrode 164, the third electrode 166, and the fourth electrode 168 are respectively formed by a conductive silver paste, and the first electrode 162 is located in the first illumination region 12a and is first. One side of the photoelectric conversion element 12 is flush 'the second electrode 164 is located in the first non-illuminated area i2b and is flush with the other side of the first photoelectric conversion element 12. The third electrode 166 is located in the second illumination region 14a and is flush with one side of the second photoelectric conversion element 14. The fourth electrode 168 is located in the second non-lighting, humiliating domain 1 _4 VII., ... and the second The other side of the photoelectric conversion element 14 is flush. The first electrode 162 and the third electrode 166 are electrically connected through a conductive sheet 160, so that the first illumination region 12a and the second illumination region 14a are electrically connected to the second electrode through the first electrode 162 and the third electrode 166. The 164 and the fourth electrode 168 are voltage output ends of the photoelectric conversion device 10, respectively. [0023] The 5th photoelectric conversion device 10 may further include a first electrode lead (not shown) and a second electrode lead (not shown). The first electrode lead is electrically connected to the second electrode 164. The second electrode lead is electrically connected to the fourth electrode 168. A portion of the second electrode lead is located inside the cover structure 1〇8 and a portion extends outside the cover structure 108. The first electrode lead and the second electrode lead allow the second electrode and the fourth electrode to conveniently output a voltage to the outside or to be electrically connected to the outside. The cover structure 108 is configured to cover the first non-illuminated area 12b and the second non-illuminated area 14b of the photoelectric conversion module 1〇〇, preventing the first non-illuminated area 1 2b and the first non-illuminated area 丨 4b from being illuminated by light. To. Cover Structure 1 〇8 099121983 Form No. A0101 Page 12 of 30 0992038720-0 [0024] 201202553 Ο

[0025] 099121983 的大小應確保其不會覆蓋第一光照區域12a和第二光照區 域14a。所述覆蓋結構108的材料不限,可以為絕緣材料 也可以為導電材料。所述覆蓋結構108的材料可選擇為導 電材料,如金屬,也可為絕緣材料,如塑膠、塑膠等。 所述金屬包括不錄鋼、碳鋼、銅、鎳、鈦、鋅及銘等中 的一種或多種。可以理解的係,當覆蓋結構108的材料為 絕緣材料時,其可與第一非光照區域12b和第二非光照區 域14b直接接觸,覆蓋結構108可直接覆蓋在第一非光照 區域12b和第二非光照區域14b的表面。當覆蓋結構108 的材料為導電材料時,應確保覆蓋結構108與第一非光照 區域12b和第二非光照區域14b間隔絕緣設置。本實施例 中,所述覆蓋結構108為具有一容置空間的罩體。覆蓋結 構108的四周固定於基底110的表面。所述第一非光照區 域12b和第二非光照區域14b設置於該覆蓋結構108的容 ’ 置空間内部,並與該覆蓋結構108間隔一定距離設置。所 述覆蓋結構108的固定方式不限,可通過扣合、夾緊、螺 栓、黏結、鉚接等方式固定,本實施例中,覆蓋結構108 通過四個螺孔(圖未示)固定於基底110上。由於該覆蓋 結構108與所述第一非光照區域12b和第二非光照區域 14b間隔一定空間設置,所以,該覆蓋結構108的材料可 以為導電材料。可以理解,當基底110的材料和覆蓋結構 108的材料均為絕緣材料時,所述覆蓋結構108和基底 110可以一體成型。 本發明所提供的光電轉換裝置10的第一光電轉換元件12 分為第一光照區域12a和第一非光照區域12b,第二光電 表單編號A0101 第13頁/共30頁 0992038720-0 201202553 轉換元件1 4分為第二光照區域14a和第二非光照區域14b ,通過將第一光照區域1 2a和第二光照區域14a暴露於光 照環境下,接受光照,在第一光照區域12a和第一非光照 區域12b之間產生溫度差,在第二光照區域14a和第二非 光照區域14b之間產生溫度差,利用溫差發電原理進行發 電,結構簡單,成本較低。 [0026] 請參見圖2,本發明第二實施例提供一種光電轉換裝置20 。該光電轉換裝置20包括複數個光電轉換模組100及一覆 蓋結構208。該覆蓋結構208覆蓋每個光電轉換模組100 的第一非光照區域12b及該第二非光照區域14b。 [0027] 本實施例所提供的光電轉換裝置20與第一實施例所提供 的光電轉換裝置10的結構基本相同,其不同之處在於, 本實施例所提供的光電轉換裝置20包括複數個光電轉換 模組100。該複數個光電轉換模組100相互串聯。即,該 複數個光電轉換模組100中,處於中間位置的每兩個相鄰 的光電轉換模組100中,一個光電轉換模組100的第二非 光照區域14 b與另一個光電轉換模組1 0 0的第一非光照區 域12b電連接;該複數個光電轉換模組100中,處於兩端 的兩個光電轉換模組100,一個光電轉換模組100的第一 電極162作為輸出端,另一個光電轉換模組100的第四電 極16 8作為輸出端。本實施例中,處於中間位置的每兩個 相鄰的光電轉換模組100中,一個光電轉換模組100的第 四電極168與另一個光電轉換模組100的第一電極162電 連接;處於兩端的兩個光電轉換模組100,一個光電轉換 模組100的第一電極162作為輸出端,另一個光電轉換模 099121983 表單編號A0101 第14頁/共30頁 0992038720-0 201202553 組100的第四電極168作為輸出端。每個光電轉換模組 100之間可通過導線或導電片實現電連接。 [0028] 本實施例中,所述光電轉換裝置20包括12個光電轉換模 組100。圖3為採用不同能量的光能照射光電轉換裝置所 產生的電壓與光能量大小的關係,該光為紅外線光。所 述光電轉換裝置20的輸出電壓與光能的關係基本為直線 [0029] 本實施例所提供的光電轉換裝置20通過將複數個光電轉 0 換模組100串聯,可以將每個光電轉換模組100產生的電 動勢串聯,進而在輸出端得到更大的電勢差。 [0030] 請參見圖4,本發明第三實施例提供了一種光電轉換裝置 30。該光電轉換裝置30包括一光電轉換模組100及一絕緣 體310。所述光電轉換模組100設置於所述絕緣體310的 表面。本實施例所提供的光電轉換裝置30的結構與第一 實施例所提供的光電轉換裝置30的結構基本相同,其不 同之處在於,該光電轉換裝置30不包括覆蓋結構及基底 Ο ,且該光電轉換裝置30包括一絕緣體310。 [0031] 該第一光電轉換元件12經過彎折形成一第一光照區域12a 及一第一非光照區域12b,該第一光照區域12a和第一非 光照區域12b彎折後的夾角小於等於90度,比如彎折成U 型或L型或者U型和L型之間的任意角度的形狀。