TWI625922B - Wide-range voltage conversion ratios dc-dc converter - Google Patents

Wide-range voltage conversion ratios dc-dc converter Download PDF

Info

Publication number
TWI625922B
TWI625922B TW106112219A TW106112219A TWI625922B TW I625922 B TWI625922 B TW I625922B TW 106112219 A TW106112219 A TW 106112219A TW 106112219 A TW106112219 A TW 106112219A TW I625922 B TWI625922 B TW I625922B
Authority
TW
Taiwan
Prior art keywords
switch
voltage
inductor
capacitor
converter
Prior art date
Application number
TW106112219A
Other languages
Chinese (zh)
Other versions
TW201838306A (en
Inventor
鄧人豪
陳思維
廖書鴻
吳佳玲
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW106112219A priority Critical patent/TWI625922B/en
Application granted granted Critical
Publication of TWI625922B publication Critical patent/TWI625922B/en
Publication of TW201838306A publication Critical patent/TW201838306A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

一種升降壓比之直流-直流轉換器,其藉由該些開關的控制及控制訊號之責任週期的調整,讓轉換器可適用於雙向高升降壓比之直流電壓轉換,也能降低各個開關所承受之電壓應力,使高升降壓比之直流-直流轉換器於應用上更加地廣泛。A DC-DC converter with a buck-boost ratio, which can adjust the duty cycle of the control and control signals of the switches, so that the converter can be applied to the DC voltage conversion of the bidirectional high buck-boost ratio, and the switches can also be reduced. Withstand the voltage stress, the DC-DC converter with high buck-boost ratio is more widely used.

Description

高升降壓比之直流-直流轉換器High buck-boost DC-DC converter

本發明是關於一種直流-直流轉換器,特別是關於一種高升降壓比之直流-直流轉換器。This invention relates to a DC-DC converter, and more particularly to a DC-DC converter having a high buck-boost ratio.

請參閱第1圖,為習知一種升壓型轉換器,該升壓型轉換器200具有一輸入電壓源210、一電感220、一開關230、一二極體240、一電容250及一負載260,該開關230受到一訊號的控制。其中,當該訊號控制該開關230導通時,該輸入電壓源210、該電感220與該開關230構成迴路,該電容250與該負載260構成迴路,該二極體240則用避免該電容250朝向該開關230放電,此時,該輸入電壓源210將能量傳遞至該電感220中儲存,該電感220之電流為線性上升,而該電容250則對該負載釋放能量。接著,訊號控制該開關230截止,該電感220放電,使該輸入電壓源210及該電感220同時釋放能量至該電容250儲存而達到升壓之目的,在該升壓型轉換器200之責任週期趨近於1時,轉換器200的電壓增益會最大,但此時該開關230上的電流漣波及電容250上的電壓漣波亦會增大,導致該開關230的導通損失及承受應力增加,而不適合使用於過高的升壓電路中。Referring to FIG. 1 , a boost converter is provided. The boost converter 200 has an input voltage source 210 , an inductor 220 , a switch 230 , a diode 240 , a capacitor 250 , and a load . 260, the switch 230 is controlled by a signal. When the signal is controlled to be turned on, the input voltage source 210, the inductor 220 and the switch 230 form a loop, the capacitor 250 and the load 260 form a loop, and the diode 240 is used to avoid the capacitor 250 The switch 230 is discharged. At this time, the input voltage source 210 transfers energy to the inductor 220 for storage. The current of the inductor 220 rises linearly, and the capacitor 250 releases energy to the load. Then, the signal control switch 230 is turned off, and the inductor 220 is discharged, so that the input voltage source 210 and the inductor 220 simultaneously release energy to the capacitor 250 for storage to achieve the purpose of boosting, and the duty cycle of the boost converter 200 When approaching 1, the voltage gain of the converter 200 is maximized, but at this time, the current ripple on the switch 230 and the voltage ripple on the capacitor 250 also increase, causing the conduction loss and the withstanding stress of the switch 230 to increase. Not suitable for use in excessive boost circuits.

本發明的主要目的在於提供一高升降壓比之直流-直流轉換器,藉由開關的控制,除了讓轉換器可適用於雙向高升降壓比之直流電壓轉換外,也能降低各個開關所承受之電壓應力,使高升降壓比之直流-直流轉換器於應用上能更加地廣泛。The main object of the present invention is to provide a DC-DC converter with a high buck-boost ratio. By controlling the switch, the converter can be applied to the DC voltage conversion of the bidirectional high buck-boost ratio, and the switch can also be reduced. The voltage stress makes the DC-DC converter with high buck-boost ratio more widely applicable.

本發明之一種高升降壓比之直流-直流轉換器包含一第一電壓側、一第二電壓側、一第一電容、一第一開關組、一電感組、一第二開關組及一電容組,該第一電壓側具有一第一電壓端及一第二電壓端,該第二電壓側具有一第三電壓端及一第四電壓端,該第一電容之一端耦接該第一電壓端,該第一電容之另一端耦接該第二電壓端,該第一開關組具有一第一開關及一第二開關,該第一開關及該第二開關之一端耦接該第一電壓端,該電感組具有一第一電感及一第二電感,該第一電感之一端耦接該第一開關之另一端,該第一電感之另一端耦接一第一節點,該第二電感之一端耦接該第二開關之另一端,該第二電感之另一端耦接一第二節點,該第二開關組具有一第三開關、一第四開關、一第五開關及一第六開關,該第三開關及該第五開關之一端耦接該第一節點,該第四開關之一端耦接該第二節點,該第三開關及該第四開關之另一端耦接該第二電壓端,該第五開關之另一端耦接該第三電壓端,該第六開關之一端耦接該第二電壓端,該第六開關之另一端耦接該第四電壓端,該電容組具有一第二電容及一第三電容,該第二電容之一端耦接該第三電壓端,該第二電容之另一端耦接該第二節點,該第三電容之一端耦接該第二節點,該第二電容之另一端耦接該第四電壓端。A DC-DC converter with a high buck-boost ratio includes a first voltage side, a second voltage side, a first capacitor, a first switch group, an inductor group, a second switch group, and a capacitor. The first voltage side has a first voltage end and a second voltage end, and the second voltage side has a third voltage end and a fourth voltage end, and one end of the first capacitor is coupled to the first voltage The first end of the first switch is coupled to the second voltage end, the first switch group has a first switch and a second switch, and the first switch and the second switch are coupled to the first voltage The first inductor has a first inductor and a second inductor, and the other end of the first inductor is coupled to the other end of the first switch, and the other end of the first inductor is coupled to a first node, the second inductor One end is coupled to the other end of the second switch, and the other end of the second inductor is coupled to a second node, the second switch group has a third switch, a fourth switch, a fifth switch, and a sixth a switch, the third switch and one end of the fifth switch are coupled to the first node, One end of the fourth switch is coupled to the second node, the other end of the third switch and the fourth switch are coupled to the second voltage end, and the other end of the fifth switch is coupled to the third voltage end, the first One end of the six switch is coupled to the second voltage end, and the other end of the sixth switch is coupled to the fourth voltage end, the capacitor group has a second capacitor and a third capacitor, and one end of the second capacitor is coupled to the The third terminal is coupled to the second node, the other end of the third capacitor is coupled to the second node, and the other end of the second capacitor is coupled to the fourth voltage terminal.

本發明藉由對該些開關的控制及責任週期的調整,可讓該高升降壓比之直流-直流轉換器操作於不同模式,以在不同模式中進行不同程度之電壓轉換,而能應用於多種電壓轉換需求較高的場合,例如電動車之快速充電站或廢棄汽車電池之回收儲能系統。By adjusting the control and duty cycle of the switches, the DC-DC converter of the high buck-boost ratio can be operated in different modes to perform different degrees of voltage conversion in different modes, and can be applied to A variety of applications where high voltage conversion requirements are required, such as fast charging stations for electric vehicles or recycling energy storage systems for discarded automotive batteries.

請參閱第2圖,為本發明之一第一實施例,一種高升降壓比之直流-直流轉換器100之電路圖,該高升降壓比之直流-直流轉換器100包含一第一電壓側FE、一第一電容110、一第一開關組120、一電感組130、一第二開關組140、一電容組150及一第二電壓側SE。該第一電容110電性連接該第一電壓側FE,該第一開關組120電性連接該第一電容110及該第一電壓側FE,該電感組130電性連接該第一開關組120,該第二開關組140電性連接該電感組130,該電容組150電性連接該第二開關組140,該第二電壓側SE電性連接該電容組150及該第二開關組140。Please refer to FIG. 2, which is a circuit diagram of a DC-DC converter 100 with a high buck-boost ratio according to a first embodiment of the present invention. The DC-DC converter 100 of the high buck-boost ratio includes a first voltage side FE. a first capacitor 110, a first switch group 120, an inductor group 130, a second switch group 140, a capacitor bank 150, and a second voltage side SE. The first capacitor 110 is electrically connected to the first voltage side FE, and the first switch group 120 is electrically connected to the first capacitor 110 and the first voltage side FE. The inductor group 130 is electrically connected to the first switch group 120. The second switch group 140 is electrically connected to the inductor group 130. The capacitor group 150 is electrically connected to the second switch group 140. The second voltage side SE is electrically connected to the capacitor group 150 and the second switch group 140.

