JP2009085682A - Inspection method for color filter substrate - Google Patents

Inspection method for color filter substrate Download PDF

Info

Publication number
JP2009085682A
JP2009085682A JP2007253733A JP2007253733A JP2009085682A JP 2009085682 A JP2009085682 A JP 2009085682A JP 2007253733 A JP2007253733 A JP 2007253733A JP 2007253733 A JP2007253733 A JP 2007253733A JP 2009085682 A JP2009085682 A JP 2009085682A
Authority
JP
Japan
Prior art keywords
color filter
filter substrate
inspection
light
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007253733A
Other languages
Japanese (ja)
Inventor
Shiro Tanaka
史朗 田中
Yoshinori Kajino
佳範 梶野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007253733A priority Critical patent/JP2009085682A/en
Publication of JP2009085682A publication Critical patent/JP2009085682A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspecting method that facilitates detection of appearance defects of a high-functionality and high fines color filter substrate which is equipped with stereo constructions, such as a photospacer on a cell gap adjustment layer, and the like. <P>SOLUTION: In this inspecting method of a color filter substrate, inspection light beam is irradiated to a color filter substrate and the reflected light from the color filter substrate is received by a photoelectric conversion element to convert it into an electrical signal. The image procession of the obtained electrical signal is performed to detect defects of the color filter substrate. The light for inspecting contains a wavelength which is substantially the complementary color of the inspection object formed on the color filter substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は液晶表示素子用カラーフィルター基板の検査方法に関するもので、特にセルギャップ調整層上のフォトスペーサーなどの立体構造物が形成された高機能カラーフィルター基板の外観欠点の良否の選別を行うことが出来る外観検査方法に関する。   The present invention relates to a method for inspecting a color filter substrate for a liquid crystal display element, and in particular, screening for quality defects of a high-performance color filter substrate on which a three-dimensional structure such as a photospacer on a cell gap adjustment layer is formed. The present invention relates to an appearance inspection method capable of

従来、高品位の画質を備える液晶表示技術として、薄膜トランジスタ(TFT)を画素のスイッチング素子として用いるアクティブマトリクス型液晶表示が知られており、薄型、軽量、低消費電力と言う特長を有するとともに、高いコントラストと高速応答が可能であることから、薄型テレビ、コンピューターのモニター、携帯電話やPDA等の小型表示装置等に幅広く使用されてきた。   Conventionally, an active matrix type liquid crystal display using a thin film transistor (TFT) as a pixel switching element is known as a liquid crystal display technology having high image quality, and has features such as thinness, light weight, and low power consumption, and high Since contrast and high-speed response are possible, it has been widely used for flat-screen TVs, computer monitors, small display devices such as mobile phones and PDAs.