該第二光 電轉換元件14經過彎折形成一第二光照區域14a及一第二 非光照區域14b,該第二光照區域14a和第二非光照區域 14b彎折後的夾角小於等於90度,比如彎折成U型或L型或 099121983 表單編號A0101 第15頁/共30頁 0992038720-0 201202553 者U型和L型之間的任意角度的形狀。此時,當採用光照 射第一光照區域12a和第二光照區域14&時,第一非光照 區域12b及第二非光照區域14b被擔住,從而光線無法= 射該非光照區域。該絕緣體310設置在第—光照區域i2a 和第一非光照區域12b之間及第二光照區域Ua和第二非 光照區域14bm其雜可配合第_光電轉換元件咖 第二光電轉換元件14的彎曲形狀。當第—光電轉換元件 12和第二光電轉換元件14不能自己保持—定形狀時該 絕緣體310可以作為基底來支揮該第一光電轉換元件12和 第二光電轉換元件14。本實施例中’絕緣體31〇為一基底 結構,所述第一光電轉換元件12和第二光電轉換元件i 4 設置於該絕緣體310的表面。 [0032] [0033] 所述絕緣體310包括一第一表面3102及一第二表面31〇4 ’第一表面3102與第二表面3104之間所形成一夾角α, α大於等於〇度小於等於90度〇 α大於〇度小於9〇度。當 α等於0度時’第一表面3102和苐二表面3104係兩個相 對的表面,即可以理解為,第二表面3104為第一表面 3102的背面。本實施例中,α等於45度。所述第一光電 轉換元件12的第一光照區域12a及第二光電轉換元件14的 第二光照區域14a設置於絕緣體310的第一表面3102上, 所述第一光電轉換元件12的第一非光照區域12b及第二光 電轉換元件14的第二非光照區域14b設置於絕緣體310的 第二表面3104上’所述非光照區域3064設置於絕緣體 310的第二表面3104。 進一步地,所述光電轉換裝置30進一步包括一反射膜( 099121983 表單編號A0101 第16頁/共30頁 0992038720-0 201202553 Ο [0034] [0035][0025] 099121983 should be sized to ensure that it does not cover the first illumination area 12a and the second illumination area 14a. The material of the covering structure 108 is not limited and may be an insulating material or a conductive material. The material of the covering structure 108 may be selected from a conductive material such as a metal or an insulating material such as plastic or plastic. The metal includes one or more of unrecorded steel, carbon steel, copper, nickel, titanium, zinc, and inscriptions. It can be understood that when the material of the cover structure 108 is an insulating material, it can directly contact the first non-illuminated area 12b and the second non-illuminated area 14b, and the cover structure 108 can directly cover the first non-illuminated area 12b and the first The surface of the two non-illuminated regions 14b. When the material of the cover structure 108 is a conductive material, it should be ensured that the cover structure 108 is spaced apart from the first non-illuminated area 12b and the second non-illuminated area 14b. In this embodiment, the covering structure 108 is a cover body having an accommodating space. The periphery of the cover structure 108 is fixed to the surface of the substrate 110. The first non-illuminated area 12b and the second non-illuminated area 14b are disposed inside the space of the covering structure 108 and are disposed at a distance from the covering structure 108. The fixing structure of the covering structure 108 is not limited, and can be fixed by fastening, clamping, bolting, bonding, riveting, etc. In the embodiment, the covering structure 108 is fixed to the base 110 through four screw holes (not shown). on. Since the cover structure 108 is spaced apart from the first non-illuminated area 12b and the second non-illuminated area 14b, the material of the cover structure 108 can be a conductive material. It will be understood that when the material of the substrate 110 and the material of the cover structure 108 are both insulating materials, the cover structure 108 and the substrate 110 may be integrally formed. The first photoelectric conversion element 12 of the photoelectric conversion device 10 provided by the present invention is divided into a first illumination region 12a and a first non-illumination region 12b, and a second photoelectric form number A0101 page 13/total 30 page 0992038720-0 201202553 conversion element 1 4 is divided into a second illumination area 14a and a second non-illumination area 14b. By exposing the first illumination area 1 2a and the second illumination area 14a to the illumination environment, the illumination is received, in the first illumination area 12a and the first non- A temperature difference is generated between the illumination regions 12b, a temperature difference is generated between the second illumination region 14a and the second non-illumination region 14b, and power generation is performed by the principle of temperature difference power generation, and the structure is simple and the cost is low. Referring to FIG. 2, a second embodiment of the present invention provides a photoelectric conversion device 20. The photoelectric conversion device 20 includes a plurality of photoelectric conversion modules 100 and a cover structure 208. The cover structure 208 covers the first non-illuminated area 12b