該第一電壓側FE具有一第一電壓端V1及一第二電壓端V2,該第二電壓側SE具有一第三電壓端V3及一第四電壓端V4,在本實施例中,該第一電壓端V1及該第二電壓端V2電性連接一直流電壓 V A ,該第三電壓端V3及該第四電壓端V4電性連接一直流電壓 V B 。在其他實施例中,該第一電壓端V1及該第二電壓端V2與該第三電壓端V3及該第四電壓端V4兩者之一亦可電性連接一負載。 The first voltage side FE has a first voltage terminal V1 and a second voltage terminal V2. The second voltage side SE has a third voltage terminal V3 and a fourth voltage terminal V4. In this embodiment, the A voltage terminal V1 and the second voltage terminal V2 are electrically connected to the DC voltage V A , and the third voltage terminal V3 and the fourth voltage terminal V4 are electrically connected to the DC voltage V B . In other embodiments, the first voltage terminal V1 and the second voltage terminal V2 and one of the third voltage terminal V3 and the fourth voltage terminal V4 are electrically connected to a load.

該第一電容110之一端耦接該第一電壓端V1,該第一電容110之另一端耦接該第二電壓端V2,其中,當該第一電壓側FE作為受電端時,該第一電容110作為充電電容使用,以進行升壓或降壓。One end of the first capacitor 110 is coupled to the first voltage terminal V1, and the other end of the first capacitor 110 is coupled to the second voltage terminal V2, wherein when the first voltage side FE is used as the power receiving end, the first The capacitor 110 is used as a charging capacitor for boosting or stepping down.

該第一開關組120具有一第一開關121及一第二開關122,該第一開關121及該第二開關122之一端耦接該第一電壓端V1,該第一開關121及該第二開關122之另一端耦接該電感組130,其中該第一開關121及該第二開關122分別受複數個訊號控制。The first switch group 120 has a first switch 121 and a second switch 122. One end of the first switch 121 and the second switch 122 are coupled to the first voltage terminal V1, and the first switch 121 and the second switch The other end of the switch 122 is coupled to the inductor group 130. The first switch 121 and the second switch 122 are respectively controlled by a plurality of signals.

該電感組130具有一第一電感131及一第二電感132,該第一電感131之一端耦接該第一開關121之另一端,該第一電感131之另一端耦接一第一節點n1,該第二電感132之一端耦接該第二開關122之另一端,該第二電感132之另一端耦接一第二節點n2。 The inductor group 130 has a first inductor 131 and a second inductor 132. One end of the first inductor 131 is coupled to the other end of the first switch 121. The other end of the first inductor 131 is coupled to a first node n1. One end of the second inductor 132 is coupled to the other end of the second switch 122, and the other end of the second inductor 132 is coupled to a second node n2.

該第二開關組140具有一第三開關141、一第四開關142、一第五開關143及一第六開關144,該第三開關141及該第五開關143之一端耦接該第一節點n1,該第四開關142之一端耦接該第二節點n2,該第三開關141及該第四開關142之另一端耦接該第二電壓端V2,該第五開關143之另一端耦接該第二電壓側SE之該第三電壓端V3,該第六開關144之一端耦接該第一電壓側FE之該第二電壓端V2,該第六開關144之另一端耦接該第二電壓側SE之該第四電壓端V4,其中該第三開關141、該第四開關142、該第五開關143及該第六開關144分別受複數個訊號控制。 The second switch group 140 has a third switch 141, a fourth switch 142, a fifth switch 143, and a sixth switch 144. One end of the third switch 141 and the fifth switch 143 are coupled to the first node. N1, one end of the fourth switch 142 is coupled to the second node n2, the other end of the third switch 141 and the fourth switch 142 are coupled to the second voltage terminal V2, and the other end of the fifth switch 143 is coupled The third voltage terminal V3 of the second voltage side SE is coupled to the second voltage terminal V2 of the first voltage side FE, and the other end of the sixth switch 144 is coupled to the second voltage terminal V2. The fourth voltage terminal V4 of the voltage side SE, wherein the third switch 141, the fourth switch 142, the fifth switch 143, and the sixth switch 144 are respectively controlled by a plurality of signals.

該電容組150具有一第二電容151及一第三電容152,該第二電容151之一端耦接該第三電壓端V3,該第二電容151之另一端耦接該第二節點n2,該第三電容152之一端耦接該第二節點n2,該第二電容151之另一端耦接該第四電壓端V4,其中,當該第二電壓側SE作為受電端時,該第二電容151及該第三電容152作為充電電容使用,以進行升壓或降壓。 The capacitor group 150 has a second capacitor 151 and a third capacitor 152. One end of the second capacitor 151 is coupled to the third voltage terminal V3, and the other end of the second capacitor 151 is coupled to the second node n2. One end of the third capacitor 152 is coupled to the second node n2, and the other end of the second capacitor 151 is coupled to the fourth voltage terminal V4. When the second voltage side SE is used as the power receiving end, the second capacitor 151 And the third capacitor 152 is used as a charging capacitor to perform boosting or stepping down.

本發明之該高升降壓比之直流-直流轉換器100之操作大致可區分為以該第一電壓側FE為輸入電壓,該第二電壓側SE為輸出電壓的模式;以及以該第二電壓側SE為輸入電壓,該第一電壓側FE為輸出電壓的模式。 The operation of the DC-DC converter 100 of the high buck-boost ratio of the present invention can be roughly divided into a mode in which the first voltage side FE is an input voltage, the second voltage side SE is an output voltage, and the second voltage The side SE is an input voltage, and the first voltage side FE is a mode of an output voltage.

請參閱第3至6圖,為本發明之該高升降壓比之直流-直流轉換器100於一交錯式升壓模式中的開關切換流程圖,此模式之該第一電壓側FE為輸入電 壓,該第二電壓側SE為輸出電壓。請參閱第3圖,為該高升降壓比之直流-直流轉換器100於t0-t1區間的電路作動圖,該第一開關121、該第二開關122、該第三開關141及該第四開關142導通,該第五開關143及該第六開關144截止,此時,該第一電壓側FE之該直流電壓V A 對該第一電感131及該第二電感132進行儲能,使該第一電感131及該第二電感132之電流線性上升,而該第二電容151及該第三電容152則一起對該第二電壓側SE釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: Please refer to FIGS. 3 to 6 , which are flowcharts of switching of the DC-DC converter 100 of the high buck-boost ratio in an interleaved boost mode according to the present invention. The first voltage side FE of the mode is an input voltage. The second voltage side SE is an output voltage. Please refer to FIG. 3 , which is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 0 −t 1 , the first switch 121 , the second switch 122 , the third switch 141 , and the The fourth switch 142 is turned on, and the fifth switch 143 and the sixth switch 144 are turned off. At this time, the DC voltage V A of the first voltage side FE stores the first inductor 131 and the second inductor 132. The currents of the first inductor 131 and the second inductor 132 are linearly increased, and the second capacitor 151 and the third capacitor 152 together release energy to the second voltage side SE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law:

i A =i L1+i L2其中,V L1為該第一電感131之跨壓,L 1為該第一電感131之電感值,i L1為流經該第一電感131之電流大小,V L2為該第二電感132之跨壓,L 2為該第二電感132之電感值,i L2為流經該第二電感132之電流大小,i A 為由該第一電壓側FE流出之電流。 i A = i L 1 + i L 2 , where V L 1 is the voltage across the first inductor 131, L 1 is the inductance of the first inductor 131, and i L 1 is the current flowing through the first inductor 131 The size, V L 2 is the voltage across the second inductor 132, L 2 is the inductance of the second inductor 132, i L 2 is the magnitude of the current flowing through the second inductor 132, and i A is the first voltage. The current flowing out of the side FE.

接著,請參第4圖,為該高升降壓比之直流-直流轉換器100於t1-t2區間的電路作動圖,該第一開關121、該第二開關122、該第四開關142及該第五開關143導通,該第三開關141及該第六開關144截止,此時該第一電壓側FE之直流電壓V A 小於該第二電壓側SE之直流電壓V B ,該第一電感131對該第二電容151進行儲能,該第一電感131之電流線性下降,此外,該直流電壓V A 繼續對該第二電感132進行儲能,使該第二電感132之電流線性上升。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第二電感132之跨壓, 為該第二電感132之電感值, 為流經該第二電感132之電流大小, 為由該第一電壓側FE流出之電流大小。 Next, please refer to FIG. 4 , which is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 1 -t 2 , the first switch 121 , the second switch 122 , and the fourth switch 142 . And the fifth switch 143 is turned on, and the third switch 141 and the sixth switch 144 are turned off. At this time, the DC voltage V A of the first voltage side FE is smaller than the DC voltage V B of the second voltage side SE, the first The inductor 131 stores the second capacitor 151. The current of the first inductor 131 decreases linearly. In addition, the DC voltage V A continues to store the second inductor 132, causing the current of the second inductor 132 to rise linearly. . In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the second inductor 132, For the inductance value of the second inductor 132, The magnitude of the current flowing through the second inductor 132, The magnitude of the current flowing out of the first voltage side FE.

