TW201107548A - Carbon nanotube fabric and heater adopting the same - Google Patents

Carbon nanotube fabric and heater adopting the same Download PDF

Info

Publication number
TW201107548A
TW201107548A TW98128231A TW98128231A TW201107548A TW 201107548 A TW201107548 A TW 201107548A TW 98128231 A TW98128231 A TW 98128231A TW 98128231 A TW98128231 A TW 98128231A TW 201107548 A TW201107548 A TW 201107548A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
fabric
heating assembly
carbon
nanotube fabric
Prior art date
Application number
TW98128231A
Other languages
Chinese (zh)
Other versions
TWI375737B (en
Inventor
Chen Feng
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW98128231A priority Critical patent/TWI375737B/en
Publication of TW201107548A publication Critical patent/TW201107548A/en
Application granted granted Critical
Publication of TWI375737B publication Critical patent/TWI375737B/en

Links

Abstract

The invention relates to a carbon nanotube fabric and a heater adopting the same. The carbon nanotube fabric includes a heating element and at least two electrodes. The at least two electrodes are separately located, and electrically connected to the heating element. The heating element includes a plurality of carbon nanotubes joined end to end. The at least two electrodes are electrically connected to the plurality of carbon nanotubes of the heating element. The carbon nanotube fabric can be used in a field of insoles, warm clothes, electric blankets, or physiotherapy instruments.