液晶表示装置でカラー画像を表示するためには一般に液晶表示装置の前面にカラーフィルター基板を配置する必要がある。カラーフィルター基板は、透明基板上にブラックマトリクス(BM)とカラー表示を行う為の赤、青、緑3色の着色層(RGB画素)及び、必要により透明保護膜や透明電極が形成されている。
また、近年では液晶表示装置はその表示性能向上を目的として、VA(Vertical Alignment)方式の採用や高精細化、半透過方式の採用などが進んでいる。これによりカラーフィルター基板の構造も変化しており、液晶パネルのセルギャップの均一化を計るためのフォトスペーサー(Photo Spacer:PS)の形成、半透過方式の反射部の表示特性改善のための透明土台(セルギャップ調整層)の形成や画素へのライトホールの形成、RGB画素上へVA方式の視野角特性を向上させるための配向制御用突起の形成などが行われている。
カラーフィルター基板の製造工程において数μmの異物等が存在するとカラーフィルター基板に突起欠点や白ピン、黒ピンなどのパターン不良などの欠点を生じ、これらの欠点は規格値を超えると液晶表示装置の表示欠点となるため、従来からカラーフィルター基板製造工程において、これら欠点を検査により検出し、修正または排除することを実施してきた。この様な検査を行う場合には従来から自動検査装置を用いており、その自動検査装置は、カラーフィルター基板に対し光源装置より検査照明を表面または裏面より照射し、カラーフィルター基板により反射、またはカラーフィルター基板を透過した光を光電変換素子にて受光して電気信号に変換し、該電気信号を画像処理して欠陥検出を行うように構成されている。しかし、近年の表示性能向上を目的としてPSやセルギャップ調整層などの構造物を設けたカラーフィルター基板において、これらの構造物の欠陥を検査することを目的として従来同様の自動検査を行った場合、カラーフィルター基板に照射された検査光は、透明なこれら構造物を透過し、これらの構造物の下地となるガラス基板、BM、RGB画素、透明保護膜、透明電極などからの強い反射光がノイズとなり、被検査体となる前記構造物からの反射光の信号がこのノイズに埋もれて、欠点の検出感度が低下する。また、この様な構造物を設けたカラーフィルター基板基板の表面形状は従来のものよりも凹凸が大きくなるため、この形状に起因して乱反射が起こり光電変換素子に迷光として受光されるため、同様に欠点の検出感度低下の要因となる。
更に最近では、液晶表示装置の高解像度化が進み、画素ピッチが狭くなり、従来は1画素の幅が100μm前後であったものが、例えば、携帯電話用途のVGA品種では25μm程度にまで狭くなり、カラーフィルター基板上に形成させるBMの線幅も、従来は20〜30μmであったものが6μmあるいはそれ以下になっている。この様な変化に伴い、前記構造物のサイズも小さくなり、例えばPSの場合には、従来は上底が20μm×20μm以上の角錐台であったものが、上底10μm×10μm以下にまで小さくなり、S/N比はさらに低下し、PSの欠損といった欠点の検出感度を益々低下させている。
反射検査において下地と被検査体とのS/N比を上げ、欠点検出感度を上げる手段として、カラーフィルター基板以外の検査対象物に対しては幾つかの事例が既に開示されているため、最初にこの適用を検討した。
カラーフィルター基板同様に下地の上にパターンが形成されている回路基板での検査事例として、特許文献1では、回路基板の表面に形成された半田バンプの検査を行う装置で、その下半分に塗布された補強樹脂の略補色の光線を使用する方法が記載されている。本文献は表面が鏡面である半田バンプを検査するという特殊な事情を利用したもので、半田バンプからの良好な反射光に対して、補強樹脂に対しては補色を用いており、光が吸収されるため、その境界をより際立たせようとするものである。また、特許文献2はフレキシブルプリント基板の外観検査の事例で、この中では、ベースとなる有色半透明のフィルムの補色を検査光源として用い、透過照明として用いることでフィルムの有るところと無いところのコントラストを出すことが記載されている。
これらの事例をそのままカラーフィルター基板に適用した場合、PS、セルギャップ調整層などの構造物は透明性が高く、これらの構造物を通過した後に下地から反射される光がノイズと成るため、十分な効果が得られない。また、カラーフィルター基板の場合には下地となる層は1つに規定できない為、補色となる色を1つに定めることはできないことも、効果が十分にでない原因となった。また、これらの事例は検査光源に赤色や青色といった原色を用いているが、検査光を原色、例えば青色にしてしまうと、カラーフィルター基板のRGB画素のうちB画素からの反射光が極端に低下し、B画素上に発生した異物欠陥などに対する検出感度が十分に得られなくなる。同様に検査光を赤色にした場合はR画素、緑色にした場合はG画素上の欠陥に対する検出感度が十分に得られなくなる。そのため検査装置の用途がPSパターンの検査のみとなり、著しく汎用性に欠ける。また更に、あまりに検査光の波長域を狭くすると、カラーフィルター基板の表面、例えば透明保護膜で干渉を起こしやすくなり、製品異常とならないわずかな透明保護膜の膜厚変化まで過剰に検出してしまうことが考えられたため、ある程度の波長域の広さは必要である。よってこれらの事例のように検査光源に原色を用いる方法では、カラーフィルター基板の欠陥検査には適さない。
特開2000− 65543号公報 特開2006−118896号公報
In order to display a color image on a liquid crystal display device, it is generally necessary to arrange a color filter substrate on the front surface of the liquid crystal display device. The color filter substrate has a black matrix (BM) and a colored layer (RGB pixels) of three colors red, blue, and green for performing color display on a transparent substrate, and a transparent protective film and a transparent electrode as necessary. .
Further, in recent years, liquid crystal display devices have been adopting a VA (Vertical Alignment) method, a high definition, a semi-transmissive method, and the like for the purpose of improving the display performance. As a result, the structure of the color filter substrate has also changed, forming photo spacers (Photo Spacer: PS) to make the cell gap of the liquid crystal panel uniform, and transparent to improve the display characteristics of the transflective reflectors. Formation of a base (cell gap adjustment layer), formation of a light hole in a pixel, formation of an alignment control protrusion for improving a viewing angle characteristic of the VA method on an RGB pixel, and the like are performed.
If foreign matter of several μm exists in the manufacturing process of the color filter substrate, defects such as protrusion defects and pattern defects such as white pins and black pins occur on the color filter substrate. If these defects exceed the standard value, the liquid crystal display device Since this is a display defect, conventionally, in the color filter substrate manufacturing process, these defects have been detected by inspection and corrected or eliminated. In the case of performing such inspection, an automatic inspection apparatus has been conventionally used, and the automatic inspection apparatus irradiates the color filter substrate with inspection illumination from the front surface or the back surface from the light source device and reflects it by the color filter substrate, or Light transmitted through the color filter substrate is received by a photoelectric conversion element and converted into an electrical signal, and the electrical signal is subjected to image processing to detect a defect. However, in the case of a color filter substrate provided with structures such as PS and cell gap adjustment layer for the purpose of improving display performance in recent years, when