and the second non-illuminated area 14b of each photoelectric conversion module 100. [0027] The photoelectric conversion device 20 provided in this embodiment has substantially the same structure as the photoelectric conversion device 10 provided in the first embodiment, and the difference is that the photoelectric conversion device 20 provided in this embodiment includes a plurality of photoelectric devices. Conversion module 100. The plurality of photoelectric conversion modules 100 are connected in series with each other. That is, in each of the plurality of photoelectric conversion modules 100, in each of the two adjacent photoelectric conversion modules 100 in the intermediate position, the second non-illuminated area 14 b of one photoelectric conversion module 100 and another photoelectric conversion module The first non-illuminated area 12b of the photoelectric conversion module 100 is electrically connected to the two photoelectric conversion modules 100 at the two ends, and the first electrode 162 of one photoelectric conversion module 100 is used as an output end. The fourth electrode 168 of one photoelectric conversion module 100 serves as an output terminal. In this embodiment, in each of the two adjacent photoelectric conversion modules 100 in the intermediate position, the fourth electrode 168 of one photoelectric conversion module 100 is electrically connected to the first electrode 162 of the other photoelectric conversion module 100; Two photoelectric conversion modules 100 at both ends, the first electrode 162 of one photoelectric conversion module 100 serves as an output terminal, and another photoelectric conversion module 099121983 Form No. A0101 Page 14/Total 30 Page 0992038720-0 201202553 Group 4 of the fourth Electrode 168 serves as an output. Each of the photoelectric conversion modules 100 can be electrically connected by wires or conductive sheets. [0028] In the embodiment, the photoelectric conversion device 20 includes 12 photoelectric conversion modules 100. Fig. 3 is a graph showing the relationship between the voltage generated by irradiating a photoelectric conversion device with light energy of different energies and the amount of light energy, which is infrared light. The relationship between the output voltage of the photoelectric conversion device 20 and the light energy is substantially a straight line. [0029] The photoelectric conversion device 20 provided in this embodiment can connect each photoelectric conversion mode by connecting a plurality of photoelectric conversion modules 100 in series. The electromotive forces generated by group 100 are connected in series, which in turn results in a larger potential difference at the output. Referring to FIG. 4, a third embodiment of the present invention provides a photoelectric conversion device 30. The photoelectric conversion device 30 includes a photoelectric conversion module 100 and an insulator 310. The photoelectric conversion module 100 is disposed on a surface of the insulator 310. The structure of the photoelectric conversion device 30 provided in this embodiment is substantially the same as that of the photoelectric conversion device 30 provided in the first embodiment, except that the photoelectric conversion device 30 does not include a cover structure and a substrate, and The photoelectric conversion device 30 includes an insulator 310. [0031] The first photoelectric conversion element 12 is bent to form a first illumination area 12a and a first non-illumination area 12b. The angle between the first illumination area 12a and the first non-illumination area 12b is less than or equal to 90. Degrees, such as a shape bent at any angle between U or L or U and L. The second photoelectric conversion element 14 is bent to form a second illumination area 14a and a second non-illumination area 14b. The angle between the second illumination area 14a and the second non-illumination area 14b is less than or equal to 90 degrees. Bend into U or L or 099121983 Form No. A0101 Page 15 / Total 30 Page 0992038720-0 201202553 The shape of any angle between U and L. At this time, when the first illumination area 12a and the second illumination area 14& are illuminated by the illumination, the first