TW201100783A - Method and apparatus for detecting defects in glass sheet - Google Patents

Method and apparatus for detecting defects in glass sheet Download PDF

Info

Publication number
TW201100783A
TW201100783A TW099113747A TW99113747A TW201100783A TW 201100783 A TW201100783 A TW 201100783A TW 099113747 A TW099113747 A TW 099113747A TW 99113747 A TW99113747 A TW 99113747A TW 201100783 A TW201100783 A TW 201100783A
Authority
TW
Taiwan
Prior art keywords
screen
optical
light
filter
light source
Prior art date
Application number
TW099113747A
Other languages
Chinese (zh)
Other versions
TWI497061B (en
Inventor
Sergey Potapenko
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of TW201100783A publication Critical patent/TW201100783A/en
Application granted granted Critical
Publication of TWI497061B publication Critical patent/TWI497061B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

An apparatus for detecting defects in a transparent material includes a light source emitting a light beam and a screen onto which the light beam is projected. The apparatus further includes an optical element positioned between the light source and the screen to intercept the light beam projected onto the screen. The optical element is configured to alter the luminous intensity of at least a portion of the light beam and create a substantially uniform illuminance distribution on the screen.

Description

201100783 六、發明說明: 本申請案請求美國專利申請案號12/433215的優先 權’其於2009年4月30曰申請,標題為「用以偵測玻 璃板中的缺陷之方法及設備」。 【發明所屬之技術領域】 本發明一般係與使用光線偵測平面透明材料例如平面 〇 玻璃板中的缺陷有關。更特言之,本發明係與一種方法 及設備有關’其提供一均勻照度分布以供偵測一平面透 明材料例如一平面玻璃板的缺陷。 . 【先前技術】201100783 VI. INSTRUCTIONS: This application claims the priority of U.S. Patent Application Serial No. 12/433,215, filed on Apr. 30, 2009, entitled <RTIgt;<RTIgt; FIELD OF THE INVENTION The present invention relates generally to the use of light detecting planar transparent materials such as defects in planar glass sheets. More particularly, the present invention relates to a method and apparatus that provides a uniform illumination distribution for detecting defects in a planar transparent material such as a flat glass sheet. [Prior Art]

- 液晶顯示器(LCD )技術的近來發展已導致對於[CD 面板之玻璃基板的品質有更嚴格的要求。該玻璃基板之 0 表面的異常如表面不連續、線痕(cord)及條紋(streak), 以及大塊基板之光學不均勻性均為造成LCD『mura』瑕 庇的其中原因。『mura』為一曰本單字,其意指汙點,且 已被LCD產業採用作為顯現低對比或不均勻亮度區域等 可視面板缺陷的一名稱。基板表面不平會導致單元 • 間隙的變化,而該大塊不均勻性會導致該光線波前的折 射歪曲,因而產生mura效應。表面不連續性通常係源自 於該玻璃中含有之雜質。該雜質可由固態或氣態材料所 組成。線紋型瑕疵例如條紋及線痕主要係由於該溶解之 201100783 原材料缺乏均勻化所產生。在該薄玻璃板中,條紋及線 痕典型地展現為沿著玻璃拉製方向延伸的一表面凸起或 凹陷。條紋瑕疫典型地呈現為一單一線紋,而線痕瑕疵 * 係由毫米範圍距離隔開的多條線所組成。在該大塊光學 玻璃線紋效應中若光學路徑長度(OPL )變化超過1 〇nm, 一般而言便不能忽視。隨著顯示器技術之進步,LCD玻 璃OPL·變化變得更為嚴格,且用於該大塊光學玻璃在其 〇 谷忍度方面正逐漸面臨嚴格之要求。 基板檢查為重要的以避免瑕疵基板進入高成本面板製 程並提供回饋至玻璃成型製程控制系統。以往該檢查係 由人類檢查者使用一陰影顯像法進行。可參見以下描述 • 以及例如美國專利第4,182,575號(Clark等人發明)以 、 及美國專利第6,433,353號(Okugawa發明)。之後,各 種自動化方法被實施以增進該檢查之一致性及可靠性。 例如參見美國專利申請公告第2〇〇4/174519號(Gaha&an ❹ 發明)、國際專利申請公告WO 2006/108137號(Zoeller 發明)以及美國專利申請公告第2〇〇8/〇2〇4741號(H⑴ 發明)。然而人工檢查因為敏感度、簡單性以及該陰影顯 像法的低設備成本而仍然廣為LCD基板製造所使用。 . 用於檢查平板玻璃之瑕疵存在的陰影顯像法包括從一 點光源例如短弧放電發光體投射光線通過該玻璃樣本並 頌像至白色屏幕上。若無一樣本,該屏幕上的照度輪 廓係由光凴區域所組成。當一玻璃樣本被置於該光源 及該屏幕之間的光束中時,該線紋或其他瑕疫會調變該 201100783 傳輸光線的發光強度,因而改變該屏幕上的照度分配β 該玻璃之瑕疵於該屏幕上造成之照度偏差可被肉眼觀察 或者由一電荷耦合裝置(CCD )相機所擷取。當該光線 通過該玻璃板或者被該玻璃板反射時,該波前會被該瑕 疵所歪曲。『透鏡效應』一詞常被用於描述此種由媒介之 不均勻性所造成的干擾。該干擾之『聚焦』部分會使該 屏幕之對應部分上的照度增強,而該干擾之r偏焦』部 〇 分將導致該屏幕之對應部分上的照度降低。 另一種用於檢查表面不一致的方法(參見Okugawa發 明之美國專利第6,433,353號)包括投射源自該玻璃板之 反射至一屏幕上。藉由選擇適當的光線極化以及入射角 . 度,可最小化該玻璃板表面之一的作用,因而允許主要 . 檢查一單一玻璃板表面。 有必要使用一小尺寸光源以達到高的空間解析度,以 供偵測小尺寸、點狀瑕疵及小寬度的線紋例如線痕及條 紋。雖然通常使用暫時性非同調白光,但由於該光線從 小尺寸(點狀)光源在長距離的部份空間同調而可觀察 到某些繞射效應。由尺寸為足之一光源射出之光線落於 間隔距離為lew之玻璃之點上,兑中: τ _ 0.16及;I ’、- Recent developments in liquid crystal display (LCD) technology have led to more stringent requirements for the quality of [glass panels for CD panels. Abnormalities in the surface of the glass substrate such as surface discontinuities, cords and streaks, and optical non-uniformity of the bulk substrate are the causes of the LCD "mura". "Mura" is a singular word that refers to stains and has been adopted by the LCD industry as a name for visual panel defects such as low contrast or uneven brightness areas. An uneven surface of the substrate can cause a change in the cell's gap, which causes the deflection of the wavefront of the light to be distorted, resulting in a mura effect. Surface discontinuities are usually derived from impurities contained in the glass. The impurities may be composed of solid or gaseous materials. Line patterns such as streaks and line marks are mainly caused by the lack of homogenization of the dissolved 201100783 raw material. In the thin glass sheet, the streaks and the marks are typically exhibited as a surface protrusion or depression extending in the glass drawing direction. Stripe plagues typically appear as a single line, while line marks are composed of multiple lines separated by a millimeter range. If the optical path length (OPL) changes by more than 1 〇 nm in the bulk optical glass line effect, it cannot be ignored. With the advancement of display technology, the change in LCD glass OPL has become more stringent, and the use of the bulk optical glass is gradually facing strict requirements in its valley tolerance. Substrate inspection is important to avoid the ruthenium substrate entering the high cost panel process and providing feedback to the glass forming process control system. In the past, this examination was performed by a human examiner using a shadow imaging method. See, for example, the following descriptions; and, for example, U.S. Patent No. 4,182,575 (Invented by Clark et al.) and U.S. Patent No. 6,433,353 (Okugawa Invention). Various automated methods are then implemented to increase the consistency and reliability of the inspection. See, for example, U.S. Patent Application Publication No. 2/4, 519, 519 (Gaha & An 发明 Invention), International Patent Application Publication No. WO 2006/108137 (Zoeller Invention), and U.S. Patent Application Publication No. 2/8/〇2〇4741 No. (H(1) invention). However, manual inspection is still widely used for LCD substrate manufacturing because of sensitivity, simplicity, and low equipment cost of the shadow imaging method. The shadow imaging method used to check the presence of the crucible glass includes projecting light from a point source such as a short arc discharge illuminator through the glass sample and rubbing it onto a white screen. If there is no such thing, the illuminance profile on this screen consists of the pupil area. When a glass sample is placed in the light beam between the light source and the screen, the line or other plague modulates the intensity of the light transmitted by the 201100783, thereby changing the illumination distribution on the screen. The illuminance deviation caused on this screen can be visually observed or captured by a charge coupled device (CCD) camera. When the light passes through or is reflected by the glass plate, the wave front is distorted by the ridge. The term "lens effect" is often used to describe such interference caused by the non-uniformity of the medium. The "focus" portion of the interference will increase the illumination on the corresponding portion of the screen, and the r-focus portion of the interference will cause the illumination on the corresponding portion of the screen to decrease. Another method for inspecting surface inconsistencies (see U.S. Patent No. 6,433,353 to Okugawa et al.) includes projecting reflections from the glass sheet onto a screen. By selecting the appropriate ray polarization and angle of incidence, one can minimize the effect of one of the glazing surfaces, thus allowing the primary to inspect a single glazing surface. It is necessary to use a small size light source to achieve high spatial resolution for detecting small size, dot defects, and small width lines such as line marks and stripes. Although temporary non-coherent white light is usually used, some diffraction effects can be observed because the light is coherently tuned from a small (point) source in a long distance. The light emitted by a light source of one foot is placed at the point of the glass separated by a distance of lew, and is: τ _ 0.16 and; I ’,