接著,請參閱第5圖,為該高升降壓比之直流-直流轉換器100於t 2-t 3區間的電路作動圖,該第一開關121、該第二開關122、該第三開關141及該第四開關142導通,該第五開關143及該第六開關144截止,此時,該第一電壓側FE之電壓 V A 對該第一電感131及該第二電感132進行儲能,使該第一電感131及該第二電感132之電流線性上升,而該第二電容151及該第三電容152則一起對該第二電壓側SE釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第二電感132之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電感132之電感值, 為流經該第二電感132之電流大小, 為由該第一電壓側FE流出之電流大小。 Next, referring to FIG. 5, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 2 -t 3 , the first switch 121, the second switch 122, and the third switch 141 The fourth switch 142 is turned on, and the fifth switch 143 and the sixth switch 144 are turned off. At this time, the voltage V A of the first voltage side FE stores the first inductor 131 and the second inductor 132. The currents of the first inductor 131 and the second inductor 132 are linearly increased, and the second capacitor 151 and the third capacitor 152 together release energy to the second voltage side SE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the voltage across the second inductor 132, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the inductance value of the second inductor 132, The magnitude of the current flowing through the second inductor 132, The magnitude of the current flowing out of the first voltage side FE.

接著,請參閱第6圖,為該高升降壓比之直流-直流轉換器100於t 3-t 4區間的電路作動圖,該第一開關121、該第二開關122、該第三開關141及該第六開關144導通,該第四開關142及該第五開關143截止,此時該第一電壓側FE之直流電壓 V A 小於該第二電壓側SE之直流電壓 V B ,該第二電感132對該第三電容152進行儲能,該第二電感132之電流線性下降,此外,該直流電壓 V A 則對該第一電感131進行儲能,使該第一電感131之電流線性上升。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電感132之跨壓, 為該第二電感132之電感值, 為流經該第二電感132之電流大小, 為該第三電容152之跨壓, 為由該第一電壓側FE流出之電流大小。 Next, please refer to FIG. 6 , which is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 3 -t 4 , the first switch 121 , the second switch 122 , and the third switch 141 . And the sixth switch 144 is turned on, and the fourth switch 142 and the fifth switch 143 are turned off. At this time, the DC voltage V A of the first voltage side FE is smaller than the DC voltage V B of the second voltage side SE, and the second The inductor 132 stores the third capacitor 152. The current of the second inductor 132 decreases linearly. In addition, the DC voltage V A stores the first inductor 131, and the current of the first inductor 131 rises linearly. . In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second inductor 132, For the inductance value of the second inductor 132, The magnitude of the current flowing through the second inductor 132, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the first voltage side FE.

由上述四個區間的電路分析的可推導出該第一電感131之電壓、該第二電感132之電壓及由該第一電壓側FE流出之電流於一個週期內的平均值為: 為整個切換週期,再根據伏-秒定律,可推導出: 分別為該第五開關143及該第六開關144的責任週期。當該第二電容151及該第三電容152電壓相同,藉由兩個電容串聯之總輸出電壓為: 分別為該第三開關141及該第四開關142的責任週期,其中分別控制該第三開關141與該第五開關143之訊號互為互補,分別控制該第四開關142與該第六開關144之訊號互為互補,並由上式可知本模式能藉由調整該第三開關141及該第四開關142的責任週期 進行升壓之控制。 From the circuit analysis of the above four sections, it can be derived that the voltage of the first inductor 131, the voltage of the second inductor 132, and the current flowing from the first voltage side FE in one cycle are: For the entire switching cycle, according to the volt-second law, we can deduce: and The duty cycle of the fifth switch 143 and the sixth switch 144 are respectively. When the voltage of the second capacitor 151 and the third capacitor 152 are the same, the total output voltage of the two capacitors connected in series is: and The duty cycles of the third switch 141 and the fourth switch 142 are respectively controlled, wherein the signals of the third switch 141 and the fifth switch 143 are respectively complementary to each other, and the fourth switch 142 and the sixth switch 144 are respectively controlled. The signals are complementary to each other, and it can be seen from the above formula that the mode can adjust the duty cycle of the third switch 141 and the fourth switch 142. Perform the control of boosting.

請參閱第7及8圖,為本發明之該高升降壓比之直流-直流轉換器100於一單一升壓模式中的開關切換流程圖,此模式之該第一電壓側FE為輸入電壓,該第二電壓側SE為輸出電壓。請參閱第7圖,為該高升降壓比之直流-直流轉換器100於t 0-t 1區間的電路作動圖,該第一開關121、該第三開關141及該第六開關144導通,該第二開關122、該第四開關142及該第五開關143截止,該第一電壓側FE之該直流電壓 V A 對該第一電感131進行儲能,使該第一電感131之電流線性上升,而該第二電容151及該第三電容152則一起對該第二電壓側SE釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為由該第一電壓側FE流出之電流大小。 Please refer to FIGS. 7 and 8 for a switching diagram of the switching of the DC-DC converter 100 of the high buck-boost ratio in a single boost mode. The first voltage side FE of the mode is an input voltage. The second voltage side SE is an output voltage. Please refer to FIG. 7 , which is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the range of 0 − t 1 , wherein the first switch 121 , the third switch 141 , and the sixth switch 144 are turned on. The second switch 122, the fourth switch 142, and the fifth switch 143 are turned off, and the DC voltage V A of the first voltage side FE stores the first inductor 131 to linearize the current of the first inductor 131. Ascending, the second capacitor 151 and the third capacitor 152 together release energy to the second voltage side SE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, The magnitude of the current flowing out of the first voltage side FE.

接著,請參閱第8圖,為該高升降壓比之直流-直流轉換器100於t 1-t 2區間的電路作動圖,該第一開關121、該第五開關143及該第六開關144導通,該第二開關122、該第三開關141及該第四開關142截止,此時該第一電壓側FE之直流電壓 V A 小於該第二電壓側SE之直流電壓 V B ,該第一電感131對該第二電容151及該第三電容152進行儲能,該第一電感131之電流線性下降。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第一電壓側FE流出之電流大小。 Next, please refer to FIG. 8 , which is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 1 -t 2 , the first switch 121 , the fifth switch 143 and the sixth switch 144 . Turning on, the second switch 122, the third switch 141, and the fourth switch 142 are turned off. At this time, the DC voltage V A of the first voltage side FE is smaller than the DC voltage V B of the second voltage side SE, the first The inductor 131 stores the second capacitor 151 and the third capacitor 152, and the current of the first inductor 131 decreases linearly. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the first voltage side FE.

由上述兩個區間的電路分析的可推導出該第一電感131之電壓及由該第一電壓側FE流出之電流於一個週期內的平均值為: 為整個切換週期,再根據伏-秒定律,可推導出: 為該第五開關143的責任週期。當該第二電容151及該第三電容152電壓相同,藉由兩個電容串聯之總輸出電壓為: 為該第三開關141的責任週期,其中該第三開關141與該第五開關143之責任週期互為互補,並由上式可知本模式能藉由調整該第三開關141的責任週期 進行升壓之控制。 From the circuit analysis of the above two sections, it can be deduced that the average value of the voltage of the first inductor 131 and the current flowing from the first voltage side FE in one cycle is: For the entire switching cycle, according to the volt-second law, we can deduce: It is the duty cycle of the fifth switch 143. When the voltage of the second capacitor 151 and the third capacitor 152 are the same, the total output voltage of the two capacitors connected in series is: For the duty cycle of the third switch 141, wherein the duty cycle of the third switch 141 and the fifth switch 143 are complementary to each other, and the above formula can be used to adjust the duty cycle of the third switch 141. Perform the control of boosting.

請參閱第9、10、11及12圖,為本發明之該高升降壓比之直流-直流轉換器100於一堆疊式降升壓模式中的開關切換流程圖,此模式之該第一電壓側FE為輸入電壓,該第二電壓側SE為輸出電壓。此外,在本模式中,該第一開關組120另具有一第七開關123,該第七開關123之一端耦接該第一開關121之另一端及該第一電感131之一端,該第七開關123之另一端耦接該第二電壓端V2。Please refer to FIGS. 9, 10, 11 and 12 for the switch switching diagram of the DC-DC converter 100 of the high buck-boost ratio in a stacked step-down mode, the first voltage of the mode. The side FE is an input voltage, and the second voltage side SE is an output voltage. In addition, in the present mode, the first switch group 120 has a seventh switch 123, and one end of the seventh switch 123 is coupled to the other end of the first switch 121 and one end of the first inductor 131. The other end of the switch 123 is coupled to the second voltage terminal V2.

請參閱第9圖,為該高升降壓比之直流-直流轉換器100於t 0-t 1區間的電路作動圖,該第一開關121及該第三開關141導通,該第二開關122、該第四開關142、該第五開關143、該第六開關144及該第七開關123截止,此時,該第一電壓側FE之該直流電壓 V A 對該第一電感131進行儲能,使該第一電感131之電流線性上升,而該第二電容151及該第三電容152則一起對該第二電壓側SE釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為由該第一電壓側FE流出之電流大小。 Please refer to FIG. 9 , which is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 0 −t 1 , the first switch 121 and the third switch 141 are turned on, and the second switch 122 , The fourth switch 142, the fifth switch 143, the sixth switch 144, and the seventh switch 123 are turned off. At this time, the DC voltage V A of the first voltage side FE stores the first inductor 131. The current of the first inductor 131 is linearly increased, and the second capacitor 151 and the third capacitor 152 together release energy to the second voltage side SE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, The magnitude of the current flowing out of the first voltage side FE.