non-illumination area 12b and the second non-illumination area 14b are held, so that the light cannot be emitted to the non-illuminated area. The insulator 310 is disposed between the first illumination region i2a and the first non-illumination region 12b and the second illumination region Ua and the second non-illumination region 14bm can be matched with the bending of the second photoelectric conversion element 14 of the first photoelectric conversion element shape. The insulator 310 can serve as the substrate to support the first photoelectric conversion element 12 and the second photoelectric conversion element 14 when the first photoelectric conversion element 12 and the second photoelectric conversion element 14 cannot maintain their own shape. In the present embodiment, the 'insulator 31' is a base structure, and the first photoelectric conversion element 12 and the second photoelectric conversion element i 4 are disposed on the surface of the insulator 310. [0033] The insulator 310 includes a first surface 3102 and a second surface 31〇4. An angle α is formed between the first surface 3102 and the second surface 3104, and α is greater than or equal to 90 degrees or less. Degree 〇α is greater than 〇 degree less than 9 degrees. When α is equal to 0 degrees, the first surface 3102 and the second surface 3104 are two opposite surfaces, i.e., the second surface 3104 is the back surface of the first surface 3102. In this embodiment, α is equal to 45 degrees. The first illumination region 12a of the first photoelectric conversion element 12 and the second illumination region 14a of the second photoelectric conversion element 14 are disposed on the first surface 3102 of the insulator 310, and the first non-first of the first photoelectric conversion element 12 The illumination region 12b and the second non-illuminated region 14b of the second photoelectric conversion element 14 are disposed on the second surface 3104 of the insulator 310. The non-illuminated region 3064 is disposed on the second surface 3104 of the insulator 310. Further, the photoelectric conversion device 30 further includes a reflective film (099121983 Form No. A0101, page 16 / page 30 0992038720-0 201202553 Ο [0035]

圖未示)毅置於第一光照區域12a、第二光照區域14a和 絕緣體31〇之間°所述反射膜用於反射第一光照區域12a 和第二光照區域14a所產生的熱量和光能,防止該熱量和 光能被絕緣艘310吸收。由於第一光照區域123和第二光 照區域14a的熱量以紅外線或遠紅外線的形式向外傳播’ 因此,所述反射膜應對紅外線和遠紅外線具有較高的反 射效率,所述反射膜的材料為絕緣材料’可以為1^〇2- Ag-TiO、ZnS_Ag-ZnS、AINO-Ag-AIN、Ta2〇3-Si〇2 2 或Nb 0 -Si〇2。該反射膜通過塗敷或錢射的方式形成於 2 3 絕緣體310的表面。所述反射膜的厚度不限’優選地’反 射膜的厚度為.1 〇微米至5〇〇微米。.' 可以理解,本實施例所提供的光電轉換裝置30也可以包 括複數個相互串聯結構光電轉換模組100。每個光電轉換 模組100均按照上述方式相互並列設置於絕緣體310上。 請參見圖5及6 ’本發明第四實施例提供了 一種光電轉換 裝置40。該光電轉換裝置40包括----光電轉換模組100及 一覆蓋結構408。本實施例所提供的光電轉換裝置40的結 構與第一實施例所提供的光電轉換裝置10的結構基本相 同’其不同之處在於覆蓋結構408的結構,從而本實施例 的光電轉換裝置40不需要單獨的基底。 [0036] 所述覆蓋結構408為一具有中空結構的外殼,該光電轉換 模組100設置於該覆蓋結構408内部。該覆蓋結構408包 括一開孔區4086,該光電轉換模組1〇〇的第一光照區域 12a及第二光照區域i4a正對該開孔區4086設置,並可以 通過該開孔區4086接受光能。該光電轉換模組的第一非 099121983 表單編號A0101 第17頁/共30頁 0992038720-0 201202553 光照區域12b及第二非光照區域14b設置於該覆蓋結構 408的内部’並被覆蓋結構408所覆蓋。所述覆蓋結構 408的整體形狀不限’可以係中空的立方體、球體或圓柱 體等等。 [0037] 具體的,本實施例中,請參見圖6,該覆蓋結構408為一 立方體結構,其包括一上基板4082、一下基板4084及四 個侧板(圖未標)。所述探測元件406設置於該下基板 4084的表面’並正對上基板4082。所述上基板4082包括 一開孔區4086,該開孔區4086的面積小於該上基板4082 。所述開孔區4 0 8 6正對該第一光照區域12 a及第二光照區 域14a。該開孔區4086可以為一個大的開口,也可以由複 數個小的開口組成。本實施例中,所述開孔區4086為一 栅網結構,包括複數個網孔》所述探測元件406的光照區 域4062通過該複數個網孔接受光能。 [0038] 可以理解,本實施例所提供的光電轉換裝置40也可以包 括複數個相互串聯結構光電轉換模組100。每個光電轉換 模組100均按照上述方式相互it列,置於覆蓋結構4〇8内 部0 [0039] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修錦或變化, 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0040] 圖1係本發明第一實施例提供的光電轉換裝置的結構示意 099121983 表單編號 A0101 第 18 頁/共 30 頁 0992038720-0 201202553 [0041] 圖。 圖2係本發明第二實施例提供的光電轉換裝置的結構示意 圖。 [0042] 圖3為圖2中光電轉換裝置的光照強度與輸出電壓的關係 圖。 [0043] 圖4係本發明第三實施例提供的光電轉換裝置的結構示意 圖。 ^ [0044] 〇 圖5係本發明第四實施例提供的光電轉換裝置的結構示意 圖。 [0045] 圖6係圖5中的光電轉換裝置的覆蓋結構的結構示意圖。 [0046] 【主要元件符號說明】 光電轉換裝置:10,20,30 [0047] 光電轉換模組:100 [0048] 第一光電轉換元件:12 〇 [0049] 第二光電轉換元件:14 [0050] 第一光照區域·· 12a [0051] 第一非光照區域:12b [0052] 第二光照區域:14a [0053] 第二非光照區域:14b [0054] 導電片:160 [0055] 第一電極:162 099121983 表單編號A0101 第19頁/共30頁 0992038720-0 201202553 [0056] 第二電極 :164 [0057] 第三電極 :166 [0058] 第四電極 :168 [0059] 覆蓋結構 :108 , 208 , 308 , 408 [0060] 基底:110 [0061] 第一表面 :3102 [0062] 第二表面 :3104 [0063] 絕緣體: 310 [0064] 上基板: 4082 [0065] 下基板: 4084 [0066] 開孔區· 4086 099121983 表單編號A0101 第20頁/共30頁 0992038720-0The image is disposed between the first illumination region 12a, the second illumination region 14a, and the insulator 31A. The reflective film is used to reflect heat and light energy generated by the first illumination region 12a and the second illumination region 14a. This heat and light energy is prevented from being absorbed by the insulating boat 310. Since the heat of the first illumination region 123 and the second illumination region 14a propagates outward in the form of infrared rays or far infrared rays, the reflective film has a high reflection efficiency against infrared rays and far infrared rays, and the material of the reflective film is The insulating material 'may be 1^〇2-Ag-TiO, ZnS_Ag-ZnS, AINO-Ag-AIN, Ta2〇3-Si〇2 2 or Nb 0 -Si〇2. The reflective film is formed on the surface of the insulator 310 by coating or scintillation. The thickness of the reflective film is not limited to, preferably, the thickness of the reflective film is from .1 μm to 5 μm. It can be understood that the photoelectric conversion device 30 provided in this embodiment may also include a plurality of photoelectric conversion modules 100 connected to each other in series. Each of the photoelectric conversion modules 100 is disposed side by side on the insulator 310 in the above manner. Referring to Figures 5 and 6, a fourth embodiment of the present invention provides a photoelectric conversion device 40. The photoelectric conversion device 40 includes a photoelectric conversion module 100 and a cover structure 408. The structure of the photoelectric conversion device 40 provided in this embodiment is substantially the same as that of the photoelectric conversion device 10 provided in the first embodiment. The difference is in the structure of the cover structure 408, so that the photoelectric conversion device 40 of the present embodiment does not. A separate substrate is required. [0036] The cover structure 408 is a housing having a hollow structure, and the photoelectric conversion module 100 is disposed inside the cover structure 408. The cover structure 408 includes an opening area 4068, and the first illumination area 12a and the second illumination area i4a of the photoelectric conversion module 1 are disposed in the aperture area 4068, and can receive light through the aperture area 4068. can. The first non-099121983 form number A0101 of the photoelectric conversion module is 17 pages/total 30 pages 0992038720-0 201202553 The illumination area 12b and the second non-illumination area 14b are disposed inside the cover structure 408 and are covered by the cover structure 408. . The overall shape of the cover structure 408 is not limited to a hollow cube, sphere or cylinder, or the like. Specifically, in this embodiment, referring to FIG. 6, the cover structure 408 is a cubic structure including an upper substrate 4082, a lower substrate 4084, and four side plates (not labeled). The detecting element 406 is disposed on the surface ' of the lower substrate 4084 and faces the upper substrate 4082. The upper substrate 4082 includes an opening area 4068, and the area of the opening area 4068 is smaller than the upper substrate 4082. The opening area 4 0 8 6 is opposite to the first illumination area 12 a and the second illumination area 14a. The open area 4068 can be a large opening or a plurality of small openings. In this embodiment, the opening area 4084 is a grid structure, and includes a plurality of meshes. The illumination area 4062 of the detecting component 406 receives light energy through the plurality of meshes. [0038] It can be understood that the photoelectric conversion device 40 provided in this embodiment may also include a plurality of photoelectric conversion modules 100 connected in series with each other. Each of the photoelectric conversion modules 100 is arranged in the same manner as described above, and is placed inside the cover structure 4〇8. [0039] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Any equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS [0040] FIG. 1 is a schematic diagram showing the structure of a photoelectric conversion device according to a first embodiment of the present invention. 