JPS63158781A - Linear infrared radiator - Google Patents

Linear infrared radiator

Info

Publication number
JPS63158781A
JPS63158781A JP30739186A JP30739186A JPS63158781A JP S63158781 A JPS63158781 A JP S63158781A JP 30739186 A JP30739186 A JP 30739186A JP 30739186 A JP30739186 A JP 30739186A JP S63158781 A JPS63158781 A JP S63158781A
Authority
JP
Japan
Prior art keywords
infrared
infrared emitting
radiator according
nylon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30739186A
Other languages
Japanese (ja)
Inventor
松井 雅男
省吾 牟田神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP30739186A priority Critical patent/JPS63158781A/en
Publication of JPS63158781A publication Critical patent/JPS63158781A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は赤外線な自励的に放射する有機系線状体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an organic linear body that self-excitedly emits infrared radiation.

(従来技術) 赤外線、例えば波長0.5〜1000 itm程度の電
磁波は物体や人体の加熱作用があることがよく知られて
いる。赤外線を放射するヒーターとして従来無機系のも
のは知られているが、有機系のものは知られていない。
(Prior Art) It is well known that infrared rays, for example, electromagnetic waves with a wavelength of about 0.5 to 1000 itm, have a heating effect on objects and the human body. Inorganic heaters that emit infrared rays are known, but organic heaters are unknown.

人体に赤外線を照射し身体の内部を加熱することにより
、血行を促進し医療効果や健康増進効果を得ることが出
来るが、従来それに用いる赤外線照射装置は赤外線電球
や赤外線ヒーター等の固い物体である。人体に赤外線を
照射する目的のためには、身体に密着可能で且つ快JI
!i性を備えた柔軟で取扱いが容易な赤外線源が望まれ
る。
By irradiating the human body with infrared rays and heating the inside of the body, blood circulation can be promoted and medical effects and health promotion effects can be obtained. Conventionally, the infrared irradiation devices used for this purpose are hard objects such as infrared light bulbs and infrared heaters. . For the purpose of irradiating the human body with infrared rays, it is necessary to
! An infrared source that is flexible and easy to handle is desired.

(発明が解決しようとする問題点) 本発明の目的は、肌着、ズボン、色情、ソックス、毛布
、シーツ等に組込み、人体に直接接触又は近接して赤外
線を放出する繊維製品を製造し得る新規な有機系の線状
赤外線源を提案するにある。
(Problems to be Solved by the Invention) The object of the present invention is to create a new textile product that can be incorporated into underwear, pants, socks, blankets, sheets, etc., and which can emit infrared rays when in direct contact with or in close proximity to the human body. The purpose of this paper is to propose an organic linear infrared source.

(問題を解決するための手段及び作用)本発明の線状赤
外線放射体は、長さ方向に連続する通電発熱部(1)と
、赤外線放射性粒子を混合した熱可塑性、熱硬化性又は
耐熱性ポリマーからなる赤外線放射層(2)とを有し、
最大径10mm未満であることを特徴とする。
(Means and effects for solving the problem) The linear infrared radiator of the present invention has an energized heat generating part (1) continuous in the length direction, and a thermoplastic, thermosetting or heat resistant material mixed with infrared emitting particles. It has an infrared emitting layer (2) made of a polymer,
It is characterized by a maximum diameter of less than 10 mm.

通電発熱部(1)は、電気伝導性で長さ方向に連続して
おり、通電により発熱する。発熱部の素材としては、銅
、鉄、アルミニウーム、その他の金属、黄銅、ニッケル
鋼、クロム鋼、ニクロム合金、ステンレス鋼、銅アルミ
ニウム合金、その他の合金の線条、リボン、無機繊維又
は有機繊維にメッキ等で金属皮膜又は半導体皮膜を形成
したものなどの導電性の繊維、線条及びこれらの類似の
ものが有用である。同様に金属粒子、半導体(金属化合
物等)粒子、金属又は半導体の皮膜を1する無機又は有
機粒子又は短繊維、カーボンブラッグ等の導電性光塙材
の181以上を、熱可塑性ポリマー、熱硬化性ポリマー
又は耐熱性ポリマーに混合した導電性ポリマーを、長さ
方向に連続する線状、面状、膜状に成型したものも有用
である。同様に複数の導線(金属線)を上記導電性ポリ
マ一層の中に並行して埋込んだ線状、面状その他の複合
体も有用である。同様に有機又は無機繊維の表面又は間
隙に上記導電性ポリマーの皮膜又は導電層を形成した導
電性繊維も有用である。
The energized heat generating portion (1) is electrically conductive and continuous in the length direction, and generates heat when energized. Materials for the heating part include copper, iron, aluminum, other metals, brass, nickel steel, chrome steel, nichrome alloy, stainless steel, copper-aluminum alloy, and other alloy wires, ribbons, inorganic fibers, or organic fibers. Conductive fibers, filaments, and similar materials, such as those on which a metal film or semiconductor film is formed by plating or the like, are useful. Similarly, metal particles, semiconductor (metal compound, etc.) particles, inorganic or organic particles or short fibers forming a metal or semiconductor film, conductive fiber materials such as carbon Bragg, etc. It is also useful to mold a conductive polymer mixed with a polymer or a heat-resistant polymer into a linear shape, a planar shape, or a film shape that is continuous in the length direction. Similarly, linear, planar, or other composites in which a plurality of conductive wires (metal wires) are embedded in a single layer of the conductive polymer in parallel are also useful. Similarly, conductive fibers in which a film or a conductive layer of the above conductive polymer is formed on the surfaces or gaps of organic or inorganic fibers are also useful.