接著,請參閱第10圖,為該高升降壓比之直流-直流轉換器100於t 1-t 2區間的電路作動圖,該第一開關121、該第五開關143及該第六開關144導通,該第二開關122、該第三開關141、該第四開關142及該第七開關123截止,此時,若該第一電壓側FE之直流電壓 V A 大於該第二電壓側SE之直流電壓 V B ,該直流電壓 V A 持續對該第一電感131進行儲能,使該第一電感131之電流線性上升,而若該第一電壓側FE之直流電壓 V A 小於該第二電壓側SE之直流電壓 V B ,該第一電感131對該第二電容151及該第三電容152進行儲能,使該第一電感131之電流線性下降。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第一電壓側FE流出之電流大小。 Next, referring to FIG. 10, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 1 -t 2 , the first switch 121, the fifth switch 143, and the sixth switch 144 Turning on, the second switch 122, the third switch 141, the fourth switch 142, and the seventh switch 123 are turned off. At this time, if the DC voltage V A of the first voltage side FE is greater than the second voltage side SE The DC voltage V B , the DC voltage V A continues to store the first inductor 131, so that the current of the first inductor 131 rises linearly, and if the DC voltage V A of the first voltage side FE is less than the second voltage The DC voltage V B of the side SE, the first inductor 131 stores the second capacitor 151 and the third capacitor 152 to linearly decrease the current of the first inductor 131. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the first voltage side FE.

接著,請參閱第11圖,為該高升降壓比之直流-直流轉換器100於t 2-t 3區間的電路作動圖,該第五開關143、該第六開關144及該第七開關123導通,該第一開關121、該第二開關122、該第三開關141及該第四開關142截止,此時,該第一電感131對該第二電容151及該第三電容152釋放能量,使該第一電感131之電流線性下降。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第一電壓側FE流出之電流大小。 Next, referring to FIG. 11 , a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 2 -t 3 , the fifth switch 143 , the sixth switch 144 , and the seventh switch 123 . The first switch 121, the second switch 122, the third switch 141, and the fourth switch 142 are turned off. At this time, the first inductor 131 releases energy to the second capacitor 151 and the third capacitor 152. The current of the first inductor 131 is linearly decreased. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the first voltage side FE.

接著,請參閱第12圖,為該高升降壓比之直流-直流轉換器100於t 3-t 4區間的電路作動圖,該第三開關141及該第七開關123導通,該第一開關121、該第二開關122、該第四開關142、該第五開關143及該第六開關144截止,此時該第一電感131的跨壓為零,該第一電感131之電流方向不變,此外,該第二電容151及該第三電容152則一起對該第二電壓側SE釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為由該第一電壓側FE流出之電流大小。 Next, referring to FIG. 12, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 3 -t 4 , the third switch 141 and the seventh switch 123 are turned on, the first switch 121. The second switch 122, the fourth switch 142, the fifth switch 143, and the sixth switch 144 are turned off. At this time, the voltage across the first inductor 131 is zero, and the current direction of the first inductor 131 is unchanged. In addition, the second capacitor 151 and the third capacitor 152 together release energy to the second voltage side SE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, The magnitude of the current flowing out of the first voltage side FE.

由上述四個區間的電路分析可推導出該第一電感131之電壓及由該第一電壓側FE流出之電流於一個週期內的平均值為: 為整個切換週期, 為該第一開關121的責任週期,再根據伏-秒定律,可推導出: 為該第一開關121的責任週期, 為該第五開關143的責任週期。當該第二電容151及該第三電容152電壓相同,藉由兩個電容串聯之總輸出電壓為: 其中該第一開關121與該第七開關123之責任週期互為互補,該第三開關141與該第五開關143之責任週期互為互補,並由上式可知,當本模式中該第五開關143的責任週期 固定為50%時,能藉由調整該第一開關121的責任週期 進行升壓或降壓,當該第一開關121的責任週期 大於50%時即可得到升壓的效果,而當該第一開關121的責任週期 大於50%時即可得到降壓的效果。 From the circuit analysis of the above four sections, it can be deduced that the average value of the voltage of the first inductor 131 and the current flowing from the first voltage side FE in one cycle is: For the entire switching cycle, For the duty cycle of the first switch 121, according to the volt-second law, it can be derived: For the duty cycle of the first switch 121, It is the duty cycle of the fifth switch 143. When the voltage of the second capacitor 151 and the third capacitor 152 are the same, the total output voltage of the two capacitors connected in series is: The duty cycle of the first switch 121 and the seventh switch 123 are complementary to each other, and the duty cycles of the third switch 141 and the fifth switch 143 are complementary to each other, and the above formula is known. The duty cycle of switch 143 When fixed at 50%, the duty cycle of the first switch 121 can be adjusted Boost or step down, when the duty cycle of the first switch 121 When the ratio is greater than 50%, the boosting effect is obtained, and when the first switch 121 is in the duty cycle When it is greater than 50%, the effect of depressurization can be obtained.

請參閱第13及14圖,為本發明之該高升降壓比之直流-直流轉換器100於一單一降壓模式中的開關切換流程圖,此模式之該第一電壓側FE為輸入電壓,該第二電壓側SE為輸出電壓,相同地,在此模式中該第一開關組120亦具有該第七開關123。請參閱第13圖,為該高升降壓比之直流-直流轉換器100於t 0-t 1區間的電路作動圖,該第一開關121、該第五開關143及該第六開關144導通,該第二開關122、該第三開關141、該第四開關142及該第七開關123截止,此時該第一電壓側FE之直流電壓 V A 大於該第二電壓側SE之直流電壓 V B ,該第一電感131儲存能量,該第一電感131之電流線性上升。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第一電壓側FE流出之電流大小。 Please refer to FIGS. 13 and 14 for a switching diagram of the switching of the high buck-boost DC-DC converter 100 in a single buck mode according to the present invention. The first voltage side FE of the mode is an input voltage. The second voltage side SE is an output voltage, and similarly, the first switch group 120 also has the seventh switch 123 in this mode. Referring to FIG. 13 , a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 0 −t 1 , the first switch 121 , the fifth switch 143 , and the sixth switch 144 are turned on. The second switch 122, the third switch 141, the fourth switch 142, and the seventh switch 123 are turned off. At this time, the DC voltage V A of the first voltage side FE is greater than the DC voltage V B of the second voltage side SE. The first inductor 131 stores energy, and the current of the first inductor 131 rises linearly. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the first voltage side FE.

接著,請參閱第14圖,為該高升降壓比之直流-直流轉換器100於t 1-t 2區間的電路作動圖,該第五開關143、該第六開關144及該第七開關123導通,該第一開關121、該第二開關122、該第三開關141及該第四開關142截止,此時該第一電感131之電流線性下降。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第一電壓側FE流出之電流大小。 Next, referring to FIG. 14, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 1 -t 2 , the fifth switch 143, the sixth switch 144, and the seventh switch 123 When the first switch 121, the second switch 122, the third switch 141, and the fourth switch 142 are turned off, the current of the first inductor 131 decreases linearly. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the first voltage side FE.

由上述兩個區間的電路分析的可推導出該第一電感131之電壓及由該第一電壓側FE流出之電流於一個週期內的平均值為: 為該第一開關121的責任週期, 為整個切換週期,再根據伏-秒定律,可推導出: 為該第一開關121的責任週期,當該第二電容151及該第三電容152電壓相同,藉由兩個電容串聯之總輸出電壓為: 為該第三開關141的責任週期,由此可知本模式中能藉由調整該第一開關121的責任週期 進行降壓之控制。 From the circuit analysis of the above two sections, it can be deduced that the average value of the voltage of the first inductor 131 and the current flowing from the first voltage side FE in one cycle is: For the duty cycle of the first switch 121, For the entire switching cycle, according to the volt-second law, we can deduce: For the duty cycle of the first switch 121, when the voltages of the second capacitor 151 and the third capacitor 152 are the same, the total output voltage of the two capacitors connected in series is: For the duty cycle of the third switch 141, it can be seen that the duty cycle of the first switch 121 can be adjusted in this mode. Perform the control of the step-down.

由上述四個模式的電路作動可知:在交錯式升壓模式中,以該第三開關141及該第四開關142之責任週期為75%為例,該高升降壓比之直流-直流轉換器100可提供8倍之升壓轉換比;在單一升壓模式中,以該第三開關141之責任週期為75%為例,該高升降壓比之直流-直流轉換器100可提供4倍之升壓轉換比;在堆疊式升降壓模式則可調整該第一開關121及該第五開關143之責任週期進行電壓等級相近之升降壓;在單一降壓模式中,以該第一開關121之責任週期為20%為例,該高升降壓比之直流-直流轉換器100可提供5倍之降壓轉換比。According to the operation of the above four modes, in the interleaved boost mode, the duty cycle of the third switch 141 and the fourth switch 142 is 75%, and the DC-DC converter with the high buck-boost ratio is used. 100 can provide 8 times the boost conversion ratio; in the single boost mode, taking the duty cycle of the third switch 141 as 75%, the DC-DC converter 100 can provide 4 times the high buck-boost ratio. The boosting conversion ratio can be adjusted in the stacked buck-boost mode to adjust the voltage of the first switch 121 and the fifth switch 143 to be similar to the voltage level; in the single buck mode, the first switch 121 For example, the duty cycle is 20%, and the DC-DC converter 100 of the high buck-boost ratio provides a 5 times step-down conversion ratio.