Description

201107548 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種織物及應用該織物的發熱體,尤其1及 一種可用於加熱的織物及應用該織物的發熱體。 【先前技術】 [0002] 先前的可用於加熱的織物一般包括一加熱組件和至小 個電極,該至少兩電極設置於該加熱組件的表面,並與 該加熱組件電連接。當通過電極向加熱組件通入電壓或 〇 電流時’由於加熱崎具有較大纽,通人加熱組㈣ 電能轉換成熱能,並從加熱組件釋放出來,從而實現加 熱。先前技術通常採用金屬絲或碳纖維編織 組件進行電熱轉換。然而,金屬絲的_ ’特別係料錢折成-定角度時更易於折斷,因= 用受到限制。另外,以金屬製成的加熱組件所產: 量係u普通波長向外輻射的,其電熱 、.、、' 利於節省能源。 政丰不馬,不 ο [0003] 098128231 採用碳纖維的加熱組件通常在碳纖料部塗覆— 的色緣層用作電熱轉換的組件以代替金屬 與金屬減,錢維具妹㈣祕,這在j :、了電熱絲強度不高易折斷的缺點。然而 維仍係以普通波長向卜由, :r,二 ^括多根城維熱源線鋪設输、' 表單編號A0101 為-外表包裹有化纖或者棉線的導二^ 棉線的外㈣^料烟_“線。該⑽ „ 竹。所逑導i 第3頁/共35頁 201107548 由多根碳纖維與多根表面黏塗有遠紅外塗料的棉線纏繞 而成。導電芯線中加入黏塗有遠紅外塗料的棉線,一來 可增強芯線的強度,二來可使通電後碳纖維發出的熱量 能以紅外波長向外輻射,從而在一定程度上解決金屬絲 電熱轉換率低的問題。 [0004] 然而,碳纖維強度不夠大,容易破裂,從而導致採用該 碳纖維的加熱組件的耐用性不夠好。另外,加入黏塗有 遠紅外塗料的棉線提高碳纖維的電熱轉換效率,不利於 節能環保。 【發明内容】 [0005] 有鑒於此,提供一種強度大,電熱轉換效率高的奈米碳 管織物及應用該奈米碳管織物的發熱體實為必要。 [0006] 一種奈米碳管織物,包括一加熱組件;至少兩電極,該 至少兩電極間隔設置且與所述加熱組件電連接;其中, 所述加熱組件包括多個首尾相連的奈米碳管,所述至少 兩電極與所述加熱組件中的奈米碳管電連接。 [0007] —種發熱體,其包括一奈米碳管織物,該奈米碳管織物 包括一加熱組件;至少兩電極,該至少兩電極間隔設置 且與所述加熱組件電連接;其中,所述加熱組件包括多 個首尾相連的奈米碳管,所述至少兩電極與所述加熱組 件中的奈米碳管電連接。 [0008] 與先前技術相比較,所述奈米碳管織物及應用該奈米碳 管織物的發熱體具有以下優點:第一,由於奈米碳管具 有較好的強度及韌性,由奈米碳管組成的加熱組件的強 098128231 表單編號A0101 第4頁/共35頁 0982048487-0 201107548 度較大,韌性較好,不易破裂,進而有利於提高所述奈 米碳管織物及採用該奈米碳管織物的發熱體的耐用性。 第二,由於奈米碳管具有良好的導電性能以及熱穩定性 ,且作為一理想的黑體結構,具有比較高的熱輻射效率 ,故由首尾相連的奈米碳管組成的加熱組件的的電熱轉 換效率高,從而使所述奈米碳管織物及應用該奈米碳管 織物的發熱體具有升溫迅速、熱滯後小、熱交換速度快 的特點。 【實施方式】 [0009] 以下將結合附圖詳細說明本發明提供的奈米碳管織物。 [0010] 請參閱圖1及圖2,本發明第一實施例提供一種奈米碳管 織物10,該奈米碳管織物10包括一加熱組件16、一第一 電極12和一第二電極14。所述第一電極12和第二電極14 與該加熱組件16電連接。 [0011] 所述加熱組件16包括至少一奈米碳管線狀結構160及至少 一基線162。所述第一電極12和第二電極.14與所述奈米碳 > 管線狀結構160電連接。所述加熱組件16可由奈米碳管線 狀結構160及基線162紡織而成。所述奈米碳管線狀結構 160及基線162紡織的方式不限。具體地,所述奈米碳管 線狀結構160和基線162可平行、併排、交叉或纏繞設置 。所述奈米碳管線狀結構160及基線162紡織形成加熱組 件16的過程可包括以下兩種方式。第一種方式為將所述 奈米碳管線狀結構160及基線162先紡織成一複合奈米碳 管線狀結構,然後再將該複合奈米碳管線狀結構紡織形 成所述加熱組件16。第二種方式為將所述奈米碳管線狀 098128231 表單編號 A0101 第 5 頁/共 35 頁 0982048487-0 201107548 結構160及基線162依次、交替紡織或相互編織形成所述 加熱組件16。具體地,所述奈米碳管線狀結構160及基線 162可上下交叉地進行編織。所述奈米碳管線狀結構160 可在所述加熱組件16中均勻分佈。相鄰兩個平行的奈米 碳管線狀結構160或基線162之間的距離可為0微米〜30微 米。優選地,所述奈米碳管線狀結構1 6 0之間的距離相等 ,以使所述加熱組件16均勻加熱。 [0012] 另外,所述奈米碳管線狀結構160也可僅設置在加熱組件 16的部分區域。具體地,所述奈米碳管線狀結構160可根 據所述奈米碳管織物10的具體應用選擇性紡織在所述加 熱組件16的部分區域。如當所述奈米碳管織物10應用於 紅外理療裝置中時,所述奈米碳管線狀結構160可僅設置 在需理療的位置所對應的區域。此外,也可根據需要調 節所述奈米碳管線狀結構16 0在所述奈米碳管織物10中的 密度,進而調節該區域内奈米碳管織物10的電阻,實現 奈米碳管織物10區域溫度的控制。 [0013] 由於奈米碳管具有較小的熱容且奈米碳管線狀結構160具 有較大的比表面積,所述奈米碳管線狀結構160可具有較 小的單位面積熱容,從而使奈米碳管織物10具有升溫迅 速、熱滯後小、熱交換速度快的特點。所述奈米碳管線 狀結構160的單位面積熱容可小於2x1 0_4焦耳每平方厘米 開爾文,優選地,所述奈米碳管線狀結構140的單位面積 熱容小於5x10_5焦耳每平方厘米開爾文。所述奈米碳管 線狀結構160包括至少一根奈米碳管線。請參閱圖3及圖4 ,當所述奈米碳管線狀結構160包括多根奈米碳管線161 098128231 表單編號A0101 第6頁/共35頁 0982048487-0 201107548 時,讀多根奈米碳管線161可沿該奈米碳管線狀結構⑽ 的長度方向平行且緊密排列或螺旋狀緊密排列。所述奈 =碳管線161包括多個奈米碳管。該奈米碳管可包括單壁 纟米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多土 種所述單壁奈米碳管的直徑為0.5奈米〜50奈米,所述 雙壁奈米破管的直徑為U奈米~5〇奈求,所述多壁奈米 碳目的直徑為l 5奈米~5〇奈米。所述奈米碳管線m可 以為非扭轉的奈米碳管線或扭轉的奈米碳管線。 〇 請參閱圖5,所述非扭轉的奈米破管線包括多個沿該非扭 轉的奈米碳管線長度方向平行排列的奈米碳管。該多個 奈米碳管沿該非扭轉的奈米碳管線長度方向平行排列即 ^米唉管的長度方向或延伸方向與奈米碳管線的長度方 向平行。非扭轉的奈米碳管線可通過將奈来 ::機溶劑處理得到。所謂奈靖拉膜即為從奈= ^車列中直接拉取獲得的一種具有自支撑性的奈米碳管 上具體地,該奈米碳管抵膜包括多個秦米碳管片段, 〇 ❹個奈米碳管片段通科德瓦❹首尾相連,每—奈 米碳營片段包括多個相互平行並通過凡德瓦爾力緊密結 α的奈米碳官。該奈米碳管片段具有任意的長度、厚度 、均勻性及雜。該非扭轉的奈米衫線長度不限^ 獲為〇. 5奈米]00微米。具體地,可將有機溶劑浸潤所述 纟米碳管拉膜的整個表面’在揮發性有機溶劑揮發時產 生的表面張力的作用下,奈米碳營拉膜中的相互平行的 多個奈米碳管通過凡德瓦爾力緊密結合,從而使奈米碳 Β拉膜收縮為一非扭轉的奈米碳營線。該有機溶劑為揮 098128231 表單編號Α0101 第7頁/共35頁 0982048487- 201107548 發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿 ,本實施例中採用乙醇。通過有機溶劑處理的非扭轉奈 米碳管線與未經有機溶劑處理的奈米碳管膜相比,比表 面積減小,黏性降低。 [0015] 請參閱圖6,所述扭轉的奈米碳管線為採用一機械力將所 述奈米碳管拉膜兩端沿相反方向扭轉獲得。該扭轉的奈 米碳管線包括多個繞該扭轉的奈米碳管線軸向或長度方 向螺旋排列的奈米碳管。該多個奈米碳管繞該扭轉的奈 米碳管線軸向或長度方向螺旋排列即奈米碳管的長度方 0 向或延伸方向繞該扭轉的奈米碳管線轴向或長度方向螺 旋狀排列。進一步地,可採用一揮發性有機溶劑處理該 扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表 面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的 奈米碳管通過凡德瓦爾力緊密結合,使扭轉的奈米碳管 線的比表面積減小,密度及強度增大。該扭轉的奈米碳 管線長度不限,直徑為0. 5奈米〜1 0 0微米。進一步地,可 採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮 y 發性有機溶劑揮發時產生的表面張力的作用下,處理後 的扭轉的奈米碳管線中相鄰的奈米碳管通過凡德瓦爾力 緊密結合,使扭轉的奈米碳管線的直徑及比表面積減小 ,密度及強度增大。 [0016] 所述奈米碳管線及其製備方法請參見范守善等人於2002 年9月16日申請的,於2 008年8月20日公告的第 CN1 0041 1 979C號中國大陸公告專利,以及於2005年12 月16日申請,於2007年6月20日公開的第1 982209號中 098128231 表單編號A0101 第8頁/共35頁 0982048487-0 201107548 [0017] 國大陸公開專利申請。 進一步地,所述奈米碳管線狀結構1 60也可包括至少一由 奈米碳管線161與其他材料,如金屬、聚合物、非金屬等 複合形成的奈米碳管複合線。由於奈米碳管具有較好的 耐熱性能,故由奈米碳管組成的奈米碳管線狀結構160與 聚合物複合形成的奈米碳管複合線可具有較好的阻燃性 能,有利於提高所述奈米碳管織物10的阻燃性能。 [0018] 所述基線162的材料為織物。具體地,所述基線162的材 〇 料包括棉、麻、纖維、尼龍、氨綸、聚酯、聚丙烯晴、 羊毛和蠶絲等。所述纖維包括碳纖維、化學纖維、人造 纖維等。所述基線162的直徑不限。優選地,所述基線 162的直徑與所述奈米碳管線狀結構160的直徑基本一致 。所述基線162應具有一定的耐熱性能,且可根據其具體 應用進行選擇。本實施例中,所述基線162的材料為纖維 〇 [0019] ❹ 所述第一電極12和第二電極14由導電材料組成,該第一 電極12和第二電極14的形狀不限,可為導電薄膜、導電 片或者導電線等。優選地,第一電極12和第二電極14均 為一導電線。該導電線的直徑為0.5奈米〜100微米。該導 電線的材料可以為金屬、合金、銦錫氧化物(IT0)、銻 錫氧化物(ΑΤΟ)、導電銀膠、導電聚合物或導電性奈米 碳管等。該金屬或合金材料可以為鋁、銅、鎢、鉬、金 、鈦、钕、纪、絶、銀或其任意組合的合金。本實施例 中,所述第一電極12和第二電極14的材料為銀線,直徑 為5奈米。所述銀線可編織或缝紉在所述加熱組件16中, 098128231 表單編號A0101 第9頁/共35頁 0982048487-0 201107548 且與所述奈米碳管線狀結構16〇電連接。 [0020] [0021] [0022] [0023] 所述第-電極12和第二電極14間喊置,錢加熱組件 16應用於奈米碳管織物1Q時接人—定的阻值避免短路現 象產生。所述第—電極12和第二電極14的設置位置與奈 米碳#線狀結構16〇的排列相關,優選地,至少部分奈米 碳管線狀結構160的兩端可分別與所述第一電極12和第二 電極14電連接。本實施例中,所述奈米碳管線狀結構160 大致沿所述第—電極12至第二電極14的方向延伸。 另外,所述第一電極丨2和第二電極14也可通過_導電黏 結劑(圖未示)設置於該加熱組件16的表面上,導電黏結 劑在實現帛電極!2和第二電極14與加熱崎a電接觸 的同時,還可以將所述第—電極12和第二電極14更好地 固定於加熱組件16的表面上。本實施例優選的導電黏結 劑為銀膠。 可以理解,第一電極12和第二電極14的結構和材料均不 限,其設置目的係為使所述加熱中流過電流。因 此’所述第-電極12和第二電極14只需要導電並與所 述加熱組件16中的奈米碳管線狀結構160之間形成電接觸 都在本發明的保護範圍内。 本發明實施例的奈米碳管織物1G在使用時,可先將夺米 碳管織物10的第-電極12和第二電極u連接導線後:入 ^原。該《可為普通的充電電池。在接人電源後奈米 妷營織物10令的奈米碳管線狀結構160即可輻射出一定波 長範圍的電磁波。所述奈米碳管_1{)可以與待加熱物 098128231 表單塢號A0101 第10頁/共35頁 0982048487- 201107548 體的表面直接接觸。或者,由於本實施例中作為加熱組 件16的奈米碳管線狀結構160中的奈米碳管具有良好的導 電性能,且該奈米碳管線狀結構160本身已經具有一定的 自支撐性及穩定性,所述奈米碳管織物20可以與待加熱 物體相隔一定的距離設置。 [0024] Ο 本發明實施例中的奈米碳管織物10的面積一定時,可以 通過調節電源電壓大小和加熱組件1 6中的奈米碳管線狀 結構160的直徑和密度,實現不同波長範圍的電磁波的輻 射。電源電壓的大小一定時,加熱組件1 6中的奈米碳管 線狀結構160的直徑和密度與奈米碳管織物10輻射出電磁 波的波長的變化趨勢相反。即當電源電壓大小一定時, ❹ 加熱組件16的直徑和密度越大,奈米碳管織物10輻出電 磁波的波長越短,該奈米碳管織物10可以產生一可見光 熱輻射;加熱組件16的直徑和密度越小,奈米碳管織物 10輻出電磁波的波長越長,該奈米碳管織物10可以產生 一紅外線熱輻射。加熱組件1 6的直徑和密度一定時,電 源電壓的大小和奈米碳管織物10輻出電磁波的波長成反 比。即當加熱組件16的直徑和密度一定時,電源電壓越 大,奈米碳管織物1 0輻出電磁波的波長越短,該奈米碳 管織物10可以產生一可見光熱輻射;電源電壓越小,奈 米碳管織物10輻出電磁波的波長越長,該奈米碳管織物 10可以產生一紅外熱輻射。 奈米碳管具有良好的導電性能以及熱穩定性,且作為一 理想的黑體結構,具有比較高的熱輻射效率。將該奈米 碳管織物10暴露在氧化性氣體或者大氣的環境中,其中 098128231 表單編號Α0101 第11頁/共35頁 0982048487-0 [0025] 201107548 :米雙營線狀結構的直後為5毫米,通過在1Q伏〜3〇伏調 電電;原電壓’該奈米碳管織物1〇可以輕射出波長較長的 為罐波。通過溫度測量儀發現該奈米碳管織物1G的溫度 0 C〜5GG C。對於具有黑體結構的物體來說,其所對 •度為200 0450。。時就能發出人眼看不見的熱輻射 (紅外線),此時的熱輻射最穩定、效率最高。201107548 VI. Description of the Invention: [Technical Field] [0001] The present invention relates to a fabric and a heat generating body using the same, in particular, a fabric which can be used for heating and a heat generating body to which the fabric is applied. [Prior Art] [0002] Previous fabrics that can be used for heating generally include a heating assembly and a small electrode disposed on a surface of the heating assembly and electrically coupled to the heating assembly. When a voltage or 〇 current is applied to the heating element through the electrode, the heating is performed by the heating group (4), and the electric energy is converted into heat energy and released from the heating unit, thereby achieving heating. Prior art techniques typically employ wire or carbon fiber braided components for electrothermal conversion. However, the _' of the wire is more likely to be broken when folded into a fixed angle, because the use is limited. In addition, the heating element made of metal produces: the amount of u is radiated from the ordinary wavelength, and its electric heat, ., and 'is conducive to energy conservation. Zhengfeng is not a horse, no [0003] 098128231 The heating element using carbon fiber is usually coated in the carbon fiber part - the color edge layer is used as a component of electrothermal conversion instead of metal and metal reduction, Qian Wei (4) secret, which is j : The shortcoming of the electric heating wire is not high and easy to break. However, the dimension is still based on the ordinary wavelength, :r, two sets of multiple heat source lines of the city, and the form number A0101 is - the outer part of the cotton thread wrapped with chemical fiber or cotton thread (four) Line. The (10) „ bamboo.逑 i i Page 3 of 35 201107548 It is made up of multiple carbon fibers and a plurality of cotton threads coated with far-infrared coating. The cotton wire coated with the far-infrared coating is added to the conductive core wire to enhance the strength of the core wire. Secondly, the heat generated by the carbon fiber can be radiated outward at the infrared wavelength, thereby solving the electrothermal conversion rate of the wire to a certain extent. Low problem. [0004] However, the carbon fiber is not strong enough to be easily broken, resulting in insufficient durability of the heating member using the carbon fiber. In addition, the addition of cotton tape coated with far-infrared coating improves the electrothermal conversion efficiency of carbon fiber, which is not conducive to energy saving and environmental protection. SUMMARY OF THE INVENTION [0005] In view of the above, it is necessary to provide a carbon nanotube fabric having high strength and high electrothermal conversion efficiency and a heating element using the carbon nanotube fabric. [0006] A carbon nanotube fabric comprising a heating assembly; at least two electrodes spaced apart from each other and electrically connected to the heating assembly; wherein the heating assembly comprises a plurality of carbon nanotubes connected end to end The at least two electrodes are electrically connected to the carbon nanotubes in the heating assembly. [0007] A heating element comprising a carbon nanotube fabric, the carbon nanotube fabric comprising a heating assembly; at least two electrodes, the at least two electrodes being spaced apart and electrically connected to the heating assembly; The heating assembly includes a plurality of carbon nanotubes connected end to end, the at least two electrodes being electrically connected to the carbon nanotubes in the heating assembly. [0008] Compared with the prior art, the carbon nanotube fabric and the heating element using the carbon nanotube fabric have the following advantages: First, since the carbon nanotube has better strength and toughness, the carbon is composed of nano carbon. The strength of the heating component consisting of tube 098128231 Form No. A0101 Page 4 / Total 35 page 0982048487-0 201107548 is large, good toughness, not easy to break, which is beneficial to improve the carbon nanotube fabric and use the nano carbon The durability of the heating element of the tube fabric. Second, because the carbon nanotubes have good electrical conductivity and thermal stability, and as an ideal black body structure, have a relatively high heat radiation efficiency, so the electric heating of the heating assembly consisting of end-to-end connected carbon nanotubes The conversion efficiency is high, so that the carbon nanotube fabric and the heating element using the carbon nanotube fabric have the characteristics of rapid temperature rise, small heat lag, and high heat exchange rate. [Embodiment] The carbon nanotube fabric provided by the present invention will be described in detail below with reference to the accompanying drawings. [0010] Referring to FIG. 1 and FIG. 2, a first embodiment of the present invention provides a carbon nanotube fabric 10 comprising a heating assembly 16, a first electrode 12 and a second electrode 14. . The first electrode 12 and the second electrode 14 are electrically connected to the heating assembly 16. [0011] The heating assembly 16 includes at least one nanocarbon line-like structure 160 and at least one baseline 162. The first electrode 12 and the second electrode .14 are electrically connected to the nanocarbon > pipeline structure 160. The heating assembly 16 can be woven from a nanocarbon line structure 160 and a base line 162. The manner in which the nanocarbon line-like structure 160 and the base line 162 are woven is not limited. In particular, the carbon nanotube linear structure 160 and the baseline 162 can be arranged in parallel, side by side, cross or entangled. The process of spinning the nanocarbon line-like structure 160 and the baseline 162 to form the heating assembly 16 can include the following two approaches. The first way is to first weave the nanocarbon line-like structure 160 and the baseline 162 into a composite nanocarbon line-like structure, and then weave the composite nanocarbon line-like structure into the heating assembly 16. The second way is to sequentially, alternately woven or interweave the nanocarbon line 098128231 Form No. A0101, and the base 162 to form the heating assembly 16. Specifically, the nanocarbon line-like structure 160 and the base line 162 can be woven up and down. The nanocarbon line-like structure 160 can be evenly distributed throughout the heating assembly 16. The distance between adjacent two parallel nanocarbon line-like structures 160 or baseline 162 may range from 0 microns to 30 microns. Preferably, the distance between the nanocarbon line-like structures 160 is equal to uniformly heat the heating assembly 16. In addition, the nanocarbon line-like structure 160 may also be disposed only in a partial region of the heating assembly 16. In particular, the nanocarbon line-like structure 160 can be selectively woven in portions of the heating assembly 16 depending on the particular application of the carbon nanotube fabric 10. When the carbon nanotube fabric 10 is applied to an infrared physiotherapy device, the nanocarbon line-like structure 160 may be disposed only in a region corresponding to a position to be treated. In addition, the density of the nanocarbon line-like structure 16 0 in the carbon nanotube fabric 10 can also be adjusted as needed to adjust the electrical resistance of the carbon nanotube fabric 10 in the region to realize the carbon nanotube fabric. 