本発明線状体の大きな特徴は発熱部を有することにある
。従来赤外線放射能を有する有機繊維等も知られている
が、それらは外部から加熱されてはじめて赤外線を放出
するもので、保温等の受動的又は消極的目的に使用され
るにすぎない。本発明の線状体は電源に接続すると発熱
し、その結果赤外線を放射する。すなわち本発明の線状
体は自励的、積極的に赤外線を放射し、単なる保温だけ
でなく、オ体や物体を積極的に加熱することが出来、更
に必要に応じ赤外線の強度も自由に制御したり調節する
ことも出来るという点で、従来の消極的な赤外線放射体
と全く異なるものである。
A major feature of the linear body of the present invention is that it has a heat generating portion. Conventionally, organic fibers having infrared radiation are known, but they only emit infrared rays when heated from the outside, and are only used for passive or passive purposes such as heat retention. The linear body of the present invention generates heat when connected to a power source, and as a result emits infrared rays. In other words, the linear body of the present invention self-excited and actively emits infrared rays, and can not only keep warm but also actively heat bodies and objects, and can also freely adjust the intensity of infrared rays as necessary. They differ from conventional passive infrared emitters in that they can also be controlled and regulated.

使用時の発熱部の温度は任意であるが、通常80〜80
0℃、多くの場合40〜200℃、穀も多くの場合50
〜150℃である。従ってこのamに適するような材料
(ポリマー、赤外線放射性粒子)を選ぶことが好ましい
。発熱体の消費電力(発熱量)は長さ1m当り0.1〜
600W程度、特に0.6〜50W程度が好適なことが
多い。発熱部の温度又は消費電力は電源電圧、発熱部の
電気抵抗等を友えることで目的の値に調整することが出
来る。
The temperature of the heat generating part during use is arbitrary, but it is usually 80 to 80.
0℃, often 40-200℃, grains often 50℃
~150°C. Therefore, it is preferable to select materials (polymer, infrared emitting particles) that are suitable for this AM. The power consumption (calorific value) of the heating element is 0.1 to 1 meter in length.
A power of about 600 W, particularly about 0.6 to 50 W, is often suitable. The temperature or power consumption of the heat generating part can be adjusted to a desired value by adjusting the power supply voltage, electrical resistance of the heat generating part, etc.

赤外線放射層は赤外線放射性粒子を混合した熱可塑性、
熱硬化性又は耐熱性ポリマーからなり、発熱部によりて
加熱されると赤外線を放射する。
The infrared emitting layer is made of thermoplastic material mixed with infrared emissive particles,
It is made of thermosetting or heat-resistant polymer and emits infrared rays when heated by the heat generating part.

赤外線放射性粒子としては、アルミナ、ムライト、ジル
コニア、マグネシアなどの天然又は人工の無機物の結晶
性粒子で、符に赤外線放射Haの優れているものが好ま
しい。本発明において遠赤外線とは波長4.5〜80μ
mの電磁波を言い、特に5〜20μmの領域が重要であ
る。従って使用温度、例えば40〜200℃において波
長4.5〜80μmの赤外線の放射効率の高い前記のよ
うな粒子が好ましい。黒体の放射能力を100(%)と
してそれと比較した粒子の放射能力を放射効率(%)と
言う。特に、人体に長時間接しても不快でなく且つ火傷
もしない温度(例えば40〜50℃)で、波長4.5〜
80μmの領域の粒子の平均の赤外線放射効率が60%
以上が好ましく75%以上が最も好ましい。例えば、高
純度(95%以上、特に99%以上)のムライト(1〜
2ム1208−8i0ρ、アルミナ(ム1208)、ジ
ルコニア(Zr02)、¥グネシア(MgO)等の粒子
の赤外線放射効率は76%以上で本発明の■的に好適で
ある。
The infrared emitting particles are preferably crystalline particles of natural or artificial inorganic materials such as alumina, mullite, zirconia, and magnesia, which have particularly excellent infrared radiation Ha. In the present invention, far infrared rays have a wavelength of 4.5 to 80μ.
It refers to electromagnetic waves of 5 to 20 μm, and the region of 5 to 20 μm is particularly important. Therefore, it is preferable to use particles such as those described above that have a high radiation efficiency of infrared rays having a wavelength of 4.5 to 80 μm at a working temperature of, for example, 40 to 200°C. Taking the radiation ability of a black body as 100 (%), the radiation ability of a particle compared with it is called radiation efficiency (%). In particular, at a temperature (e.g. 40 to 50 degrees Celsius) that does not cause discomfort or burns even when in contact with the human body for a long time, and a wavelength of 4.5 to 4.5 degrees Celsius.
The average infrared radiation efficiency of particles in the 80 μm region is 60%.
It is preferably 75% or more, and most preferably 75% or more. For example, high purity (95% or more, especially 99% or more) mullite (1 to
The infrared radiation efficiency of particles such as 2M1208-8i0ρ, alumina (Zr02), zirconia (Zr02), and \gnesia (MgO) is 76% or more, which is suitable for the purpose of the present invention.

