TWI477694B - Light-electric conversion device - Google Patents

Light-electric conversion device Download PDF

Info

Publication number
TWI477694B
TWI477694B TW102133818A TW102133818A TWI477694B TW I477694 B TWI477694 B TW I477694B TW 102133818 A TW102133818 A TW 102133818A TW 102133818 A TW102133818 A TW 102133818A TW I477694 B TWI477694 B TW I477694B
Authority
TW
Taiwan
Prior art keywords
photoelectric conversion
conversion element
area
illumination
electrode
Prior art date
Application number
TW102133818A
Other languages
Chinese (zh)
Other versions
TW201402944A (en
Inventor
chun-hua Hu
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW102133818A priority Critical patent/TWI477694B/en
Publication of TW201402944A publication Critical patent/TW201402944A/en
Application granted granted Critical
Publication of TWI477694B publication Critical patent/TWI477694B/en

Links

Description

光電轉換裝置Photoelectric conversion device

本發明涉及一種光電轉換裝置。The present invention relates to a photoelectric conversion device.

能源問題係當代人類社會發展面臨的重大問題,在如何更有效地獲得能源方面人們發展了很多種方法。太陽光能或其他光能具有投資小或者無需投資的特點,因此具有一定的經濟效益和利用價值,但係此類能源用其他能量轉換方式無法加以有效利用,用光電轉換裝置製成光電轉換裝置係利用此類能源的較好方式。The energy issue is a major problem facing the development of contemporary human society. There are many ways in which people can obtain energy more efficiently. Solar energy or other light energy has the characteristics of small investment or no investment, so it has certain economic benefits and utilization value, but this kind of energy can not be effectively utilized by other energy conversion methods, and photoelectric conversion device is made by photoelectric conversion device. A better way to use this type of energy.

太陽能電池係光能-電能轉換的典型例子,係利用半導體材料的光生伏特原理製成的。光生伏特效應,簡稱“光伏效應”,指光照使不均勻半導體或半導體與金屬結合的不同部位之間產生電位差的現象。常用的一類太陽能電池為矽基太陽能電池。在矽基太陽能電池中,作為光電轉換的材料的矽片襯底通常採用單晶矽製成。因此,要獲得高轉換效率的矽基太陽能電池,就需要製備出高純度的單晶矽,且太陽能電池的結構較為複雜,導致了該太陽能電池的成本較高,限制了太陽能電池的推廣應用。A typical example of solar cell-based light energy-electric energy conversion is made using the photovoltaic principle of semiconductor materials. The photovoltaic effect, referred to as "photovoltaic effect", refers to the phenomenon that light causes a potential difference between a heterogeneous semiconductor or a different portion of a semiconductor to a metal. A commonly used type of solar cell is a germanium based solar cell. In a ruthenium-based solar cell, a ruthenium substrate as a material for photoelectric conversion is usually made of single crystal ruthenium. Therefore, in order to obtain a high conversion efficiency bismuth-based solar cell, it is necessary to prepare a high-purity single crystal germanium, and the structure of the solar cell is relatively complicated, resulting in a high cost of the solar cell, which limits the promotion and application of the solar cell.

有鑒於此,提供一種結構簡單、成本較低的光電轉換裝置實為必要。In view of this, it is necessary to provide a photoelectric conversion device having a simple structure and a low cost.

一種光電轉換裝置,其改良在於,包括:至少一光電轉換模組,以及一基底,所述光電轉換模組包括:一第一光電轉換元件,該第一光電轉換元件為由空穴型導電材料構成,該第一光電轉換元件包括一第一光照區域及一第一非光照區域;以及一第二光電轉換元件,該第二光電轉換元件為由電子型導電材料構成,所述第二光電轉換元件包括一第二光照區域及一第二非光照區域,且所述第一光照區域與第二光照區域電連接,所述至少一光電轉換模組設置於所述基底表面,所述基底包括一第一表面 及一第二表面,第一表面和第二表面形成的夾角小於等於90度,所述第一光照區域及第二光照區域設置於該基底的第一表面,所述第一非光照區域及第二非光照區域設置於該基底第二表面。A photoelectric conversion device, comprising: at least one photoelectric conversion module, and a substrate, the photoelectric conversion module comprising: a first photoelectric conversion element, wherein the first photoelectric conversion element is a hole-type conductive material The first photoelectric conversion element includes a first illumination region and a first non-illumination region, and a second photoelectric conversion component, the second photoelectric conversion component is composed of an electronic conductive material, and the second photoelectric conversion The component includes a second illumination area and a second non-illumination area, and the first illumination area is electrically connected to the second illumination area, the at least one photoelectric conversion module is disposed on the surface of the substrate, and the substrate comprises a First surface And a second surface, the first surface and the second surface form an angle of less than or equal to 90 degrees, the first illumination area and the second illumination area are disposed on the first surface of the substrate, the first non-illuminated area and the first Two non-illuminated regions are disposed on the second surface of the substrate.

相較於先前技術,本發明所提供的光電轉換裝置的光電轉換模組的第一光電轉換元件和第二光電轉換元件分別分為光照區域和非光照區域,通過光照區域吸收光能並升高溫度,與非光照區域之間形成溫度差,利用溫差發電原理進行發電,結構簡單,成本較低。Compared with the prior art, the first photoelectric conversion element and the second photoelectric conversion element of the photoelectric conversion module of the photoelectric conversion device provided by the present invention are respectively divided into an illumination region and a non-illumination region, and absorb light energy and increase through the illumination region. The temperature difference is formed between the temperature and the non-illuminated area, and the power generation principle is used for power generation, and the structure is simple and the cost is low.

10,20,30‧‧‧光電轉換裝置10,20,30‧‧‧ photoelectric conversion device

100‧‧‧光電轉換模組100‧‧‧ photoelectric conversion module

12‧‧‧第一光電轉換元件12‧‧‧First photoelectric conversion element

14‧‧‧第二光電轉換元件14‧‧‧Second photoelectric conversion element

12a‧‧‧第一光照區域12a‧‧‧First light area

12b‧‧‧第一非光照區域12b‧‧‧First non-illuminated area

14a‧‧‧第二光照區域14a‧‧‧second lighting area

14b‧‧‧第二非光照區域14b‧‧‧Second non-illuminated area

160‧‧‧導電片160‧‧‧Conductor

162‧‧‧第一電極162‧‧‧first electrode

164‧‧‧第二電極164‧‧‧second electrode

166‧‧‧第三電極166‧‧‧ third electrode

168‧‧‧第四電極168‧‧‧fourth electrode

108,208,308,408‧‧‧覆蓋結構108,208,308,408‧‧‧ Coverage structure

110‧‧‧基底110‧‧‧Base

3102‧‧‧第一表面3102‧‧‧ first surface

3104‧‧‧第二表面3104‧‧‧ second surface

310‧‧‧絕緣體310‧‧‧Insulator

4082‧‧‧上基板4082‧‧‧Upper substrate

4084‧‧‧下基板4084‧‧‧lower substrate

4086‧‧‧開孔區4086‧‧‧Opening area

第1圖係本發明第一實施例提供的光電轉換裝置的結構示意圖。1 is a schematic structural view of a photoelectric conversion device according to a first embodiment of the present invention.

第2圖係本發明第二實施例提供的光電轉換裝置的結構示意圖。2 is a schematic structural view of a photoelectric conversion device according to a second embodiment of the present invention.

第3圖為圖2中光電轉換裝置的光照強度與輸出電壓的關係圖。Fig. 3 is a graph showing the relationship between the light intensity and the output voltage of the photoelectric conversion device of Fig. 2.

第4圖係本發明第三實施例提供的光電轉換裝置的結構示意圖。Figure 4 is a schematic view showing the structure of a photoelectric conversion device according to a third embodiment of the present invention.

第5圖係本發明第四實施例提供的光電轉換裝置的結構示意圖。Figure 5 is a schematic view showing the structure of a photoelectric conversion device according to a fourth embodiment of the present invention.

第6圖係圖5中的光電轉換裝置的覆蓋結構的結構示意圖。Fig. 6 is a schematic structural view showing a covering structure of the photoelectric conversion device in Fig. 5.

以下將結合附圖詳細說明本技術方案提供的光電轉換裝置。以下各實施例中,不同實施例之間具有相同結構的相同元部件的標號使用相同的***數字表示,不同的元部件或者具有不同結構的相同元部件則使用不同的***數字表示。Hereinafter, the photoelectric conversion device provided by the present technical solution will be described in detail with reference to the accompanying drawings. In the following embodiments, the same reference numerals are used for the same elements in the different embodiments, and the same elements are used. The different elements or the same elements having different structures are represented by different Arabic numerals.