10 zone temperature control. [0013] Since the carbon nanotubes have a small heat capacity and the nanocarbon line-like structure 160 has a large specific surface area, the nanocarbon line-like structure 160 may have a small heat capacity per unit area, thereby The carbon nanotube fabric 10 has the characteristics of rapid temperature rise, small heat lag, and high heat exchange rate. The carbon nanotube-like structure 160 may have a heat capacity per unit area of less than 2 x 10 - 4 joules per square centimeter Kelvin. Preferably, the carbon nanotube-like structure 140 has a heat capacity per unit area of less than 5 x 10 - 5 joules per square centimeter Kelvin. The carbon nanotube linear structure 160 includes at least one nanocarbon line. Referring to FIG. 3 and FIG. 4, when the nanocarbon line-like structure 160 includes a plurality of nano carbon lines 161 098128231 Form No. A0101 Page 6 / Total 35 pages 0982048487-0 201107548, the multi-nano carbon line is read. 161 may be arranged in parallel along the length direction of the nanocarbon line-like structure (10) and closely arranged or spirally arranged. The nanocarbon line 161 includes a plurality of carbon nanotubes. The carbon nanotube may comprise one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The single-walled carbon nanotube has a diameter of 0.5 nm to 50 In the nanometer, the diameter of the double-walled nanotube is U nanometer~5〇, and the diameter of the multi-walled nanocarbon is 15 nm to 5 nanometers. The nanocarbon line m can be a non-twisted nanocarbon line or a twisted nanocarbon line. Referring to Figure 5, the non-twisted nano-crush line includes a plurality of carbon nanotubes arranged in parallel along the length of the non-twisted nanocarbon line. The plurality of carbon nanotubes are arranged in parallel along the length direction of the non-twisted nanocarbon line, that is, the length direction or the extending direction of the tube is parallel to the length direction of the carbon nanotube. The non-twisted nanocarbon line can be obtained by treating the solvent with Nai. The so-called Naijing film is a kind of self-supporting carbon nanotube obtained by directly pulling from the nai=^ train. Specifically, the carbon nanotube film comprises a plurality of carbon nanotube segments, 〇❹ The carbon nanotube segments are connected end to end by the Cordova, and each nanocarbon segment includes a plurality of nanocarbons that are parallel to each other and closely knot α through the van der Waals force. The carbon nanotube segments have any length, thickness, uniformity, and impurities. The length of the non-twisted nano-shirt is not limited to ^ 5 nm] 00 microns. Specifically, the organic solvent may be infiltrated by the surface of the entire surface of the carbon nanotube film, and the surface tension generated by the volatilization of the volatile organic solvent may be a plurality of mutually parallel nanometers in the nanocarbon film. The carbon tube is tightly bonded by van der Waals force, thereby shrinking the nanocarbon film to a non-twisted nano carbon camp line. The organic solvent is 098128231 Form No. Α0101 Page 7 of 35 0982048487- 201107548 A hairy organic solvent such as ethanol, methanol, acetone, dichloroethane or chloroform, and ethanol is used in this embodiment. The non-twisted carbon nanotubes treated with the organic solvent have a smaller specific surface area and lower viscosity than the carbon nanotube film which has not been treated with the organic solvent. [0015] Referring to FIG. 6, the twisted nanocarbon pipeline is obtained by twisting both ends of the carbon nanotube film in opposite directions by a mechanical force. The twisted carbon nanotube line includes a plurality of carbon nanotubes arranged in an axial or longitudinal direction about the twisted nanocarbon line. The plurality of carbon nanotubes are spirally arranged in the axial direction or the length direction around the twisted nanocarbon line, that is, the length or the extension direction of the carbon nanotubes is spirally wound around the twisted nanocarbon line in the axial direction or the length direction. arrangement. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the volatile organic solvent, the adjacent carbon nanotubes in the treated twisted nanocarbon pipeline are tightly bonded by the van der Waals force, so that the specific surface area of the twisted nanocarbon pipeline Decrease, increase in density and strength. 5纳米〜1 0微米微米。 The twisted nano carbon line length is not limited, the diameter is 0. 5 nm ~ 1 0 0 microns. Further, the twisted nanocarbon line can be treated with a volatile organic solvent. Under the action of the surface tension generated by the volatilization of the organic solvent, the adjacent carbon nanotubes in the treated twisted carbon nanotubes are tightly bonded by the van der Waals force to make the twisted nanocarbon pipeline The diameter and specific surface area are reduced, and the density and strength are increased. [0016] The nano carbon pipeline and the preparation method thereof can be referred to the Chinese mainland announcement patent No. CN1 0041 1 979C, which was filed on September 16, 2002 by Fan Shoushan et al. Application No. 1 982209, published on December 16, 2005, 098128231, Form No. A0101, Page 8 / Total 35, 0982048487-0, 201107548 [0017] The mainland China patent application. Further, the nanocarbon line-like structure 1 60 may also include at least one carbon nanotube composite wire formed by combining a nano carbon line 161 with other materials such as metals, polymers, nonmetals, and the like. Since the carbon nanotubes have good heat resistance, the carbon nanotube composite line formed by the carbon nanotube-like structure 160 composed of a carbon nanotube and the polymer can have good flame retardant properties and is favorable for improvement. The flame retardant properties of the carbon nanotube fabric 10. [0018] The material of the baseline 162 is a fabric. Specifically, the material of the baseline 162 includes cotton, hemp, fiber, nylon, spandex, polyester, polypropylene, wool, and silk. The fibers include carbon fibers, chemical fibers, rayon fibers, and the like. The diameter of the baseline 162 is not limited. Preferably, the diameter of the baseline 162 is substantially the same as the diameter of the nanocarbon line-like structure 160. The baseline 162 should have a certain heat resistance and can be selected according to its specific application. In this embodiment, the material of the baseline 162 is fiber 〇 [0019] ❹ The first electrode 12 and the second electrode 14 are composed of a conductive material, and the shapes of the first electrode 12 and the second electrode 14 are not limited. It is a conductive film, a conductive sheet or a conductive wire. Preferably, the first electrode 12 and the second electrode 14 are each a conductive line. The conductive wire has a diameter of 0.5 nm to 100 μm. The material of the wire may be metal, alloy, indium tin oxide (IT0), antimony tin oxide (ΑΤΟ), conductive silver paste, conductive polymer or conductive carbon nanotube. The metal or alloy material may be an alloy of aluminum, copper, tungsten, molybdenum, gold, titanium, niobium, niobium, silver or any combination thereof. In this embodiment, the first electrode 12 and the second electrode 14 are made of a silver wire and have a diameter of 5 nm. The silver wire may be woven or sewn in the heating assembly 16, 098128231 Form No. A0101, page 9 / page 35 0982048487-0 201107548 and electrically connected to the nanocarbon line-like structure 16A. [0023] [0023] [0023] [0023] between the first electrode 12 and the second electrode 14 is called, the money heating component 16 is applied to the carbon nanotube fabric 1Q when the connection - the resistance value to avoid short circuit phenomenon produce. The arrangement positions of the first electrode 12 and the second electrode 14 are related to the arrangement of the nano carbon # linear structure 16〇. Preferably, at least a part of the carbon nanotube line-like structure 160 can be respectively connected to the first The electrode 12 and the second electrode 14 are electrically connected. In this embodiment, the nanocarbon line-like structure 160 extends substantially in the direction of the first electrode 12 to the second electrode 14. In addition, the first electrode 丨2 and the second electrode 14 may also be disposed on the surface of the heating assembly 16 via a conductive adhesive (not shown), and the conductive adhesive is used to realize the 帛 electrode! While the second electrode 14 is in electrical contact with the heating pad, the first electrode 12 and the second electrode 14 can be better fixed to the surface of the heating unit 16. The preferred conductive adhesive of this embodiment is a silver paste. It can be understood that the structure and material of the first electrode 12 and the second electrode 14 are not limited, and the purpose is to make a current flow in the heating. Therefore, it is within the scope of the present invention that the first electrode 12 and the second electrode 14 need only be electrically conductive and form electrical contact with the nanocarbon line-like structure 160 in the heating assembly 16. When the carbon nanotube fabric 1G of the embodiment of the present invention is used, the first electrode 12 and the second electrode u of the carbon nanotube fabric 10 can be connected to the wire first. The "can be a normal rechargeable battery. After receiving the power supply, the nano carbon line-like structure 160 of the nano-comfort fabric 10 can radiate electromagnetic waves of a certain wavelength range. The carbon nanotubes 1{) can be in direct contact with the surface of the body to be heated 098128231 Form Dock A0101 Page 10 / Total 35 Page 0982048487- 201107548. Alternatively, since the carbon nanotubes in the nanocarbon line-like structure 160 as the heating assembly 16 in the present embodiment have good electrical conductivity, the nanocarbon line-like structure 160 itself has a certain self-supporting property and stability. The carbon nanotube fabric 20 can be disposed at a certain distance from the object to be heated. [0024] When the area of the carbon nanotube fabric 10 in the embodiment of the present invention is constant, different wavelength ranges can be realized by adjusting the magnitude of the power supply voltage and the diameter and density of the nanocarbon line-like structure 160 in the heating assembly 16. The radiation of electromagnetic waves. When the magnitude of the power supply voltage is constant, the diameter and density of the carbon nanotube linear structure 160 in the heating assembly 16 are opposite to the change in the wavelength of the electromagnetic wave radiated from the carbon nanotube fabric 10. That is, when the power supply voltage is constant, the diameter and density of the heating element 16 are larger, and the shorter the wavelength of the electromagnetic wave emitted by the carbon nanotube fabric 10, the carbon nanotube fabric 10 can generate a visible light heat radiation; the heating assembly 16 The smaller the diameter and density, the longer the wavelength of the electromagnetic wave emitted by the carbon nanotube fabric 10, and the carbon nanotube fabric 10 can generate an infrared heat radiation. When the diameter and density of the heating unit 16 are constant, the magnitude of the power source voltage is inversely proportional to the wavelength of the electromagnetic wave radiated from the carbon nanotube fabric 10. That is, when the diameter and density of the heating assembly 16 are constant, the larger the power supply voltage, the shorter the wavelength of the electromagnetic wave emitted by the carbon nanotube fabric 10, the carbon nanotube fabric 10 can generate a visible light heat radiation; the smaller the power supply voltage The longer the wavelength of the electromagnetic wave radiated by the carbon nanotube fabric 10, the carbon nanotube fabric 10 can generate an infrared heat radiation. The carbon nanotubes have good electrical conductivity and thermal stability, and have an excellent heat radiation efficiency as an ideal black body structure. The carbon nanotube fabric 10 is exposed to an oxidizing gas or an atmosphere, wherein 098128231 Form No. 1010101 Page 11 / Total 35 Page 0982048487-0 [0025] 201107548: The straight line of the rice double camp is 5 mm straight. By adjusting the electric power at 1Q volts ~ 3 volts; the original voltage 'the carbon nanotube fabric 1 〇 can lightly emit a longer wavelength for the tank wave. The temperature of the carbon nanotube fabric 1G was found to be 0 C to 5 GG C by a temperature measuring instrument. For objects with a black body structure, the degree of the object is 200 0450. . At the same time, it can emit heat radiation (infrared rays) that is invisible to the human eye. At this time, the heat radiation is the most stable and efficient.