赤外線放射粒子の粒径は、本発明製品の成型に支障のな
い程度′に充分小さいことが好ましい。比較的太い(径
0.5〜l Q mm程度)線状体の場合は粒径5〜5
0μm程度のものも利用可能であるが、細い(径5〜5
00μm程度)[雄状や薄い(厚さ5〜500μm)テ
ープ状の場合などは粒径0.1〜5 ttm 8度のも
の、特に0.2〜1μm程度のものが好適である。
The particle size of the infrared emitting particles is preferably small enough to cause no problem in molding the product of the present invention. In the case of relatively thick linear bodies (about 0.5 to 1 Q mm in diameter), the particle size is 5 to 5.
Thin ones (diameter 5 to 5 μm) are also available, but
(approximately 0.00 μm) [For male-shaped or thin (5 to 500 μm thick) tape shapes, particles with a particle size of 0.1 to 5 ttm 8°, particularly approximately 0.2 to 1 μm, are suitable.

赤外線放射層の赤外線放射性粒子の混合率(重i)は8
〜80%の範囲が好ましく、10〜70%が特に好まし
く、15〜60%が最も好ましい。
The mixing ratio (weight i) of infrared emitting particles in the infrared emitting layer is 8
A range of ~80% is preferred, 10-70% is particularly preferred, and 15-60% is most preferred.

以下本発明を図面によって説明する。第1〜9図は本発
明線状体の横断面の具体例である。図において(1)は
通電発熱部、(2)は赤外線放射層、(3)は被覆層、
(4)は導線を示す。第1図は同心円型の芯鞘複合線状
体の例で、通電発熱部を芯としそれを囲む鞘部に赤外線
放射層、蛙外層に被覆層が配されている。芯の通電発熱
部は金属線でもよく、導電性充填材を混合した導電性ポ
リマーでもよい。
The present invention will be explained below with reference to the drawings. 1 to 9 are specific examples of cross sections of the linear body of the present invention. In the figure, (1) is the current heating part, (2) is the infrared radiation layer, (3) is the coating layer,
(4) indicates a conductor. FIG. 1 shows an example of a concentric core-sheath composite filament, in which an energized heat generating part is the core, an infrared emitting layer is arranged in the sheath part surrounding it, and a covering layer is arranged in the frog outer layer. The electrically conductive heat generating portion of the core may be a metal wire or may be a conductive polymer mixed with a conductive filler.

導電性充填材の混合率は、多くの場合5〜90%(重斂
)、特に10〜80%が好ましく、敢も多くの場合15
〜70%が好ましい。例えば、金属系の充填材の混合に
よって比抵抗10−4〜106Ω・cmの導電ポリマー
が得られ、カーボンブラックの混合によって比抵抗10
−1〜10 Ω・cmの導電ポリマーが得られる。例え
ば1m当りの発熱量を電圧10V、tkiO,IAでI
Wとすると、その電気抵抗は100Ωである。芯の直径
を0.1皿とするとその比抵抗は8 X 10−’Ω・
cmとなりニクロム合金かはゾこれに相当する。芯の直
径を2mmとすると、その比抵抗は8×100・cmで
、金属系充填材を混合した導電ポリマーを応用出来る。
The mixing ratio of the conductive filler is preferably 5 to 90% (by weight), particularly 10 to 80%, and in many cases 15 to 80%.
~70% is preferred. For example, by mixing a metal filler, a conductive polymer with a specific resistance of 10-4 to 106 Ωcm can be obtained, and by mixing carbon black, a conductive polymer with a specific resistance of 10
-1 to 10 Ω·cm conductive polymer is obtained. For example, the amount of heat generated per 1 m is calculated by voltage 10V, tkiO, IA.
Assuming W, its electrical resistance is 100Ω. If the diameter of the core is 0.1 plate, its specific resistance is 8 x 10-'Ω・
cm, which corresponds to whether it is a nichrome alloy or not. If the diameter of the core is 2 mm, its specific resistance is 8 x 100 cm, and a conductive polymer mixed with a metal filler can be used.