請參閱第15至18圖,為本發明之該高升降壓比之直流-直流轉換器100於一交錯式降壓模式中的開關切換流程圖,此模式之該第一電壓側FE為輸出電壓,該第二電壓側SE為輸入電壓。請參閱第15圖,為該高升降壓比之直流-直流轉換器100於t 0-t 1區間的電路作動圖,該第一開關121、該第二開關122、該第三開關141及該第六開關144導通,該第四開關142及該第五開關143截止,此時,該第一電感131釋放能量,使該第一電感131之電流線性下降,該第二電感132則儲存能量,使該第二電感132之電流線性上升。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電感132之跨壓, 為該第二電感132之電感值, 為流經該第二電感132之電流大小, 為該第三電容152之跨壓, 為由該第二電壓側SE流出之電流大小。 Please refer to FIGS. 15 to 18, which are flowcharts of switching of the DC-DC converter 100 of the high buck-boost ratio in an interleaved buck mode according to the present invention. The first voltage side FE of the mode is an output voltage. The second voltage side SE is an input voltage. Please refer to FIG. 15 , which is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 0 −t 1 , the first switch 121 , the second switch 122 , the third switch 141 , and the The sixth switch 144 is turned on, and the fourth switch 142 and the fifth switch 143 are turned off. At this time, the first inductor 131 releases energy, and the current of the first inductor 131 decreases linearly, and the second inductor 132 stores energy. The current of the second inductor 132 is linearly increased. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second inductor 132, For the inductance value of the second inductor 132, The magnitude of the current flowing through the second inductor 132, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the second voltage side SE.

接著,請參閱第16圖,為該高升降壓比之直流-直流轉換器100於t 1-t 2區間的電路作動圖,該第一開關121、該第二開關122、該第三開關141及該第四開關142導通,該第五開關143及該第六開關144截止,此時該第一電感131及該第二電感132均釋放能量至該第一電容110,使該第一電感131及該第二電感132之電流線性下降。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電感132之跨壓, 為該第二電感132之電感值, 為流經該第二電感132之電流大小, 為由該第二電壓側SE流出之電流大小。 Next, referring to FIG. 16, a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 1 -t 2 , the first switch 121, the second switch 122, and the third switch 141 The fourth switch 142 is turned on, and the fifth switch 143 and the sixth switch 144 are turned off. At this time, the first inductor 131 and the second inductor 132 both release energy to the first capacitor 110, so that the first inductor 131 And the current of the second inductor 132 decreases linearly. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second inductor 132, For the inductance value of the second inductor 132, The magnitude of the current flowing through the second inductor 132, The magnitude of the current flowing out of the second voltage side SE.

接著,請參閱第17圖,為該高升降壓比之直流-直流轉換器100於t 2-t 3區間的電路作動圖,該第一開關121、該第二開關122、該第四開關142及該第五開關143導通,該第三開關141及該第六開關144截止,此時,該第一電感131儲存能量,使該第一電感131之電流線性上升,該第二電感132則釋放能量,使該第二電感132之電流線性下降。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第二電感132之跨壓, 為該第二電感132之電感值, 為流經該第二電感132之電流大小, 為由該第二電壓側SE流出之電流大小。 Next, referring to FIG. 17, a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 2 -t 3 , the first switch 121, the second switch 122, and the fourth switch 142 The fifth switch 143 is turned on, and the third switch 141 and the sixth switch 144 are turned off. At this time, the first inductor 131 stores energy, so that the current of the first inductor 131 rises linearly, and the second inductor 132 releases. The energy causes the current of the second inductor 132 to decrease linearly. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the second inductor 132, For the inductance value of the second inductor 132, The magnitude of the current flowing through the second inductor 132, The magnitude of the current flowing out of the second voltage side SE.

接著,請參閱第18圖,為該高升降壓比之直流-直流轉換器100於t 3-t 4區間的電路作動圖,該第一開關121、該第二開關122、該第三開關141及該第四開關142導通,該第五開關143及該第六開關144截止,此時該第一電感131及該第二電感132均釋放能量至該第一電容110,使該第一電感131及該第二電感132之電流線性下降。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電感132之跨壓, 為該第二電感132之電感值, 為流經該第二電感132之電流大小, 為由該第二電壓側SE流出之電流大小。 Next, referring to FIG. 18, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 3 -t 4 , the first switch 121, the second switch 122, and the third switch 141 The fourth switch 142 is turned on, and the fifth switch 143 and the sixth switch 144 are turned off. At this time, the first inductor 131 and the second inductor 132 both release energy to the first capacitor 110, so that the first inductor 131 And the current of the second inductor 132 decreases linearly. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second inductor 132, For the inductance value of the second inductor 132, The magnitude of the current flowing through the second inductor 132, The magnitude of the current flowing out of the second voltage side SE.

由上述四個區間的電路分析的可推導出該第一電感131之電壓、該第二電感132之電壓及由該第二電壓側SE流出之電流於一個週期內的平均值為: 為整個切換週期, 為該第五開關143的責任週期,再根據伏-秒定律,可推導出: 分別為該第五開關143及該第六開關144的責任週期。當該第二電容151及該第三電容152電壓相同,藉由兩個電容串聯之總輸出電壓為: 由此可知本模式中能藉由調整該第五開關143及該第六開關144的責任週期 進行降壓之控制。 From the circuit analysis of the above four sections, it can be derived that the voltage of the first inductor 131, the voltage of the second inductor 132, and the current flowing from the second voltage side SE in one cycle are: For the entire switching cycle, For the duty cycle of the fifth switch 143, according to the volt-second law, it can be derived: and The duty cycle of the fifth switch 143 and the sixth switch 144 are respectively. When the voltage of the second capacitor 151 and the third capacitor 152 are the same, the total output voltage of the two capacitors connected in series is: Therefore, it can be seen that the duty cycle of the fifth switch 143 and the sixth switch 144 can be adjusted in this mode. Perform the control of the step-down.

請參閱第19至20圖,為本發明之該高升降壓比之直流-直流轉換器100於一單一降壓模式中的開關切換流程圖,此模式之該第一電壓側FE為輸出電壓,該第二電壓側SE為輸入電壓。請參閱第19圖,為該高升降壓比之直流-直流轉換器100於t 0-t 1區間的電路作動圖,該第一開關121、該第三開關141該第六開關144導通,該第二開關122、該第四開關142及該第五開關143截止,此時,該第一電感131對該第一電壓側FE釋能,該第二電壓側SE對該第二電容151及該第三電容152進行儲能。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為由該第二電壓側SE流出之電流大小。 Please refer to FIGS. 19 to 20, which are flowcharts of switching of the DC-DC converter 100 of the high buck-boost ratio in a single buck mode according to the present invention. The first voltage side FE of the mode is an output voltage. The second voltage side SE is an input voltage. Referring to FIG. 19, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 0 - t 1 , the first switch 121 , the third switch 141 , the sixth switch 144 is turned on, The second switch 122, the fourth switch 142 and the fifth switch 143 are turned off. At this time, the first inductor 131 releases the first voltage side FE, and the second voltage side SE is the second capacitor 151 and the The third capacitor 152 performs energy storage. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, The magnitude of the current flowing out of the second voltage side SE.

請參閱第20圖,為該高升降壓比之直流-直流轉換器100於t 1-t 2區間的電路作動圖,該第一開關121、該第五開關143及該第六開關144導通,該第二開關122、該第三開關141及該第四開關142截止,此時,該第一電感131進行儲能,使該第一電感131之電流線性上升,且該第一電感131及該直流電壓 V B 同時對該第一電容110釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第二電壓側SE流出之電流大小。 Referring to FIG. 20, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio is in the range of t 1 -t 2 , and the first switch 121 , the fifth switch 143 , and the sixth switch 144 are turned on. The second switch 122, the third switch 141, and the fourth switch 142 are turned off. At this time, the first inductor 131 performs energy storage to linearly increase the current of the first inductor 131, and the first inductor 131 and the first inductor 131 The DC voltage V B simultaneously releases energy to the first capacitor 110. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the second voltage side SE.

由上述兩個區間的電路分析的可推導出該第一電感131之電壓及由該第二電壓側SE流出之電流於一個週期內的平均值為: 為整個切換週期, 為該第五開關143的責任週期,再根據伏-秒定律,可推導出: 為該第五開關143的責任週期。當該第二電容151及該第三電容152電壓相同,藉由兩個電容串聯之總輸出電壓為: 由此可知本模式中能藉由調整該第五開關143之責任週期 進行降壓之控制。 From the circuit analysis of the above two sections, it can be deduced that the average value of the voltage of the first inductor 131 and the current flowing from the second voltage side SE in one cycle is: For the entire switching cycle, For the duty cycle of the fifth switch 143, according to the volt-second law, it can be derived: It is the duty cycle of the fifth switch 143. When the voltage of the second capacitor 151 and the third capacitor 152 are the same, the total output voltage of the two capacitors connected in series is: Therefore, it can be seen that the duty cycle of the fifth switch 143 can be adjusted in this mode. Perform the control of the step-down.