automatic inspection similar to the conventional is performed for the purpose of inspecting defects of these structures The inspection light applied to the color filter substrate is transmitted through these transparent structures, and the strong reflected light from the glass substrate, BM, RGB pixels, transparent protective film, transparent electrode, etc., which is the base of these structures. The noise becomes a noise, and the reflected light signal from the structure to be inspected is buried in the noise, so that the detection sensitivity of the defect is lowered. In addition, since the surface shape of the color filter substrate substrate provided with such a structure is more uneven than the conventional one, irregular reflection occurs due to this shape, and the photoelectric conversion element receives light as stray light. In addition, it becomes a factor of a decrease in detection sensitivity of defects.
More recently, the resolution of liquid crystal display devices has increased, and the pixel pitch has become narrower. In the past, the width of one pixel was around 100 μm, but for example, the VGA type for cellular phones has become narrower to about 25 μm. The line width of the BM formed on the color filter substrate is 6 μm or less than the conventional line width of 20 to 30 μm. Along with such changes, the size of the structure is also reduced. For example, in the case of PS, a conventional pyramid with an upper base of 20 μm × 20 μm or more is reduced to an upper base of 10 μm × 10 μm or less. Thus, the S / N ratio is further reduced, and the detection sensitivity of defects such as PS defects is further reduced.
Since several examples have already been disclosed for inspection objects other than the color filter substrate as means for increasing the S / N ratio between the base and the object to be inspected in the reflection inspection and increasing the defect detection sensitivity, We examined this application.
As an example of inspection on a circuit board in which a pattern is formed on the base as in the case of the color filter substrate, Patent Document 1 discloses a device for inspecting solder bumps formed on the surface of the circuit board. A method of using substantially complementary light rays of a reinforced resin is described. This document is based on the special situation of inspecting solder bumps with a mirror surface. For good reflected light from solder bumps, complementary resin is used for reinforcing resin, and light is absorbed. Therefore, it tries to make the boundary more prominent. In addition, Patent Document 2 is an example of an appearance inspection of a flexible printed circuit board. In this case, a complementary color of a colored translucent film as a base is used as an inspection light source, and the film is used or not by using as a transmission illumination. It describes that a contrast is produced.
When these examples are applied to a color filter substrate as they are, structures such as PS and cell gap adjustment layer are highly transparent, and light reflected from the ground after passing through these structures becomes noise. The effect is not obtained. Further, in the case of a color filter substrate, since the underlying layer cannot be defined as one, the fact that the complementary color cannot be defined as one causes the effect not being sufficient. In these cases, primary colors such as red and blue are used as the inspection light source. However, if the inspection light is changed to the primary color, for example, blue, the reflected light from the B pixel among the RGB pixels of the color filter substrate is extremely reduced. In addition, sufficient detection sensitivity cannot be obtained for a foreign substance defect or the like generated on the B pixel. Similarly, when the inspection light is red, the detection sensitivity for the defect on the R pixel is not obtained sufficiently, and when the inspection light is green, the detection sensitivity for the defect on the G pixel is not sufficiently obtained. For this reason, the inspection apparatus is used only for PS pattern inspection, and is not very versatile. Furthermore, if the wavelength range of the inspection light is too narrow, interference is likely to occur on the surface of the color filter substrate, for example, the transparent protective film, and even a slight change in the thickness of the transparent protective film that does not cause a product abnormality is detected excessively. Therefore, a certain range of wavelength range is necessary. Therefore, the method using primary colors as the inspection light source as in these cases is not suitable for defect inspection of the color filter substrate.
JP 2000-65543 A JP 2006-118896 A