099121983 Form No. A0101 Page 18 of 30 0992038720-0 201202553 [0041] FIG. Fig. 2 is a view showing the configuration of a photoelectric conversion device according to a second embodiment of the present invention. 3 is a graph showing the relationship between the light intensity and the output voltage of the photoelectric conversion device of FIG. 2. 4 is a schematic structural view of a photoelectric conversion device according to a third embodiment of the present invention. [0044] FIG. 5 is a schematic structural view of a photoelectric conversion device according to a fourth embodiment of the present invention. 6 is a schematic structural view of a cover structure of the photoelectric conversion device of FIG. 5. [Description of main component symbols] Photoelectric conversion device: 10, 20, 30 [0047] Photoelectric conversion module: 100 [0048] First photoelectric conversion element: 12 〇 [0049] Second photoelectric conversion element: 14 [0050] First illumination area · 12a [0051] First non-illuminated area: 12b [0052] Second illumination area: 14a [0053] Second non-illuminated area: 14b [0054] Conductive sheet: 160 [0055] First electrode :162 099121983 Form No. A0101 Page 19/Total 30 Page 0992038720-0 201202553 [0056] Second Electrode: 164 [0057] Third Electrode: 166 [0058] Fourth Electrode: 168 [0059] Covering Structure: 108, 208 , 308 , 408 [0060] substrate: 110 [0061] first surface: 3102 [0062] second surface: 3104 [0063] insulator: 310 [0064] upper substrate: 4082 [0065] lower substrate: 4084 [0066] Hole Area · 4086 099121983 Form No. A0101 Page 20 / Total 30 Page 0992038720-0

Claims (1)

201202553 七、申請專利範圍: 1 . 一種光電轉換裝置,包括至少一光電轉換模組,該光電轉 換模組包括: 一第一光電轉換元件,該第一光電轉換元件為由空穴型導 電材料構成;以及 一第二光電轉換元件,該第二光電轉換元件為由電子型導 電材料構成;其改良在於,該第一光電轉換元件包括一第 一光照區域及一第一非光照區域,所述第二光電轉換元件 包括一第二光照區域及一第二非光照區域,所述第一光照 ❹ 區域與第二光照區域電連接。 .如申請專利範圍第1項所述之光電轉換裝置 ,其中 ,所述 第一光電轉換元件為一 N型半導體層。 .如申請專利範圍第2項所述之光電轉換裝置 ,其中 ,所述 第二光電轉換元件為一奈米碳管層。 .如申請專利範圍第2項所述之光電轉換裝置 ,其中 ,所述N 型半導體層包括奈米碳管層與多胺聚合物形成的複合材料 〇 5 .如申請專利範圍第3項或4項所述之光電轉換裝置,其中, 所述奈米碳管層中的奈求碳管首尾相連且沿同一方向擇優 取向排列。 6.如申請專利範圍第3項或4項所述之光電轉換裝置,其中, 所述奈米碳管層為由複數個單壁奈米碳管組成的純奈米碳 管結構。 7 .如申請專利範圍第3項或4項所述之光電轉換裝置,其中, 所述奈米碳管層的單位面積熱容為2x1 0_4焦耳每平方厘米 099121983 表單編號A0101 第21頁/共30頁 0992038720-0 201202553 開爾文。 8 .如申請專利範圍第4項所述之光電轉換裝置,其中,所述 多胺聚合物為多聚乙二亞胺、多聚乙二胺或甲基多胺聚乙 婦鍵。 9.如申請專利範圍第1所述之光電轉換裝置,其中,進一步 包括一第一電極、一第二電極、一第三電極、及一第四電 極,所述第一電極與所述第一光照區域電連接,所述第二 電極與所述第一非光照區域電連接;所述第三電極與所述 第二光照區域電連接,所述第四電極與所述第二非光照區 域電連接。 10 .如申請專利範圍第1項所述之光電轉換裝置,其中,所述 第一電極、第二電極均為線狀或帶狀結構,分別設置於第 一光電轉換元件的兩端並分別與第一光電轉換元件的兩個 邊齊平;所述該第三電極、第四電極均為線狀或帶狀結構 ,分別設置於第二光電轉換元件的兩端並分別與第二光電 轉換元件的兩個邊齊平。 11 .如申請專利範圍第1項所述之光電轉換裝置,其中,進一 步包括一基底,所述至少一光電轉換模組設置於該基底表 面,所述基底包括一第一表面及一第二表面,第一表面和 第二表面形成的夾角小於等於90度,所述至少一光電轉換 模組中的第一光電轉換元件的第一光照區域及第二光電轉 換元件的第二光照區域設置於該基底的第一表面,所述第 一光電轉換元件的第一非光照區域及第二光電轉換元件的 第一非光照區域設置於該基底第二表面。 12 .如申請專利範圍第11項所述之光電轉換裝置,其中,進一 步包括一覆蓋結構覆蓋該至少一光電轉換模組的第一光電 099121983 表單編號A0101 第22頁/共30頁 0992038720-0 201202553 轉換元件的第一非光照區域及第二光電轉換元件的第二非 光照區域。 13 .如申請專利範圍第12項所述之光電轉換裝置,其中,所述 覆蓋結構直接覆蓋在第一非光照區域和第二光照區域的表 面。 14 .如申請專利範圍第12項所述之光電轉換裝置,其中,所述 覆蓋結構固定於所述基底表面,該覆蓋結構分別包括一容 置空間,所述第一非光照區域及第二非光照區域設置於該 覆蓋結構的容置空間中。 7 15.如申請專利範圍第11項所述之光電轉換裝置,其中,進一 步包括一反射膜,該反射膜設置於該至少一光電轉換模組 的第一光照區域與基底之間和第二光照區域與基底之間。 16.如申請專利範圍第1項所述之光電轉換裝置,其中,所述 覆蓋結構為一具有中空結構的殼體,該至少一光電轉換模 組的第一光電轉換元件和第二光電轉換元件設置於該殼體 内部,該殼體包括一開孔區,該至少一光電轉換模組的第 一光電轉換元件的第一光照區域及該第二光電轉換元件的 ) 第二光照區域正對該開孔區設置。 17 .如申請專利範圍第1項所述之光電轉換裝置,其中,所述 至少一個光電轉換模組包括複數個光電轉換模組,該複數 個光電轉換模組相互串聯。 18 .如申請專利範圍第1項所述之光電轉換裝置,其中,所述 複數個光電轉換模組中位於中間位置的相鄰的兩個光端轉 換模組中,一個光電轉換模組的第二非光照區域與另一個 光電轉換模組的第一非光照區域電連接,所述複數個光電 轉換模組中位於兩端的兩個光端轉換模組中,一個光電轉 099121983 表單編號.A0101 第 23 頁/共 30 頁 0992038720-0 201202553 換模組的第一非光照區域為電壓輸出端,另一個光電轉換 模組的第二非光照區域為電壓輸出端。 