[0026]進—+iL v也,將本發明實施例中的奈米碳管織物1〇放入一 裳置中’通過在8〇伏〜15〇伏調節電源電壓,該奈米 碳管織物10可以輻射出波長較短的電磁波。當電源電壓 大於150伏時,該奈米碳管織物1〇陸續會發出紅光黃光 等可見光。通過溫度測量儀發現該奈米碳管織物1〇的溫 度可達到15GG C以上,此時會產生—普通純射。隨著 電源電壓的進-步增A,該奈米碳管織物蘭能產生殺 死細菌的人眼看不見的射線(紫外光),可應用於光源 顯不器件等領域。另外’所述奈米碳管線狀結構⑽具 有較好的電磁屏蔽性能,故由秦米碳管線狀結構160組成 的不米碳輯物10具有祕的電磁屏蔽性能,可用於防 輻射領域,如應用於防輻射服等。 [0027][0026] In addition, the carbon nanotube fabric of the embodiment of the present invention is placed in a skirt, and the carbon nanotube fabric is adjusted by adjusting the power supply voltage at 8 volts to 15 volts. 10 can radiate electromagnetic waves with a shorter wavelength. When the power supply voltage is greater than 150 volts, the carbon nanotube fabric will emit visible light such as red yellow light. It is found by the temperature measuring instrument that the temperature of the carbon nanotube fabric can reach 15 GG C or more, and a normal pure shot is produced. With the step-by-step increase of the power supply voltage, the carbon nanotube fabric can produce rays (ultraviolet light) that are invisible to the human eye, and can be applied to fields such as light source display devices. In addition, the nano carbon line structure (10) has good electromagnetic shielding performance, so the carbon carbon material 10 composed of the Qin carbon line structure 160 has the secret electromagnetic shielding performance and can be used in the field of radiation protection, such as Used in radiation protection suits, etc. [0027]