被覆層(3)は通電発熱部(1)や赤外線放射M(2)
を保穫したり、本発明線状体(繊維を含む)自体の製造
(成型、紡糸)及びそれを用いた繊維構造物(編織物、
不織布その他)の製造を容易にするためのものである。
The coating layer (3) is the electrically conductive heat generating part (1) and the infrared radiation M (2).
production (molding, spinning) of the linear body (including fibers) of the present invention, and fiber structures (knitted fabrics, textiles, etc.) using the same.
This is to facilitate the production of nonwoven fabrics, etc.).

すなわち、赤外線放射性粒子を多鼠に含む赤外放射層が
露出していると接触する紡糸機、延伸機、編機、織機等
の金属やガイド類を甚しく験耗損傷する傾向があり、こ
れを防ぐため摩耗性粒子を含まぬ又は含有率の小さいポ
リマーで被覆しておくことが望ましい。しかし、被覆層
のポリマーは赤外線を吸収するから、波長4〜20μm
の領域での赤外線吸収性の少ないポリマー(例えばポリ
エチレン等)を使うことや、その厚みを出来るだけ薄く
、例えば10μm以下、特に5μm以下にすることが望
ましい。同様に、被覆層ポリマーに赤外線放射性粒子を
少量、例えば10%以下、特に0.5〜6%含有せしめ
、赤外線放射能力を強化することが出来る。他方、被覆
層(3)を有する線状赤外線放射体を用いて7M織物等
の繊維構造物を製造した後、被覆層のみを溶解又は分解
除去して赤外線放射層を露出させ、赤外線放射性を改善
することも出来る。
In other words, if the infrared radiation layer containing many infrared radiation particles is exposed, it tends to cause severe wear and tear damage to the metals and guides of spinning machines, drawing machines, knitting machines, looms, etc. that come into contact with it. In order to prevent this, it is desirable to coat it with a polymer that does not contain or has a small content of abrasive particles. However, since the polymer of the coating layer absorbs infrared rays, the wavelength is 4 to 20 μm.
It is desirable to use a polymer (for example, polyethylene) that has low infrared absorption in this region, and to make the thickness as thin as possible, for example, 10 μm or less, particularly 5 μm or less. Similarly, the coating layer polymer can contain small amounts of infrared emitting particles, for example up to 10%, especially 0.5 to 6%, to enhance its infrared emitting capabilities. On the other hand, after producing a fibrous structure such as a 7M fabric using a linear infrared radiator having a coating layer (3), only the coating layer is dissolved or decomposed and removed to expose the infrared ray emitting layer and improve infrared radiation. You can also do that.

赤外線放射層(2)と被償層(3)のポリマーは同一の
ものでもよく別のものでもよい。上記のように後工程で
被覆層を除去するためには溶解性又は分解性が異なる別
のものが好ましい。赤外線放射層(2)と被ffl /
?n (3)のポリマーは、ポリオレフィン、ポリビニ
ル系、ポリアクリル系、ポリアミド、ポリエステル、ポ
リウレタン、ポリエーテル等の熱可塑性ポリマーが成型
性(紡糸性を含む)の点で好適である。更に耐熱性の点
からはエポキシ樹脂、不飽和ポリエステル、等の熱硬化
樹脂、シリコン樹脂、フッ素樹脂、芳香族ポリアミド、
全芳香族ポリエステル、芳香族ポリエーテル、芳香族ポ
リサルホン、芳香族ポリサルファイド、ポリイミド、ポ
リアミドイミドなどが好適である。同様に柔軟性の点か
らは、天然及び合成ゴム、ポリウレタン系、シリコン系
、フッ素樹脂系等のゴム状弾性体が好ましい。
The polymers of the infrared emitting layer (2) and the compensating layer (3) may be the same or different. In order to remove the coating layer in the post-process as described above, it is preferable to use different materials with different solubility or decomposition properties. Infrared radiation layer (2) and ffl /
? As the polymer in (3), thermoplastic polymers such as polyolefin, polyvinyl, polyacrylic, polyamide, polyester, polyurethane, polyether, etc. are preferable in terms of moldability (including spinnability). Furthermore, from the point of view of heat resistance, thermosetting resins such as epoxy resins, unsaturated polyesters, silicone resins, fluororesins, aromatic polyamides,
Fully aromatic polyester, aromatic polyether, aromatic polysulfone, aromatic polysulfide, polyimide, polyamideimide, etc. are suitable. Similarly, from the viewpoint of flexibility, rubber-like elastic bodies such as natural and synthetic rubber, polyurethane-based, silicone-based, and fluororesin-based materials are preferred.