099121983 表單編號A0101 第24頁/共30頁 0992038720-0201202553 VII. Patent application scope: 1. A photoelectric conversion device comprising at least one photoelectric conversion module, the photoelectric conversion module comprising: a first photoelectric conversion element, wherein the first photoelectric conversion element is composed of a hole type conductive material And a second photoelectric conversion element, wherein the second photoelectric conversion element is made of an electronic conductive material; and the improvement is that the first photoelectric conversion element includes a first illumination area and a first non-illumination area, The two photoelectric conversion elements include a second illumination area and a second non-illumination area, and the first illumination area is electrically connected to the second illumination area. The photoelectric conversion device according to claim 1, wherein the first photoelectric conversion element is an N-type semiconductor layer. The photoelectric conversion device according to claim 2, wherein the second photoelectric conversion element is a carbon nanotube layer. The photoelectric conversion device according to claim 2, wherein the N-type semiconductor layer comprises a composite material 〇5 formed of a carbon nanotube layer and a polyamine polymer, as in claim 3 or 4 The photoelectric conversion device according to the invention, wherein the carbon nanotubes in the carbon nanotube layer are connected end to end and arranged in a preferred orientation in the same direction. 6. The photoelectric conversion device according to claim 3, wherein the carbon nanotube layer is a pure carbon nanotube structure composed of a plurality of single-walled carbon nanotubes. 7. The photoelectric conversion device according to claim 3, wherein the carbon nanotube layer has a heat capacity per unit area of 2 x 10 0 4 joules per square centimeter 099121983 Form No. A0101 Page 21 of 30 Page 0992038720-0 201202553 Kelvin. 8. The photoelectric conversion device of claim 4, wherein the polyamine polymer is a polyethylenimine, a polyethylenediamine or a methylpolyamine polyethylene bond. 9. The photoelectric conversion device of claim 1, further comprising a first electrode, a second electrode, a third electrode, and a fourth electrode, the first electrode and the first electrode The illumination area is electrically connected, the second electrode is electrically connected to the first non-illuminated area; the third electrode is electrically connected to the second illumination area, and the fourth electrode and the second non-illuminated area are electrically connected connection. The photoelectric conversion device of claim 1, wherein the first electrode and the second electrode are both linear or strip-shaped, respectively disposed at two ends of the first photoelectric conversion element and respectively The two sides of the first photoelectric conversion element are flush; the third electrode and the fourth electrode are both linear or strip-shaped structures, respectively disposed at two ends of the second photoelectric conversion element and respectively connected to the second photoelectric conversion element The two sides are flush. The photoelectric conversion device of claim 1, further comprising a substrate, the at least one photoelectric conversion module being disposed on the surface of the substrate, the substrate comprising a first surface and a second surface The first surface and the second surface form an angle of less than or equal to 90 degrees, and the first illumination region of the first photoelectric conversion element and the second illumination region of the second photoelectric conversion element in the at least one photoelectric conversion module are disposed on the The first surface of the substrate, the first non-illuminated region of the first photoelectric conversion element and the first non-illuminated region of the second photoelectric conversion element are disposed on the second surface of the substrate. 12. The photoelectric conversion device of claim 11, further comprising a cover structure covering the at least one photoelectric conversion module of the first photo 099121983 Form No. A0101 Page 22 / Total 30 Page 0992038720-0 201202553 A first non-illuminated area of the conversion element and a second non-illuminated area of the second photoelectric conversion element. The photoelectric conversion device of claim 12, wherein the covering structure directly covers the surfaces of the first non-illuminated area and the second illuminated area. The photoelectric conversion device of claim 12, wherein the covering structure is fixed to the surface of the substrate, the covering structure respectively comprises an accommodating space, the first non-illuminated area and the second non- The illumination area is disposed in the