本発明は上記の問題点に鑑みてなされたもので、セルギャップ調整層上のフォトスペーサーなどの立体構造物を具えた高機能、高精細なカラーフィルター基板の外観欠点の検出を容易にする検査方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an inspection that facilitates detection of appearance defects of a high-function, high-definition color filter substrate having a three-dimensional structure such as a photo spacer on a cell gap adjustment layer. It aims to provide a method.

上記課題を解決するため、本発明は以下の構成からなる。   In order to solve the above problems, the present invention has the following configuration.

すなわち、カラーフィルター基板に検査用光線を照射し、該カラーフィルター基板からの反射光を光電変換素子で受光して電気信号に変換し、得られた電気信号を画像処理してカラーフィルター基板の欠陥検出を行うカラーフィルター基板の検査方法において、該検査用光線が該カラーフィルター基板基板上に形成された検査対象物の略補色となる波長を含むことを特徴とするカラーフィルター基板の検査方法である。   That is, the color filter substrate is irradiated with inspection light, the reflected light from the color filter substrate is received by a photoelectric conversion element and converted into an electrical signal, and the obtained electrical signal is subjected to image processing to cause a defect in the color filter substrate. A color filter substrate inspection method for detecting color filter substrates, wherein the inspection light beam includes a wavelength that is a substantially complementary color of an inspection object formed on the color filter substrate substrate. .

上記のように、本発明の検査方法によれば、下地からの反射光によるノイズを低減し、複雑な多層構造の膜からなるパターンの欠陥をより感度良く検出できる。また、本発明の検査方法を用いることでより多層化しているカラーフィルター基板のパターン検査が高感度になり、品質および歩留まり向上が可能となる。   As described above, according to the inspection method of the present invention, it is possible to reduce noise caused by reflected light from the base and detect a defect of a pattern made of a complex multilayer film with higher sensitivity. In addition, by using the inspection method of the present invention, the pattern inspection of the color filter substrate that is more multilayered becomes highly sensitive, and quality and yield can be improved.