請參閱第21至24圖,為本發明之該高升降壓比之直流-直流轉換器100於一堆疊式降升壓模式中的開關切換流程圖,此模式之該第一電壓側FE為輸出電壓,該第二電壓側SE為輸入電壓,在此模式中該第一開關組120亦具有該第七開關123。Please refer to FIGS. 21 to 24, which are flowcharts of switching of the DC-DC converter 100 of the high buck-boost ratio in a stacked step-down mode, in which the first voltage side FE is an output. The voltage, the second voltage side SE is an input voltage, and the first switch group 120 also has the seventh switch 123 in this mode.

請參閱第21圖,為該高升降壓比之直流-直流轉換器100於t 0-t 1區間的電路作動圖,該第五開關143、該第六開關144及第七開關123導通,該第一開關121、該第二開關122、該第三開關141及該第四開關142截止,此時,該直流電壓 V B 將能量傳遞至該第一電感131,使該第一電感131之電流線性上升,該第一電容110對該第一電壓側FE釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第二電壓側SE流出之電流大小。 Please refer to FIG. 21 , which is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 0 −t 1 , and the fifth switch 143 , the sixth switch 144 and the seventh switch 123 are turned on. The first switch 121, the second switch 122, the third switch 141, and the fourth switch 142 are turned off. At this time, the DC voltage V B transfers energy to the first inductor 131, and the current of the first inductor 131 Linearly rising, the first capacitor 110 releases energy to the first voltage side FE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the second voltage side SE.

接著,請參閱第22圖,為該高升降壓比之直流-直流轉換器100於t 1-t 2區間的電路作動圖,該第一開關121、該第五開關143及該第六開關144導通,該第二開關122、該第三開關141、該第四開關142及第七開關123截止,此時,若該第二電壓側SE之直流電壓 V B 大於該第一電壓側FE之直流電壓 V A ,則該第一電感131持續儲能,使該第一電感131之電流線性上升,而若該第二電壓側SE之直流電壓 V B 小於該第一電壓側FE之直流電壓 V A ,該第一電感131釋放能量,使該第一電感131之電流線性下降,該第一電容110則對該第一電壓側FE釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第二電壓側SE流出之電流大小。 Next, referring to FIG. 22, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 1 -t 2 , the first switch 121, the fifth switch 143, and the sixth switch 144 Turning on, the second switch 122, the third switch 141, the fourth switch 142, and the seventh switch 123 are turned off. At this time, if the DC voltage V B of the second voltage side SE is greater than the DC of the first voltage side FE The voltage V A , the first inductor 131 continues to store energy, causing the current of the first inductor 131 to rise linearly, and if the DC voltage V B of the second voltage side SE is less than the DC voltage V A of the first voltage side FE The first inductor 131 releases energy to linearly reduce the current of the first inductor 131, and the first capacitor 110 releases energy to the first voltage side FE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the second voltage side SE.

接著,請參閱第23圖,為該高升降壓比之直流-直流轉換器100於t 2-t 3區間的電路作動圖,該第一開關121及該第三開關141導通,該第二開關122、該第四開關142、該第五開關143、該第六開關144及該第七開關123截止,此時,該第一電感131對該第一電壓側FE釋放能量,使該第一電感131之電流線性下降,該直流電壓 V B 將能量傳遞至該第二電容151及該第三電容152。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為由該第二電壓側SE流出之電流大小。 Next, referring to FIG. 23, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 2 -t 3 , the first switch 121 and the third switch 141 are turned on, the second switch The fourth switch 142, the fifth switch 143, the sixth switch 144, and the seventh switch 123 are turned off. At this time, the first inductor 131 releases energy to the first voltage side FE, so that the first inductor The current of 131 decreases linearly, and the DC voltage V B transfers energy to the second capacitor 151 and the third capacitor 152. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, The magnitude of the current flowing out of the second voltage side SE.

接著,請參閱第24圖,為該高升降壓比之直流-直流轉換器100於t 3-t 4區間的電路作動圖,該第三開關141及該第七開關123導通,該第一開關121、該第二開關122、該第四開關142、該第五開關143及該第六開關144截止,此時該第一電感131輸出之電流方向不變,該第一電容110釋放能量至該第一電壓側FE。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為由該第二電壓側SE流出之電流大小。 Next, referring to FIG. 24, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 3 -t 4 , the third switch 141 and the seventh switch 123 are turned on, the first switch 121. The second switch 122, the fourth switch 142, the fifth switch 143, and the sixth switch 144 are turned off. At this time, the current direction of the output of the first inductor 131 is unchanged, and the first capacitor 110 releases energy to the The first voltage side FE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, The magnitude of the current flowing out of the second voltage side SE.

由上述四個區間的電路分析的可推導出該第一電感131之電壓及由該第二電壓側SE流出之電流於一個週期內的平均值為: 為整個切換週期, 為該第五開關143的責任週期,再根據伏-秒定律,可推導出: 分別為該第一開關121及該第五開關143的責任週期。當該第二電容151及該第三電容152電壓相同,藉由兩個電容串聯之總輸出電壓為: 由此可知本模式中若將該第一開關121之責任週期固定為50%,該第五開關143之責任週期 大於50%可達到升壓之效果,反之,該第五開關143之責任週期 小於50%可達到降壓之效果。 From the circuit analysis of the above four sections, it can be deduced that the average value of the voltage of the first inductor 131 and the current flowing from the second voltage side SE in one cycle is: For the entire switching cycle, For the duty cycle of the fifth switch 143, according to the volt-second law, it can be derived: and The duty cycle of the first switch 121 and the fifth switch 143 are respectively. When the voltage of the second capacitor 151 and the third capacitor 152 are the same, the total output voltage of the two capacitors connected in series is: Therefore, it can be seen that if the duty cycle of the first switch 121 is fixed to 50% in this mode, the duty cycle of the fifth switch 143 More than 50% can achieve the effect of boosting, and conversely, the duty cycle of the fifth switch 143 Less than 50% can achieve the effect of depressurization.

請參閱第25及26圖,為本發明之該高升降壓比之直流-直流轉換器100於一單一升壓模式中的開關切換流程圖,此模式之該第一電壓側FE為輸出電壓,該第二電壓側SE為輸入電壓,在此模式中該第一開關組120亦具有該第七開關123。請參閱第25圖,為該高升降壓比之直流-直流轉換器100於t 0-t 1區間的電路作動圖,該第五開關143、該第六開關144及第七開關123導通,該第一開關121、該第二開關122、該第三開關141及該第四開關142截止,此時,該直流電壓 V B 將能量傳遞至該第一電感131,使該第一電感131之電流線性上升,該第一電容110對該第一電壓側FE釋放能量。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第二電壓側SE流出之電流大小。 Please refer to FIGS. 25 and 26, which are flowcharts of switching of the DC-DC converter 100 of the high buck-boost ratio in a single boost mode according to the present invention. The first voltage side FE of the mode is an output voltage. The second voltage side SE is an input voltage, and the first switch group 120 also has the seventh switch 123 in this mode. Referring to FIG. 25, it is a circuit diagram of the DC-DC converter 100 of the high buck-boost ratio in the interval t 0 - t 1 , and the fifth switch 143 , the sixth switch 144 and the seventh switch 123 are turned on. The first switch 121, the second switch 122, the third switch 141, and the fourth switch 142 are turned off. At this time, the DC voltage V B transfers energy to the first inductor 131, and the current of the first inductor 131 Linearly rising, the first capacitor 110 releases energy to the first voltage side FE. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the second voltage side SE.

請參閱第26圖,為該高升降壓比之直流-直流轉換器100於t 1-t 2區間的電路作動圖,該第一開關121、該第五開關143及該第六開關144導通,該第二開關122、該第三開關141、該第四開關142及該第七開關123截止,此時,該第一電感131對該第一電壓側FE釋放能量,使該第一電感131之電流線性下降。在此區間,經由克希荷夫電壓及克希荷夫電流定律可得: 其中, 為該第一電感131之跨壓, 為該第一電感131之電感值, 為流經該第一電感131之電流大小, 為該第二電容151之跨壓, 為該第三電容152之跨壓, 為由該第二電壓側SE流出之電流大小。 Referring to FIG. 26, the circuit diagram of the DC-DC converter 100 of the high buck-boost ratio is in the range of t 1 -t 2 , and the first switch 121 , the fifth switch 143 and the sixth switch 144 are turned on. The second switch 122, the third switch 141, the fourth switch 142, and the seventh switch 123 are turned off. At this time, the first inductor 131 releases energy to the first voltage side FE, so that the first inductor 131 The current drops linearly. In this interval, it is available via Kirchhoff voltage and Kirchhoff's current law: among them, For the voltage across the first inductor 131, For the inductance value of the first inductor 131, The magnitude of the current flowing through the first inductor 131, For the voltage across the second capacitor 151, For the voltage across the third capacitor 152, The magnitude of the current flowing out of the second voltage side SE.

由上述兩個區間的電路分析的可推導出該第一電感131之電壓及由該第二電壓側SE流出之電流於一個週期內的平均值為: 為整個切換週期,再根據伏-秒定律,可推導出: 為該第一開關121的責任週期。當該第二電容151及該第三電容152電壓相同,藉由兩個電容串聯之總輸出電壓為: 由此可知本模式中能藉由調整該第一開關121之責任週期 進行降壓之控制。 From the circuit analysis of the above two sections, it can be deduced that the average value of the voltage of the first inductor 131 and the current flowing from the second voltage side SE in one cycle is: For the entire switching cycle, according to the volt-second law, we can deduce: It is the duty cycle of the first switch 121. When the voltage of the second capacitor 151 and the third capacitor 152 are the same, the total output voltage of the two capacitors connected in series is: Therefore, it can be seen that the duty cycle of the first switch 121 can be adjusted in this mode. Perform the control of the step-down.