β參閱圖7纟發明第二實施例提供—種奈米碳管織物 碳管織物2〇包括—加熱組件26、—第—電極22 、一第—電極24、—第—織物層28a以及-第二織物層 28b。所述加熱組件26設置於所述第一織物層心和第二 織物層28b之間。所述加熱組件26可由奈織管線狀結構 (圖未不)和基線(圖未示)纺織而成或包括至少一奈 米板目膜。所述第_電極22和第二電極24與該加熱組件 098128231 表單編號A0101 第12頁/共35頁 0982048487-0 201107548 [0028] 26中的奈米碳管線狀結構或奈米碳管膜電連接,用於使 所述加熱組件26接通電源從而流過電流。 所述奈米碳管織物20的結構與第—實施例的奈米碳管織 物基本相同,其不同之處在於’所述加熱組件26可包 括至V -奈米碳管膜’且該奈米碳管織物2G可進—步包 第-織物層28a和-第二織物層28b。所述第—織物 層283和—第二織物層28b可對所述加熱組件⑼起保護作 〇 [0029]Referring to FIG. 7 , a second embodiment of the invention provides a carbon nanotube fabric carbon tube fabric comprising: a heating assembly 26, a first electrode 22, a first electrode 24, a first fabric layer 28a, and a Two fabric layers 28b. The heating assembly 26 is disposed between the first fabric layer core and the second fabric layer 28b. The heating assembly 26 may be woven from a nepline-like structure (not shown) and a baseline (not shown) or include at least one nanosheet film. The _ electrode 22 and the second electrode 24 are electrically connected to the nano carbon line structure or the carbon nanotube film in the heating element 098128231 Form No. A0101, page 12/35 pages 0982048487-0 201107548 [0028] And for causing the heating assembly 26 to be powered on to flow a current. The structure of the carbon nanotube fabric 20 is substantially the same as that of the carbon nanotube fabric of the first embodiment, except that the heating assembly 26 can include a V-nanocarbon film and the nano The carbon tube fabric 2G can further include the first fabric layer 28a and the second fabric layer 28b. The first fabric layer 283 and the second fabric layer 28b can protect the heating assembly (9). [0029]