本発明の検査装置の形態を以下に説明する。
本発明の構成としては特に限定されるものではないが、被検査体であるカラーフィルター基板に検査照明を照射するための検査光源を有し、検査用光線が検査対象物により反射した光を受光し電気信号に変換するための光電変換素子を有し、該電気信号を処理する信号処理装置を有するものである。
ここで、光電変換素子としては、信号処理が簡便で、最も一般的に利用されているCCDラインセンサを用いるのが好ましい。また、光学系の構成としては、設備費を安価にするため、また管理の簡便さから、一対の光学系で構成することが好ましい。光学系は反射型とし、検査対象物により、同軸落射照明系、正反射照明系、軸ずらし照明系など好適な方法を選ぶことが出来る。
信号処理の方法としては、比較検査法が用いられることが多いが特にこれに限定されない。カラーフィルター基板はブラックマトリクス(BM)および赤、青、緑の着色層(RGB画素)がそれぞれ等ピッチの間隔でかつ同じ周期で規則正しく配列されている。この様なカラーフィルター基板に検査光を照射し、反射された光を光電変換素子で受光すると、輝度変化も等ピッチでかつ同じ周期の波形が得られる。比較検査法では、BMおよびRGB画素の配列ピッチに対応した比較ピッチで前方の画素と後方の画素の輝度の比較を行い(差分処理)、その差分後の輝度がしきい値を越えたときに欠陥であると判別する。
検査光源としては、ハロゲンランプが好適に用いられるが、キセノンランプ、メタルハライドランプ、蛍光灯、レーザー等を用いてもよい。本発明では被検査体に照射される検査光には、被検査体の略補色となる波長を含む波長域の検査光を用いる。検査光の波長を略補色となる波長を含む波長域とするためには、検査光源と被検査体との間に特定の波長のみを透過させる光学フィルタを用いる方法が好ましいが、この他にも、白色光源と被検査体との間に分光器を使用する方法を用いても良い。
以下に、被検査物体として、カラーフィルター基板に形成されたセルギャップ調整層上のフォトスペーサー(PS)の欠点を検査する場合について詳細に説明する。図2に被検査物体となるPS付きカラーフィルター基板の概略断面図を記している。透明基板上にBM、RGB画素を形成し、その上に平坦化を目的とした透明保護膜が形成され、その上にセルギャップ調整層が形成され、その上にITO(=Indium Tin Oxide)からなる透明電極が形成され、最表層にPSが形成されている。PSは感光性アクリル材料をフォトリソ法を用いて形成しており、白色光のもとで観察すると黄色みを帯びている。黄色の補色は青色であり、本発明で用いる検査装置では、検査光源の波長を被検査体の略補色となる波長を含む波長域とするため、検査光源の波長を黄色の補色である波長435〜480nmの青色を含む波長域、具体的には400〜600nmの波長域、色で言えばシアンの検査光源がPSの検査には適している。
The form of the inspection apparatus of this invention is demonstrated below.
The configuration of the present invention is not particularly limited, but has an inspection light source for irradiating inspection illumination to a color filter substrate which is an object to be inspected, and receives the light reflected by the inspection object by the inspection light beam. And a photoelectric conversion element for converting into an electric signal, and a signal processing device for processing the electric signal.
Here, as the photoelectric conversion element, it is preferable to use a CCD line sensor that is simple in signal processing and most commonly used. In addition, the optical system is preferably configured with a pair of optical systems in order to reduce the equipment cost and simplify management. The optical system is a reflection type, and a suitable method such as a coaxial epi-illumination system, a specular illumination system, or an off-axis illumination system can be selected depending on the inspection object.
As a signal processing method, a comparative inspection method is often used, but is not particularly limited thereto. In the color filter substrate, a black matrix (BM) and red, blue, and green colored layers (RGB pixels) are regularly arranged at equal pitch intervals and in the same cycle. When such a color filter substrate is irradiated with inspection light and the reflected light is received by a photoelectric conversion element, the luminance change is obtained at the same pitch and with the same period. In the comparison inspection method, the luminance of the front pixel and the rear pixel is compared at a comparison pitch corresponding to the arrangement pitch of the BM and RGB pixels (difference processing), and the luminance after the difference exceeds a threshold value. Determined as a defect.
A halogen lamp is preferably used as the inspection light source, but a xenon lamp, a metal halide lamp, a fluorescent lamp, a laser, or the like may be used. In the present invention, inspection light in a wavelength region including a wavelength that is a substantially complementary color of the inspection object is used as the inspection light irradiated to the inspection object. In order to set the wavelength of the inspection light to a wavelength range including a wavelength that is substantially complementary, a method using an optical filter that transmits only a specific wavelength between the inspection light source and the object to be inspected is preferable. Alternatively, a method using a spectroscope between the white light source and the object to be inspected may be used.