請參閱圖1,本發明第一實施例提供了一種光電轉換裝置10。該光電轉換裝置10包括一光電轉換模組100、一基底110及一覆蓋結構108。該光電轉換模組100設置於該基底110的表面。該光電轉換模組100包括一第一光電轉換元件12、一第二光電轉換元件14、第一電極162,一第二電極164、一第三電極166及一第四電極168。該第一光電轉換元件 12包括一第一光照區域12a及一第一非光照區域12b,該第二光電轉換元件14包括一第二光照區域14a及一第二非光照區域14b。所述第一光照區域12a與該第二光照區域14a電連接。所述第一電極162與該第一光照區域12a電連接,所述第二電極164與該第一非光照區域12b電連接。所述第三電極166與該第二光照區域14a電連接,所述第四電極168與該第二非光照區域14b電連接。該覆蓋結構18覆蓋該光電轉換模組100的第一非光照區域12b及該第二非光照區域14b。Referring to FIG. 1, a first embodiment of the present invention provides a photoelectric conversion device 10. The photoelectric conversion device 10 includes a photoelectric conversion module 100, a substrate 110 and a cover structure 108. The photoelectric conversion module 100 is disposed on a surface of the substrate 110. The photoelectric conversion module 100 includes a first photoelectric conversion element 12, a second photoelectric conversion element 14, a first electrode 162, a second electrode 164, a third electrode 166, and a fourth electrode 168. The first photoelectric conversion element 12 includes a first illumination area 12a and a first non-illumination area 12b. The second photoelectric conversion element 14 includes a second illumination area 14a and a second non-illumination area 14b. The first illumination area 12a is electrically connected to the second illumination area 14a. The first electrode 162 is electrically connected to the first illumination region 12a, and the second electrode 164 is electrically connected to the first non-illumination region 12b. The third electrode 166 is electrically connected to the second illumination region 14a, and the fourth electrode 168 is electrically connected to the second non-illumination region 14b. The cover structure 18 covers the first non-illuminated area 12b and the second non-illuminated area 14b of the photoelectric conversion module 100.

所述基底110用於支撐第一光電轉換元件12和第二光電轉換元件14,可以理解,當第一光電轉換元件12和第二光電轉換元件14為自支撐結構時,該基底110可以省略。所述基底110用於支撐第一光電轉換元件12和第二光電轉換元件14的表面的面積可以大於、等於或小於第一光電轉換元件12和第二光電轉換元件14的一個表面的面積。所述基底110的材料為絕緣材料,可以為玻璃、陶瓷、聚合物或木質材料。所述基底110的材料還可以為表面塗覆有絕緣材料的導電金屬材料等。優選地,該基底110的材料應基本不吸收紅外線或者完全不吸收紅外線。該基底110的厚度不限,優選為1毫米至2厘米,本實施例中,基底110的厚度為5毫米,所述基底110用於支撐第一光電轉換元件12和第二光電轉換元件14的表面的面積的面積大於所述第一光電轉換元件12和第二光電轉換元件14的總面積。The substrate 110 is for supporting the first photoelectric conversion element 12 and the second photoelectric conversion element 14, and it is understood that the substrate 110 may be omitted when the first photoelectric conversion element 12 and the second photoelectric conversion element 14 are self-supporting structures. The area of the surface of the substrate 110 for supporting the first photoelectric conversion element 12 and the second photoelectric conversion element 14 may be larger than, equal to, or smaller than the area of one surface of the first photoelectric conversion element 12 and the second photoelectric conversion element 14. The material of the substrate 110 is an insulating material and may be glass, ceramic, polymer or wood material. The material of the substrate 110 may also be a conductive metal material or the like whose surface is coated with an insulating material. Preferably, the material of the substrate 110 should not substantially absorb infrared rays or absorb infrared rays at all. The thickness of the substrate 110 is not limited, preferably 1 mm to 2 cm. In the embodiment, the thickness of the substrate 110 is 5 mm, and the substrate 110 is used to support the first photoelectric conversion element 12 and the second photoelectric conversion element 14. The area of the area of the surface is larger than the total area of the first photoelectric conversion element 12 and the second photoelectric conversion element 14.

所述第一光電轉換元件12被分為兩個區域,分別為第一光照區域12a和第一非光照區域12b。所述第一光照區域12a和第一非光照區域12b的大小不限,第一光照區域12a的面積可以大於、小於或等於第一非光照區域12b的面積。所述第二光電轉換元件14被分為兩個區域,分別為第二光照區域14a和第二非光照區域14b。所述第二光照區域14a和第二非光照區域14b的大小不限,第二光照區域14a的面積可以大於、小於或等於第二非光照區域14b的面積。本實施例中,第一光照區域12a的面積等於第一非光照區域12b的面積,第二光照區域14a的面積等於第二非光照區域14b的面積。The first photoelectric conversion element 12 is divided into two regions, a first illumination region 12a and a first non-illumination region 12b. The size of the first illumination area 12a and the first non-illumination area 12b is not limited, and the area of the first illumination area 12a may be larger than, smaller than or equal to the area of the first non-illumination area 12b. The second photoelectric conversion element 14 is divided into two regions, a second illumination region 14a and a second non-illumination region 14b. The size of the second illumination area 14a and the second non-illumination area 14b is not limited, and the area of the second illumination area 14a may be larger than, smaller than or equal to the area of the second non-illumination area 14b. In this embodiment, the area of the first illumination area 12a is equal to the area of the first non-illumination area 12b, and the area of the second illumination area 14a is equal to the area of the second non-illumination area 14b.

所述第一光電轉換元件12的第一光照區域12a用於接收光能,並將光能轉換為熱能,使第一光照區域12a的溫度升高,從而在第一 光照區域12a和第一非光照區域12b之間產生溫度差,利用溫差電效應,在第一光電轉換元件12的兩端產生電勢差。所述光能可以為太陽光、可見光、紅外線、紫外線或電磁波等。所述第一光電轉換元件12的材料為一空穴導電型材料,所述第二光電轉換元件14為一電子導電型材料。所述第二光電轉換元件14的第二光照區域14a用於接收光能,並將光能轉換為熱能,使第二光照區域14a的溫度升高,從而在第二光照區域14a和第二非光照區域14b之間產生溫度差,利用溫差電效應,在第二光電轉換元件14的兩端產生電勢差。當光線照射第一光照區域12a和第二光照區域14a時,第一光照區域12a吸收光能,溫度升高時,根據溫差電轉換原理,由於第一光電轉換元件12為一空穴導電型材料,第一光照區域12a的電勢高於第一非光照區域12b;第二光照區域14a吸收光能,溫度升高,根據溫差電轉換原理,由於第二光電轉換元件14為一電子導電型材料,第二光照區域14a的電勢低於第二非光照區域14b。由於第一光照區域12a和第二光照區域14a電連接,第一非光照區域12b和第二非光照區域14b之間的電勢差等於第一光照區域12a與第一非光照區域12b之間的電勢差與第二光照區域14a和第二非光照區域14b之間的電勢差的和。The first illumination region 12a of the first photoelectric conversion element 12 is configured to receive light energy and convert the light energy into thermal energy to raise the temperature of the first illumination region 12a, thereby being first A temperature difference is generated between the illumination region 12a and the first non-illumination region 12b, and a potential difference is generated at both ends of the first photoelectric conversion element 12 by the thermoelectric effect. The light energy may be sunlight, visible light, infrared light, ultraviolet light, electromagnetic waves, or the like. The material of the first photoelectric conversion element 12 is a hole conduction type material, and the second photoelectric conversion element 14 is an electron conductive type material. The second illumination region 14a of the second photoelectric conversion element 14 is for receiving light energy, and converting the light energy into thermal energy to raise the temperature of the second illumination region 14a, thereby being in the second illumination region 14a and the second non- A temperature difference is generated between the illumination regions 14b, and a potential difference is generated at both ends of the second photoelectric conversion element 14 by the thermoelectric effect. When the light illuminates the first illumination area 12a and the second illumination area 14a, the first illumination area 12a absorbs light energy. When the temperature rises, according to the principle of thermoelectric conversion, since the first photoelectric conversion element 12 is a hole-conducting type material, The first illumination region 12a is higher in electrical potential than the first non-illuminated region 12b; the second illumination region 14a absorbs light energy and the temperature is increased. The potential of the two illumination regions 14a is lower than the second non-illumination region 14b. Since the first illumination area 12a and the second illumination area 14a are electrically connected, the potential difference between the first non-illumination area 12b and the second non-illumination area 14b is equal to the potential difference between the first illumination area 12a and the first non-illumination area 12b. The sum of the potential differences between the second illumination region 14a and the second non-illumination region 14b.