• K (1) . 其空間同調性為88% (參見M. Born and E. Wolf,• K (1) . Its spatial coherence is 88% (see M. Born and E. Wolf,

Principles of optics, Cambridge University Press, 1999, Chapter X,Section4.2),其巾R為從該光源至該玻璃之 5 201100783 ,而為平均光波長。空間同調性於表面擾動的大 小w滿足下式時為巨大的·· ^<JJl (2) 主由於該空間同調所導致之繞射可分散該瑕庇之陰影的 /月晰度或者在某些情形中可放大該螢幕上的強度調變。 ΟPrinciples of optics, Cambridge University Press, 1999, Chapter X, Section 4.2), the towel R is from the source to the glass 5 201100783, and is the average wavelength of light. The spatial homology is the magnitude of the surface disturbance w. When it satisfies the following formula, it is huge.··^<JJl (2) The diffraction caused by the homology of the space can disperse the shadow of the shadow of the shelter or the In some cases, the intensity modulation on the screen can be amplified. Ο

.為了僅檢查該玻璃中的線痕,可使用一線狀光源。該 光源之延伸方向應平行於該線痕方向。其將增強該線痕 於該方向上的對比並且分散其他瑕疵類型的清晰度。 由於光源及屏幕之間的距離與入射角度的變化,一檢 查者所檢視到一點狀光源所產生且投射至一屏幕上的照 度分布先天上為不均勻的。為了檢查結果的一致解釋, 應改變該光源所發出之光線的光強度分布,因而該檢查 者檢視該屏幕之一偵測區的亮度(係由區域照度所判定) 為均勻的。此對於LCD製造之玻璃面板的檢查情形特別 重要,其中該大型玻璃面板需合乎嚴格的標準。提供適 當的光強度分布成為該LCD產業增加玻璃基板尺寸所要 求的一議題。單純正比於該玻璃尺寸而放大陰影顯像設 置是不可能的或者不實際的。除了檢查所需之空間以及 該螢幕之尺寸增加之外,該發光體的亮度必須要正比於 該玻璃尺寸之增加的平方而增加。更高功率的發光體將 具有更大的弧有效尺寸。該發光體功率的增加將可能使 該弧亮度較不穩定,因該放電電漿之尺寸的增加可能導 致時間或空間不穩定的發生。該不穩定會呈現該屏幕上 的売度波動以及空間亮度不均勻性,因而損害檢查一致 6 201100783 性。該發光體的壽命一般隨著功率增加而降低。再者, 可能需要額外的眼睛安全措施以使一人類檢查者位於靠 近該高功率光源之處操作該發光體。 【發明内容】 此處將揭露本發明之數種態樣。將了解這些態樣可能 會或可能不會與彼此重疊。因此,一態樣之部分可落入 0 另一態樣之範圍中,反之亦然。 每個態樣係由數個實施例所說明,其一次可包括一或 多個特定實施例。將了解該實施例可能會或可能不會與 彼此重疊。因此,一實施例之部分或者其特定實施例可 . 能會或不會落入另一實施例或者其特定實施例之範圍 . 中,反之亦然》 一待解決之技術問題在於如何從一光源在一屏幕上提 供一均勻照度分布以供於一玻璃板之大型區域上一致的 檢查。另待解決之技術問題在於如何利用相同或類似 裝置而對於不同尺寸之大型玻璃板從一光源在一屏幕上 知:供一均勻照度分布,以於不同製造設備在不同尺寸之 不同玻璃板的整體區域上取得一致的檢查。 .在一第一態樣中,提供一種偵測一透明材料中的瑕庇 的設備。該設備包含射出一光束的一光源、使該光源被 才又射至的一屏幕、以及置於該光源及該屏幕之間的一光 學元件以截取投射至該屏幕上的光束。該光學元件係用 201100783 一部分的光強度,並於該屏幕上建 於改變該光束之至少一部分 立一實質均句的照度分布。 在一第二態樣中,提供 提供一種偵測一透明材料中的瑕疵In order to check only the line marks in the glass, a linear light source can be used. The direction in which the light source extends should be parallel to the direction of the line mark. It will enhance the contrast of the line traces in this direction and distract the clarity of other 瑕疵 types. Due to the change in the distance between the light source and the screen and the angle of incidence, the illuminance distribution produced by the examiner to detect the point light source and projected onto a screen is inherently non-uniform. In order to check the consistent interpretation of the results, the light intensity distribution of the light emitted by the source should be changed so that the examiner checks the brightness of one of the detection areas of the screen (as determined by the area illumination) to be uniform. This is particularly important for inspection of glass panels manufactured by LCDs, where the large glass panels are subject to strict standards. Providing an appropriate light intensity distribution has become an issue in the LCD industry to increase the size of glass substrates. It is not possible or practical to enlarge the shadow imaging setting simply by the size of the glass. In addition to the space required for inspection and the increased size of the screen, the brightness of the illuminator must be increased proportional to the square of the increase in the size of the glass. Higher power illuminators will have a larger arc effective size. An increase in the power of the illuminator will make the arc brightness less stable, as an increase in the size of the discharge plasma may result in time or space instability. This instability will present fluctuations in the turbulence on the screen as well as spatial brightness non-uniformity, and thus the damage check is consistent. The lifetime of the illuminator generally decreases as power increases. Furthermore, additional eye safety measures may be required to operate a illuminator near a high power source. SUMMARY OF THE INVENTION Several aspects of the invention are disclosed herein. It will be appreciated that these aspects may or may not overlap each other. Therefore, a portion of one aspect can fall within the scope of another aspect of 0, and vice versa. Each of the aspects is illustrated by several embodiments, which may include one or more specific embodiments at a time. It will be appreciated that this embodiment may or may not overlap with each other. Therefore, a part of an embodiment or a specific embodiment thereof may or may not fall within the scope of another embodiment or a specific embodiment thereof, and vice versa. The technical problem to be solved is how to get from a light source. A uniform illumination distribution is provided on a screen for consistent inspection on a large area of a glass sheet. Another technical problem to be solved is how to use the same or similar devices for large-sized glass plates of different sizes from a light source on a screen: for a uniform illumination distribution, so that different manufacturing equipment can be different in different sizes of different glass plates. A consistent check is made on the area. In a first aspect, an apparatus for detecting a shelter in a transparent material is provided. The apparatus includes a light source that emits a light beam, a screen that causes the light source to be reflected again, and an optical component disposed between the light source and the screen to intercept a light beam projected onto the screen. The optical component uses a portion of the light intensity of 201100783 and is constructed on the screen to change the illumination distribution of at least a portion of the beam to a substantial uniform sentence. In a second aspect, there is provided a method of detecting defects in a transparent material