Hereinafter, a case where a defect of a photospacer (PS) on a cell gap adjusting layer formed on a color filter substrate is inspected as an object to be inspected will be described in detail. FIG. 2 is a schematic cross-sectional view of a color filter substrate with PS that is an object to be inspected. A BM and RGB pixels are formed on a transparent substrate, a transparent protective film is formed thereon for the purpose of planarization, a cell gap adjustment layer is formed thereon, and ITO (= Indium Tin Oxide) is formed thereon. A transparent electrode is formed, and PS is formed on the outermost layer. PS is formed of a photosensitive acrylic material using a photolithographic method, and is yellowish when observed under white light. The complementary color of yellow is blue. In the inspection apparatus used in the present invention, the wavelength of the inspection light source is set to a wavelength region including a wavelength that is substantially complementary to the object to be inspected, so that the wavelength of the inspection light source is a wavelength 435 that is a complementary color of yellow. A wavelength region including blue of ˜480 nm, specifically, a wavelength region of 400 to 600 nm, in terms of color, a cyan inspection light source is suitable for PS inspection.

次に、略補色の波長を含む波長域の検査光を用いる効果について説明する。カラーフィルター基板に形成されたセルギャップ調整層上のPSなどの構造物の欠点を検査する場合で、従来の白色光を検査光としてカラーフィルター基板に照射した場合、被検査体となるカラーフィルター基板上の構造物からの反射光の以外に、検査光が被検査体である構造物を透過した後に、その下地である透明電極、透明保護膜、RGB画素、BMから反射する光が混じり、これがノイズとなるため、被検査体が存在しない領域の下地からの反射光とのS/N比が低下し、欠点検出感度が低下させる。これに対し、検査光を被検査体の補色となる波長を含む波長域とした場合、被検査体となるカラーフィルター基板上の構造物で検査光がある程度吸収されるため、その下地に到達する光量が低下し、更に下地より反射される光も被検査体である構造物による吸収で低下するため、下地からの反射光の影響を低減させることができ、S/N比を上げることが可能となる。これらの効果は、被検査体が透明かつ、ある波長の光を吸収し、被検査体の下地となるカラーフィルター基板が赤、青、緑を初めとする複数の色を有し、反射率が被検査体で有る構造物よりも大きいという構成であるという環境のもとで有効に発現されるもので、先に述べた特許文献とはまったく異なるものである。   Next, the effect of using inspection light in a wavelength region that includes substantially complementary colors will be described. When inspecting defects of structures such as PS on the cell gap adjustment layer formed on the color filter substrate, when the conventional white light is irradiated to the color filter substrate as inspection light, the color filter substrate to be inspected In addition to the reflected light from the upper structure, after the inspection light is transmitted through the structure to be inspected, the light reflected from the transparent electrode, the transparent protective film, the RGB pixel, and the BM as the base is mixed. Since it becomes noise, the S / N ratio with the reflected light from the ground in the area where the object to be inspected does not exist, and the defect detection sensitivity decreases. On the other hand, when the inspection light is in a wavelength range including a wavelength that is a complementary color of the object to be inspected, the inspection light is absorbed to some extent by the structure on the color filter substrate serving as the object to be inspected, and therefore reaches the ground. The amount of light is reduced, and the light reflected from the ground is also reduced by absorption by the structure that is the object to be inspected, so the influence of the reflected light from the ground can be reduced and the S / N ratio can be increased. It becomes. These effects are that the object to be inspected is transparent, absorbs light of a certain wavelength, the color filter substrate that is the base of the object to be inspected has a plurality of colors including red, blue, and green, and has a reflectivity. It is effectively expressed under the environment that the structure is larger than the structure that is the object to be inspected, and is completely different from the above-described patent document.