所述第一光電轉換元件12和第二光電轉換元件14的材料應滿足溫差電轉換係數較大、具有較強的光吸收性能及具有較小的熱容。優選地,該第一光電轉換元件12和第二光電轉換元件14均為一半導體材料。The materials of the first photoelectric conversion element 12 and the second photoelectric conversion element 14 should satisfy a large temperature difference electric conversion coefficient, have strong light absorption performance, and have a small heat capacity. Preferably, the first photoelectric conversion element 12 and the second photoelectric conversion element 14 are each a semiconductor material.

所述第一光電轉換元件12為一奈米碳管層,該奈米碳管層包括複數個均勻分佈的奈米碳管,奈米碳管為空穴型導電材料。奈米碳管為絕對的黑體,因此,具有非常強的光吸收性能。該奈米碳管可以為單壁奈米碳管、雙壁奈米碳管、多壁奈米碳管中的一種或幾種。該奈米碳管層可以為一由奈米碳管構成的純奈米碳管結構。當該奈米碳管層僅包括單壁奈米碳管時,該奈米碳管層為一P型半導體層,當奈米碳管層包括雙壁奈米碳管或多壁奈米碳管時,該奈米碳管層為一導體層。優選地,所述奈米碳管層為由單壁奈米碳管組成的結構。單壁奈米碳管具有半導體性,溫差電轉換吸收較大。The first photoelectric conversion element 12 is a carbon nanotube layer, and the carbon nanotube layer comprises a plurality of uniformly distributed carbon nanotubes, and the carbon nanotubes are hole-type conductive materials. The carbon nanotubes are absolutely black bodies and, therefore, have very strong light absorption properties. The carbon nanotubes may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotube layer may be a pure carbon nanotube structure composed of a carbon nanotube. When the carbon nanotube layer comprises only a single-walled carbon nanotube, the carbon nanotube layer is a P-type semiconductor layer, and when the carbon nanotube layer comprises a double-walled carbon nanotube or a multi-walled carbon nanotube The carbon nanotube layer is a conductor layer. Preferably, the carbon nanotube layer is a structure composed of a single-walled carbon nanotube. The single-walled carbon nanotubes are semiconducting, and the thermoelectric conversion is relatively large.

所述奈米碳管層中的奈米碳管之間可以通過凡得瓦力(Van der Waals attractive force)緊密結合。該奈米碳管層中的奈米碳管為無序或 有序排列。這裏的無序排列指奈米碳管的排列方向無規律,這裏的有序排列指至少多數奈米碳管的排列方向具有一定規律。具體地,當奈米碳管層包括無序排列的奈米碳管時,奈米碳管相互纏繞或者各向同性排列;當奈米碳管層包括有序排列的奈米碳管時,奈米碳管沿一個方向或者複數個方向擇優取向排列。所述奈米碳管層的厚度為100奈米至5毫米。所述奈米碳管層的單位面積熱容可以小於2×10-4 焦耳每平方厘米開爾文,甚至可以小於等於1.7×10-6 焦耳每平方厘米開爾文。由於奈米碳管的熱容較小,所以該奈米碳管層狀結構具有較快的熱回應速度,即在吸收光能之後能快速的升高溫度,從而在第一光照區域12a和第一非光照區域12b之間形成較大的溫度差,進而產生較大的電勢差。The carbon nanotubes in the carbon nanotube layer can be tightly bonded by a Van der Waals attractive force. The carbon nanotubes in the carbon nanotube layer are disordered or ordered. The disordered arrangement here means that the arrangement direction of the carbon nanotubes is irregular, and the ordered arrangement here means that at least most of the arrangement of the carbon nanotubes has a certain regularity. Specifically, when the carbon nanotube layer includes a disorderly arranged carbon nanotube, the carbon nanotubes are entangled or isotropically aligned; when the carbon nanotube layer includes an ordered arrangement of carbon nanotubes, The carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. The carbon nanotube layer has a thickness of from 100 nm to 5 mm. The carbon nanotube layer may have a heat capacity per unit area of less than 2 x 10 -4 joules per square centimeter Kelvin, and may even be less than or equal to 1.7 x 10 -6 joules per square centimeter Kelvin. Since the carbon nanotube has a small heat capacity, the carbon nanotube layered structure has a faster thermal response speed, that is, a temperature can be rapidly increased after absorbing light energy, thereby being in the first illumination region 12a and the first A large temperature difference is formed between a non-illuminated area 12b, which in turn produces a large potential difference.

所述奈米碳管層可包括至少一層奈米碳管膜。當奈米碳管層包括多層奈米碳管膜時,該多層奈米碳管膜可層疊設置或者並列設置。所述奈米碳管膜可以為一奈米碳管拉膜。該奈米碳管拉膜為從奈米碳管陣列中直接拉取獲得的一種奈米碳管膜。每一奈米碳管膜係由若干奈米碳管組成的自支撐結構。所述若干奈米碳管為基本沿同一方向擇優取向排列。所述擇優取向係指在奈米碳管膜中大多數奈米碳管的整體延伸方向基本朝同一方向。而且,所述大多數奈米碳管的整體延伸方向基本平行於奈米碳管膜的表面。進一步地,所述奈米碳管膜中多數奈米碳管係通過凡得瓦力首尾相連。具體地,所述奈米碳管膜中基本朝同一方向延伸的大多數奈米碳管中每一奈米碳管與在延伸方向上相鄰的奈米碳管通過凡得瓦力首尾相連。當然,所述奈米碳管膜中存在少數隨機排列的奈米碳管,這些奈米碳管不會對奈米碳管膜中大多數奈米碳管的整體取向排列構成明顯影響。所述自支撐為奈米碳管膜不需要大面積的載體支撐,而只要相對兩邊提供支撐力即能整體上懸空而保持自身膜狀狀態,即將該奈米碳管膜置於(或固定於)間隔一固定距離設置的兩個支撐體上時,位於兩個支撐體之間的奈米碳管膜能夠懸空保持自身膜狀狀態。所述自支撐主要通過奈米碳管膜中存在連續的通過凡得瓦力首尾相連延伸排列的奈米碳管而實現。The carbon nanotube layer may include at least one layer of carbon nanotube film. When the carbon nanotube layer includes a plurality of layers of carbon nanotube film, the multilayered carbon nanotube film may be stacked or arranged in parallel. The carbon nanotube film may be a carbon nanotube film. The carbon nanotube film is a carbon nanotube film obtained by directly pulling from a carbon nanotube array. Each nanocarbon film is a self-supporting structure composed of several carbon nanotubes. The plurality of carbon nanotubes are arranged in a preferred orientation along substantially the same direction. The preferred orientation means that the majority of the carbon nanotubes in the carbon nanotube film extend substantially in the same direction. Moreover, the overall direction of extension of the majority of the carbon nanotubes is substantially parallel to the surface of the carbon nanotube film. Further, most of the carbon nanotubes in the carbon nanotube membrane are connected end to end by van der Waals force. Specifically, each of the carbon nanotubes in the majority of the carbon nanotube membranes extending in the same direction and the carbon nanotubes adjacent in the extending direction are connected end to end by van der Waals force. Of course, there are a few randomly arranged carbon nanotubes in the carbon nanotube film, and these carbon nanotubes do not significantly affect the overall orientation of most of the carbon nanotubes in the carbon nanotube film. The self-supporting carbon nanotube film does not require a large-area carrier support, but can maintain a self-membrane state as long as the supporting force is provided on both sides, that is, the carbon nanotube film is placed (or fixed on) When the two supports are disposed at a fixed distance, the carbon nanotube film located between the two supports can be suspended to maintain the self-membrane state. The self-supporting is mainly achieved by the presence of continuous carbon nanotubes extending through the end-to-end extension of the van der Waals force in the carbon nanotube film.

具體地,所述奈米碳管膜中基本朝同一方向延伸的多數奈米碳管,並非絕對的直線狀,可以適當的彎曲;或者並非完全按照延伸方向上排列,可以適當的偏離延伸方向。因此,不能排除奈米碳管膜的基本朝 同一方向延伸的多數奈米碳管中並列的奈米碳管之間可能存在部分接觸。Specifically, most of the carbon nanotube membranes extending substantially in the same direction in the same direction are not absolutely linear, and may be appropriately bent; or may not be completely aligned in the extending direction, and may be appropriately deviated from the extending direction. Therefore, the basic orientation of the carbon nanotube film cannot be ruled out. There may be partial contact between the carbon nanotubes juxtaposed in most of the carbon nanotubes extending in the same direction.

所述奈米碳管拉膜的厚度為0.5奈米至100微米,寬度與拉取該奈米碳管拉膜的奈米碳管陣列的尺寸有關,長度不限。The thickness of the carbon nanotube film is 0.5 nm to 100 μm, and the width is related to the size of the carbon nanotube array for pulling the carbon nanotube film, and the length is not limited.