更に、赤外線放射層(2)及び被覆層(3)のポリマ−
としては波長4〜20μmの領域での赤外線の吸収性が
低く透過性が高いものが好ましい。赤外線透過性の高い
ポリマーとしてはポリエチレンが最も優れている。低密
度ポリエチレンは軟化点が105℃1高密度ポリエチレ
ンは融点が128℃であり、耐熱性の点でやき劣り使用
温度が限定されるが、人体加熱用壷こは充分利用出来る
。更に放射!Jtft射等で架橋したポリエチレンは耐
熱性に優れており(軟化点200℃以上)本発明の目的
に最適である。ポリエチレンに次いで遠赤外線の吸収の
少ないポリマーとしてはポリテトラフロロエチレン、ブ
チルゴム、ナイロン12、ナイロン11、ナイロン61
0、ナイロン612及びポリエチレンの共重合物がある
。またポリプロピレン、ポリ塩化ビニル、ポリビニルア
ルコール、ポリアクリロニトリル、ポリアクリル酸エス
テル、ナイロン6、ナイロン66、ポリエチレンテレフ
タレート、ポリブチレンテレフタレート、エポキシ樹B
トなどの熱可塑性樹脂も好適である。同様にフェノール
樹脂、エポキシ樹脂、メラミン樹脂、熱硬化性ポリエス
テルなどの熱硬化性樹脂も有用であり、ポリサルホン、
ポリエーテル、全芳香族ポリアミド、全芳香族ポリエス
テル、ポリサルファイド、ポリイミド、ポリイミダソー
ル等の耐熱性樹脂も好適である。
Furthermore, the polymer of the infrared emitting layer (2) and the coating layer (3)
Preferably, the material has low absorption of infrared rays and high transparency in the wavelength range of 4 to 20 μm. Polyethylene is the most excellent polymer with high infrared transmittance. Low-density polyethylene has a softening point of 105° C., and high-density polyethylene has a melting point of 128° C., and although its heat resistance is poor and the temperature at which it can be used is limited, it can be fully utilized as a human body heating pot. Even more radiation! Polyethylene crosslinked by Jtft radiation etc. has excellent heat resistance (softening point of 200° C. or higher) and is optimal for the purpose of the present invention. Next to polyethylene, polymers that absorb far infrared rays the least are polytetrafluoroethylene, butyl rubber, nylon 12, nylon 11, and nylon 61.
0, a copolymer of nylon 612 and polyethylene. Also polypropylene, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile, polyacrylic ester, nylon 6, nylon 66, polyethylene terephthalate, polybutylene terephthalate, epoxy resin B
Thermoplastic resins such as Thermosetting resins such as phenolic resins, epoxy resins, melamine resins, thermosetting polyesters are also useful, and polysulfones,
Heat-resistant resins such as polyether, wholly aromatic polyamide, wholly aromatic polyester, polysulfide, polyimide, polyimidasol, etc. are also suitable.

第2図は複数の発熱部を有し被覆層を持たぬ例、第8図
は非円形の例、第4図は面状の発熱部の両側に赤外線放
射層を設けた例、第5図は放射状の発熱部の間に赤外線
放射層を設けた例、第6図は複数の発熱部及び赤外線放
射層を設けた例、第7図は発熱体(1)の中に並行する
複数の導線が埋込まれた複合発熱部を用いた例、第8図
は発熱部(1)が、撚糸された繊維の間隙や周囲に導電
性充填材を含有する導電性ポリマーを含浸、付着させた
線状体である例、第9図は繊維間隙や表面を二導電性ポ
リマーを含浸、付着させた面状繊維構造物(織編物、不
織布等)を発熱体とした例を示す。
Figure 2 shows an example with multiple heat generating parts and no coating layer, Figure 8 shows an example of a non-circular heat generating part, Figure 4 shows an example of a planar heat generating part with infrared radiation layers on both sides, and Figure 5 Figure 6 shows an example in which an infrared radiation layer is provided between radial heat generating parts, Figure 6 shows an example in which multiple heat generating parts and infrared radiation layers are provided, and Figure 7 shows a plurality of conductive wires running in parallel inside the heating element (1). Figure 8 shows an example of using a composite heat generating part in which the heat generating part (1) is a wire in which a conductive polymer containing a conductive filler is impregnated and adhered to the gaps and surroundings of twisted fibers. FIG. 9 shows an example in which a sheet fiber structure (woven or knitted fabric, nonwoven fabric, etc.) whose fiber gaps or surfaces are impregnated with and adhered to a biconductive polymer is used as a heating element.

(発明の効果) 本発明の線状発熱体は製造が容易であり、必要に応じて
柔軟性及び軽量性に優れたものを得ることが出来る。衣
類、毛布、カーペット等に応用して人体に接触又は接近
した状態で人体を加熱し、医療効果や健康増進効果を得
ることが出来る。又他の物体の加熱、保温にも用いるこ
とが出来る。
(Effects of the Invention) The linear heating element of the present invention is easy to manufacture, and can be obtained with excellent flexibility and light weight as required. It can be applied to clothing, blankets, carpets, etc. to heat the human body while in contact with or in close proximity to the human body, thereby obtaining medical effects and health promotion effects. It can also be used to heat and keep other objects warm.