GG

[0030] 098128231 所述奈米碳管膜可為-奈米碳管拉膜。每—奈米碳管拉 膜包括多個基本相互平行且基本平行於奈米碳管拉膜表 面排列的奈米碳管,其掃描電鏡照片請參見圖8。具體地 ’所述奈米❹㈣包料個所料純管通過凡德瓦 爾力首尾相連且基本沿同_方向擇優取向侧。所述奈 米碳管拉膜可通軌奈米碳管陣财直餘取獲得,為 一自支稽結構。所謂“自支擇結構,,叫奈求碳管拉膜 無需通過-支撐體支撐,也能保持自身特定的形狀。由 於該自支#結_奈米碳管域巾大#奈米碳管通過凡 德瓦爾力相互則,從而使奈米碳管拉膜具有特定的形 狀,形成—自切結構。所述奈米碳管拉_厚度為〇 5 奈米]00微米’寬度與拉取該奈米碳管拉膜的奈米碳管 陣列的尺寸有關’長度不限。 至少兩層奈来碳管拉膜可層疊設置,相鄰的奈米碳管拉 膜之間通過凡德瓦爾力緊密結合H料管拉膜包括 多個擇優取向_的奈米碳管。該奈米碳管拉膜的層數 不限且相鄰兩層奈米碳管拉膜中的奈米碳管之 表單编號麵 __ 201107548 [0031] [0032] [0033] 098128231 A角度a 〇^aS90。,具體可依據實際需求製備 兩層奈米㈣管技膜中的奈米碳管之間的夹角 a大於〇時,在奈米後管杈膜中的多個奈采碳管形成一 網狀結構,且朗狀結構包括多㈣W佈的微孔。 所述加熱組件26設置於所述第一織物層28a和第二織物層 8b之間。所述加熱組件以與所述第一織物條和第二 層28b可通過缝匆或點結的方式結合在一起。具體地 ’二所述加熱組件26與所述第一織物層W和第二織物層 圖樣從過縫製的方式結合在一起時,可採用縫幼線按任意 所述第二織物層咖的下表面起穿過第二織物層 28a的且件26及第—織物層心至所述第一織物層 、_表面。當所述加熱組件Μ與所述第一織物層“a ^織物層28b通過黏結的方式結合在 一起時,所述黏 I ^ ♦電黏結劑°該黏結劑可將所述加熱組件26 與所述第-織物層28a和第二織物層柳緊密結合在一起 為增強所述奈米碳管織物2 0的耐用性,所述 黏結劑可具有較好的防水性能’以便一述奈米碳管織 物2〇的洗滌。 所述第-織物層28a和第二織物層28b的讨料包括棉、麻 維尼龍、氨論、聚醋、聚丙烯晴、羊毛和蠢絲等 。所述第一織物層28a和第二織物層28b的材料可與所述 基線的材料相同。本實施例中,所述第/織物層28a和第 二織物層m的材料與所述基線的材料相同,即為纖維。 述加熱組件26的面積可小於所述第一臧物層28a和/或 織物層28b的面積,從而可在条米碳管織物2〇的 表單編號A0I01 ^ 第 14 頁/共 35 頁 0982048487-0 第 201107548 局部設置加熱組件26。具體地,可根制述奈米碳管織 物20應用的具體產品對所述加熱組件26進行局部設置, 如將所述奈米錢織物2G應詩衣物,如紅外理療裤, 對膝關節進打治療時,可將所述加熱組件26設置在膝關 衰p處,實現對膝關節的局部加熱。 [0034] Ο ο [0035] 不小饮I螂初的發熱體。該 熱體包括上述奈米碳管織物及兩表層。所述奈米碳= 物設置在兩表層之間。所述奈米碳管織物和兩表、 可通過缝紉或黏結的方式結合。所述兩表層的材層之間 織物及其他材料。所述兩表層的材料可與第^料包括 的第一織物層28a或第二織物層28b的材料相同實施例中 解,當所述奈米碳管織物為實施例二中的奈米〜可以理 20時,所述兩表層為可選擇的結構。所迷發'熱碳官織物 不限。具體地,所述發熱體可為一鞋塾、 的結構 ~帽子、— 熱毯、理療儀以及其他用於加熱的物體。 介紹所述發熱體為鞋墊、帽子、電熱毯或理面將咩細 ' '"理療儀時,兮 發熱體的具體結構。 m v ;. $ Λ 請參閱圖9,所述發熱體可為一鞋墊丨〇〇。兮 鞋墊狀的奈米碳管織物102和鞋墊狀的兩表層包括 奈米碳管織物102設置在所述兩表層ι〇4之間 所述 碳管織物102和兩表層1〇4可縫製在—起。所、^述奈米 織物102包括第一實施例中的奈米碳管織物 官 U或第二眘奸 例中的奈米碳管織物20。所述奈米碳管織物1〇 第一實施例中的奈米碳管織物10或第二實施 將所迷 碳管織物20裁剪成鞋墊形狀所製備。所迷表層 ’、木 1 〇 4可為織 098128231 表單煸號A0101 第15頁/共35頁 〇982〇48487~〇 201107548 物層,優選為與皮膚接觸舒適的織物。可以理解,當所 述奈米碳管織物102為第二實施例中的奈米碳管織物20時 ,所述兩表層104為可選擇的結構。 [0036] 由於所述奈米碳管具有較大的比表面積,故奈米碳管具 有較好的吸附能力。因此,由奈米碳管組成的奈米碳管 織物具有除臭的作用。另外,可向奈米碳管中引入親水 性基團或親水親油性基團,如聚乙烯基吡咯烷酮(PVP) ,從而使奈米碳管織物具有較好的吸汗性能,進而可製 備具有除臭和吸汗雙重功能的鞋墊。 [0037] 此外,該由奈米碳管織物102組成的鞋墊100可進一步通 過向奈米碳管織物102中的第一電極和第二電極間施加一 電壓使該奈米碳管織物102輻射出電磁波,對該鞋墊100 進行乾燥。因此,該鞋墊100在穿著時不受長期潮濕環境 的影響。此外,所述奈米碳管織物102可根據需要僅設置 在所述鞋墊100的局部,如設置在穴位處。設置在六位處 的奈米碳管織物102可對腳起到熱療的作用,進而使所述[0030] 098128231 The carbon nanotube film may be a carbon nanotube film. Each of the carbon nanotube membranes comprises a plurality of carbon nanotubes arranged substantially parallel to each other and substantially parallel to the surface of the carbon nanotube membrane. See Figure 8 for a scanning electron micrograph. Specifically, the raw tubes of the nano-birth (four) package are connected end to end by van der Waal force and are preferably oriented along the same direction. The carbon nanotube film can be obtained by passing through the carbon nanotube array and is a self-supporting structure. The so-called "self-selective structure, called the carbon tube film without the support of the support, can also maintain its own specific shape. Because the self-supporting #结_奈碳碳管域大#N carbon tube through Van der Waals force each other, so that the carbon nanotube film has a specific shape, forming a self-cutting structure. The carbon nanotubes are pulled _ thickness 〇5 nm] 00 micron 'width and pull the nai The size of the carbon nanotube array of the carbon nanotube film is not limited to the length. At least two layers of the carbon nanotube film can be stacked, and the adjacent carbon nanotube film is tightly bonded by van der Waals force. The H-tube pull film comprises a plurality of preferred orientations of the carbon nanotubes. The number of layers of the carbon nanotube film is not limited and the number of the carbon nanotubes in the adjacent two layers of carbon nanotube film is numbered.面__201107548 [0031] [0033] 003128231 A angle a 〇 ^ aS90. Specifically, according to actual needs, the angle between the two carbon nanotubes in the two layers of silicon (four) tube film is greater than 〇 At the time, a plurality of carbon nanotubes in the ruthenium film of the nanometer form a network structure, and the ridge structure includes micropores of the (four) W cloth. The heating assembly 26 is disposed between the first fabric layer 28a and the second fabric layer 8b. The heating assembly is combined with the first fabric strip and the second layer 28b by stitching or knotting Specifically, when the heating assembly 26 is combined with the first fabric layer W and the second fabric layer pattern from the over-sewn manner, the seam line may be used to press any of the second fabric layers. The lower surface passes through the second fabric layer 28a and the member 26 and the first fabric layer to the first fabric layer, the surface. When the heating element is folded with the first fabric layer "a ^ fabric layer When the bonding of 28b is performed by bonding, the adhesive can thermally strengthen the heating assembly 26 and the first fabric layer 28a and the second fabric layer to enhance The durability of the carbon nanotube fabric 20, the binder may have better water resistance' to facilitate the washing of the carbon nanotube fabric. The materials of the first fabric layer 28a and the second fabric layer 28b include cotton, naphthene, ammonia, polyester, polypropylene, wool, and stupid yarn. The materials of the first fabric layer 28a and the second fabric layer 28b may be the same as the material of the baseline. In this embodiment, the materials of the / fabric layer 28a and the second fabric layer m are the same as the material of the baseline, that is, fibers. The area of the heating element 26 can be smaller than the area of the first layer of the layer 28a and/or the layer of the fabric 28b, so that it can be in the form number of the carbon nanotube fabric 2A001^14/35 pages 0992048487-0 No. 201107548 Locally set the heating assembly 26. Specifically, the specific assembly of the carbon nanotube fabric 20 can be used to locally set the heating assembly 26, such as the nano-woven fabric 2G, such as infrared physiotherapy pants, for knee joints. At the time of treatment, the heating assembly 26 can be placed at the knee depression to achieve local heating of the knee joint. [0034] ο ο [0035] Not a small drink I 螂 initial heating element. The hot body comprises the above carbon nanotube fabric and two skin layers. The nanocarbon = material is disposed between the two skin layers. The carbon nanotube fabric and the two sheets may be combined by sewing or bonding. Fabric and other materials between the layers of the two skin layers. The material of the two skin layers may be the same as the material of the first fabric layer 28a or the second fabric layer 28b included in the first material. When the carbon nanotube fabric is the nanometer in the second embodiment, At 20 o'clock, the two skin layers are of an alternative structure. The hairy 'hot carbon official fabric is not limited. Specifically, the heat generating body may be a shoe last, a structure, a hat, a heat blanket, a physiotherapy instrument, and other objects for heating. The specific structure of the heating element is described when the heating element is an insole, a hat, an electric blanket or a physiotherapy device. m v ;. $ Λ Referring to FIG. 9, the heating element may be an insole. The insole-like carbon nanotube fabric 102 and the insole-like two skin layers comprise a carbon nanotube fabric 102 disposed between the two skin layers ι 4 and the carbon tube fabric 102 and the two skin layers 1 〇 4 can be sewn in - Start. The nano fabric 102 includes the carbon nanotube fabric of the first embodiment or the carbon nanotube fabric 20 of the second embodiment. The carbon nanotube fabric 1 is prepared by cutting the carbon nanotube fabric 20 in the shape of an insole in the first embodiment. The surface layer ', wood 1 〇 4 can be woven 098128231 Form nickname A0101 Page 15 of 35 〇982〇48487~〇 201107548 The layer, preferably a comfortable fabric in contact with the skin. It will be understood that when the carbon nanotube fabric 102 is the carbon nanotube fabric 20 of the second embodiment, the two skin layers 104 are of an alternative construction. [0036] Since the carbon nanotube has a large specific surface area, the carbon nanotube has a good adsorption capacity. Therefore, the carbon nanotube fabric composed of a carbon nanotube has a deodorizing effect. In addition, a hydrophilic group or a hydrophilic lipophilic group such as polyvinylpyrrolidone (PVP) can be introduced into the carbon nanotube, so that the carbon nanotube fabric has better sweat absorption property, and thus can be deodorized. And a sweat-absorbing dual function insole. [0037] Furthermore, the insole 100 composed of the carbon nanotube fabric 102 can further radiate electromagnetic waves from the carbon nanotube fabric 102 by applying a voltage between the first electrode and the second electrode in the carbon nanotube fabric 102. The insole 100 is dried. Therefore, the insole 100 is not affected by the long-term moist environment when worn. Further, the carbon nanotube fabric 102 may be disposed only on a portion of the insole 100 as desired, such as at acupuncture points. The carbon nanotube fabric 102 disposed at six positions can act as a heat treatment for the foot, thereby enabling the