當所述奈米碳管層狀結構採用奈米碳管拉膜時,其可以包括層疊設置的多層奈米碳管拉膜,且相鄰兩層奈米碳管拉膜中的奈米碳管之間沿各層中奈米碳管的軸向形成一交叉角度α,α大於等於0度小於等於90度(0°≦α≦90°)。所述複數個奈米碳管拉膜之間或一個奈米碳管拉膜之中的相鄰的奈米碳管之間具有間隙,從而在奈米碳管結構中形成複數個微孔,微孔的孔徑約小於10微米。When the carbon nanotube layered structure adopts a carbon nanotube film, it may comprise a stacked multi-layer carbon nanotube film, and the carbon nanotubes in the adjacent two layers of carbon nanotube film A cross angle α is formed along the axial direction of the carbon nanotubes in each layer, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees (0° ≦ α ≦ 90°). a gap is formed between the plurality of carbon nanotube films or between adjacent carbon nanotubes in a carbon nanotube film, thereby forming a plurality of micropores in the carbon nanotube structure. The pores have a pore size of less than about 10 microns.

所述奈米碳管膜還可以為一奈米碳管絮化膜。所述奈米碳管絮化膜為通過一絮化方法形成的奈米碳管膜。該奈米碳管絮化膜包括相互纏繞且均勻分佈的奈米碳管。所述奈米碳管之間通過凡得瓦力相互吸引、纏繞,形成網路狀結構。所述奈米碳管絮化膜各向同性。所述奈米碳管絮化膜的長度和寬度不限。由於在奈米碳管絮化膜中,奈米碳管相互纏繞,因此該奈米碳管絮化膜具有很好的柔韌性,且為一自支撐結構,可以彎曲折疊成任意形狀而不破裂。所述奈米碳管絮化膜的面積及厚度均不限,厚度為1微米至1毫米。The carbon nanotube membrane may also be a carbon nanotube flocculation membrane. The carbon nanotube flocculation membrane is a carbon nanotube membrane formed by a flocculation method. The carbon nanotube flocculation membrane comprises carbon nanotubes which are intertwined and uniformly distributed. The carbon nanotubes are attracted and entangled with each other by van der Waals force to form a network structure. The carbon nanotube flocculation membrane is isotropic. The length and width of the carbon nanotube film are not limited. Since the carbon nanotubes are intertwined in the carbon nanotube flocculation membrane, the carbon nanotube flocculation membrane has good flexibility and is a self-supporting structure, which can be bent and folded into any shape without breaking. . The area and thickness of the carbon nanotube film are not limited, and the thickness is from 1 micrometer to 1 millimeter.

所述奈米碳管膜還可以為通過碾壓一奈米碳管陣列形成的奈米碳管碾壓膜。該奈米碳管碾壓膜包括均勻分佈的奈米碳管,奈米碳管沿同一方向或不同方向擇優取向排列。奈米碳管也可以係各向同性的。所述奈米碳管碾壓膜中的奈米碳管相互部分交疊,並通過凡得瓦力相互吸引,緊密結合。所述奈米碳管碾壓膜中的奈米碳管與形成奈米碳管陣列的生長基底的表面形成一夾角β,其中,β大於等於0度且小於等於15度(0≦β≦15°)。依據碾壓的方式不同,該奈米碳管碾壓膜中的奈米碳管具有不同的排列形式。當沿同一方向碾壓時,奈米碳管沿一固定方向擇優取向排列。可以理解,當沿不同方向碾壓時,奈米碳管可沿複數個方向擇優取向排列。該奈米碳管碾壓膜厚度不限,優選為為1微米至1毫米。該奈米碳管碾壓膜的面積不限,由碾壓出膜的奈米碳管陣列的大小決定。當奈米碳管陣列的尺寸較大時,可以碾壓制得較大面積的奈米碳管碾壓膜。本實施例中,所述光電轉換元件106為一純的奈米碳管層,該奈米碳管層由單壁 奈米碳管構成,厚度為1mm。單壁奈米碳管為P型半導體材料,其具有較大的溫差電轉換吸收和較強的光吸收性能。The carbon nanotube film may also be a carbon nanotube rolled film formed by rolling an array of carbon nanotubes. The carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are arranged in the same direction or in different directions. The carbon nanotubes can also be isotropic. The carbon nanotubes in the carbon nanotube rolled film partially overlap each other and are attracted to each other by van der Waals force and tightly combined. The carbon nanotubes in the carbon nanotube rolled film form an angle β with the surface of the growth substrate forming the carbon nanotube array, wherein β is greater than or equal to 0 degrees and less than or equal to 15 degrees (0≦β≦15) °). The carbon nanotubes in the carbon nanotube rolled film have different arrangements depending on the manner of rolling. When rolled in the same direction, the carbon nanotubes are arranged in a preferred orientation along a fixed direction. It can be understood that when crushed in different directions, the carbon nanotubes can be arranged in a preferred orientation in a plurality of directions. The carbon nanotube film is not limited in thickness, and is preferably from 1 μm to 1 mm. The area of the carbon nanotube rolled film is not limited, and is determined by the size of the carbon nanotube array that is rolled out of the film. When the size of the carbon nanotube array is large, a large area of the carbon nanotube rolled film can be crushed. In this embodiment, the photoelectric conversion element 106 is a pure carbon nanotube layer, and the carbon nanotube layer is composed of a single wall. It is made up of carbon nanotubes and has a thickness of 1mm. Single-walled carbon nanotubes are P-type semiconductor materials, which have large temperature difference electrical conversion absorption and strong light absorption properties.

所述第二光電轉換元件14可以為金屬材料或N型半導體材料。所述N型半導體包括N型矽、N型碲化鉍、N鉍或者N型奈米碳管複合材料層。所述N型奈米碳管複合材料層可以由上述奈米碳管層和多胺聚合物複合形成。該多胺聚合物可以為多聚乙二亞胺、多聚乙二胺、甲基多胺聚乙烯醚等。本實施例中,所述第二光電轉換元件14的材料為多聚乙二胺與奈米碳管層形成的複合材料。The second photoelectric conversion element 14 may be a metal material or an N-type semiconductor material. The N-type semiconductor includes an N-type germanium, an N-type germanium telluride, an N-type or an N-type carbon nanotube composite layer. The N-type carbon nanotube composite layer may be formed by compounding the above-mentioned carbon nanotube layer and a polyamine polymer. The polyamine polymer may be polyethylenimine, polyethylenediamine, methylpolyamine polyvinyl ether or the like. In this embodiment, the material of the second photoelectric conversion element 14 is a composite material formed of a polyethylenediamine and a carbon nanotube layer.

該第一電極162、第二電極164均為線狀或帶狀結構,分別設置於第一光電轉換元件12的兩端。該第一電極162、第二電極164可以設置於該第一光電轉換元件12的表面,分別與第一光電轉換元件12的兩個邊齊平。該第一電極162、第二電極164也可以設置於該第一光電轉換元件12的側面。該第三電極166、第四電極168均為為線狀或帶狀結構,分別設置於第二光電轉換元件14的兩端。該第三電極166、第四電極168可以設置於該第二光電轉換元件14的表面,分別與第二光電轉換元件14的兩個邊齊平。該第三電極166、第四電極168也可以設置於該第二光電轉換元件14的側面。該第一電極162、第二電極164、第三電極166和第四電極168可以分別為一層導電膜。該導電膜的材料可以為金屬、合金、銦錫氧化物(ITO)、銻錫氧化物(ATO)、導電銀膠、導電聚合物或導電性奈米碳管等。該金屬或合金材料可以為鋁、銅、鎢、鉬、金、鈦、釹、鈀、銫或其任意組合的合金。本實施例中,第一電極162、第二電極164、第三電極166和第四電極168分別為導電銀漿印刷形成的線狀結構,第一電極162位於第一光照區域12a並與第一光電轉換元件12的一個邊齊平,第二電極164位於第一非光照區域12b,並與第一光電轉換元件12的另一個邊齊平。第三電極166位於第二光照區域14a並與第二光電轉換元件14的一個邊齊平,第四電極168位於第二非光照區域14b,並與第二光電轉換元件14的另一個邊齊平。所述第一電極162與第三電極166通過一導電片160電連接,從而使所述第一光照區域12a與第二光照區域14a通過第一電極162和第三電極166電連接,第二電極164與第四電極168分別為該光電轉換裝置10的電壓輸出端。The first electrode 162 and the second electrode 164 are both linear or strip-shaped and are respectively disposed at both ends of the first photoelectric conversion element 12. The first electrode 162 and the second electrode 164 may be disposed on a surface of the first photoelectric conversion element 12, and are respectively flush with both sides of the first photoelectric conversion element 12. The first electrode 162 and the second electrode 164 may be disposed on a side surface of the first photoelectric conversion element 12 . Each of the third electrode 166 and the fourth electrode 168 has a linear or strip-like structure and is disposed at each end of the second photoelectric conversion element 14 . The third electrode 166 and the fourth electrode 168 may be disposed on the surface of the second photoelectric conversion element 14 and are respectively flush with the two sides of the second photoelectric conversion element 14. The third electrode 166 and the fourth electrode 168 may be disposed on the side surface of the second photoelectric conversion element 14 . The first electrode 162, the second electrode 164, the third electrode 166, and the fourth electrode 168 may each be a conductive film. The material of the conductive film may be metal, alloy, indium tin oxide (ITO), antimony tin oxide (ATO), conductive silver paste, conductive polymer or conductive carbon nanotube. The metal or alloy material may be an alloy of aluminum, copper, tungsten, molybdenum, gold, titanium, rhodium, palladium, iridium or any combination thereof. In this embodiment, the first electrode 162, the second electrode 164, the third electrode 166, and the fourth electrode 168 are respectively formed by a conductive silver paste, and the first electrode 162 is located in the first illumination region 12a and is first. One side of the photoelectric conversion element 12 is flush, and the second electrode 164 is located in the first non-illuminated area 12b and is flush with the other side of the first photoelectric conversion element 12. The third electrode 166 is located in the second illumination region 14a and is flush with one side of the second photoelectric conversion element 14, and the fourth electrode 168 is located in the second non-illuminated region 14b and is flush with the other side of the second photoelectric conversion element 14. . The first electrode 162 and the third electrode 166 are electrically connected through a conductive sheet 160, so that the first illumination region 12a and the second illumination region 14a are electrically connected through the first electrode 162 and the third electrode 166, and the second electrode The 164 and the fourth electrode 168 are voltage output ends of the photoelectric conversion device 10, respectively.