在上述四個模式中,在交錯式降壓模式中,以該第五開關143之責任週期為25%為例,該高升降壓比之直流-直流轉換器100可提供8倍之降壓轉換比;在單一降壓模式中,以該第三開關141之責任週期為25%為例,該高升降壓比之直流-直流轉換器100可提供4倍之降壓轉換比;在堆疊式降升壓模式則可透過該第一開關121及該第五開關143之責任週期的調整進行電壓等級相近之升降壓;在單一降壓模式中,以該第一開關121之責任週期為75%為例,該高升降壓比之直流-直流轉換器100可提供4倍之升壓轉換比,可實現高升降壓轉換之目的。In the above four modes, in the interleaved buck mode, taking the duty cycle of the fifth switch 143 as 25%, the DC-DC converter 100 of the high buck-boost ratio can provide 8 times of buck conversion. For example, in the single buck mode, taking the duty cycle of the third switch 141 as 25%, the DC-DC converter 100 of the high buck-boost ratio can provide a buck conversion ratio of 4 times; In the boost mode, the voltage level is similar to the boost voltage of the first switch 121 and the fifth switch 143; in the single buck mode, the duty cycle of the first switch 121 is 75%. For example, the DC-DC converter 100 with a high buck-boost ratio can provide a boost conversion ratio of 4 times, which can achieve high buck-boost conversion.

本發明藉由該些開關的控制及責任週期的調整,可讓該高升降壓比之直流-直流轉換器100操作於不同模式,以在不同模式中進行不同程度之電壓轉換,而能應用於多種電壓轉換需求較高的場合,例如電動車之快速充電站或廢棄汽車電池之回收儲能系統中。According to the control of the switches and the adjustment of the duty cycle, the DC-DC converter 100 of the high buck-boost ratio can be operated in different modes to perform different degrees of voltage conversion in different modes, and can be applied to A variety of applications where high voltage conversion requirements are required, such as fast charging stations for electric vehicles or recycled energy storage systems for discarded automotive batteries.

本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。The scope of the present invention is defined by the scope of the appended claims, and any changes and modifications made by those skilled in the art without departing from the spirit and scope of the invention are within the scope of the present invention. .

100‧‧‧高升降壓比之直流-直流轉換器100‧‧‧High-voltage-to-voltage ratio DC-DC converter

110‧‧‧第一電容110‧‧‧first capacitor

120‧‧‧第一開關組120‧‧‧First switch group

121‧‧‧第一開關121‧‧‧First switch

122‧‧‧第二開關122‧‧‧Second switch

123‧‧‧第七開關123‧‧‧ seventh switch

130‧‧‧電感組130‧‧‧Inductance group

131‧‧‧第一電感131‧‧‧First inductance

132‧‧‧第二電感132‧‧‧second inductance

140‧‧‧第二開關組140‧‧‧Second switch group

141‧‧‧第三開關141‧‧‧ third switch

142‧‧‧第四開關142‧‧‧fourth switch

143‧‧‧第五開關143‧‧‧ fifth switch

144‧‧‧第六開關144‧‧‧ sixth switch

150‧‧‧電容組150‧‧‧capacitor group

151‧‧‧第二電容151‧‧‧second capacitor

152‧‧‧第三電容152‧‧‧ third capacitor

FE‧‧‧第一電壓側FE‧‧‧first voltage side

SE‧‧‧第二電壓側SE‧‧‧second voltage side

V1‧‧‧第一電壓端V1‧‧‧ first voltage terminal

V2‧‧‧第二電壓端V2‧‧‧second voltage terminal

V3‧‧‧第三電壓端V3‧‧‧ third voltage terminal

V4‧‧‧第四電壓端V4‧‧‧ fourth voltage terminal

n1‧‧‧第一節點N1‧‧‧ first node

n2‧‧‧第二節點N2‧‧‧ second node

V A ‧‧‧直流電壓 V A ‧‧‧ DC voltage

V B ‧‧‧直流電壓 V B ‧‧‧ DC voltage

200‧‧‧升壓型轉換器200‧‧‧Boost converter

210‧‧‧輸入電壓源210‧‧‧Input voltage source

220‧‧‧電感220‧‧‧Inductance

230‧‧‧開關230‧‧‧ switch

240‧‧‧二極體240‧‧‧ diode

250‧‧‧電容250‧‧‧ Capacitance

260‧‧‧負載260‧‧‧load

第1圖: 習知之一種升壓型轉換器的電路圖。 第2圖: 依據本發明之一實施例,一種高升降壓比之直流-直流轉換器之電路圖。 第3至6圖: 依據本發明之一實施例,該高升降壓比之直流-直流轉換器於一交錯式升壓模式的電路作動圖。 第7至8圖: 依據本發明之一實施例,該高升降壓比之直流-直流轉換器於一單一升壓模式的電路作動圖。 第9至12圖: 依據本發明之一實施例,該高升降壓比之直流-直流轉換器於一堆疊式降升壓模式的電路作動圖。 第13至14圖: 依據本發明之一實施例,該高升降壓比之直流-直流轉換器於一單一降壓模式的電路作動圖。 第15至18圖: 依據本發明之一實施例,該高升降壓比之直流-直流轉換器於一交錯式降壓模式的電路作動圖。 第19至20圖: 依據本發明之一實施例,該高升降壓比之直流-直流轉換器於一單一降壓模式的電路作動圖。 第21至24圖: 依據本發明之一實施例,該高升降壓比之直流-直流轉換器於一堆疊式降升壓模式的電路作動圖。 第25至26圖: 依據本發明之一實施例,該高升降壓比之直流-直流轉換器於一單一升壓模式的電路作動圖。Figure 1: A circuit diagram of a conventional boost converter. 2 is a circuit diagram of a DC-DC converter with a high buck-boost ratio according to an embodiment of the present invention. Figures 3 to 6: A circuit diagram of the DC-DC converter of the high buck-boost ratio in an interleaved boost mode, in accordance with an embodiment of the present invention. Figures 7 to 8: A circuit diagram of the DC-DC converter of the high buck-boost ratio in a single boost mode, in accordance with an embodiment of the present invention. Figures 9 to 12: A circuit diagram of the DC-DC converter of the high buck-boost ratio in a stacked step-down mode, in accordance with an embodiment of the present invention. Figures 13 through 14: A circuit diagram of the high buck-boost DC-DC converter in a single buck mode, in accordance with an embodiment of the present invention. 15 to 18: A circuit diagram of the high buck-boost DC-DC converter in an interleaved buck mode, in accordance with an embodiment of the present invention. 19 to 20: A circuit diagram of the high buck-boost DC-DC converter in a single buck mode, in accordance with an embodiment of the present invention. 21 to 24: A circuit diagram of the DC-DC converter of the high buck-boost ratio in a stacked step-down mode according to an embodiment of the present invention. Figures 25 to 26: A circuit diagram of the DC-DC converter of the high buck-boost ratio in a single boost mode, in accordance with an embodiment of the present invention.

Claims (10)