また検査光に略補色を用いる副効果として、色収差の影響を低減することがある。色収差とは、レンズやハーフミラーなどを光が通過する際に、光の波長によって屈折率が異なり、焦点位置が波長によって異なることから、像の大きさや位置に差を生じ、いわゆるピンぼけを生じてしまうことであるが、検査光を略補色にするために光の波長が限定されるため、白色光を用いた場合よりこの色収差の影響が低減されることになる。   In addition, as a side effect of using a substantially complementary color for the inspection light, there is a case where the influence of chromatic aberration is reduced. Chromatic aberration means that when light passes through a lens or half mirror, the refractive index differs depending on the wavelength of the light, and the focal position varies depending on the wavelength, resulting in a difference in the size and position of the image, so-called defocusing. However, since the wavelength of light is limited in order to make the inspection light substantially complementary color, the influence of this chromatic aberration is reduced as compared with the case where white light is used.

以下、好ましい実施例に基づいて本発明をさらに詳しく説明するが、下記実施例によって本発明の効力は何ら制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on a preferable Example, the efficacy of this invention is not restrict | limited at all by the following Example.

実施例1
図1は実施例の検出方法を実施する概略構成図で、CCDラインセンサにより欠陥を自動検査する装置を記している。11は被検査体となるカラーフィルター基板である。12は光源であり、メタルハライドランプ(住田化学製LS-M180-4000゜K)を用い、13のハーフミラーを介してカラーフィルター基板の真上から照射し、同軸照明を成している。14はCCDラインセンサ(クロック120MHz、有効画素数5000pix)である。15は画像処理装置(タカノ製MP74100)である。16は検査光源から被検査体に照射する際に特定の波長のみを透過させる補色フィルタである。図2(a)は、被検査体となるPSが形成された、カラーフィルター基板の概略断面図を記している。厚み0.5mmのガラス基板1上に、ブラックマトリクス2、赤3R、青3B、緑3Gの着色層(RGB画素)3をフォトリソ法にて形成し、その上に厚み1.5μmの透明保護膜4をスリットコータにて塗布し、その上にアクリル系樹脂をフォトリソ法にて高さ2μm、幅80μmのギャップ調整層7を形成し、ITO(=Indium Tin Oxide)からなる透明電極5をスパッタリング形成し、最表層にアクリル系樹脂をフォトリソ法にて、高さ2μm、頂上部の直径φ11μmのフォトスペーサー(PS)6を形成したものである。なおPSの配置は、図2(b)に記した、PSが形成されたカラーフィルター基板の平面図の通り、RGB画素の一部に配置されているセルギャップ調整層の上に、RGB画素と等ピッチで配置されている。このPSを部分的に欠落させてパターン欠落部を故意に作成し、この欠落部を図1に示す構成のカラーフィルター基板検査装置にて検査した。その際、補色フィルタ16にはシアンフィルタ(kenko製ダイクロイックフィルターシアン、DF−C)を用いて検査光の波長域を400〜600nmに限定し、被検査体であるPSの略補色の波長を含む波長域の検査光を生成するようにした。検査装置の検出信号を256階調に分解後、比較検査法による差分処理を行い、差分処理後の輝度が150を越えたものを検出するようにしきい値を設定した。本発明の検査方法によれば、図3(a)に記す通り、PSのパターン欠落部の差分処理後の輝度は155でしきい値以上となり、PSのパターン欠落部を検出できることを確認した。
比較例1
図1に記すカラーフィルター基板検査装置の構成にて、補色フィルタを用いず、すなわち白色光で、実施例1と同様にPSのパターン欠落部を検査したところ、図3(b)に示すとおり、PSのパターン欠落部の差分処理後の輝度は136でしきい値以下となったため、PSのパターン欠落部を検出することができなかった。
Example 1
FIG. 1 is a schematic configuration diagram for carrying out the detection method of the embodiment, and shows an apparatus for automatically inspecting defects by a CCD line sensor. Reference numeral 11 denotes a color filter substrate as an object to be inspected. A light source 12 uses a metal halide lamp (LS-M180-4000 ° K manufactured by Sumita Chemical Co., Ltd.), and irradiates it from directly above the color filter substrate through 13 half mirrors to form coaxial illumination. Reference numeral 14 denotes a CCD line sensor (clock 120 MHz, effective pixel number 5000 pix). Reference numeral 15 denotes an image processing apparatus (MP74100 manufactured by Takano). Reference numeral 16 denotes a complementary color filter that transmits only a specific wavelength when the object to be inspected is irradiated from the inspection light source. FIG. 2A is a schematic cross-sectional view of a color filter substrate on which a PS to be inspected is formed. A black matrix 2, red 3R, blue 3B, and green 3G colored layers (RGB pixels) 3 are formed on a glass substrate 1 having a thickness of 0.5 mm by a photolithography method, and a transparent protective film having a thickness of 1.5 μm is formed thereon. 4 is applied by a slit coater, and a gap adjusting layer 7 having a height of 2 μm and a width of 80 μm is formed on the acrylic resin by photolithography, and a transparent electrode 5 made of ITO (= Indium Tin Oxide) is formed by sputtering. A photo spacer (PS) 6 having a height of 2 μm and a top diameter of φ11 μm is formed on the outermost layer with an acrylic resin by a photolithography method. Note that the PS is arranged on the cell gap adjustment layer arranged in a part of the RGB pixels, as shown in FIG. 2B, as a plan view of the color filter substrate on which the PS is formed. They are arranged at an equal pitch. This PS was partially lost to intentionally create a pattern missing portion, and this missing portion was inspected by a color filter substrate inspection apparatus having the configuration shown in FIG. At this time, a cyan filter (dichroic filter cyan, DF-C manufactured by kenko) is used as the complementary color filter 16 to limit the wavelength range of the inspection light to 400 to 600 nm, and includes a substantially complementary color wavelength of the PS to be inspected. The inspection light in the wavelength range is generated. After the detection signal of the inspection apparatus was decomposed into 256 gradations, difference processing by the comparative inspection method was performed, and a threshold value was set so as to detect a luminance exceeding 150 after the difference processing. According to the inspection method of the present invention, as shown in FIG. 3A, the luminance after the difference processing of the PS pattern missing portion is 155 or more, and it was confirmed that the PS pattern missing portion can be detected.
Comparative Example 1
In the configuration of the color filter substrate inspection apparatus shown in FIG. 1, when a PS pattern missing portion was inspected with white light in the same manner as in Example 1 without using a complementary color filter, as shown in FIG. Since the luminance after the difference processing of the PS pattern missing portion is equal to or less than the threshold value at 136, the PS pattern missing portion cannot be detected.

本発明の検査方法を実施する検査装置の概略構成図である。It is a schematic block diagram of the test | inspection apparatus which enforces the test | inspection method of this invention. フォトスペーサーが形成されたカラーフィルター基板の概略断面図、平面図である。It is a schematic sectional view and a plan view of a color filter substrate on which a photo spacer is formed. フォトスペーサー欠落部を本発明の検査方法および従来の検査方法で検査して得られた検出信号の一例である。It is an example of a detection signal obtained by inspecting a photospacer missing portion by the inspection method of the present invention and the conventional inspection method.