鞋墊100具有保健的作用。 UThe insole 100 has a health care function. U

[0038] 請參閱圖10,所述發熱體可為一帽子200。該帽子200包 括帽子狀的奈米碳管織物202和帽子狀的兩表層204。所 述奈米碳管織物202為將所述第一實施例中的奈米碳管織 物10或第二實施例中的奈米碳管織物20裁剪並縫製成帽 子形所製備。 [0039] 所述帽子200中各組件的組成與結構與所述鞋墊100中的 奈米碳管織物2 0 2和兩表層2 0 4的組成和結構一致。所述 098128231 表單編號A0101 第16頁/共35頁 0982048487-0 201107548 [0040] Ο [0041] Ο [0042] [0043] 奈米碳管織物202可根據需要設置在所述帽子ι 〇 〇的局部 ,如設置在耳朵處。另外,也可通過調整奈米碳管織物 202中的奈米碳管的密度,實現對不同部位温度的調控。 請參閱圖11,所述發熱體可為一電熱毯3〇〇。該電熱毯 300包括奈米碳管織物302和兩表層304。所述奈米碳管 織物302為將所述第一實施例中的奈米碳管織物1〇或第二 實施例中的奈米碳管織物20裁剪並縫製成電熱毯形狀所 製備。所述奈米碳管織物302可覆蓋電熱毯300的整個面 積。 請參閱圖12,所述發熱體可為一理療儀4〇〇。該理療儀 40 0包括至少一理療帶402。每個理療帶402均可包括兩 表層406及一奈米碳管織物4〇4設置在兩表層406中間。 該奈米碳管織物404包括第一實施例中的奈米碳管織物1〇 或第二實施例中的奈米碳管織物20。該奈米碳管織物404 在理療帶402中可根據需要赛療的義體位置進行設置,如 可覆蓋理療帶402整個面積喊僅設置每局部區域。例如, 當僅需對膝蓋進行理療時,該奈參攀管織物404僅設置在 對應膝蓋的位置。 本實施例中,所述理療儀400包括兩個理療帶402,所述 奈米碳管織物404設置在理療帶402的局部區域。該兩個 理療帶402在工作時可進一步電連接至一電源408。所述 理療儀400可進一步包括一些輔助設備,進而實現一些輔 助功能’如超時及過溫保護功能等。 可以理解,所述奈米碳管織物並不限於上述應用,其可 098128231 表單編號Α0101 第17頁/共35頁 0982048487-0 201107548 應用於傳統織物應用的任何領域,包括保暖衣物等,以 及用於加熱的其他領域,如將奈米碳管織物懸掛在房間 中,在冬天取代暖氣片等。 [0044] 與先前技術相比較,所述奈米碳管織物及應用該奈米碳 管織物的發熱體具有以下優點:第一,由於奈米碳管具 有較好的強度及韌性,由奈米碳管組成的加熱組件的強 度較大,韌性較好,不易破裂,進而有利於提高所述奈 米碳管織物及採用該奈米碳管織物的發熱體的使用壽命 。第二,由於奈米碳管具有良好的導電性能以及熱穩定 性,且作為一理想的黑體結構,具有比較高的熱輻射效 率,故由首尾相連的奈米碳管組成的加熱組件的電熱轉 換效率高,從而使所述奈米碳管織物及採用該奈米碳管 織物的發熱體具有升溫迅速、熱滯後小、熱交換速度快 的特點。第三,奈米碳管的直徑較小,使得奈米碳管線 狀結構或奈米碳管膜具有較小的厚度,可以製備微型奈 米碳管織物,應用於微型發熱體的加熱。第四,所述奈 米碳管線狀結構或奈米碳管膜可設置在所述加熱組件的 部分區域,從而可實現對局部區域的選擇性加熱,具有 較廣的應用範圍,且有利於降低所述奈米碳管織物及採 用該奈米碳管織物的發熱體的成本。 [0045] 綜上所述,本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限制本案之申請專利範圍。舉凡習知本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 皆應涵蓋於以下申請專利範圍内。 098128231 表單編號A0101 第18頁/共35頁 0982048487-0 201107548 【圖式簡單說明】 [0046] 圖1係本發明第一實施例的奈米碳管織物的結構示意圖。 [0047] 圖2係圖1中的奈米碳管織物沿Π - Π線的剖面示意圖。 [0048] 圖3係本發明第一實施例奈米碳管織物中的束狀奈米碳管 線狀結構的結構示意圖。 [0049] 圖4係本發明第一實施例奈米碳管織物中的絞線狀奈米碳 管線狀結構的結構示意圖。 [0050] 圖5係本發明第一實施例奈米碳管織物中的束狀奈米碳管 〇 線的掃描電鏡照片。 [0051] 圖6係本發明第一實施例奈米碳管織物中的絞線狀奈米碳 管線的掃描電鏡照片。 [0052] 圖7係本發明第二實施例的奈米碳管織物的結構示意圖。 [0053] 圖8係本發明第二實施例奈米碳管織物中用作加熱組件的 奈米碳管膜的掃描電鏡照片。 Q [0054] 圖9係本發明實施例奈米碳管織物用於一鞋墊時的結構示 意圖。 [0055] 圖1 0係本發明實施例奈米碳管織物用於一帽子時的結構 示意圖。 [0056] 圖11係本發明實施例奈米碳管織物用於一電熱毯時的結 構不意圖。 [0057] 圖12係本發明實施例奈米碳管織物用作一理療儀時的結 構示意圖。 098128231 表單編號A0101 第19頁/共35頁 0982048487-0 201107548 【主要元件符號說明】 奈米碳管織物 10,20,102,202,302, 404 鞋墊 100 表層 104, 204, 304, 406 第一電極 12, 22 第二電極 14, 24 加熱組件 16, 26 奈米碳管線狀結構 160 奈米碳管線 161 基線 162 帽子 200 第一織物層 28a 第二織物層 28b 電熱毯 300 理療儀 400 理療帶 402 電源 408 098128231 表單編號A0101 第20頁/共35頁 0982048487-0Referring to FIG. 10, the heating element may be a hat 200. The hat 200 includes a hat-shaped carbon nanotube fabric 202 and a hat-like two skin layers 204. The carbon nanotube fabric 202 is prepared by cutting and sewing the carbon nanotube fabric 10 of the first embodiment or the carbon nanotube fabric 20 of the second embodiment into a hat shape. [0039] The composition and structure of the components in the cap 200 are consistent with the composition and structure of the carbon nanotube fabric 20 2 and the two skin layers 204 in the insole 100. The 098128231 Form No. A0101 Page 16 / Total 35 Page 0992048487-0 201107548 [0040] 004 [0042] [0043] The carbon nanotube fabric 202 can be disposed on the part of the hat 根据 as needed As set at the ear. In addition, the temperature of different portions can be adjusted by adjusting the density of the carbon nanotubes in the carbon nanotube fabric 202. Referring to FIG. 11, the heating element may be an electric blanket. The electric blanket 300 includes a carbon nanotube fabric 302 and two skin layers 304. The carbon nanotube fabric 302 is prepared by cutting the carbon nanotube fabric 1 of the first embodiment or the carbon nanotube fabric 20 of the second embodiment into a shape of an electric blanket. The carbon nanotube fabric 302 can cover the entire area of the electric blanket 300. Referring to FIG. 12, the heating element may be a physiotherapy device. The physiotherapy instrument 40 0 includes at least one physiotherapy band 402. Each of the physiotherapy strips 402 can include two skin layers 406 and a carbon nanotube fabric 4〇4 disposed between the two skin layers 406. The carbon nanotube fabric 404 comprises the carbon nanotube fabric 1 in the first embodiment or the carbon nanotube fabric 20 in the second embodiment. The carbon nanotube fabric 404 can be set in the physiotherapy belt 402 according to the position of the prosthesis required for the treatment, for example, the entire area of the physiotherapy belt 402 can be shouted to set only the local area. For example, when it is only necessary to physiotherapy the knee, the nephew climbing fabric 404 is only placed at the position corresponding to the knee. In this embodiment, the physiotherapy apparatus 400 includes two physiotherapy belts 402 disposed in a partial region of the physiotherapy belt 402. The two physiotherapy bands 402 can be further electrically coupled to a power source 408 during operation. The physiotherapy instrument 400 may further include some auxiliary devices to implement some auxiliary functions such as timeout and over temperature protection functions. It can be understood that the carbon nanotube fabric is not limited to the above application, and can be used for 098128231 Form No. 1010101 Page 17 / Total 35 Page 0982048487-0 201107548 Applied to any field of traditional fabric application, including warm clothing, etc., and for Other areas of heating, such as hanging carbon nanotube fabrics in a room, replacing radiators in winter. [0044] Compared with the prior art, the carbon nanotube fabric and the heating element using the carbon nanotube fabric have the following advantages: First, since the carbon nanotube has better strength and toughness, the nano carbon is used. The heating component composed of the tube has high strength, good toughness, and is not easy to be broken, thereby further improving the service life of the carbon nanotube fabric and the heating body using the carbon nanotube fabric. Second, since the carbon nanotubes have good electrical conductivity and thermal stability, and as an ideal black body structure, and have relatively high heat radiation efficiency, the electrothermal conversion of the heating assembly consisting of the carbon nanotubes connected end to end The efficiency is high, so that the carbon nanotube fabric and the heating element using the carbon nanotube fabric have the characteristics of rapid temperature rise, small heat lag, and high heat exchange rate. Third, the diameter of the carbon nanotubes is small, so that the nano carbon line structure or the carbon nanotube film has a small thickness, and the micro carbon nanotube fabric can be prepared for heating of the micro heating element. Fourth, the nanocarbon line-like structure or the carbon nanotube film may be disposed in a partial region of the heating assembly, thereby enabling selective heating of the local region, having a wide application range, and being beneficial for reducing The cost of the carbon nanotube fabric and the heat generating body using the carbon nanotube fabric. [0045] In summary, the present invention has indeed met the requirements of the invention patent, and the patent application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims. 098128231 Form No. A0101 Page 18 of 35 0982048487-0 201107548 [Simple Description of the Drawings] [0046] Fig. 1 is a schematic view showing the structure of a carbon nanotube fabric according to a first embodiment of the present invention. 2 is a schematic cross-sectional view of the carbon nanotube fabric of FIG. 1 along a Π-Π line. 3 is a schematic structural view showing a linear structure of a bundle of carbon nanotubes in a carbon nanotube fabric according to a first embodiment of the present invention. 4 is a schematic view showing the structure of a stranded nanocarbon line-like structure in a carbon nanotube fabric according to a first embodiment of the present invention. 5 is a scanning electron micrograph of a bundle of carbon nanotube wires in a carbon nanotube fabric according to a first embodiment of the present invention. 6 is a scanning electron micrograph of a stranded carbon nanotube line in a carbon nanotube fabric according to a first embodiment of the present invention. 7 is a schematic structural view of a carbon nanotube fabric according to a second embodiment of the present invention. 8 is a scanning electron micrograph of a carbon nanotube film used as a heating element in a carbon nanotube fabric of a second embodiment of the present invention. [0054] Figure 9 is a schematic view showing the structure of a carbon nanotube fabric used in an insole according to an embodiment of the present invention. 10 is a schematic view showing the structure of a carbon nanotube fabric used in a hat according to an embodiment of the present invention. 11 is a schematic view showing the structure of a carbon nanotube fabric used in an electric blanket according to an embodiment of the present invention. 12 is a schematic view showing the structure of a carbon nanotube fabric used as a physiotherapy apparatus according to an embodiment of the present invention. 098128231 Form No. A0101 Page 19 / Total 35 Page 0992048487-0 201107548 [Main component symbol description] Carbon nanotube fabric 10, 20, 102, 202, 302, 404 Insole 100 Surface layer 104, 204, 304, 406 First electrode 12, 22 Second electrode 14, 24 Heating assembly 16, 26 Nano carbon line structure 160 Nano carbon line 161 Baseline 162 Hat 200 First fabric layer 28a Second fabric layer 28b Electric blanket 300 Physiotherapy instrument 400 Physiotherapy belt 402 Power supply 408 098128231 Form No. A0101 Page 20 of 35 0982048487-0

Claims (1)