以改變源自該光源之該光束之至少—部分的光強度該 Ο 方法並於該屏幕上建立一實質均勻的照度分布。該方法 更包括觀察或§己錄該屏幕上的照度分布。 本發明之一或多個態樣可具有一或多個以下優點。 依據本發明之一或多個態樣的一光學元件產生源自點 . 狀光源的一均勻屏幕亮度分布,其可提供大尺寸透明材 . 料例如玻璃板材料的檢視。該光學元件於該光源及該屏 幕之間的一距離中本質地阻隔一屏幕之一檢查區域中的 屏幕照度分布。由於此阻隔,可藉由一相同的設備檢查 0 不同的破璃尺寸而達到相同的檢查狀態。因此,可增進 在該玻璃之大品質區域之檢查處理在不同測量、不同尺 寸玻璃板以及不同生產設備方面的一致性。可達成該增 進而不需改變光學放大、該光源至屏幕之距離、或者該 光源的光強度(例如不需要改變該光源的功率)。因此可 使用一較小的檢查室,即使將被檢查之玻璃尺寸增加。 因此’可有效檢查一較小玻璃尺寸的相同、相對低功率 的光源將可被用於檢查一較大玻璃。較低功率的發光體 往往具有較長的壽命,其於檢查相對大型玻璃板時可節 8 201100783 省發光體、維護及功率消耗之成本。 本發明之額外特徵或優點將被描述於以下實施方式 部分將由該技術領域中具有通常知識者由該描述 所明瞭,或者藉由依據該文字描述與本說明書之附加申 請專利範圍以及該附加圖示實施本發明所了解。 ★將了解前述發明内容以及以下實施方式僅為本發明之 Ο 範例’且僅意圖提供一概觀或架構以了解本發明如申請 專利範圍所述之本質與特性。 本說明書包括赴隨圖示以提供本發明之進一步了解, 且該圖示被納入並構成此說明書之一部分。 【實施方式】 ' 考慮第1圖所示之配置’其中沿著-光軸16配置一光 源10如-點狀光源以及轉14。在第丨圖中使用之習 〇 慣中,該光轴16為一線條,其於某些情形中係垂直於該 屏幕14且通過該光源10之中央。再者,在該光軸16上 配置一待檢查之平面透明材料如平面玻璃12。若可將該 光源10視為蘭伯特(Lambertian),則在該屏幕14上之 —點的照度(例如每單位區域在一表面的入射光通量) - 將為: E _ IvCos3a ' υ ~ 〇2 b (3) 其中ίν為光強度,α為該光軸16及該光源1〇發出之 射線1 8之方向之間的角度,而s為該點光源丨〇至該 9 201100783 屏幕14之間的距離。方程式(3)並未考慮通過該待檢查 . 玻璃板之光線穿透率對於入射角的相依性。此於該入射 角未超過35度且源自該光源1〇之光線未被極化時為適 . 當的。若有必要,可藉由引入與該入射角相依之穿透係 數而導出一更正確式子。由方程式(3),照度於該屏幕14 之中〜(即在該光轴16處)為最大值而以朝該屏 幕14之角落下降。本發明之態樣提出如何使一檢查者檢 〇 視該屏幕14上之理想照度分布為均勻的。該『理想照度 分布』一詞係用於描述該屏幕上的照度分布,其假設該 平面玻璃12不具有可偵測之瑕疵或者不具有玻璃板(或 者透明材料)置於該光源10及該屏幕14之間。該平面 玻璃12中的可偵測瑕疵會自我顯現為位於該屏幕14之 • 照、纟分布的歪A。目此該理想照度分布必須為均勻的以 達成所有品質區域的一致檢查。 在本文中所提到之各種因素中,會導致照度分布之檢 視不均勻性者有: 1. 如方程式(3)所述之到達該屏幕之距離(從該光源) 以及入射至該屏幕上之角度的變化。 2. 該光源之角光強度分布。例如參見第6圖,其說明 ' 光強度對一短弧氙氣光源之垂直角的相依性。此光 強度的角相依性可為電極形狀對於該放電電漿之一 景/響、、。果。在第6圖顯示之s例中,該陰極為該較 低電極而該光強度在向下方較大,幅度約5_1〇〇/〇。 3. 由於在該玻璃平板上之入射角的差異所致該玻璃 10 201100783 (或者透明材料)之光穿透(或反射)的變化,如The method of varying the intensity of light from at least a portion of the beam from the source and establishing a substantially uniform illumination distribution on the screen. The method further includes observing or § recording the illuminance distribution on the screen. One or more aspects of the present invention may have one or more of the following advantages. An optical component in accordance with one or more aspects of the present invention produces a uniform screen brightness distribution from a point source that provides a view of a large size transparent material such as a glass sheet material. The optical element substantially blocks a screen illumination distribution in an inspection region of a screen at a distance between the light source and the screen. Due to this barrier, the same inspection state can be achieved by examining 0 different glass sizes by the same equipment. As a result, the consistency of the inspection process in the large quality areas of the glass in different measurements, different size glass sheets and different production equipment can be enhanced. This increase can be achieved without changing the optical magnification, the distance of the source to the screen, or the light intensity of the source (e.g., without changing the power of the source). Therefore, a smaller inspection room can be used, even if the size of the glass to be inspected is increased. Thus, an identical, relatively low power source that can effectively inspect a smaller glass size would be used to inspect a larger glass. Lower power illuminators tend to have a longer life, which can save the cost of illuminants, maintenance and power consumption when inspecting relatively large glass sheets. Additional features or advantages of the invention will be described in the following description which will be apparent from the description of the appended claims. It is understood by the practice of the invention. The foregoing description of the invention, as well as the following description, are merely exemplary of the invention, and are merely intended to provide an overview or architecture to understand the nature and characteristics of the invention as claimed. The description includes the following description to provide a further understanding of the invention, and is incorporated in and constitute a part of this specification. [Embodiment] 'Considering the configuration shown in Fig. 1', in which a light source 10 such as a point light source and a turn 14 are arranged along the optical axis 16. Conventionally used in the first diagram, the optical axis 16 is a line that is perpendicular to the screen 14 and passes through the center of the light source 10 in some cases. Further, a planar transparent material to be inspected such as a flat glass 12 is disposed on the optical axis 16. If the light source 10 can be regarded as Lambertian, the illuminance of the point on the screen 14 (e.g., the incident light flux per unit area on a surface) will be: E _ IvCos3a ' υ ~ 〇 2 b (3) where ίν is the light intensity, α is the angle between the optical axis 16 and the direction of the ray 18 emitted by the light source 1 ,, and s is the point light source 丨〇 between the 9 201100783 screen 14 distance. Equation (3) does not consider the dependence of the light transmittance of the glass plate on the incident angle. Therefore, when the incident angle does not exceed 35 degrees and the light from the light source 1 is not polarized, it is suitable. If necessary, a more correct expression can be derived by introducing a penetration coefficient that is dependent on the angle of incidence. From equation (3), the illumination illuminates the screen 14 (i.e., at the optical axis 16) to a maximum value toward the corner of the screen 14. Aspects of the invention teach how an examiner can view the desired illumination distribution on the screen 14 as uniform. The term "ideal illuminance distribution" is used to describe the illuminance distribution on the screen, which assumes that the flat glass 12 does not have a detectable flaw or does not have a glass plate (or transparent material) placed on the light source 10 and the screen. Between 14. The detectable flaws in the flat glass 12 will self-appear as 歪A located on the screen 14 of the screen 14 . The ideal illuminance distribution must be uniform to achieve consistent inspection of all quality areas. Among the various factors mentioned in this paper, the viewing unevenness of the illuminance distribution is: 1. The distance to the screen (from the light source) as described in equation (3) and incident on the screen. The change in angle. 2. The angular light intensity distribution of the source. See, for example, Figure 6, which illustrates the dependence of light intensity on the vertical angle of a short arc xenon source. The angular dependence of this light intensity can be the shape of the electrode for the discharge plasma. fruit. In the example of s shown in Fig. 6, the cathode is the lower electrode and the light intensity is larger downward, with an amplitude of about 5 〇〇 / 〇. 3. A change in light penetration (or reflection) of the glass 10 201100783 (or transparent material) due to a difference in incident angle on the glass plate, such as

Fresnel折射公式所述(參見μ B〇rn and E. Wolf所 著之 Principles 〇f 0ptics,Cambridge University ’ 卩“^於1999年出版,第I章,第1.5.2節)。 4.該檢查者關於該屏幕之位置。一人類眼睛或一 cCD 相機所檢視之該屏幕上的一點p的亮度係由該偵測 器所接收之總光通量判定,該偵測的光通量係與入 〇 射於點p的通量、從該入射方向接收並反射至該觀 看方向的光線、以及由該點至該偵測器的距離成正 比0 在一特定情形中前述因素只有部分可能為重大的。可 ' 藉由利用一點測光表如攝影點曝光表測量該屏幕亮度的 • 分布而考慮所有的因素,並映射該需要的濾鏡穿透分布 以達到一致的屏幕亮度。 ❾ 第2圖說明一檢查設備20,其包括一光源22、一可變 穿透率光學濾鏡24、以及沿著一光轴28放置的一屏幕 26 β在本文中使用之習慣中,該光軸28為垂直於該屏幕 26並通過該光源22中心的一條線。將被檢查之一平板 透明材料例如平板玻璃30被沿著該光轴28放置,且更 、 特定言之,被置於該可變穿透率光學濾鏡24及該屏幕 26之間。該被檢查材料之法線一般而言不與該光轴 28垂直。光束32從該光源22通過該可變穿透率光學遽 鏡24並通過該平板玻璃30而被投射至該屏幕26上。在 某些實施例中’該光源22可為一點狀光源。該光源22 11 201100783 可為例如一短弧放電發光體。該光源22之操作波長之選 擇範圍係可穿透該平板玻璃30以及在人工檢查之情形 中可為一人類檢查者所看見。若在該屏幕26上形成之影 . 像將被一相機所擷取,則該光線應可被一相機媒體所偵 測。舉例來說,該光源22之操作波長可位於4〇〇 nm至 750 nm之間的範圍中。若使用一人類檢查者則可能對 該人類眼睛有害的紫外光(uv)或紅外光(IR)射線應 Ο 破該過濾器24或一獨立過濾器之任一者所阻擋。在其他 實施例中,該光源22可為一線狀光源。 該可變穿透率光學過濾器24改變該光束32在一最大 工作光束角amax所定義之一圓錐33中的光強度分布,其 ' 本質上使該圓錐33中該屏幕26上之所有點的照度為均 • 勻的。對於該圓錐33外面的光線而言,依據方程式(3) 可能有照度的下降,或者這些光線可被光學過濾器24或 者其他適當孔徑所阻擋。該過濾器24所改變之光圓錐 33穿過該平板玻璃30至該屏幕26。在該屏幕%上觀察 到的任何照度分布歪曲將為該平板玻璃3〇中的瑕疵的 一指示。可由一人類檢查者進行觀察。替代地或者除了 該人類檢查者之外,該設備可包括一相機41以供擷取該 屏幕26之一影像。該設備可更包括一處理器43以供處 理該相機4 1所擷取之影像以判定該平板玻璃3〇中是否 具有瑕疯。處理可包括比較因該光源22及該屏幕26之 間具有該平板玻璃30所擷取之影像以及不涉及該平板 玻璃30的一基準影像。 12 201100783 ΟThe Fresnel refraction formula is described (see Principles 〇f 0ptics by μ B〇rn and E. Wolf, Cambridge University ' 卩 "^ published in 1999, Chapter I, Section 1.5.2). Regarding the position of the screen, the brightness of a point p on the screen as viewed by a human eye or a cCD camera is determined by the total luminous flux received by the detector, and the detected luminous flux is incident on the point p. The flux, the light received from the incident direction and reflected to the viewing direction, and the distance from the point to the detector are proportional to 0. In a particular case, the aforementioned factors may only be partially significant. Use a spot meter such as a photographic spot exposure meter to measure the distribution of the brightness of the screen, taking into account all factors and mapping the required filter penetration distribution to achieve a consistent screen brightness. ❾ Figure 2 illustrates an inspection device 20 Including a light source 22, a variable transmittance optical filter 24, and a screen 26 β placed along an optical axis 28, which is used herein, is perpendicular to the screen 26 and passes through the screen 26 Light source 22 A line of flat material to be inspected, such as flat glass 30, is placed along the optical axis 28 and, more particularly, placed in the variable transmittance optical filter 24 and the screen 26 The normal of the material to be inspected is generally not perpendicular to the optical axis 28. The light beam 32 is projected from the light source 22 through the variable transmittance optical frog mirror 24 and through the flat glass 30 to the screen 26 In some embodiments, the light source 22 can be a point source. The source 22 11 201100783 can be, for example, a short arc discharge illuminator. The operating wavelength of the source 22 can be selected to penetrate the plate glass 30. And in the case of manual inspection, it can be seen by a human examiner. If a shadow is formed on the screen 26, the image should be captured by a camera, and the light should be detected by a camera medium. The operating wavelength of the source 22 can be in the range of 4 〇〇 nm to 750 nm. If a human examiner is used, ultraviolet (UV) or infrared (IR) rays that may be harmful to the human eye should be破 Break the filter 24 or a separate filter In one embodiment, the light source 22 can be a linear light source. The variable transmittance optical filter 24 changes the light of the light beam 32 in one of the cones 33 defined by a maximum working beam angle amax. The intensity distribution, which 'essentially makes the illuminance of all points on the screen 26 in the cone 33 uniform. For the light outside the cone 33, there may be a decrease in illuminance according to equation (3), or these Light can be blocked by optical filter 24 or other suitable aperture. The light cone 33 of the filter 24 changes through the plate glass 30 to the screen 26. Any illuminance distribution distortion observed on this screen % will be an indication of the 瑕疵 in the flat glass. It can be observed by a human examiner. Alternatively or in addition to the human examiner, the device can include a camera 41 for capturing an image of the screen 26. The apparatus may further include a processor 43 for processing the image captured by the camera 41 to determine if the flat glass has a madness. Processing may include comparing an image captured by the light source 22 and the screen 26 with the flat glass 30 and a reference image that does not involve the flat glass 30. 12 201100783 Ο