符号の説明Explanation of symbols

1:ガラス基板
2:ブラックマトリクス
3:着色層(RGB画素)
3R:着色層の赤(R)
3G:着色層の緑(G)
3B:着色層の青(B)
4:透明保護膜
5:透明電極
6:フォトスペーサー(PS)
7:セルギャップ調整層
11:カラーフィルター基板
12:光源
13:ハーフミラー
14:CCDラインセンサ
15:画像処理装置
16:補色フィルタ
1: Glass substrate 2: Black matrix 3: Colored layer (RGB pixels)
3R: colored layer red (R)
3G: Green colored layer (G)
3B: Blue of the colored layer (B)
4: Transparent protective film 5: Transparent electrode 6: Photospacer (PS)
7: Cell gap adjustment layer 11: Color filter substrate 12: Light source 13: Half mirror 14: CCD line sensor 15: Image processing device 16: Complementary color filter

Claims (3)

カラーフィルター基板に検査用光線を照射し、該カラーフィルター基板からの反射光を光電変換素子で受光して電気信号に変換し、得られた電気信号を画像処理してカラーフィルター基板の欠陥検出を行うカラーフィルター基板の検査方法において、該検査用光線が該カラーフィルター基板上に形成された検査対象物の略補色となる波長を含むことを特徴とするカラーフィルター基板の検査方法。 The color filter substrate is irradiated with inspection light, the reflected light from the color filter substrate is received by a photoelectric conversion element and converted into an electrical signal, and the obtained electrical signal is image-processed to detect defects in the color filter substrate. In the color filter substrate inspection method to be performed, the inspection light beam includes a wavelength that is a substantially complementary color of an inspection object formed on the color filter substrate. 前記光線の波長域が400〜600nmである請求項1に記載のカラーフィルター基板の検査方法。 The color filter substrate inspection method according to claim 1, wherein a wavelength range of the light beam is 400 to 600 nm. 前記検査対象物がカラーフィルター基板に形成されたセルギャップ調整用のフォトスペーサーである請求項1に記載の検査方法。 The inspection method according to claim 1, wherein the inspection target is a photospacer for adjusting a cell gap formed on a color filter substrate.
JP2007253733A 2007-09-28 2007-09-28 Inspection method for color filter substrate Pending JP2009085682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007253733A JP2009085682A (en) 2007-09-28 2007-09-28 Inspection method for color filter substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007253733A JP2009085682A (en) 2007-09-28 2007-09-28 Inspection method for color filter substrate

Publications (1)

Publication Number Publication Date
JP2009085682A true JP2009085682A (en) 2009-04-23

Family

ID=40659309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007253733A Pending JP2009085682A (en) 2007-09-28 2007-09-28 Inspection method for color filter substrate

Country Status (1)

Country Link
JP (1) JP2009085682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344944A (en) * 2014-10-23 2015-02-11 上海维锐智能科技有限公司 Photoelectrical detecting system of LED (light emitting diode) digital tube and photoelectrical detecting method of photoelectrical detecting system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104344944A (en) * 2014-10-23 2015-02-11 上海维锐智能科技有限公司 Photoelectrical detecting system of LED (light emitting diode) digital tube and photoelectrical detecting method of photoelectrical detecting system

Similar Documents

Publication Publication Date Title
JP4780094B2 (en) Display device and manufacturing method of display device
TWI498791B (en) Liquid crystal display device, color filter substrate, and color filter substrate manufacturing method
KR20070099398A (en) Apparatus for inspecting substrate and method of inspecting substrate using the same
TW201116892A (en) Liquid crystal display device, black matrix substrate and color filter substrate
JP2006267022A (en) Defect inspection device and method
JP2017067999A (en) Substrate for electro-optic device, electro-optic device and electronic apparatus
JP2005338845A (en) Reflection-transmission type liquid crystal display device
US20070242195A1 (en) Reflective liquid crystal on silicon panel
JP2008216590A (en) Defect detection method and defect detection device for gray tone mask, defect detection method for photomask, method for manufacturing gray tone mask, and pattern transfer method
WO2017043029A1 (en) Display device, brightness defect correction method for display device, and brightness defect correction device for display device
JP2008152256A (en) Repair method of liquid crystal display panel
US20140253857A1 (en) Active matrix and display panel
JP2009085682A (en) Inspection method for color filter substrate
JP2011170078A (en) Color filter and liquid crystal display apparatus
JP6603577B2 (en) Liquid crystal display
KR20080026721A (en) Color filter substrate and liquid crystal display apparatus having the same
JP2007279026A (en) Substrate inspecting apparatus and substrate inspecting method using same
JP5009087B2 (en) Liquid crystal display device and electronic device
TWI391648B (en) Inspection method of inspection panel and color filter
JPH1082622A (en) Substrate inspection apparatus
JP2006275704A (en) Film thickness irregularity detection method
CN110361893B (en) Reflective display panel, manufacturing method, control unit, and display device
JP2008058729A (en) Color filter for liquid crystal display device and liquid crystal display device using same
JP2006284217A (en) Visual inspection method and visual inspection device for color filter
JP2010230368A (en) Device for inspecting color filter substrate and method for inspecting defect