accommodation space of the cover structure. The photoelectric conversion device of claim 11, further comprising a reflective film disposed between the first illumination region of the at least one photoelectric conversion module and the substrate and the second illumination Between the area and the substrate. The photoelectric conversion device of claim 1, wherein the covering structure is a housing having a hollow structure, the first photoelectric conversion element and the second photoelectric conversion element of the at least one photoelectric conversion module Provided inside the casing, the casing includes an opening area, and the first illumination area of the first photoelectric conversion element of the at least one photoelectric conversion module and the second illumination area of the second photoelectric conversion element are directly opposite Opening area setting. The photoelectric conversion device of claim 1, wherein the at least one photoelectric conversion module comprises a plurality of photoelectric conversion modules, and the plurality of photoelectric conversion modules are connected in series with each other. The photoelectric conversion device of claim 1, wherein the plurality of optical conversion modules in the intermediate position of the plurality of photoelectric conversion modules are the first one of the photoelectric conversion modules The two non-illuminated regions are electrically connected to the first non-illuminated region of the other photoelectric conversion module, wherein the plurality of photoelectric conversion modules are located at two optical conversion modules at both ends, and one photoelectric transmission 099121983 is the form number. A0101 23 Page/Total 30 Page 0992038720-0 201202553 The first non-illuminated area of the replacement module is the voltage output, and the second non-illuminated area of the other photoelectric conversion module is the voltage output. 099121983 Form No. A0101 Page 24 of 30 0992038720-0
TW99121983A 2010-07-05 2010-07-05 Light-electric conversion device TWI467091B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99121983A TWI467091B (en) 2010-07-05 2010-07-05 Light-electric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99121983A TWI467091B (en) 2010-07-05 2010-07-05 Light-electric conversion device

Publications (2)

Publication Number Publication Date
TW201202553A true TW201202553A (en) 2012-01-16
TWI467091B TWI467091B (en) 2015-01-01

Family

ID=46756127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99121983A TWI467091B (en) 2010-07-05 2010-07-05 Light-electric conversion device

Country Status (1)

Country Link
TW (1) TWI467091B (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090044848A1 (en) * 2007-08-14 2009-02-19 Nanocomp Technologies, Inc. Nanostructured Material-Based Thermoelectric Generators

Also Published As

Publication number Publication date
TWI467091B (en) 2015-01-01

Similar Documents

Publication Publication Date Title
CN101894903B (en) Photoelectric conversion device
US8796537B2 (en) Carbon nanotube based solar cell
CN101871818B (en) Infrared detector
TWI410615B (en) Ir detective device
TWI535081B (en) Light-electric conversion device
TW200910614A (en) Solar cell and solar cell module
JP5646586B2 (en) Solar cell
TW200836357A (en) Light transmissible solar cell module, process for manufacturing same, and solar cell panel thereof
US20080210288A1 (en) Solar cell unit and solar cell module
JP2009257753A (en) Solar collector and solar heating system using same
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2013157428A (en) Photovoltaic power generation panel
JP5243332B2 (en) Solar collector and solar heat collecting system using the same
US20090250107A1 (en) Photovoltaic device
TW201202553A (en) Light-electric conversion device
JP6505585B2 (en) Thermoelectric conversion element
TWI477694B (en) Light-electric conversion device
JP5027185B2 (en) Solar cell
TWI460872B (en) Solar battery
Xia et al. Pyramid shape of polymer solar cells: a simple solution to triple efficiency
WO2017051699A1 (en) Thermoelectric conversion element
JP4989268B2 (en) Solar cell module
JPWO2023013148A5 (en)
TW202119668A (en) Solar battery
TW201201378A (en) Flexible solar energy battery device