該光電轉換裝置10可進一步包括一第一電極引線(圖未示)及一第二電極引線(圖未示)。第一電極引線與第二電極164電連接。第二電極引線與第四電極168電連接。第二電極引線一部分位於覆蓋結構108內部,一部分延伸至覆蓋結構108的外部。第一電極引線和第二電極引線可使第二電極和第四電極方便地向外輸出電壓或者與外部電連接。The photoelectric conversion device 10 can further include a first electrode lead (not shown) and a second electrode lead (not shown). The first electrode lead is electrically connected to the second electrode 164. The second electrode lead is electrically connected to the fourth electrode 168. A portion of the second electrode lead is located inside the cover structure 108 and a portion extends to the exterior of the cover structure 108. The first electrode lead and the second electrode lead may allow the second electrode and the fourth electrode to conveniently output a voltage to the outside or to be electrically connected to the outside.

所述覆蓋結構108用於覆蓋該光電轉換模組100的第一非光照區域12b和第二非光照區域14b,防止第一非光照區域12b和第二非光照區域14b被光照射到。覆蓋結構108的大小應確保其不會覆蓋第一光照區域12a和第二光照區域14a。所述覆蓋結構108的材料不限,可以為絕緣材料也可以為導電材料。所述覆蓋結構108的材料可選擇為導電材料,如金屬,也可為絕緣材料,如塑膠、塑膠等。所述金屬包括不銹鋼、碳鋼、銅、鎳、鈦、鋅及鋁等中的一種或多種。可以理解的係,當覆蓋結構108的材料為絕緣材料時,其可與第一非光照區域12b和第二非光照區域14b直接接觸,覆蓋結構108可直接覆蓋在第一非光照區域12b和第二非光照區域14b的表面。當覆蓋結構108的材料為導電材料時,應確保覆蓋結構108與第一非光照區域12b和第二非光照區域14b間隔絕緣設置。本實施例中,所述覆蓋結構108為具有一容置空間的罩體。覆蓋結構108的四周固定於基底110的表面。所述第一非光照區域12b和第二非光照區域14b設置於該覆蓋結構108的容置空間內部,並與該覆蓋結構108間隔一定距離設置。所述覆蓋結構108的固定方式不限,可通過扣合、夾緊、螺栓、黏結、鉚接等方式固定,本實施例中,覆蓋結構108通過四個螺孔(圖未示)固定於基底110上。由於該覆蓋結構108與所述第一非光照區域12b和第二非光照區域14b間隔一定空間設置,所以,該覆蓋結構108的材料可以為導電材料。可以理解,當基底110的材料和覆蓋結構108的材料均為絕緣材料時,所述覆蓋結構108和基底110可以一體成型。The cover structure 108 is configured to cover the first non-illuminated area 12b and the second non-illuminated area 14b of the photoelectric conversion module 100, and prevents the first non-illuminated area 12b and the second non-illuminated area 14b from being illuminated by light. The cover structure 108 is sized to ensure that it does not cover the first illumination area 12a and the second illumination area 14a. The material of the covering structure 108 is not limited and may be an insulating material or a conductive material. The material of the covering structure 108 can be selected from a conductive material such as a metal or an insulating material such as plastic or plastic. The metal includes one or more of stainless steel, carbon steel, copper, nickel, titanium, zinc, and aluminum. It can be understood that when the material of the cover structure 108 is an insulating material, it can directly contact the first non-illuminated area 12b and the second non-illuminated area 14b, and the cover structure 108 can directly cover the first non-illuminated area 12b and the first The surface of the two non-illuminated regions 14b. When the material of the cover structure 108 is a conductive material, it should be ensured that the cover structure 108 is spaced apart from the first non-illuminated area 12b and the second non-illuminated area 14b. In this embodiment, the cover structure 108 is a cover body having an accommodating space. The periphery of the cover structure 108 is fixed to the surface of the substrate 110. The first non-illuminated area 12b and the second non-illuminated area 14b are disposed inside the accommodating space of the covering structure 108 and are disposed at a distance from the covering structure 108. The fixing structure of the covering structure 108 is not limited, and can be fixed by fastening, clamping, bolting, bonding, riveting, etc. In the embodiment, the covering structure 108 is fixed to the base 110 through four screw holes (not shown). on. Since the cover structure 108 is spaced apart from the first non-illuminated area 12b and the second non-illuminated area 14b, the material of the cover structure 108 may be a conductive material. It can be understood that when the material of the substrate 110 and the material of the covering structure 108 are both insulating materials, the covering structure 108 and the substrate 110 may be integrally formed.

本發明所提供的光電轉換裝置10的第一光電轉換元件12分為第一光照區域12a和第一非光照區域12b,第二光電轉換元件14分為第二光照區域14a和第二非光照區域14b,通過將第一光照區域12a和第二光照區域14a暴露於光照環境下,接受光照,在第一光照區域12a和第一非光照區域12b之間產生溫度差,在第二光照區域14a和第二非光照區域14b 之間產生溫度差,利用溫差發電原理進行發電,結構簡單,成本較低。The first photoelectric conversion element 12 of the photoelectric conversion device 10 provided by the present invention is divided into a first illumination region 12a and a first non-illumination region 12b, and the second photoelectric conversion element 14 is divided into a second illumination region 14a and a second non-illumination region. 14b, by exposing the first illumination area 12a and the second illumination area 14a to the illumination environment, receiving illumination, creating a temperature difference between the first illumination area 12a and the first non-illumination area 12b, in the second illumination area 14a and Second non-illuminated area 14b A temperature difference is generated between the two, and the power generation principle is used for power generation, and the structure is simple and the cost is low.

請參見圖2,本發明第二實施例提供一種光電轉換裝置20。該光電轉換裝置20包括複數個光電轉換模組100及一覆蓋結構208。該覆蓋結構208覆蓋每個光電轉換模組100的第一非光照區域12b及該第二非光照區域14b。Referring to FIG. 2, a second embodiment of the present invention provides a photoelectric conversion device 20. The photoelectric conversion device 20 includes a plurality of photoelectric conversion modules 100 and a cover structure 208. The cover structure 208 covers the first non-illuminated area 12b and the second non-illuminated area 14b of each photoelectric conversion module 100.