參照第3圓,該可變穿透率光學濾鏡24包括—輸入侧 35以供接收一光束、以及—輸出側以供輸出—光束。 在該輸入们5,該可變穿透率光學遽鏡24包括一基材 層%。在特定範例中,該基材層%本質上具有一均勾 的光學穿透率。在特定範例中,該基材層36可由一透明 材料例如-玻璃材料或者例如熔融矽石(fd —a) 所製成。基材36之-側—較佳地為該可變穿透率光學減 鏡24之輸出側37—包括一濾鏡層34。在特定範例中該 攄鏡層34可被夾於兩基材之間。在特定範例中,該遽鏡 層34可具有一可變光學穿透率。位於該濾鏡上之一點的 光學穿透率為在此點離開該濾鏡之光強度與在此點進入 該濾鏡之光強度的比值。該濾鏡層34之光學穿透率的空 間變化例如以下方程式(4)所述,其係用於控制離開該濾 鏡24之光錐的角強度分布。該可變穿透率層34係以任 何已知方式形成於該基材層36之上。該可變穿透率光學 濾鏡24可為例如第4圖中所示之圓形或者可具有其他形 狀。在特定範例中,該可變穿透率係由該光吸收之空間 變化或者該光反射之空間變化或者兩者所達成。舉例來 說可使用一種金屬如銀、銘或者其他金屬或合金的一 薄型可變厚度層。在特定範例中,選擇該濾鏡層34及基 材層36之材料以忍受由於暴露於高強度光束(第2圖中 之32 )時熱膨脹所致之高溫與熱壓。 在某些範例中,一抗反射(AR)塗層38被形成於該 穿透率濾鏡24之一側或兩側。除了增加通過該濾鏡之光 13 201100783Referring to the third circle, the variable transmittance optical filter 24 includes an input side 35 for receiving a light beam and an output side for outputting a light beam. At the input 5, the variable transmittance optical endoscope 24 includes a substrate layer %. In a particular example, the substrate layer % has essentially a uniform optical transmittance. In a particular example, the substrate layer 36 can be made of a transparent material such as a glass material or, for example, molten vermiculite (fd-a). The side of the substrate 36, preferably the output side 37 of the variable transmittance optical subtractor 24, includes a filter layer 34. In a particular example, the frog layer 34 can be sandwiched between two substrates. In a particular example, the 遽 mirror layer 34 can have a variable optical transmittance. The optical transmittance at a point on the filter is the ratio of the intensity of the light exiting the filter at this point to the intensity of light entering the filter at this point. The spatial variation of the optical transmittance of the filter layer 34 is as described in the following equation (4) for controlling the angular intensity distribution of the light cone exiting the filter 24. The variable transmittance layer 34 is formed over the substrate layer 36 in any known manner. The variable transmittance optical filter 24 may be, for example, circular as shown in Fig. 4 or may have other shapes. In a particular example, the variable transmittance is achieved by a spatial variation of the light absorption or a spatial variation of the light reflection or both. For example, a thin variable thickness layer of a metal such as silver, imprint or other metal or alloy may be used. In a particular example, the material of the filter layer 34 and the substrate layer 36 are selected to withstand the high temperatures and hot pressures due to thermal expansion when exposed to a high intensity beam (32 in Figure 2). In some examples, an anti-reflective (AR) coating 38 is formed on one or both sides of the transmittance filter 24. In addition to increasing the light passing through the filter 13 201100783

穿透率外,該抗反射層38亦可保護該遽鏡層34不會暴 •露於周圍空氣中的氧氣及臭氧。在某些情形中該暴露可 造成不希望的該渡鏡層34之氧化,例如若該漉鏡層34 •係由一可氧化材料如金屬或金屬合金所製成時。由於AR 塗層所造成之整體光穿透增加可導致操作時該光源之低 功率需求以及該渡鐘之低潘。A R法· a ‘ λ應覲之低/皿塗層亦降低源自該濾鏡 表面之不希望的多重反射。多重反射建立額外虛擬光源 〇而導致該光源之有效尺寸的增加。—保護層(未顯示於 第圖中)例如-透明玻璃、樹脂或聚合物可被提供於 該AR塗層38之上或直接置於該濾鏡層上以保護該濾鏡 層不與環境化學反應或者不會有磨損、刮傷及破損等機 械損壞。 • 纟某些範例中’用於㈣鏡之基材材料可吸收或反射 該光源輻射之不希望的頻譜部分,例如紫外線(Μ)或 者紅外線(IR)。在其他範例中,一或多個額外光學塗佈 ϋ層可被應用於該濾鏡表面以阻擋該輕射之不希望的頻譜 部分,例如UV或IR。 在某些範例中,該滤鏡層34之小晶粒結構為可接受 的。該可接受之粒度的尺寸及其他特性視該解析度要求 以及該檢查設備之幾何配置而定,定範例中,該最 大晶粒尺寸小於2随,較佳地小於i mm。應判定該最 大可允許晶粒結構使該晶粒結構不會在該屏幕上建立可 看見的照度不均勻性。 回到第2圖’該光學穿透率的變化可被表示為在該透 201100783 鏡之一點上該穿透係數;τ之區域數值與此點之適當座標 的相依性。在僅需考慮從該光源22至該屏幕26之間之 距離以及該屏幕26上之入射角之變化的情形中,該可變 穿透率光學透鏡24可具有一穿透率分布Γ(ρ),其被定義 為在該濾鏡平面中從點C之距離ρ的一函數(參見第4 圖),其可由以下方程式(4)求出 Ϊ2 (4) Τ(Ρ) = Τ0In addition to the transmittance, the anti-reflective layer 38 also protects the fluoroscopy layer 34 from oxygen and ozone that are exposed to the surrounding air. In some cases, the exposure can result in undesirable oxidation of the mirror layer 34, such as if the mirror layer 34 is made of an oxidizable material such as a metal or metal alloy. The increased overall light penetration due to the AR coating can result in a low power requirement for the source during operation and a low pan for the ferry. A R method · a ‘ λ should be low / dish coating also reduces unwanted multiple reflections from the surface of the filter. Multiple reflections create an additional virtual light source that causes an increase in the effective size of the source. a protective layer (not shown in the figures), for example - transparent glass, resin or polymer may be provided on or directly on the AR coating 38 to protect the filter layer from environmental chemistry The reaction may not be mechanically damaged, such as abrasion, scratches and breakage. • In some examples, the substrate material used for the (four) mirror absorbs or reflects unwanted portions of the spectrum radiated by the source, such as ultraviolet (ray) or infrared (IR). In other examples, one or more additional optically coated ruthenium layers can be applied to the filter surface to block unwanted spectral portions of the light shot, such as UV or IR. In some examples, the small grain structure of the filter layer 34 is acceptable. The acceptable size and other characteristics of the particle size depend on the resolution requirements and the geometric configuration of the inspection apparatus. In the example, the maximum grain size is less than 2, preferably less than i mm. It should be determined that the maximum allowable grain structure is such that the grain structure does not create visible illuminance non-uniformities on the screen. Returning to Fig. 2, the change in optical transmittance can be expressed as the penetration coefficient at one point of the 201100783 mirror; the value of the area of τ is dependent on the appropriate coordinates of this point. The variable transmittance optical lens 24 may have a transmittance distribution Γ(ρ) in the case where only the distance from the light source 22 to the screen 26 and the change in the incident angle on the screen 26 are considered. , which is defined as a function of the distance ρ from the point C in the filter plane (see Fig. 4), which can be found by the following equation (4) Ϊ2 (4) Τ(Ρ) = Τ0