20110154?請專利範圍: i 種奈米碳管織物,包括 /加熱組件; 直少兩電極’該至少兩電極間隔設置且與所述加熱組件電 連接;其改良在於, 所述加熱組件包括多個首尾相連的奈米碳管,所述至少兩 電極與所述加熱組件中的奈米碳管電連接。 2 .如申請專利範圍第1項所述的奈米碳管織物,其中,所述 加熱組件包括奈米碳管線狀結構及基線。 3 .如申請專利範圍第2項所述的奈米碳管域物,其中,所述 奈米碳管線狀結構與所述基線紡織形成所述加熱組件。 4. 如申請專利範圍第2項所述的奈米碳管織物,其中,所述 奈米碳管線狀結構與所述基線平行、併排、交又或纏繞設 置。 5. 如申請專利範圍第2項所述的奈米碳管織物,其中,所述 奈米碳管線狀結構包括至少一奈米碳管線一 6 .如申請專利範圍第5項所述的奈米碳管織物,其中,所述 奈米礙管線狀結構包括多個奈米病線平行排列組成的一 束狀結構或多個奈米碳管線扭轉組成的n 结構。 7.如申請專利範圍第6項所述的奈米碳管織物,其中,所述 奈米碳管線包括多個奈米碳管基本沿奈米碳管線的長度方 向螺旋排列或平行排列。 8. 如申請專利範圍第}項所述的奈来碳管織物,其中,所述 加熱組件包括至少一奈米碳營膜。 9. 如申請專利範圍第8項所述的奈米碳管織物,其中,所述 0982048487-0 098128231 表單編號A0101 第21頁/共35頁 201107548 加熱組件包括至少兩層層疊設置的奈米碳管臈。 10 .如申請專利範圍第9項所述的奈米碳管織物,其中,所述 奈求碳管膜包括多個奈米碳管首尾相連且基本沿同一方向 擇優取向排列,奈米碳管之間通過凡德瓦爾力相互連接。 n .如申請專利範圍第i項所述的奈米碳管織物其中,所述 至少兩電極的材料為金屬、合金、銦錫氧化物、録錯氣化 物、導電銀膠、導電聚合物或導電性奈米碳管。 12.如申請專利範圍第J項所述的奈米碳管織物其中,所述 至少兩電極為導電線,該導電線編織或縫匆在所述加熱組 件中或所述至少兩電極通過導電黏結劑設置在所述加熱組 件表面。 13 . 14 . 15 . 16 . 17 . 18 . 098128231 如申凊專利範圍第1項所述的奈米赛努屬!物,其中,所述 不米碳管大致沿至少兩電極中的一個電極向另一電極的方 向延伸。 如申請專利範圍第1項所述的奈来碳管織物,其中,所述 奈米碳管在所述加熱組件中均勻分佈。 如申請專利範圍第1項所述的奈米碳管織物,其中,所述 奈米碳管設置在所述加熱組件的部分區域,所述奈米碳管 在該部分區域中均勻分佈。 如申請專利範圍第1項所述的奈米碳管織物,其中,進一 步包括一第一織物層以及一第二織物層,所述加熱組件設 置在該第一織物層與第二織物層之間。 如申吻專利範圍第16項所述的奈米礙管織物,其中,所述 加熱組件與所述第一織物層和第二織物層通過縫紉或黏结 的方式結合。 如申請專利範圍第16項所述的奈米碳管織物其中,所述 表單編號A0101 第22頁/共35頁 0982〇48487- 201107548 加熱組件的面積小於或等於所述第一織物層或第二織物層 的面積。 19 . 一種發熱體,其包括一奈米礙管織物,該奈米破管織物包 括: 一加熱組件; 至少兩電極,該至少兩電極間隔設置且與所述加熱組件電 連接;其改良在於, 所述加熱組件包括多個首尾相連的奈米碳管,所述至少兩 電極與所述加熱組件中的奈米碳管電連接。 20 .如申請專利範圍第19項所述的發熱體,其中,所述發熱體 為鞋墊、帽子、電熱毯或理療儀。 21 .如申請專利範圍第20項所述的發熱體,其中,進一步包括 兩表層,所述奈米碳管織物設置在兩表層之間。 〇 098128231 表單編號A0101 第23頁/共35頁 0982048487-020110154? The scope of patent: i carbon nanotube fabric, including / heating assembly; two electrodes are at least two electrodes spaced apart and electrically connected to the heating assembly; the improvement is that the heating assembly comprises a plurality of The carbon nanotubes are connected end to end, and the at least two electrodes are electrically connected to the carbon nanotubes in the heating assembly. 2. The carbon nanotube fabric of claim 1, wherein the heating assembly comprises a nanocarbon line structure and a baseline. 3. The carbon nanotube domain of claim 2, wherein the nanocarbon line-like structure and the baseline textile form the heating assembly. 4. The carbon nanotube fabric of claim 2, wherein the nanocarbon line-like structure is parallel, side by side, intersecting or entangled with the baseline. 5. The carbon nanotube fabric of claim 2, wherein the nanocarbon line-like structure comprises at least one nano carbon line- 6 . The nano-particle according to claim 5 a carbon tube fabric, wherein the nano-barrier structure comprises a bundle structure in which a plurality of nanowire lines are arranged in parallel or an n-structure in which a plurality of nanocarbon pipelines are twisted. 7. The carbon nanotube fabric of claim 6, wherein the nanocarbon pipeline comprises a plurality of carbon nanotubes arranged substantially helically or in parallel along a length of the nanocarbon pipeline. 8. The carbon nanotube fabric of claim 1, wherein the heating assembly comprises at least one nanocarbon film. 9. The carbon nanotube fabric of claim 8, wherein the 0982048487-0 098128231 form number A0101 page 21 / 35 pages 201107548 the heating assembly comprises at least two layers of carbon nanotubes stacked Hey. 10. The carbon nanotube fabric of claim 9, wherein the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation in the same direction, and the carbon nanotubes are arranged. They are connected to each other by Van der Valli. n. The carbon nanotube fabric of claim i, wherein the at least two electrodes are made of a metal, an alloy, an indium tin oxide, a recording gas, a conductive silver paste, a conductive polymer or a conductive material. Carbon nanotubes. 12. The carbon nanotube fabric of claim J, wherein the at least two electrodes are electrically conductive wires, the electrically conductive wires are woven or sewn in the heating assembly or the at least two electrodes are electrically conductively bonded. An agent is disposed on the surface of the heating assembly. 13 . 14 . 15 . 16 . 17 . 18 . 098128231 The nano-Sinus object of claim 1, wherein the carbon nanotubes are substantially along one of the at least two electrodes The other electrode extends in the direction. The carbon nanotube fabric of claim 1, wherein the carbon nanotubes are uniformly distributed in the heating assembly. The carbon nanotube fabric of claim 1, wherein the carbon nanotube is disposed in a partial region of the heating assembly, and the carbon nanotubes are evenly distributed in the partial region. The carbon nanotube fabric of claim 1, further comprising a first fabric layer and a second fabric layer, the heating assembly being disposed between the first fabric layer and the second fabric layer . The nano-barrier fabric of claim 16, wherein the heating element is combined with the first fabric layer and the second fabric layer by sewing or bonding. The carbon nanotube fabric of claim 16, wherein the form number A0101, page 22 of 35, 0982, 48487 to 201107548, the area of the heating element is less than or equal to the first fabric layer or the second The area of the fabric layer. 19. A heating element comprising a nano tube fabric comprising: a heating assembly; at least two electrodes, the at least two electrodes being spaced apart and electrically connected to the heating assembly; The heating assembly includes a plurality of carbon nanotubes connected end to end, the at least two electrodes being electrically connected to the carbon nanotubes in the heating assembly. The heat generating body according to claim 19, wherein the heat generating body is an insole, a hat, an electric blanket or a physiotherapy instrument. The heat generating body according to claim 20, further comprising two skin layers, the carbon nanotube fabric being disposed between the two skin layers. 〇 098128231 Form No. A0101 Page 23 of 35 0982048487-0
TW98128231A 2009-08-21 2009-08-21 Carbon nanotube fabric and heater adopting the same TWI375737B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98128231A TWI375737B (en) 2009-08-21 2009-08-21 Carbon nanotube fabric and heater adopting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98128231A TWI375737B (en) 2009-08-21 2009-08-21 Carbon nanotube fabric and heater adopting the same

Publications (2)

Publication Number Publication Date
TW201107548A true TW201107548A (en) 2011-03-01
TWI375737B TWI375737B (en) 2012-11-01

Family

ID=44835260

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98128231A TWI375737B (en) 2009-08-21 2009-08-21 Carbon nanotube fabric and heater adopting the same

Country Status (1)

Country Link
TW (1) TWI375737B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377774A (en) * 2012-04-25 2013-10-30 北京富纳特创新科技有限公司 Preparation device and preparation method of conducting element
TWI464113B (en) * 2012-04-25 2014-12-11 Beijing Funate Innovation Tech Carbon nanotube film
US8981235B2 (en) 2012-04-25 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Electronic element
TWI478860B (en) * 2012-10-12 2015-04-01 Hon Hai Prec Ind Co Ltd Method for making heating elements
US9540242B2 (en) 2012-04-25 2017-01-10 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film
TWI574578B (en) * 2012-12-22 2017-03-11 鴻海精密工業股份有限公司 Thermal cusion
US10388422B2 (en) 2012-04-25 2019-08-20 Beijing Funate Innovation Technology Co., Ltd. Electrically conductive element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103377774A (en) * 2012-04-25 2013-10-30 北京富纳特创新科技有限公司 Preparation device and preparation method of conducting element
TWI464113B (en) * 2012-04-25 2014-12-11 Beijing Funate Innovation Tech Carbon nanotube film
US8981235B2 (en) 2012-04-25 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Electronic element
CN103377774B (en) * 2012-04-25 2015-11-25 北京富纳特创新科技有限公司 The preparation facilities of conducting element and preparation method
US9540242B2 (en) 2012-04-25 2017-01-10 Beijing Funate Innovation Technology Co., Ltd. Method for making carbon nanotube film
US10377120B2 (en) 2012-04-25 2019-08-13 Beijing Funate Innovation Technology Co., Ltd. Apparatus and method for making conductive element
US10388422B2 (en) 2012-04-25 2019-08-20 Beijing Funate Innovation Technology Co., Ltd. Electrically conductive element
TWI478860B (en) * 2012-10-12 2015-04-01 Hon Hai Prec Ind Co Ltd Method for making heating elements
TWI574578B (en) * 2012-12-22 2017-03-11 鴻海精密工業股份有限公司 Thermal cusion

Also Published As

Publication number Publication date
TWI375737B (en) 2012-11-01

Similar Documents

Publication Publication Date Title
CN101998706B (en) Carbon nanotube fabric and heating body using carbon nanotube fabric
TW201107548A (en) Carbon nanotube fabric and heater adopting the same
TWI420954B (en) Heater and method for making the same
US11577070B2 (en) Soft physiotherapy instrument
KR101775525B1 (en) Manufacturing method of conductive fabric using electrical stimulation
TWM515290U (en) Anti-radiation and anti-static fabric and clothing using the same
CN106003930A (en) Electric heating compound fabric and preparation method thereof
TWI741390B (en) Sticking physiotherapy instrument and method for using the same
EP3804668B1 (en) Beauty instrument with mask and soft physiotherapy instrument
KR20190002113U (en) Electrode structure of metal nanowire coated fabric heater
CN102630104A (en) Electric heating composite fibre twisted wire and preparation method thereof
Shi et al. Flexible MXene decorative nonwovens with patterned structures for integrated joule heating and strain sensing
TW202128054A (en) Method for using beauty instrument with mask
TWI749450B (en) Method for using sticking physiotherapy instrument
JP7050096B2 (en) Mask type beauty equipment
EP3851157B1 (en) Soft physiotherapy instrument and method for using the same
TW202116216A (en) Method for using beauty instrument with mask
TWM350198U (en) Improved electrical-heating device
TW201008360A (en) Planar heating source
JPS63158781A (en) Linear infrared radiator
TWM481568U (en) Flexible heating element
TWM383311U (en) Far-infrared heated clothing
TWM277302U (en) Keeping warming apparatus