本實施例所提供的光電轉換裝置20與第一實施例所提供的光電轉換裝置10的結構基本相同,其不同之處在於,本實施例所提供的光電轉換裝置20包括複數個光電轉換模組100。該複數個光電轉換模組100相互串聯。即,該複數個光電轉換模組100中,處於中間位置的每兩個相鄰的光電轉換模組100中,一個光電轉換模組100的第二非光照區域14b與另一個光電轉換模組100的第一非光照區域12b電連接;該複數個光電轉換模組100中,處於兩端的兩個光電轉換模組100,一個光電轉換模組100的第一電極162作為輸出端,另一個光電轉換模組100的第四電極168作為輸出端。本實施例中,處於中間位置的每兩個相鄰的光電轉換模組100中,一個光電轉換模組100的第四電極168與另一個光電轉換模組100的第一電極162電連接;處於兩端的兩個光電轉換模組100,一個光電轉換模組100的第一電極162作為輸出端,另一個光電轉換模組100的第四電極168作為輸出端。每個光電轉換模組100之間可通過導線或導電片實現電連接。The photoelectric conversion device 20 provided in this embodiment has substantially the same structure as the photoelectric conversion device 10 provided in the first embodiment, and the difference is that the photoelectric conversion device 20 provided in this embodiment includes a plurality of photoelectric conversion modules. 100. The plurality of photoelectric conversion modules 100 are connected in series with each other. That is, in the plurality of photoelectric conversion modules 100, in each of the two adjacent photoelectric conversion modules 100 at the intermediate position, the second non-illuminated region 14b of one photoelectric conversion module 100 and the other photoelectric conversion module 100 The first non-illuminated area 12b is electrically connected; in the plurality of photoelectric conversion modules 100, the two photoelectric conversion modules 100 at both ends, the first electrode 162 of one photoelectric conversion module 100 serves as an output end, and the other photoelectric conversion The fourth electrode 168 of the module 100 serves as an output. In this embodiment, in each of the two adjacent photoelectric conversion modules 100 in the intermediate position, the fourth electrode 168 of one photoelectric conversion module 100 is electrically connected to the first electrode 162 of the other photoelectric conversion module 100; The two photoelectric conversion modules 100 at the two ends, the first electrode 162 of one photoelectric conversion module 100 serves as an output end, and the fourth electrode 168 of the other photoelectric conversion module 100 serves as an output end. Each of the photoelectric conversion modules 100 can be electrically connected by wires or conductive sheets.

本實施例中,所述光電轉換裝置20包括12個光電轉換模組100。圖3為採用不同能量的光能照射光電轉換裝置所產生的電壓與光能量大小的關係,該光為紅外線光。所述光電轉換裝置20的輸出電壓與光能的關係基本為直線。In this embodiment, the photoelectric conversion device 20 includes 12 photoelectric conversion modules 100. FIG. 3 is a graph showing the relationship between the voltage generated by the photoelectric energy illuminating device using different energy and the amount of light energy, which is infrared light. The relationship between the output voltage of the photoelectric conversion device 20 and the light energy is substantially a straight line.

本實施例所提供的光電轉換裝置20通過將複數個光電轉換模組100串聯,可以將每個光電轉換模組100產生的電動勢串聯,進而在輸出端得到更大的電勢差。The photoelectric conversion device 20 provided in this embodiment can connect the electromotive force generated by each photoelectric conversion module 100 in series by connecting a plurality of photoelectric conversion modules 100 in series, thereby obtaining a larger potential difference at the output end.

請參見圖4,本發明第三實施例提供了一種光電轉換裝置30。該光電轉換裝置30包括一光電轉換模組100及一絕緣體310。所述光電轉換模組100設置於所述絕緣體310的表面。本實施例所提供的光電轉換裝置30的結構與第一實施例所提供的光電轉換裝置30的結構基本相 同,其不同之處在於,該光電轉換裝置30不包括覆蓋結構及基底,且該光電轉換裝置30包括一絕緣體310。Referring to FIG. 4, a third embodiment of the present invention provides a photoelectric conversion device 30. The photoelectric conversion device 30 includes a photoelectric conversion module 100 and an insulator 310. The photoelectric conversion module 100 is disposed on a surface of the insulator 310. The structure of the photoelectric conversion device 30 provided in this embodiment is basically the same as that of the photoelectric conversion device 30 provided in the first embodiment. The difference is that the photoelectric conversion device 30 does not include a cover structure and a substrate, and the photoelectric conversion device 30 includes an insulator 310.

該第一光電轉換元件12經過彎折形成一第一光照區域12a及一第一非光照區域12b,該第一光照區域12a和第一非光照區域12b彎折後的夾角小於等於90度,比如彎折成U型或L型或者U型和L型之間的任意角度的形狀。該第二光電轉換元件14經過彎折形成一第二光照區域14a及一第二非光照區域14b,該第二光照區域14a和第二非光照區域14b彎折後的夾角小於等於90度,比如彎折成U型或L型或者U型和L型之間的任意角度的形狀。此時,當採用光照射第一光照區域12a和第二光照區域14a時,第一非光照區域12b及第二非光照區域14b被擋住,從而光線無法照射該非光照區域。該絕緣體310設置在第一光照區域12a和第一非光照區域12b之間及第二光照區域14a和第二非光照區域14b之間,其形狀可配合第一光電轉換元件12和第二光電轉換元件14的彎曲形狀。當第一光電轉換元件12和第二光電轉換元件14不能自己保持一定形狀時,該絕緣體310可以作為基底來支撐該第一光電轉換元件12和第二光電轉換元件14。本實施例中,絕緣體310為一基底結構,所述第一光電轉換元件12和第二光電轉換元件14設置於該絕緣體310的表面。The first photoelectric conversion element 12 is bent to form a first illumination area 12a and a first non-illumination area 12b. The angle between the first illumination area 12a and the first non-illumination area 12b is less than or equal to 90 degrees. Bend into a U- or L-shape or a shape at any angle between the U-shape and the L-shape. The second photoelectric conversion element 14 is bent to form a second illumination area 14a and a second non-illumination area 14b. The angle between the second illumination area 14a and the second non-illumination area 14b is less than or equal to 90 degrees. Bend into a U- or L-shape or a shape at any angle between the U-shape and the L-shape. At this time, when the first illumination area 12a and the second illumination area 14a are irradiated with light, the first non-illuminated area 12b and the second non-illuminated area 14b are blocked, so that the light cannot illuminate the non-illuminated area. The insulator 310 is disposed between the first illumination region 12a and the first non-illumination region 12b and between the second illumination region 14a and the second non-illumination region 14b, and is shaped to cooperate with the first photoelectric conversion element 12 and the second photoelectric conversion The curved shape of the element 14. When the first photoelectric conversion element 12 and the second photoelectric conversion element 14 cannot maintain a certain shape by themselves, the insulator 310 can serve as the substrate to support the first photoelectric conversion element 12 and the second photoelectric conversion element 14. In this embodiment, the insulator 310 is a base structure, and the first photoelectric conversion element 12 and the second photoelectric conversion element 14 are disposed on the surface of the insulator 310.

所述絕緣體310包括一第一表面3102及一第二表面3104,第一表面3102與第二表面3104之間所形成一夾角α,α大於等於0度小於等於90度。α大於0度小於90度。當α等於0度時,第一表面3102和第二表面3104係兩個相對的表面,即可以理解為,第二表面3104為第一表面3102的背面。本實施例中,α等於45度。所述第一光電轉換元件12的第一光照區域12a及第二光電轉換元件14的第二光照區域14a設置於絕緣體310的第一表面3102上,所述第一光電轉換元件12的第一非光照區域12b及第二光電轉換元件14的第二非光照區域14b設置於絕緣體310的第二表面3104上,所述非光照區域3064設置於絕緣體310的第二表面3104。The insulator 310 includes a first surface 3102 and a second surface 3104. An angle α is formed between the first surface 3102 and the second surface 3104, and α is greater than or equal to 0 degrees and less than or equal to 90 degrees. α is greater than 0 degrees and less than 90 degrees. When α is equal to 0 degrees, the first surface 3102 and the second surface 3104 are two opposite surfaces, that is, it can be understood that the second surface 3104 is the back surface of the first surface 3102. In this embodiment, α is equal to 45 degrees. The first illumination region 12a of the first photoelectric conversion element 12 and the second illumination region 14a of the second photoelectric conversion element 14 are disposed on the first surface 3102 of the insulator 310, and the first non-first of the first photoelectric conversion elements 12 The illumination region 12b and the second non-illuminated region 14b of the second photoelectric conversion element 14 are disposed on the second surface 3104 of the insulator 310, and the non-illuminated region 3064 is disposed on the second surface 3104 of the insulator 310.