一種高升降壓比之直流-直流轉換器,其包含:一第一電壓側,具有一第一電壓端及一第二電壓端;一第二電壓側,具有一第三電壓端及一第四電壓端;一第一電容,其一端耦接該第一電壓端,其另一端耦接該第二電壓端;一第一開關組,具有一第一開關及一第二開關,該第一開關及該第二開關之一端耦接該第一電壓端;一電感組,具有一第一電感及一第二電感,該第一電感之一端耦接該第一開關之另一端,該第一電感之另一端耦接一第一節點,該第二電感之一端耦接該第二開關之另一端,該第二電感之另一端耦接一第二節點;一第二開關組,具有一第三開關、一第四開關、一第五開關及一第六開關,該第三開關及該第五開關之一端耦接該第一節點,該第四開關之一端耦接該第二節點,該第三開關及該第四開關之另一端耦接該第二電壓端,該第五開關之另一端耦接該第三電壓端,該第六開關之一端耦接該第二電壓端,該第六開關之另一端耦接該第四電壓端;以及一電容組,具有一第二電容及一第三電容,該第二電容之一端耦接該第三電壓端,該第二電容之另一端耦接該第二節點,該第三電容之一端耦接該第二節點,該第二電容之另一端耦接該第四電壓端。 A DC-DC converter with a high buck-boost ratio includes: a first voltage side having a first voltage end and a second voltage end; a second voltage side having a third voltage end and a fourth a first capacitor, one end of which is coupled to the first voltage end, and the other end of which is coupled to the second voltage end; a first switch group having a first switch and a second switch, the first switch And one end of the second switch is coupled to the first voltage end; an inductor group has a first inductor and a second inductor, and one end of the first inductor is coupled to the other end of the first switch, the first inductor The other end is coupled to a first node, the other end of the second inductor is coupled to the other end of the second switch, the other end of the second inductor is coupled to a second node, and the second switch group has a third a switch, a fourth switch, a fifth switch, and a sixth switch, wherein the third switch and one end of the fifth switch are coupled to the first node, and one end of the fourth switch is coupled to the second node, the first The third switch and the other end of the fourth switch are coupled to the second voltage end, and the fifth opening The other end of the switch is coupled to the third voltage end, the one end of the sixth switch is coupled to the second voltage end, the other end of the sixth switch is coupled to the fourth voltage end, and a capacitor group having a second a capacitor and a third capacitor, one end of the second capacitor is coupled to the third voltage end, the other end of the second capacitor is coupled to the second node, and one end of the third capacitor is coupled to the second node, the first The other end of the second capacitor is coupled to the fourth voltage terminal. 如申請專利範圍第1項所述之高升降壓比之直流-直流轉換器,其中於一交錯式升壓模式及一交錯式降壓模式中該第一開關及該第二開關維持導通,該第三開關、該第四開關、該第五開關及該第六開關則分別受複數個訊號控制。 The DC-DC converter of the high buck-boost ratio of claim 1, wherein the first switch and the second switch are maintained in an interleaved boost mode and an interleaved buck mode, The third switch, the fourth switch, the fifth switch and the sixth switch are respectively controlled by a plurality of signals. 如申請專利範圍第2項所述之高升降壓比之直流-直流轉換器,其中於該交錯式升壓模式及該交錯式降壓模式中,分別控制該第三開關及該第五開關的訊號互為互補,分別控制該第四開關及該第六開關的訊號互為互補。 A DC-DC converter having a high buck-boost ratio as described in claim 2, wherein the third switch and the fifth switch are respectively controlled in the interleaved boost mode and the interleaved buck mode The signals are complementary to each other, and the signals of the fourth switch and the sixth switch are respectively controlled to complement each other. 如申請專利範圍第1項所述之高升降壓比之直流-直流轉換器,其中於一單一升壓模式中及一單一降壓模式中該第一開關及該第六開關維持導通,該第二開關及該第四開關維持截止,該第三開關及該第五開關則分別受複數個訊號控制。 The DC-DC converter of the high buck-boost ratio of claim 1, wherein the first switch and the sixth switch are maintained in a single boost mode and a single buck mode, the first The second switch and the fourth switch are maintained to be turned off, and the third switch and the fifth switch are respectively controlled by a plurality of signals. 如申請專利範圍第4項所述之高升降壓比之直流-直流轉換器,其中於該單一升壓模式及該單一降壓模式中,分別控制該第三開關及該第五開關的訊號互為互補。 The DC-DC converter of the high buck-boost ratio according to claim 4, wherein in the single boost mode and the single buck mode, signals of the third switch and the fifth switch are respectively controlled. Complementary. 如申請專利範圍第1項所述之高升降壓比之直流-直流轉換器,其中該第一開關組另具有一第七開關,該第七開關之一端耦接該第一開關之另一端及該第一電感之一端,該第七開關之另一端耦接該第二電壓端。 The DC-DC converter of the high buck-boost ratio of the first aspect of the invention, wherein the first switch group further has a seventh switch, and one end of the seventh switch is coupled to the other end of the first switch One end of the first inductor, and the other end of the seventh switch is coupled to the second voltage end. 如申請專利範圍第6項所述之高升降壓比之直流-直流轉換器,其中於一堆疊式降升壓模式中該第二開關及該第四開關維持截止,該第一開關、第三開關、該第五開關、該第六開關及該第七開關分別受複數個訊號控制。 The DC-DC converter of the high buck-boost ratio of claim 6, wherein the second switch and the fourth switch are maintained in a stacked boost mode, the first switch and the third switch The switch, the fifth switch, the sixth switch, and the seventh switch are respectively controlled by a plurality of signals. 如申請專利範圍第7項所述之高升降壓比之直流-直流轉換器,其中於該堆疊式降升壓模式中,分別控制該第一開關及該第七開關的訊號互為互補,分別控制該第三開關及該第五開關的訊號互為互補。 The DC-DC converter of the high buck-boost ratio according to the seventh aspect of the patent application, wherein in the stacked step-down mode, the signals of the first switch and the seventh switch are respectively complementary to each other, respectively The signals controlling the third switch and the fifth switch are complementary to each other. 如申請專利範圍第6項所述之高升降壓比之直流-直流轉換器,其中於一單一降壓模式及一單一升壓模式中該第五開關及該第六開關維持導通,該第二開關、第三開關及該第四開關維持截止,該第一開關及該第七開關分別受複數個訊號控制。The DC-DC converter of the high buck-boost ratio of claim 6, wherein the fifth switch and the sixth switch are maintained in a single buck mode and a single boost mode, the second The switch, the third switch and the fourth switch are maintained to be turned off, and the first switch and the seventh switch are respectively controlled by a plurality of signals. 如申請專利範圍第9項所述之高升降壓比之直流-直流轉換器,其中於該單一降壓模式及該單一升壓模式中,分別控制該第一開關及該第七開關的訊號互為互補。The DC-DC converter of the high buck-boost ratio according to claim 9 , wherein in the single buck mode and the single boost mode, the signals of the first switch and the seventh switch are respectively controlled Complementary.
TW106112219A 2017-04-12 2017-04-12 Wide-range voltage conversion ratios dc-dc converter TWI625922B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106112219A TWI625922B (en) 2017-04-12 2017-04-12 Wide-range voltage conversion ratios dc-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106112219A TWI625922B (en) 2017-04-12 2017-04-12 Wide-range voltage conversion ratios dc-dc converter

Publications (2)

Publication Number Publication Date
TWI625922B true TWI625922B (en) 2018-06-01
TW201838306A TW201838306A (en) 2018-10-16

Family

ID=63255733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106112219A TWI625922B (en) 2017-04-12 2017-04-12 Wide-range voltage conversion ratios dc-dc converter

Country Status (1)

Country Link
TW (1) TWI625922B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684316B (en) * 2018-12-11 2020-02-01 國立中山大學 Series connected battery switching module and mode switching method and energy storage system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784644B2 (en) * 2001-02-22 2004-08-31 Virginia Tech Intellectual Properties, Inc. Multiphase clamp coupled-buck converter and magnetic integration
CN101741259A (en) * 2010-01-28 2010-06-16 南京航空航天大学 Two-way DC converter
TW201130211A (en) * 2010-02-26 2011-09-01 Sheng-Yu Tseng An interleaving converter
CN103701318A (en) * 2014-01-10 2014-04-02 矽力杰半导体技术(杭州)有限公司 Control circuit for interleaved parallel switched-mode power supply
TW201515374A (en) * 2013-10-09 2015-04-16 Nat Univ Tsing Hua Bidirectional dc-dc converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6784644B2 (en) * 2001-02-22 2004-08-31 Virginia Tech Intellectual Properties, Inc. Multiphase clamp coupled-buck converter and magnetic integration
CN101741259A (en) * 2010-01-28 2010-06-16 南京航空航天大学 Two-way DC converter
TW201130211A (en) * 2010-02-26 2011-09-01 Sheng-Yu Tseng An interleaving converter
TW201515374A (en) * 2013-10-09 2015-04-16 Nat Univ Tsing Hua Bidirectional dc-dc converter
CN103701318A (en) * 2014-01-10 2014-04-02 矽力杰半导体技术(杭州)有限公司 Control circuit for interleaved parallel switched-mode power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI684316B (en) * 2018-12-11 2020-02-01 國立中山大學 Series connected battery switching module and mode switching method and energy storage system

Also Published As

Publication number Publication date
TW201838306A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
CN107517003A (en) One kind output inputs high-gain Boost translation circuits and switching method in parallel floatingly
US10211734B1 (en) Bidirectional DC-DC converter
EP3255771B1 (en) Bidirectional dc-dc convertor
CN114793059A (en) Voltage control circuit of voltage reduction circuit, voltage reduction device and electronic equipment
CN105939112A (en) High-gain quasi-switch boost DC-DC converter
CN105939108A (en) Switch inductor type quasi-switch voltage-boosting DC-DC converter
CN111245236B (en) Step-down DC-DC converter topological structure
KR20090044137A (en) Transformer-less boost converter
CN113346750A (en) Soft switching in-phase buck-boost converter based on coupling inductor and control method
US10084378B2 (en) Single-inductor multi-output converter
CN107134929B (en) Bidirectional DC converter and bidirectional DC conversion control method
Chen et al. A new bidirectional DC-DC converter with a high step-up/down conversion ratio for renewable energy applications
TW202135446A (en) High voltage gain converter comprising three switches, two inductors, four diodes, and three capacitors
TWI575857B (en) Step up dc converter
US20210305912A1 (en) Inverter device
CN113794373A (en) Multi-level DC converter and power supply system
TWI625922B (en) Wide-range voltage conversion ratios dc-dc converter
Kroics Bi-directional two level 6-phase DC-DC converter for energy storage application
Gupta et al. Novel hybrid high gain converter: Combination of cuk and buck-boost structures with switched inductor for dc microgrid
Fukuda et al. Three-level buck-boost dc-dc converter with voltage-lift-type switched-inductor
CN109274270A (en) A kind of novel expansible Sepic DC-DC converter
CN113676047A (en) Expandable switch capacitor bidirectional DC-DC converter and control method
TWI568156B (en) Step down dc converter
CN211296566U (en) Boost DC-DC converter
Liang et al. Novel high step-up boost converter with charge pump capacitor