其中To為該基材層36的穿透係數,d為從該光源22 至該可變穿透率光學濾鏡24之位置的距離,而pmax為在 該濾鏡平面之最大光束半徑(濾鏡平面及p請參見第4 圖)且可由下式求出: 在方程式(5)中為最大工作光束角,其係由提供均勻 照度分布之圓錐33的角度所定義。由於從該光源22發 出之熱,故從該光源22至該可變穿透率光學濾鏡24之 距離d不能太小,雖然此為所希望的。若該光源22及該 可變穿透率光學透鏡24之間的實際操作距離j以及 被決定,則方程式(5)將定義pmax。延續方程式⑷,該穿 - 透率從該濾鏡之中央(此處《=〇而P = 0)的T0C〇S3amax 增加至位於或接近該濾鏡之外圍(此處α = αη^而p= pmax)的τ。。換言之,通過該光學濾鏡24之光線穿透率 τ於最大工作光束角^以為丁。的而隨著接近該濾 鏡之中央㈣而降低。帛5圖中的一範例顯示當τ。= 15 201100783 而amax = 27度時一可變穿透率光學 °使用這些參數,Pmax約為36mme 該濾鏡穿透係數T係相對於該濾鏡平面中的光束徑向位 置P加以繪製。Where To is the penetration coefficient of the substrate layer 36, d is the distance from the source 22 to the position of the variable transmittance optical filter 24, and pmax is the maximum beam radius at the filter plane (filter) The plane and p are shown in Fig. 4) and can be found by the following equation: In equation (5), the maximum working beam angle is defined by the angle of the cone 33 that provides a uniform illumination distribution. Due to the heat generated from the source 22, the distance d from the source 22 to the variable transmittance optical filter 24 should not be too small, although this is desirable. If the actual operating distance j between the source 22 and the variable transmittance optical lens 24 is determined, then equation (5) will define pmax. Continuing equation (4), the penetration-through rate increases from T0C〇S3amax at the center of the filter (here, "=〇 and P = 0") to or near the periphery of the filter (where α = αη^ and p= τ of pmax). . In other words, the light transmittance τ passing through the optical filter 24 is at the maximum working beam angle. And it decreases as it approaches the center (four) of the filter. An example in Figure 5 shows when τ. = 15 201100783 and a variable penetration optics at amax = 27 degrees ° Using these parameters, Pmax is approximately 36 mme. The filter penetration coefficient T is plotted against the beam radial position P in the filter plane.

Ο 85%、d = 70.8 mm、 濾鏡的一穿透率分布 在一般情形中,當必須考慮前述列表之多重因素時, 該穿透率分布並非如前述範例為轴向對稱的。若該理論 分析為不實用的,則可實施以下程序。源自該光源22之 光線在沒有一濾鏡之情形中被投射穿過一高品質玻璃樣 品至該屏幕26上。於該檢查者將處於之位置點上使用一 點測光表,該屏幕亮度之分布係藉由測量位於多個屏幕 點之亮度所判定。若有足夠數量的屏幕點亮度測量,則 該亮度分布一即亮度相對於該屏幕上之位置—可藉由一 適當函數内插,例如一多項式内插。具有最小亮度及之 點P〇被找出並被映射至照亮匕之光線所通過之濾鏡平 面中的一點。已測量該亮度之其他點被映射至該濾鏡平 面中的對應點Pi,i=={0,N} ’其中N為點數。在該濾鏡平 面中對應至Pi之點的總穿透係數(基板及該濾鏡層)為: T^k-τ, ⑹ 其中%為該基板穿透係數而/,·為該點Pi之亮度。隨後 該穿透係數之分布可藉由一適當方法一例如多項式内 插一加以内插。當藉由前述定義之程序製造之一濾鏡被 置於該光源及該屏幕之間時,該屏幕之亮度將為實質均 勻的。 201100783 在另-實施例中,如第7圖所述,—折射光學元件Μ 被用於重新刀布從該點狀光源22 •出之光線以於該屏 幕平面26上達成一較佳照度分布。該折射光學元件 具有至少-非球面表面,其將如下文加以解釋。在此實 施例中並非藉由阻擋該光免區域中的過亮光線以提供 該屏幕之均勻照度,而是藉由該屏幕上之亮區之折射而 重新導引該光束至該屏幕上之暗區。 〇 以下說明如何取得該折射光學元件(或透鏡)40之形 狀。假設第7圖中一折射光學元件4〇之第一表面42(面 對該光源22 )為一凹球面。該球面之中央對齊該光源位 置22。該第二凸表面44 (背對該光源22 )係由函數广⑷ 所定義,其中/·為與該第一球表面之中央夹角度“之方向 • 的距離。角度《之光束將到達該屏幕之位置與該光軸間的 距離為: h(a) = rSina + (5-rCosar )Tan0, ⑺ 0 其中炉為離開.該透鏡之後的射線角度。若V為第-表面 之法線與該光軸之間的夾角’則Snell折射定律可被表示 為: nSin(v ~a) = Siniv - φ). ⑻ 其中《為該透鏡材料之折射索引。該法線對該表面之 夾角的正切可被表示為: -Cosa + rSina ⑼Ο 85%, d = 70.8 mm, a transmittance distribution of the filter In the general case, when multiple factors of the foregoing list must be considered, the transmittance distribution is not axially symmetric as in the previous examples. If the theoretical analysis is not practical, the following procedure can be implemented. Light from the source 22 is projected through a high quality glass sample onto the screen 26 without a filter. The examiner will use a spot meter at the location where the brightness of the screen is determined by measuring the brightness at multiple screen points. If there is a sufficient number of screen point brightness measurements, then the brightness distribution - i.e., the brightness relative to the position on the screen - can be interpolated by a suitable function, such as a polynomial interpolation. The point with the smallest brightness and the point P〇 is found and mapped to the point in the filter plane through which the light that illuminates the pupil passes. Other points at which the brightness has been measured are mapped to corresponding points Pi in the filter plane, i == {0, N} ' where N is the number of points. The total penetration coefficient (substrate and the filter layer) corresponding to the point of Pi in the filter plane is: T^k-τ, (6) where % is the substrate penetration coefficient and /, · is the point Pi brightness. The distribution of the penetration coefficients can then be interpolated by a suitable method, such as polynomial interpolation. When a filter is fabricated between the light source and the screen by the procedure defined above, the brightness of the screen will be substantially uniform. In another embodiment, as described in Fig. 7, a refractive optical element Μ is used to re-blade the light from the point source 22 to achieve a preferred illumination distribution on the screen plane 26. The refractive optical element has at least an aspherical surface as will be explained below. In this embodiment, instead of blocking the excessively bright light in the light-free area to provide uniform illumination of the screen, the light beam is redirected to the darkness on the screen by the refraction of the bright area on the screen. Area. 〇 How to obtain the shape of the refractive optical element (or lens) 40 will be described below. It is assumed that the first surface 42 of the refractive optical element 4 in Fig. 7 (facing the light source 22) is a concave spherical surface. The center of the sphere is aligned with the source location 22. The second convex surface 44 (toward the light source 22) is defined by a function broad (4), where / is the distance from the center of the first spherical surface "the direction of the direction." The angle "the beam will reach the screen" The distance between the position and the optical axis is: h(a) = rSina + (5-rCosar )Tan0, (7) 0 where the furnace is the angle of the ray after leaving the lens. If V is the normal of the first surface and The angle between the optical axes' then the Snell's law of refraction can be expressed as: nSin(v ~a) = Siniv - φ). (8) where "the refractive index of the lens material. The tangent of the normal to the angle of the surface can be It is expressed as: -Cosa + rSina (9)

Tan v _. K) —Sina + rCosa da 結合方程式(8)及(9)可得到: 17 00) 201100783 1 dr Sin(^(〇r)-〇r) r da n-Cos(jp(a)-a) 該第一階微分方程式(10)可被用於判定該非球面表面 44的形狀。§亥基板穿透係數對於折射角的相依性並未被 考慮’因為所有的角度僅與該法線在很小角度範圍内。 該總穿透率可被視為恆定的。方程式(丨〇)的解可被表示 為 r(a) = Κ〇) Εχρ·[|办」1二 H) - 义)I. (11) o ❹ 對於一特定相依性ρ(〇τ)而言,該方程式㈣α)可從方程式 (7)求出。 "〜、λ τ p(a)-r Sin a •卜 ArcTan·^隱-. (12) 若具有最大離開角amax的射線被要求以相同方向離開 該透鏡,則: h{cc) = h0 Sin—; h0 sTan v _. K) —Sina + rCosa da Combining equations (8) and (9) gives: 17 00) 201100783 1 dr Sin(^(〇r)-〇r) r da n-Cos(jp(a) - a) The first order differential equation (10) can be used to determine the shape of the aspherical surface 44. § The dependence of the substrate penetration coefficient on the angle of refraction is not considered 'because all angles are only within a small angular range from the normal. This total penetration can be considered constant. The solution of the equation (丨〇) can be expressed as r(a) = Κ〇) Εχρ·[|"1H) - meaning) I. (11) o ❹ For a specific dependence ρ(〇τ) In other words, the equation (4) α) can be obtained from equation (7). "~, λ τ p(a)-r Sin a • 卜ArcTan·^隐-. (12) If the ray with the largest exit angle amax is required to leave the lens in the same direction, then: h{cc) = h0 Sin—; h0 s