進一步地,所述光電轉換裝置30進一步包括一反射膜(圖未示)設置於第一光照區域12a、第二光照區域14a和絕緣體310之間。所述反射膜用於反射第一光照區域12a和第二光照區域14a所產生的熱量和光能,防止該熱量和光能被絕緣體310吸收。由於第一光照區域12a和第二 光照區域14a的熱量以紅外線或遠紅外線的形式向外傳播,因此,所述反射膜應對紅外線和遠紅外線具有較高的反射效率。所述反射膜的材料為絕緣材料,可以為TiO2 -Ag-TiO2 、ZnS-Ag-ZnS、AINO-Ag-AIN、Ta2 O3 -SiO2 或Nb2 O3 -SiO2 。該反射膜通過塗敷或濺射的方式形成於絕緣體310的表面。所述反射膜的厚度不限,優選地,反射膜的厚度為10微米至500微米。Further, the photoelectric conversion device 30 further includes a reflective film (not shown) disposed between the first illumination region 12a, the second illumination region 14a, and the insulator 310. The reflective film is used to reflect heat and light energy generated by the first illumination region 12a and the second illumination region 14a to prevent the heat and light from being absorbed by the insulator 310. Since the heat of the first illumination region 12a and the second illumination region 14a propagates outward in the form of infrared rays or far infrared rays, the reflective film has a high reflection efficiency against infrared rays and far infrared rays. The material of the reflective film is an insulating material and may be TiO 2 -Ag-TiO 2 , ZnS-Ag-ZnS, AINO-Ag-AIN, Ta 2 O 3 -SiO 2 or Nb 2 O 3 -SiO 2 . The reflective film is formed on the surface of the insulator 310 by coating or sputtering. The thickness of the reflective film is not limited, and preferably, the thickness of the reflective film is from 10 micrometers to 500 micrometers.

可以理解,本實施例所提供的光電轉換裝置30也可以包括複數個相互串聯結構光電轉換模組100。每個光電轉換模組100均按照上述方式相互並列設置於絕緣體310上。It can be understood that the photoelectric conversion device 30 provided in this embodiment may also include a plurality of photoelectric conversion modules 100 connected to each other in series. Each of the photoelectric conversion modules 100 is disposed side by side on the insulator 310 in the above manner.

請參見圖5及6,本發明第四實施例提供了一種光電轉換裝置40。該光電轉換裝置40包括一一光電轉換模組100及一覆蓋結構408。本實施例所提供的光電轉換裝置40的結構與第一實施例所提供的光電轉換裝置10的結構基本相同,其不同之處在於覆蓋結構408的結構,從而本實施例的光電轉換裝置40不需要單獨的基底。Referring to Figures 5 and 6, a fourth embodiment of the present invention provides a photoelectric conversion device 40. The photoelectric conversion device 40 includes a photoelectric conversion module 100 and a cover structure 408. The structure of the photoelectric conversion device 40 provided in this embodiment is basically the same as that of the photoelectric conversion device 10 provided in the first embodiment, and is different in the structure of the cover structure 408, so that the photoelectric conversion device 40 of the present embodiment does not A separate substrate is required.

所述覆蓋結構408為一具有中空結構的外殼,該光電轉換模組100設置於該覆蓋結構408內部。該覆蓋結構408包括一開孔區4086,該光電轉換模組100的第一光照區域12a及第二光照區域14a正對該開孔區4086設置,並可以通過該開孔區4086接受光能。該光電轉換模組的第一非光照區域12b及第二非光照區域14b設置於該覆蓋結構408的內部,並被覆蓋結構408所覆蓋。所述覆蓋結構408的整體形狀不限,可以係中空的立方體、球體或圓柱體等等。The cover structure 408 is a housing having a hollow structure, and the photoelectric conversion module 100 is disposed inside the cover structure 408. The cover structure 408 includes an opening area 4068. The first illumination area 12a and the second illumination area 14a of the photoelectric conversion module 100 are disposed on the aperture area 4068, and can receive light energy through the aperture area 4068. The first non-illuminated area 12b and the second non-illuminated area 14b of the photoelectric conversion module are disposed inside the cover structure 408 and covered by the cover structure 408. The overall shape of the covering structure 408 is not limited, and may be a hollow cube, a sphere or a cylinder, or the like.

具體的,本實施例中,請參見圖6,該覆蓋結構408為一立方體結構,其包括一上基板4082、一下基板4084及四個側板(圖未標)。所述探測元件406設置於該下基板4084的表面,並正對上基板4082。所述上基板4082包括一開孔區4086,該開孔區4086的面積小於該上基板4082。所述開孔區4086正對該第一光照區域12a及第二光照區域14a。該開孔區4086可以為一個大的開口,也可以由複數個小的開口組成。本實施例中,所述開孔區4086為一柵網結構,包括複數個網孔。所述探測元件406的光照區域4062通過該複數個網孔接受光能。Specifically, in this embodiment, referring to FIG. 6 , the cover structure 408 is a cubic structure including an upper substrate 4082, a lower substrate 4084, and four side plates (not labeled). The detecting component 406 is disposed on a surface of the lower substrate 4084 and faces the upper substrate 4082. The upper substrate 4082 includes an opening area 4068, and the area of the opening area 4084 is smaller than the upper substrate 4082. The opening area 4068 faces the first illumination area 12a and the second illumination area 14a. The opening area 4084 can be a large opening or a plurality of small openings. In this embodiment, the opening area 4084 is a grid structure including a plurality of meshes. The illumination region 4062 of the detection element 406 receives light energy through the plurality of cells.

可以理解,本實施例所提供的光電轉換裝置40也可以包括複數個相互串聯結構光電轉換模組100。每個光電轉換模組100均按照上述 方式相互並列設置於覆蓋結構408內部。It can be understood that the photoelectric conversion device 40 provided in this embodiment may also include a plurality of photoelectric conversion modules 100 connected to each other in series. Each photoelectric conversion module 100 is in accordance with the above The manners are juxtaposed to each other inside the cover structure 408.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

30‧‧‧光電轉換裝置30‧‧‧Photoelectric conversion device

3102‧‧‧第一表面3102‧‧‧ first surface

3104‧‧‧第二表面3104‧‧‧ second surface

310‧‧‧絕緣體310‧‧‧Insulator

Claims (18)

一種光電轉換裝置,其改良在於,包括:至少一光電轉換模組,所述光電轉換模組包括:一第一光電轉換元件,該第一光電轉換元件為由空穴型導電材料構成,該第一光電轉換元件包括一第一光照區域及一第一非光照區域;以及一第二光電轉換元件,該第二光電轉換元件為由電子型導電材料構成,所述第二光電轉換元件包括一第二光照區域及一第二非光照區域,且所述第一光照區域與第二光照區域電連接;以及一基底,所述至少一光電轉換模組設置於該基底表面,所述基底包括一第一表面及一第二表面,第一表面和第二表面形成的夾角小於等於90度,所述第一光照區域及第二光照區域設置於該基底的第一表面,所述第一非光照區域及第二非光照區域設置於該基底第二表面。A photoelectric conversion device, comprising: at least one photoelectric conversion module, the photoelectric conversion module comprising: a first photoelectric conversion element, wherein the first photoelectric conversion element is composed of a hole-type conductive material, the first a photoelectric conversion element comprising a first illumination region and a first non-illumination region; and a second photoelectric conversion element, the second photoelectric conversion element being composed of an electronic conductive material, the second photoelectric conversion element comprising a first a second illumination area and a second non-illumination area, wherein the first illumination area is electrically connected to the second illumination area; and a substrate, the at least one photoelectric conversion module is disposed on the surface of the substrate, the substrate includes a first a surface and a second surface, the first surface and the second surface form an angle of less than or equal to 90 degrees, the first illumination area and the second illumination area are disposed on the first surface of the substrate, the first non-illuminated area And the second non-illuminated area is disposed on the second surface of the substrate. 如請求項1所述之光電轉換裝置,其中,進一步包括一反射膜,該反射膜設置於該至少一光電轉換模組的第一光照區域與基底之間和第二光照區域與基底之間。The photoelectric conversion device of claim 1, further comprising a reflective film disposed between the first illumination region of the at least one photoelectric conversion module and the substrate and between the second illumination region and the substrate. 如請求項1所述之光電轉換裝置,其中,所述第二光電轉換元件為一N型半導體層,所述第一光電轉換元件為一P型半導體層。The photoelectric conversion device according to claim 1, wherein the second photoelectric conversion element is an N-type semiconductor layer, and the first photoelectric conversion element is a P-type semiconductor layer. 如請求項3所述之光電轉換裝置,其中,所述第二光電轉換元件為一奈米碳管層。The photoelectric conversion device of claim 3, wherein the second photoelectric conversion element is a carbon nanotube layer. 如請求項3所述之光電轉換裝置,其中,所述N型半導體層包括奈米碳管層與多胺聚合物形成的複合材料。The photoelectric conversion device according to claim 3, wherein the N-type semiconductor layer comprises a composite material formed of a carbon nanotube layer and a polyamine polymer. 如請求項4或5所述之光電轉換裝置,其中,所述奈米碳管層中的奈米碳管首尾相連且沿同一方向擇優取向排列。The photoelectric conversion device according to claim 4, wherein the carbon nanotubes in the carbon nanotube layer are connected end to end and are arranged in a preferred orientation in the same direction. 如請求項4或5所述之光電轉換裝置,其中,所述奈米碳管層為由複數個單壁奈米碳管組成的純奈米碳管結構。The photoelectric conversion device according to claim 4, wherein the carbon nanotube layer is a pure carbon nanotube structure composed of a plurality of single-walled carbon nanotubes. 如請求項4或5所述之光電轉換裝置,其中,所述奈米碳管層的單位面積熱容為2×10-4 焦耳每平方厘米開爾文。The photoelectric conversion device according to claim 4, wherein the carbon nanotube layer has a heat capacity per unit area of 2 × 10 -4 Joules per square centimeter Kelvin. 如請求項5所述之光電轉換裝置,其中,所述多胺聚合物為多聚乙二亞胺、多聚乙二胺或甲基多胺聚乙烯醚。The photoelectric conversion device according to claim 5, wherein the polyamine polymer is polyethylenimine, polyethylenediamine or methylpolyamine polyvinyl ether. 如請求項1所述之光電轉換裝置,其中,進一步包括一第一電極、一第 二電極、一第三電極、及一第四電極,所述第一電極與所述第一光照區域電連接,所述第二電極與所述第一非光照區域電連接;所述第三電極與所述第二光照區域電連接,所述第四電極與所述第二非光照區域電連接。The photoelectric conversion device of claim 1, further comprising a first electrode, a first a second electrode, a third electrode, and a fourth electrode, the first electrode being electrically connected to the first illumination region, the second electrode being electrically connected to the first non-illuminated region; the third electrode Electrically connected to the second illumination area, the fourth electrode is electrically connected to the second non-illuminated area. 如請求項10所述之光電轉換裝置,其中,所述第一電極、第二電極均為線狀或帶狀結構,分別設置於第一光電轉換元件的兩端並分別與第一光電轉換元件的兩個邊齊平;所述該第三電極、第四電極均為線狀或帶狀結構,分別設置於第二光電轉換元件的兩端並分別與第二光電轉換元件的兩個邊齊平。The photoelectric conversion device of claim 10, wherein the first electrode and the second electrode are both linear or strip-shaped structures, respectively disposed at two ends of the first photoelectric conversion element and respectively coupled to the first photoelectric conversion element The two sides are flush with each other; the third electrode and the fourth electrode are both linear or strip-shaped structures, respectively disposed at two ends of the second photoelectric conversion element and respectively respectively aligned with the two sides of the second photoelectric conversion element level. 如請求項1所述之光電轉換裝置,其中,所述至少一個光電轉換模組包括複數個光電轉換模組,該複數個光電轉換模組相互串聯。The photoelectric conversion device of claim 1, wherein the at least one photoelectric conversion module comprises a plurality of photoelectric conversion modules, and the plurality of photoelectric conversion modules are connected in series with each other. 如請求項12所述之光電轉換裝置,其中,所述複數個光電轉換模組中位於中間位置的相鄰的兩個光端轉換模組中,一個光電轉換模組的第二非光照區域與另一個光電轉換模組的第一非光照區域電連接,所述複數個光電轉換模組中位於兩端的兩個光端轉換模組中,一個光電轉換模組的第一非光照區域為電壓輸出端,另一個光電轉換模組的第二非光照區域為電壓輸出端。The photoelectric conversion device of claim 12, wherein the second non-illuminated area of the photoelectric conversion module is adjacent to the two adjacent optical conversion modules in the middle of the plurality of photoelectric conversion modules The first non-illuminated area of the other photoelectric conversion module is electrically connected. In the two optical end conversion modules of the plurality of photoelectric conversion modules, the first non-illuminated area of one photoelectric conversion module is a voltage output. The second non-illuminated area of the other photoelectric conversion module is a voltage output end. 如請求項1所述之光電轉換裝置,其中,所述第一光電轉換元件彎折形成所述第一光照區域及第一非光照區域,所述第二光電轉換元件彎折形成所述第二光照區域及第二非光照區域。The photoelectric conversion device of claim 1, wherein the first photoelectric conversion element is bent to form the first illumination region and the first non-illuminated region, and the second photoelectric conversion element is bent to form the second The illuminated area and the second non-illuminated area. 如請求項14所述之光電轉換裝置,其中,所述第一光電轉換元件和第二光電轉換元件彎折成U型或L型。The photoelectric conversion device according to claim 14, wherein the first photoelectric conversion element and the second photoelectric conversion element are bent into a U-shape or an L-shape. 一種光電轉換裝置,其改良在於,包括:至少一光電轉換模組,所述光電轉換模組包括:一第一光電轉換元件,該第一光電轉換元件為由空穴型導電材料構成,所述第一光電轉換元件彎折形成所述第一光照區域及第一非光照區域,該第一光照區域和第一非光照區域彎折後的夾角小於等於90度;以及一第二光電轉換元件,該第二光電轉換元件為由電子型導電材料構成,所述第二光電轉換元件彎折形成所述第二光照區域及第二非光照區域,該第二光照區域和第二非光照區域彎折後的夾角小於等於90度,且所 述第一光照區域與第二光照區域電連接。A photoelectric conversion device, comprising: at least one photoelectric conversion module, the photoelectric conversion module comprising: a first photoelectric conversion element, wherein the first photoelectric conversion element is composed of a hole-type conductive material, The first photoelectric conversion element is bent to form the first illumination area and the first non-illumination area, the angle between the first illumination area and the first non-illumination area being bent is less than or equal to 90 degrees; and a second photoelectric conversion element, The second photoelectric conversion element is composed of an electronic conductive material, and the second photoelectric conversion element is bent to form the second illumination region and the second non-illumination region, and the second illumination region and the second non-illumination region are bent The angle behind is less than or equal to 90 degrees, and The first illumination area is electrically connected to the second illumination area. 如請求項16所述之光電轉換裝置,其中,所述至少一光電轉換模組包括,複數個光電轉換模組串聯,相鄰的兩個光電轉換模組中第一非光照區域和第二非光照區域電連接。The photoelectric conversion device of claim 16, wherein the at least one photoelectric conversion module comprises: a plurality of photoelectric conversion modules connected in series, wherein the first two non-illuminated regions and the second non-illuminated module The light area is electrically connected. 如請求項16所述之光電轉換裝置,其中,進一步包括一絕緣體設置在第一光照區域和第一非光照區域之間及第二光照區域和第二非光照區域之間,所述絕緣體形狀配合第一光電轉換元件和第二光電轉換元件的彎曲形狀The photoelectric conversion device of claim 16, further comprising an insulator disposed between the first illumination region and the first non-illumination region and between the second illumination region and the second non-illumination region, the insulator shape matching Curved shape of the first photoelectric conversion element and the second photoelectric conversion element
TW102133818A 2010-07-05 2010-07-05 Light-electric conversion device TWI477694B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102133818A TWI477694B (en) 2010-07-05 2010-07-05 Light-electric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102133818A TWI477694B (en) 2010-07-05 2010-07-05 Light-electric conversion device

Publications (2)

Publication Number Publication Date
TW201402944A TW201402944A (en) 2014-01-16
TWI477694B true TWI477694B (en) 2015-03-21

Family

ID=50345458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102133818A TWI477694B (en) 2010-07-05 2010-07-05 Light-electric conversion device

Country Status (1)

Country Link
TW (1) TWI477694B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090044848A1 (en) * 2007-08-14 2009-02-19 Nanocomp Technologies, Inc. Nanostructured Material-Based Thermoelectric Generators

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090044848A1 (en) * 2007-08-14 2009-02-19 Nanocomp Technologies, Inc. Nanostructured Material-Based Thermoelectric Generators

Also Published As

Publication number Publication date
TW201402944A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
CN101894903B (en) Photoelectric conversion device
TWI410615B (en) Ir detective device
US8796537B2 (en) Carbon nanotube based solar cell
CN101871818B (en) Infrared detector
JP5155241B2 (en) Solar cell
TWI535081B (en) Light-electric conversion device
JP5646586B2 (en) Solar cell
TW200910614A (en) Solar cell and solar cell module
JP2013157428A (en) Photovoltaic power generation panel
JP5243332B2 (en) Solar collector and solar heat collecting system using the same
TWI477694B (en) Light-electric conversion device
TWI467091B (en) Light-electric conversion device
WO2017086271A1 (en) Thermoelectric conversion element and thermoelectric conversion module
TWI450402B (en) Solar cell
US9853171B2 (en) Photovoltaic devices with three dimensional surface features and methods of making the same
JP6505585B2 (en) Thermoelectric conversion element
TWI415274B (en) Semitransparent photovoltaic film
JP5027185B2 (en) Solar cell
TWI460872B (en) Solar battery
Xia et al. Pyramid shape of polymer solar cells: a simple solution to triple efficiency
WO2012115502A1 (en) A photovoltaic device with an integrated sensor
WO2017051699A1 (en) Thermoelectric conversion element
TWI775012B (en) Solar battery
TWI459568B (en) Solar cell
JP2013157427A (en) Photovoltaic device