特に発熱体を内蔵しているため、従来の赤外線放射性繊
維等の消極的保温効果に留まらず、強力な加熱、制御さ
れた加熱、例えば目的に応じた定温加熱、プログラム制
御等を実施することが出来る。
In particular, since it has a built-in heating element, it is not limited to the passive heat retention effect of conventional infrared emitting fibers, but can also perform powerful heating, controlled heating, such as constant temperature heating, program control, etc. according to the purpose. I can do it.

又赤外線放射層を有しているために、加熱効果が単なる
ヒーターよりも高いという大きな特色を有する。
Also, since it has an infrared radiation layer, it has a great feature of being more effective in heating than a simple heater.

(実施例) 以下の実施例における%、部等は特記しない限り重量比
率を示す。
(Example) In the following examples, percentages, parts, etc. indicate weight ratios unless otherwise specified.

実施例1 平均粒径1.1μmのニッケル粒子を80%混合したポ
リブチレンテレフタレート(以下PBTと記す)をPl
とする。赤外線放射効率(平均)82%、粒径0.8μ
mのアルミナ粒子を25%混合したポリエチレンテレフ
タレート(以下PETと記す)をP2とする。艷消材と
して粒径0.8μmの酸化チタン粒子を含むPETをP
8とする。Plを芯とし、P2を中間層とし、P8を鞘
として8成分複合紡糸し、90℃で2.8倍延伸し、第
1図のような断面の線状発熱体YHIを得た。YHIは
、P 1/P 2/P 8の複合比(体積比)が1/8
/1で、繊度は100デニール/4フイラメントである
Example 1 Polybutylene terephthalate (hereinafter referred to as PBT) containing 80% nickel particles with an average particle size of 1.1 μm was
shall be. Infrared radiation efficiency (average) 82%, particle size 0.8μ
P2 is polyethylene terephthalate (hereinafter referred to as PET) in which 25% of alumina particles of m are mixed. PET containing titanium oxide particles with a particle size of 0.8 μm is used as a dissipating material.
8. Eight-component composite spinning was performed using Pl as a core, P2 as an intermediate layer, and P8 as a sheath, and stretched 2.8 times at 90°C to obtain a linear heating element YHI having a cross section as shown in FIG. YHI has a composite ratio (volume ratio) of P 1/P 2/P 8 of 1/8.
/1, and the fineness is 100 denier/4 filaments.

通常のPETi伸糸75d/24f仮撚加工糸の合撚双
糸を経糸とし、MHIを緯糸として綾織物W1を得た。
A twill fabric W1 was obtained by using normal PETi drawn 75d/24f false twisted double yarns as warp yarns and MHI as weft yarns.

Wlを80 cm角に切断し緯糸側の両端部の巾1 c
mにNaOHを5%含有する糊剤を塗布し100℃の水
蒸気中で80分間加熱して緯糸YHIの鞘及び中間部の
PETを分解し、水洗除去して芯の導電部分を露出させ
、更に導電接着剤を塗布、固化して電極を形成した。2
つの電極に導線を耐熱導電性接着剤で接着、固定し、耐
熱絶縁フェスを塗布し、更にポリエステルメツシュ編物
のカバーを付けて織物ヒーターWHIを得た。
Cut the Wl into 80 cm square, and the width of both ends on the weft side is 1 c.
A sizing agent containing 5% NaOH was applied to M and heated in steam at 100°C for 80 minutes to decompose the sheath of the weft YHI and the PET in the middle, and the conductive part of the core was exposed by washing and removing. A conductive adhesive was applied and solidified to form an electrode. 2
Conductive wires were bonded and fixed to the two electrodes using a heat-resistant conductive adhesive, a heat-resistant insulating face was applied, and a polyester mesh knitted cover was attached to obtain a textile heater WHI.

WHIの電極間電気抵抗は800Ωである。The electrical resistance between the electrodes of WHI is 800Ω.

WHIを交流電源に接続し表面温度を50℃に保つよう
に制御して、横臥した人体(脚部)の上に掛けその上に
ふとんをかぶせて保温した。
The WHI was connected to an AC power source and controlled to maintain its surface temperature at 50°C, and was placed over a recumbent human body (legs) and covered with a futon to keep it warm.

Plを芯とし、鞘をP8として複合紡糸して得た赤外線
放射粒子を含まぬ線状発熱体をYB2とする。YB2を
用い、以下WH1と同様にして得た織物ヒーターをWH
2とする。
A linear heating element containing no infrared emitting particles obtained by composite spinning with Pl as the core and P8 as the sheath is designated as YB2. Using YB2, a fabric heater obtained in the same manner as WH1 was used as WH.
Set it to 2.