Cos- (13) 2 hQ Sin—— r Sin or φ((χ) = ArcTan----- S — rCosa 因此,方程式(11)及(13)定義極化座標中的非球面輪廓 44 ° 第8A圖說明具有如第83圖(或第7圖)中所示之— 結構之-折射光學元件4〇的計算輪廓。在第8a圖所示 之描繪中,該水平軸R為從光轴28至該透鏡4〇之一表 面42、44之一點的距離,而垂直z軸為從此點至第7 圖之焦平面45的距離。換言之,第8A圖之圖式說明第Cos- (13) 2 hQ Sin——r Sin or φ((χ) = ArcTan----- S — rCosa Therefore, equations (11) and (13) define the aspheric profile 44° in the polarization coordinates. Figure 8A illustrates a calculated profile having a refracting optical element 4 结构 as shown in Figure 83 (or Figure 7). In the depiction shown in Figure 8a, the horizontal axis R is from the optical axis 28 The distance to one of the surfaces 42, 44 of one of the lenses 4, and the vertical z-axis is the distance from this point to the focal plane 45 of Fig. 7. In other words, the pattern of Fig. 8A illustrates

1S 201100783 8Β圖之折射光學元件4〇的 刃凹陷輪廓。第8Α圖中之輪廓 5〇對應至第8Β圖中之第一球面矣 表由表面42。第8Α圖中之 輪廓52對應至第8Β圖中之非銶&姑 ^ 非球面第二表面44。輪廓54 (僅為說明之目的而顯示,且不表示任何實際物理表面) 對應至具有87—半徑的—球面。該非球面形狀輪廓52 及87酿球面輪廓54之間的差距約為—。帛9α、9β1S 201100783 8 之 The refractive index of the refracting optical element 4〇. The outline in Fig. 8 corresponds to the first spherical surface in Fig. 8 by surface 42. The contour 52 in Fig. 8 corresponds to the non-銶 & a non-spherical second surface 44 in Fig. 8 . Contour 54 (shown for illustrative purposes only, and does not represent any actual physical surface) corresponds to a spherical surface having a 87-radius. The difference between the aspherical shape profiles 52 and 87 of the spherical contour 54 is approximately -.帛9α, 9β

Ο 及9C圖顯示數值射線追蹤分析之結果以說明該非球面 光學元件(第8Β圖中之40)的表現。在這些圖式中該 水平轴為該屏幕上一 Q點的徑向位置h(參見第7圖), 而該垂直軸為在該Q點之計算的相對照度。第9A圖顯 不不具有該折射光學元件時該屏幕之照度分布(任意單 位)。第9B顯示具有該折射光學元件時的均勻照度分布 (任意單位第9C圖說明透鏡容忍度分析的結果。第 9C圖中的圖示顯示於i mm偏焦有9〇%均勻度其中工 m m偏焦即當該均勻化(折射光學)元件沿著該光軸偏離 其設計位置imm時。數值模擬顯示該lmm軸偏(在垂 直於該光軸之方向中偏移)以及該光源的有限尺寸(1 mm )在該屏幕區域提供某種程度的不均勻性,類似於第 9C圖中所示。可輕易達成使該折射光學元件的位置精確 度比1 mm更佳。 參照第7圖’在某些情形中’例如為了簡化該光學元 件之製造時,面對該光源22之表面42或者兩表面42與 44可為非球面。該表面輪廓之方程式可藉由類似於前述 之方法加以獲得。 19 201100783 前文已描述用於改變源自—出 叉序目光源之一光束之光強度分 布以產生均勻照度分布的一弁极- ^ 7 九學7G件。該光學元件例如 前述之可變穿透率光學滹鏟1 尤千,慮鏡24或者折射光學元件40可 被整合至用於偵測一平板透明妊 处月材科例如一 LCD玻璃基板 中的瑕疵的一檢查設備中。乐 W Ψ此瑕疵可為表面不規則性, 如線痕、條紋、表面不連續性或者其他喊類型。在此 -設備中,該光學元件從—光源例如—點狀光源或者一 ΟThe Ο and 9C plots show the results of the numerical ray tracing analysis to illustrate the performance of the aspherical optical component (40 in Figure 8). In these figures the horizontal axis is the radial position h of a Q point on the screen (see Figure 7), and the vertical axis is the relative degree of contrast calculated at the Q point. Fig. 9A shows the illuminance distribution (arbitrary unit) of the screen when the refractive optical element is not provided. 9B shows the uniform illuminance distribution when the refracting optical element is present (arbitrary unit ninth C chart illustrates the result of the lens tolerance analysis. The illustration in Fig. 9C shows that the i mm partial focus has a uniformity of 9〇%. The focal point is when the homogenizing (refracting optic) element is offset from its design position imm along the optical axis. Numerical simulations show the lmm axis offset (shifted in a direction perpendicular to the optical axis) and the finite size of the source ( 1 mm) provides some degree of non-uniformity in this screen area, similar to that shown in Figure 9C. It is easily achieved that the positional accuracy of the refractive optical element is better than 1 mm. In some cases, for example, to simplify the manufacture of the optical element, the surface 42 facing the source 22 or both surfaces 42 and 44 may be aspherical. The equation of the surface profile can be obtained by a method similar to that described above. 201100783 The foregoing has described a threshold for changing the light intensity distribution of a beam originating from a source of a bifurcated source to produce a uniform illumination distribution. The optical element is, for example, the aforementioned variable transmittance. Light The shovel 1 or the refracting optics 40 can be integrated into an inspection device for detecting a sputum in a flat panel, such as an LCD glass substrate. Can be surface irregularities, such as line marks, streaks, surface discontinuities, or other types of shouting. In this device, the optical element is from a light source such as a point light source or a glimpse

G 線狀光源接收—光束,並於一屏幕平面產生一均勻的照 度分布。當該光學元件所修正之光線在到達該屏幕前通 過該透明材料時,在該屏幕平面上之照度分布的歪曲提 供該透明材料之瑕疵的指示。此歪曲可由一人類操作員 所視覺觀察或者由一照相機所擷取以供進一步及自動處 理不响操作者為人類或機器,若每次測量該光束投射 至該屏幕上的照度分布在檢查樣本之品質區域中為均勻 的且一致的,則每次測量將更容易對檢查結果做出一致 解釋。 本說明書包含以下非限制性態樣及/或實施例: c 1 · 一種用於偵測一透明材料中的缺陷的設備,其至少 包含: 一光源’其射出一光束; 一屏幕’該光束被投射於其上;以及 一光學元件’其位於該光源及該屏幕之間以截取 投射於該屏幕上之光束,該光學元件係用於改變該光 束之至少一部分之光強度以及在該屏幕上建立一實 20 201100783 質均勻的照度。 C2.如第C1項所述之設備,其中該光學元件包含一可 • 變光學穿透率濾鏡,其穿透輪廓係由K/(d2+ p 2)3/2 所定義’其中p為從該可變穿透率光學濾鏡之中 央測量至該可變穿透率光學濾鏡之一特定點的一 半徑,而d及K為常數,其中該可變穿透率光學渡 〇 鏡包含一具有可變光學穿透率之濾鏡層,其形成於 一具有實質均勻之光學穿透率的基材層上。 C3.如第C1項或第C2項所述之設備,其中該可變穿 透率光學濾鏡更包含一抗反射層,其形成於該濾鏡 層及該基材層之至少一者上。 Q C4.如第C2項或第C3項所述之設備,其中該常數κ 被定義為: K = T〇(d2 +/Omax2)3/2 其中T〇為該基材層的一穿透率,pmax為該可變穿 逯率光學透鏡改變該光強度之p的一預定最大值,而 d為該可變光學濾鏡及該光源之間的距離。 C5.如第C1項至第C4項所述之設備,其中該光學元 件為具有至少一非球面表面的一反射光學元件。 21 201100783 C6.如第Cl項至第C5項所述之設備,其中該光源係選 自於由一點狀光源及一線狀光源組成之群組。 ' C7.一種偵測一透明材料中的瑕疵的方法,其至少包含 以下步棘: 從一光源投射一光束通過該透明材料至一屏幕 上並照亮該屏幕; Ο 在該光源及該屏幕之間之一位置藉由一光學元 件截取該光束,其令該光學元件係用於改變源自該光 源之光線之至少一部分的光強度並於該屏幕上建立 一實質均勻的照度分布;及 ' 觀察或記錄該屏幕上的照度分布。 C8·如第C7項所述之方法,其中該光學元件為一可變 _ 穿透率光學濾鏡。 0 C9.如第C7項所述之方法,其中該光學元件為具有至 少一非球面表面的一折射光學元件。 該技術領域中具有通常知識者將明瞭可對本發明做出 各種修改及變化而不會偏離本發明之範圍及精神。因 此,有意使本發明涵蓋此發明之修改或變化,只要其落 於附加申請專利範圍以及其均等物之範圍中。 22 201100783 【圖式簡單說明】 第圖為陰影顯像方法一傳統玻璃檢查設備的一概 要圖; ’ 帛2 ®$具有一可變穿透率光學遽鏡之-玻璃檢查設 備的一概要圖; 第3圖為一可變穿透率光學濾鏡之一剖面的一概要 圖; 〇 帛4圖為該可變穿透率光學滤鏡在該滤鏡平面的一概 要圖; 第圖為圖表,其說明一示範可變穿透率光學濾鏡 的穿透率分布; ~ 第6圖為一圖表,其說明150W t氣燈泡(NewPort a司之產时,部品編號為6253 )之光強度(單位為μ) 的典型角分布; 第7圖為一玻璃檢查設備的一概要圖,該玻璃檢查設 備具有-折射光學元件’該折射光學元件具有一非球面 表面; 第8A圖為一折射光學元件的一計算輪廓; 第8B圖為具有第8八圖之計算輪廟之_折射光學元件 的一剖面概要圖; 第9A圖為—圖表’其說明當不具有第8b圖之折射光 學兀件時照度之數值射線追縱分析相對於屏幕上位置的 23 201100783 第9B為一圖表,其說明當具有第83圖之折射光學元 _ 件時照度之數值射線追蹤分析相對於屏幕上位置的結 果; 第9C圖為一圖表’其說明當第8B圖之折射光學元件 偏焦imm時照度之數值射線追蹤分析㈣於屏幕上位置 的結果; 0 【主要元件符號說明】 10光源 12平面玻璃、平面透明材料 14, 26屏幕 16,28光轴 18射線 20 LCD玻璃檢查設備 〇 22光源 24光學濾鏡 3〇平板玻璃 32光束 33圓錐 ^ 34濾鏡層 ' 3 5輸入側 36基材層 3 7輸出側 24 201100783 38抗反射(AR)塗層 40折射光學元件 41相機 42,44非球面表面 43處理器 45焦平面 50非球面表面輪廓 52, 54輪廓The G-line source receives the beam and produces a uniform illumination distribution on a screen plane. When the light corrected by the optical element passes through the transparent material before reaching the screen, the distortion of the illumination distribution on the screen plane provides an indication of the flaw of the transparent material. This distortion can be visually observed by a human operator or captured by a camera for further and automatic processing without the operator being a human or machine, if the illumination is projected onto the screen each time the illumination distribution is measured in the sample. Uniform and consistent in the quality area, each measurement will make it easier to consistently interpret the results. The present specification includes the following non-limiting aspects and/or embodiments: c 1 · A device for detecting defects in a transparent material, comprising at least: a light source 'which emits a light beam; a screen 'the light beam is Projected thereon; and an optical element 'between the light source and the screen to intercept a light beam projected onto the screen, the optical element for changing the light intensity of at least a portion of the light beam and establishing on the screen A real 20 201100783 quality uniform illumination. C2. The device of item C1, wherein the optical element comprises a variable optical transmittance filter whose penetration profile is defined by K/(d2+ p 2)3/2 'where p is a The center of the variable transmittance optical filter measures a radius to a specific point of the variable transmittance optical filter, and d and K are constants, wherein the variable transmittance optical waveguide comprises a A filter layer having variable optical transmittance is formed on a substrate layer having substantially uniform optical transmittance. The device of item C1 or item C2, wherein the variable transmissivity optical filter further comprises an anti-reflection layer formed on at least one of the filter layer and the substrate layer. Q C4. The device according to Item C2 or Item C3, wherein the constant κ is defined as: K = T〇(d2 +/Omax2)3/2 wherein T〇 is a transmittance of the substrate layer , pmax is a predetermined maximum value of the variable transmissive optical lens that changes the intensity of the light p, and d is the distance between the variable optical filter and the light source. The apparatus of any of clauses C1 to C4, wherein the optical element is a reflective optical element having at least one aspherical surface. 21 201100783 C6. The apparatus of clauses C1 to C5, wherein the light source is selected from the group consisting of a point source and a line source. C7. A method of detecting flaws in a transparent material, comprising at least the following steps: projecting a light beam from a light source through the transparent material onto a screen and illuminating the screen; Ο at the light source and the screen One of the positions is intercepted by an optical element that causes the optical element to change the intensity of light from at least a portion of the light from the source and establish a substantially uniform illumination distribution on the screen; and 'observe Or record the illuminance distribution on this screen. The method of item C7, wherein the optical element is a variable _ transmittance optical filter. The method of item C7, wherein the optical element is a refractive optical element having at least one aspherical surface. It will be apparent to those skilled in the art that various modifications and changes can be made without departing from the scope and spirit of the invention. Therefore, it is intended that the present invention covers the modifications and variations of the invention as long as they fall within the scope of the appended claims and their equivalents. 22 201100783 [Simple diagram of the diagram] The figure is a schematic diagram of a shadow imaging method - a general glass inspection equipment; ' 帛 2 ® $ has a variable transmittance optical 遽 mirror - a schematic view of the glass inspection equipment; Figure 3 is a schematic view of a section of a variable transmittance optical filter; Figure 4 is a schematic view of the variable transmittance optical filter in the plane of the filter; It illustrates the transmittance distribution of an exemplary variable transmittance optical filter; ~ Figure 6 is a graph illustrating the light intensity (unit of the 150W t gas bulb (part number of the NewPort a division, part number 6253)) A typical angular distribution of μ); FIG. 7 is a schematic view of a glass inspection apparatus having a refractive optical element having an aspherical surface; and FIG. 8A is a refractive optical element Figure 8B is a schematic cross-sectional view of the refracting optical element having the calculation wheel temple of Figure 8; Figure 9A is a diagram showing the illuminance when the refractive optical element of Figure 8b is not provided Numerical ray tracing analysis relative to 23 on the screen position 201100783 Section 9B is a graph illustrating the result of the numerical ray tracing analysis of the illuminance with respect to the position on the screen when the refracting optical element of Fig. 83 is present; FIG. 9C is a diagram of the description Figure 8B refracting optical element eccentricity illuminance value ray tracing analysis (four) results on the screen position; 0 [main component symbol description] 10 light source 12 flat glass, flat transparent material 14, 26 screen 16, 28 optical axis 18 ray 20 LCD glass inspection equipment 〇 22 light source 24 optical filter 3 〇 flat glass 32 beam 33 cone ^ 34 filter layer ' 3 5 input side 36 substrate layer 3 7 output side 24 201100783 38 anti-reflection (AR) coating 40 refractive optical element 41 camera 42, 44 aspherical surface 43 processor 45 focal plane 50 aspherical surface contour 52, 54 contour

2525

Claims (1)

201100783 七、申請專利範圍: 1. 一種用於偵測一透明材料中的缺陷的設備,其至小 包含: 八9 一光源’其射出一光束; 一屏幕,該光束被投射於其上;以及 一光學元件,其位於該光源及該屏幕之間以截取 投射於該屏幕上之該光束,該光學元件係用於改變該 Ο 光束之至少一部分之光強度以及在該屏幕上建立一 實質均勻的照度分佈。 2. 如申請專利範圍第丨項所述之設備,其中該光學元 件包含:一可變光學穿透率濾鏡,其具有由 K/(d2+p2)1/2所定義的一穿透輪廓,其中p為從該 可變穿透率光學濾鏡之中央測量至該可變穿透率 光學濾鏡之一特定點的一半徑,而d及κ為常數, 其中談可變穿透率光學濾鏡包含:一具有一可變 光學穿透率之遽鏡層,其形成於一具有一實質均勻 之光學穿透率的基材層上。 26 1 如申請專利範圍第2項所述之設備,其中該可變穿 透率光學濾鏡更包含:一抗反射層,其形成於該濾 鏡層及該基材層之至少一者上。 201100783 4.如申請專利範圍第2項及第3項所述之設備,其中 該常數K被定義為: K = T0(d2+PmJf2 ' 其中T〇為該基材層的一穿透率,pmax為該可變穿 透率光學濾鏡改變該光強度之P的一預定最大值,而 d為該可變穿透率光學濾鏡及該光源之間的一距離。 〇 5.如申請專利範圍第1項所述之設備,其中該光學元 件為具有至少一非球面表面的一反射光學元件。 6. 如申請專利範圍第丨項所述之設備,其中該光源係 選自於由—點狀光源及一線狀光源組成之群組。 7. —種偵測一透明材料中的缺陷的方法,其至少包含 以下步驟: 從一光源投射一光束通過該透明材料至一屏幕 上並照亮該屏幕;201100783 VII. Patent application scope: 1. A device for detecting defects in a transparent material, which comprises at least: a light source 'which emits a light beam; a screen on which the light beam is projected; An optical component positioned between the light source and the screen to intercept the beam of light projected onto the screen, the optical component for varying the intensity of light of at least a portion of the pupil beam and establishing a substantially uniform image on the screen Illumination distribution. 2. The device of claim 2, wherein the optical component comprises: a variable optical transmittance filter having a penetration profile defined by K/(d2+p2) 1/2 Where p is a radius measured from the center of the variable transmittance optical filter to a specific point of the variable transmittance optical filter, and d and κ are constant, wherein variable transmittance optical The filter comprises: a mirror layer having a variable optical transmittance formed on a substrate layer having a substantially uniform optical transmittance. The apparatus of claim 2, wherein the variable transmissivity optical filter further comprises: an anti-reflection layer formed on at least one of the filter layer and the substrate layer. 201100783 4. The apparatus of claim 2, wherein the constant K is defined as: K = T0 (d2+PmJf2 ' where T〇 is a transmittance of the substrate layer, pmax For the variable transmittance optical filter, a predetermined maximum value of P of the light intensity is changed, and d is a distance between the variable transmittance optical filter and the light source. 〇5. The device of claim 1, wherein the optical component is a reflective optical component having at least one aspherical surface. 6. The device of claim 2, wherein the light source is selected from the group consisting of a group consisting of a light source and a linear light source. 7. A method for detecting a defect in a transparent material, comprising at least the steps of: projecting a light beam from a light source through the transparent material onto a screen and illuminating the screen ; 取該光束,其中該光學元件係用於改變源自該光 β亥光束之至少一部分的光強度並於該屏幕上建 實質均勻的照度分布;及 觀察或記錄該屏幕上的該照度分布。 如申請專利範圍第 7項所述之方法,其中該光學元 27 201100783 件為一可變穿透率光學濾鏡。 9.如申請專利範圍第7項所述之方法,其中該光學元 件為具有至少一非球面表面的一折射光學元件。Taking the light beam, wherein the optical element is for varying the intensity of light from at least a portion of the light beam and constructing a substantially uniform illumination distribution on the screen; and observing or recording the illumination distribution on the screen. The method of claim 7, wherein the optical element 27 201100783 is a variable transmittance optical filter. 9. The method of claim 7, wherein the optical element is a refractive optical element having at least one aspherical surface. 2828
TW099113747A 2009-04-30 2010-04-29 Method and apparatus for detecting defects in glass sheet TWI497061B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US43321509A 2009-04-30 2009-04-30