WHIとWH2の脚部の加熱性を比較した所、WHlは
内部から温まる感じがするのに対し、■2は内部から温
まる感じが少なく、WHIの方が快適であった。同様に
して、人体の代りに生理食塩水及び豆腐を詰めたポリエ
チレン袋を置き15分後の内部温度を測定した所、WH
lを用いた場合は88°c Sw a 2を用いた場合
は29℃であり、WHIの内部加熱能力が高いことが示
された。
When comparing the heating properties of the legs of WHI and WH2, WHI felt warm from inside, while ■2 felt less warm from inside, and WHI was more comfortable. Similarly, a polyethylene bag filled with physiological saline and tofu was placed in place of the human body, and the internal temperature was measured after 15 minutes.
The temperature was 88°C when Swa 1 was used, and 29°C when Swa 2 was used, indicating that the internal heating capacity of WHI is high.

実施例2 無水ピロメリット酸とジアミノジフェニルエーテルから
得たポリアミック酸20部、粒径1.1μmのニッケル
粒子80部、ジメチルホルムアミド(DMF)100部
の混合物を、メタ系アラミド繊維の紡績糸(60香手双
糸)に含浸、乾燥、熱処理(260℃)して硬化させた
。その上にポリアミック酸70部、粒径0.8μmで赤
外線放射率80%のアルミナ粒子80部、1)MF80
0部の混合物を8回塗布、60℃で乾燥後、更に表面に
ポリアミック酸拵液を塗布、乾燥して線状発熱体YH8
を得た。YB2の長さ1m当りの電気抵抗は60にΩで
あり、赤外線放射層の平均の厚みは80μmであり、断
面は第8図のようなものである。
Example 2 A mixture of 20 parts of polyamic acid obtained from pyromellitic anhydride and diaminodiphenyl ether, 80 parts of nickel particles with a particle size of 1.1 μm, and 100 parts of dimethylformamide (DMF) was mixed into a spun yarn of meta-aramid fiber (60 parts of dimethylformamide (DMF)). It was impregnated into a hand-paired yarn, dried, and heat-treated (260°C) to harden it. On top of that, 70 parts of polyamic acid, 80 parts of alumina particles with a particle size of 0.8 μm and an infrared emissivity of 80%, 1) MF80
After applying 0 parts of the mixture 8 times and drying at 60°C, further apply polyamic acid solution on the surface and dry it to form a linear heating element YH8.
I got it. The electric resistance per meter of length of YB2 is 60Ω, the average thickness of the infrared radiation layer is 80 μm, and the cross section is as shown in FIG.

PETg績糸(40番手双糸)を経糸とし、その間に5
mm間隔でYB2を用い、緯糸にPET紡績糸(40番
手双糸)を用いM織物W3を得た。
PETg spun yarn (40 count double yarn) is used as the warp, and 5
M fabric W3 was obtained using YB2 at mm intervals and PET spun yarn (40 count double yarn) for the weft.

W8を89 am角に切断し、経糸側の両端部1 am
をDMFで処理してYII8の両端の絶!iil!層(
赤外線放射層)を除去し、そこに耐熱導電性接着剤で導
線を接続し、耐熱絶縁フェスを塗布、固化して織物ヒー
ターWH8を得た。
Cut W8 into 89 am square, and both ends on the warp side 1 am
Treated with DMF to eliminate both ends of YII8! il! layer(
The infrared emitting layer) was removed, a conductive wire was connected thereto with a heat-resistant conductive adhesive, and a heat-resistant insulating face was applied and solidified to obtain a fabric heater WH8.

YB2とはゾ同様にして、但し絶縁層に赤外線放射粒子
を含ませないで得た線状ヒーターをYB4とする。YB
4を用いて以下WH8と同様にして得た織物ヒーターを
WH4とする。
YB4 is a linear heater obtained in the same manner as YB2, except that the insulating layer does not contain infrared radiation particles. YB
A textile heater obtained in the same manner as WH8 using 4 was hereinafter referred to as WH4.

実施例1と同様にして、WH8及びWH4の内部加熱能
力を比較した。豆腐及び生理食塩水を詰めたポリエチレ
ン袋の15分後の内部温度はW)II8で82℃,WH
4で80℃であった。
In the same manner as in Example 1, the internal heating capacities of WH8 and WH4 were compared. The internal temperature of the polyethylene bag filled with tofu and saline after 15 minutes was 82°C at W) II8, WH
4 and the temperature was 80°C.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第9図は本発明線状発熱体の横断面の例である
。 第1図 第2図  第3図 2:赤外季泉旅射層
1 to 9 are examples of cross sections of the linear heating element of the present invention. Figure 1 Figure 2 Figure 3 Figure 2: Infrared seasonal emissive layer

Claims (7)

【特許請求の範囲】[Claims] (1)長さ方向に連続する通電発熱部(1)と、赤外線
放射性粒子を混合した熱可塑性、熱硬化性又は耐熱性ポ
リマーからなる赤外線放射層(2)とを有する最大径1
0mm未満の線状赤外線放射体。
(1) Maximum diameter 1 having an energized heat generating part (1) continuous in the length direction and an infrared emitting layer (2) made of thermoplastic, thermosetting or heat resistant polymer mixed with infrared emitting particles
Linear infrared emitter less than 0mm.
(2)通電発熱部(1)が金属機、金属皮膜を有する線
状体、導電性充填材を混合した導電性重合体及び導電性
充填材を混合した導電性重合体と金属導線を複合したも
のからなる群から選ばれた1種又は2種以上である特許
請求の範囲第1項記載の放射体。
(2) The energizing heating part (1) is made of a metal machine, a linear body having a metal coating, a conductive polymer mixed with a conductive filler, and a composite of a conductive polymer mixed with a conductive filler and a metal conductor wire. The radiator according to claim 1, which is one or more selected from the group consisting of:
(3)遠赤外線放射性粒子の50℃における赤外線放射
効率が波長4.5〜80μmの領域で平均75%以上で
ある特許請求の範囲第1項記載の放射体。
(3) The radiator according to claim 1, wherein the far-infrared emitting particles have an average infrared radiation efficiency of 75% or more at 50°C in the wavelength range of 4.5 to 80 μm.
(4)遠赤外線放射性粒子が、純度95%以上のアルミ
ナ、ムライト、ジルコニア、マグネシアの群から選ばれ
た少なくとも1種の無機化合物である特許請求の範囲第
1項記載の放射体。
(4) The radiator according to claim 1, wherein the far-infrared emitting particles are at least one inorganic compound selected from the group of alumina, mullite, zirconia, and magnesia with a purity of 95% or more.
(5)外側に被覆層を有する特許請求の範囲第1項記載
の放射体。
(5) The radiator according to claim 1, which has a coating layer on the outside.
(6)赤外線放射層又は/及び被覆層のポリマーがポリ
エチレン、ポリテトラフロロエチレン、ブチルゴム、ナ
イロン12、ナイロン11、ナイロン610、ナイロン
612及びこれらを主たる成分とする共重合ポリマーで
ある特許請求の範囲第5項記載の放射体。
(6) Claims in which the polymer of the infrared emitting layer and/or the coating layer is polyethylene, polytetrafluoroethylene, butyl rubber, nylon 12, nylon 11, nylon 610, nylon 612, or a copolymer containing these as main components. Radiator according to item 5.
(7)赤外線放射層又は/及び被覆層の厚みが20μm
以下である特許請求の範囲第5項記載の放射体。
(7) The thickness of the infrared emitting layer and/or coating layer is 20 μm
A radiator according to claim 5, which is:
JP30739186A 1986-12-22 1986-12-22 Linear infrared radiator Pending JPS63158781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30739186A JPS63158781A (en) 1986-12-22 1986-12-22 Linear infrared radiator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30739186A JPS63158781A (en) 1986-12-22 1986-12-22 Linear infrared radiator

Publications (1)

Publication Number Publication Date
JPS63158781A true JPS63158781A (en) 1988-07-01

Family

ID=17968485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30739186A Pending JPS63158781A (en) 1986-12-22 1986-12-22 Linear infrared radiator

Country Status (1)

Country Link
JP (1) JPS63158781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218297U (en) * 1988-07-21 1990-02-06

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0218297U (en) * 1988-07-21 1990-02-06

Similar Documents

Publication Publication Date Title
RU2278190C2 (en) Thermal fabric
JP3792101B2 (en) Electric heating / warming cloth products
TW535453B (en) Electric heating/warming fabric articles
CN101998706B (en) Carbon nanotube fabric and heating body using carbon nanotube fabric
JP4460225B2 (en) Woven textile products for electric heating / heating
US2327756A (en) Electrically conductive fabric
CN106612569A (en) Heating material based on composition of graphene fiber and carbon fiber
CN109729606A (en) Have notch conduction pyrogenicity fabric lining and its connection structure
TW201107548A (en) Carbon nanotube fabric and heater adopting the same
JPS63158781A (en) Linear infrared radiator
WO2017120982A1 (en) Electrothermal component and heat generating method thereof
JPS63207079A (en) Infrared radiation panel
JPS58120809A (en) Heat generating yarn
IT201800010666A1 (en) Thermal mattress cover or thermal blanket
JPS63172839A (en) Infrared radiation body
JPH024134A (en) Infrared ray radiating body
KR200269305Y1 (en) A heating plain sheet
JPH0311585A (en) Hat generating cloth
RU2074524C1 (en) Flexible electrical heater
ITMI990577A1 (en) THERMAL FABRIC
WO2005034688A1 (en) Heated wool textile
JPH0431756Y2 (en)
ES2393013B1 (en) HEATING FABRIC.
JPH10292246A (en) Heat-conductive fabric
JPH0310331B2 (en)