Publications (2)

Publication Number Publication Date
TW201100783A true TW201100783A (en) 2011-01-01
TWI497061B TWI497061B (en) 2015-08-21

Family

ID=43019251

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099113747A TWI497061B (en) 2009-04-30 2010-04-29 Method and apparatus for detecting defects in glass sheet

Country Status (4)

Country Link
JP (1) JP5878684B2 (en)
KR (1) KR101726443B1 (en)
CN (2) CN201765196U (en)
TW (1) TWI497061B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467163B (en) * 2012-06-08 2015-01-01
TWI617802B (en) * 2012-05-30 2018-03-11 康寧公司 Apparatus and method for inspecting a flexible glass ribbon

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891773B2 (en) * 2011-01-06 2016-03-23 岩崎電気株式会社 Irradiation device
US9594240B2 (en) 2013-12-06 2017-03-14 Samsung Electronics Co., Ltd. Lighting apparatus, and optical inspection apparatus and optical microscope using the lighting apparatus
CN103743761B (en) * 2013-12-31 2017-06-23 江苏大学附属医院 A kind of eyeglass watermark defect image detection device
KR101658700B1 (en) * 2014-07-18 2016-09-21 주식회사 포스코아이씨티 Optics Apparatus for Inspecting Surface of Panel and Method for Inspecting Surface
CN106091862B (en) * 2016-06-06 2019-02-26 湖北工业大学 A kind of glass size and location measurement method using glass-reflected characteristic
JP6759869B2 (en) * 2016-08-31 2020-09-23 株式会社リコー Inspection equipment
CN106770361A (en) * 2016-12-27 2017-05-31 昆山博威泰克电子科技有限公司 A kind of full-automatic screen optical detection apparatus and detection method
CN108195848A (en) * 2018-01-16 2018-06-22 深圳精创视觉科技有限公司 The full-scale warpage flatness detecting device of glass and detection method
CN108760627B (en) * 2018-03-12 2023-12-15 北京林业大学 Light source device for defect detection
CN108508025A (en) * 2018-04-04 2018-09-07 马鞍山启元自动化技术有限责任公司 A kind of glass sample detection device and its detection method
KR102086411B1 (en) * 2018-06-04 2020-03-09 주식회사 코엠에스 PCB Plate Film Monitoring System
CN109870468B (en) * 2019-03-25 2020-02-14 浙江晶鲸科技有限公司 Automatic defect detection device
CN110042629B (en) * 2019-05-28 2021-11-09 安徽凤阳赛弗节能玻璃有限公司 Washing machine panel glass processing technology
CN110779934A (en) * 2019-08-28 2020-02-11 深圳市灿锐科技有限公司 Optical module for detecting dust and scratches on flat transparent workpieces
CN111042405A (en) * 2019-12-19 2020-04-21 武汉创高节能科技有限公司 Comprehensive processing technology for unitized curtain wall plate
CN111505022A (en) * 2020-03-31 2020-08-07 东莞泰升玻璃有限公司 Visual inspection device for detecting appearance defects of glass
CN117222886A (en) * 2021-04-22 2023-12-12 日立造船株式会社 Inspection apparatus
CN113607740B (en) * 2021-07-30 2024-07-23 歌尔光学科技有限公司 VR product dirt detection method and device
CN113570599B (en) * 2021-09-22 2021-12-07 江苏绿泉装饰工程有限公司 Image processing-based method and system for evaluating quality of solid wood particle board material
CN113932738A (en) * 2021-11-15 2022-01-14 河北科技大学 Flatness detection device is mediated with frame to non-contact electronic equipment outer screen
CN116912181B (en) * 2023-06-30 2024-04-26 深圳市圆周检测技术有限公司 Screen uniformity detection method, system and readable storage medium

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168543A (en) * 1984-09-12 1986-04-08 Nitto Electric Ind Co Ltd Optical inspection and apparatus for defect in sample
JP2532100B2 (en) * 1987-06-19 1996-09-11 株式会社リコー Transmissive filter for illuminance distribution correction
JP3314440B2 (en) * 1993-02-26 2002-08-12 株式会社日立製作所 Defect inspection apparatus and method
JPH07209507A (en) * 1994-01-20 1995-08-11 S K S Kk Optical filter for laser beam
JPH08297096A (en) * 1995-04-26 1996-11-12 Tokai Rika Co Ltd Quality inspecting apparatus for transparent platelike material
DE19832665A1 (en) * 1998-07-21 2000-01-27 Leica Microsystems Homogenizing filter for optical radiation field of illumination beam path in microscope
CN2338755Y (en) * 1998-10-20 1999-09-15 中国科学院西安光学精密机械研究所 Radial gradual change filter
US6091502A (en) * 1998-12-23 2000-07-18 Micronics, Inc. Device and method for performing spectral measurements in flow cells with spatial resolution
JP2002198568A (en) * 2000-12-27 2002-07-12 Sunx Ltd Light projecting unit and photoelectric sensor
US7151246B2 (en) * 2001-07-06 2006-12-19 Palantyr Research, Llc Imaging system and methodology
TWI221520B (en) * 2003-05-23 2004-10-01 Picvue Optoelectornics Interna Glass substrate inspection apparatus and its method
DE102004056698B3 (en) * 2004-11-24 2006-08-17 Stratus Vision Gmbh Inspection device for a substrate having at least one printed layer
JP2006258697A (en) * 2005-03-18 2006-09-28 Olympus Corp Substrate inspection device
JP2007171029A (en) * 2005-12-22 2007-07-05 Fujifilm Corp Inspection device, display simulation device and inspection method
US7564544B2 (en) * 2006-03-22 2009-07-21 3i Systems Corporation Method and system for inspecting surfaces with improved light efficiency
CA2675456C (en) * 2007-01-12 2017-03-07 Synergx Technologies Inc. Bright field and dark field channels, used for automotive glass inspection systems
WO2008112310A1 (en) * 2007-03-14 2008-09-18 Light Prescriptions Innovators, Llc Optical concentrator, especially for solar photovoltaics

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI617802B (en) * 2012-05-30 2018-03-11 康寧公司 Apparatus and method for inspecting a flexible glass ribbon
TWI467163B (en) * 2012-06-08 2015-01-01

Also Published As

Publication number Publication date
JP2010261948A (en) 2010-11-18
CN101876641B (en) 2014-11-26
CN201765196U (en) 2011-03-16
JP5878684B2 (en) 2016-03-08
KR101726443B1 (en) 2017-04-12
TWI497061B (en) 2015-08-21
KR20100119522A (en) 2010-11-09
CN101876641A (en) 2010-11-03

Similar Documents

Publication Publication Date Title
TWI497061B (en) Method and apparatus for detecting defects in glass sheet
JP5595693B2 (en) System and method for determining shape of plate glass
US7567344B2 (en) Apparatus and method for characterizing defects in a transparent substrate
WO2016131396A1 (en) Device for detecting surface stress of glass
TW200806976A (en) Apparatus for inspecting substrate and method of inspecting substrate using the same
TW201641927A (en) Measurement device and measurement method for thin film provided with transparent substrate
TW201109646A (en) Inspection systems for glass sheets
CN104010116A (en) Spectroscopic camera and spectroscopic image processing method
JP2020085854A (en) Visual inspection method and visual inspection device
JP5601442B2 (en) Infrared optical system evaluation system
TW200839220A (en) Surface morphology defect inspection device and method
JP4774246B2 (en) Non-contact optical measurement method and apparatus for thermal glass body thickness using light dispersion
KR101479970B1 (en) Microscope For Inspecting ITO Pattern of Touch-Screen Panel And Method Thereof
JP2011232192A (en) Surface texture measurement device and surface texture measurement method
JP2008058081A (en) Anti-glare property evaluation apparatus, anti-glare property evaluation standard setting method, and anti-glare property evaluation method
JP2008139065A (en) Film evaluation apparatus and film evaluation method
JP2009162561A (en) Refractive index measurement method
JP2006275704A (en) Film thickness irregularity detection method
JP5708385B2 (en) Surface inspection method and surface inspection apparatus
WO2024047945A1 (en) Light irradiation apparatus, measuring apparatus, observation apparatus, and film thickness measuring apparatus
WO2024047946A1 (en) Light irradiation device, measurement device, observation device, and film thickness measurement device
JP2006250851A (en) Method and apparatus for detecting irregularity in film thickness
KR101880398B1 (en) An apparatus and method for inspecting mura of substrate
JP2013130549A (en) Wavelength distribution measuring apparatus
JP2009085682A (en) Inspection method for color filter substrate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees