TW201037735A - Moulding composed of carbon nanoparticle-polymer mixtures with a gradient of electrical volume conductivity - Google Patents

Moulding composed of carbon nanoparticle-polymer mixtures with a gradient of electrical volume conductivity Download PDF

Info

Publication number
TW201037735A
TW201037735A TW099107180A TW99107180A TW201037735A TW 201037735 A TW201037735 A TW 201037735A TW 099107180 A TW099107180 A TW 099107180A TW 99107180 A TW99107180 A TW 99107180A TW 201037735 A TW201037735 A TW 201037735A
Authority
TW
Taiwan
Prior art keywords
mold
carbon
temperature
polymer
conductivity
Prior art date
Application number
TW099107180A
Other languages
Chinese (zh)
Inventor
Michael Bierdel
Sigurd Buchholz
Volker Michele
Leslaw Mleczko
Reiner Rudolf
Aurel Wolf
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Publication of TW201037735A publication Critical patent/TW201037735A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0013Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor using fillers dispersed in the moulding material, e.g. metal particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/72Heating or cooling
    • B29C45/73Heating or cooling of the mould
    • B29C2045/7356Heating or cooling of the mould the temperature of the mould being near or higher than the melting temperature or glass transition temperature of the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/002Agents changing electric characteristics
    • B29K2105/0023Agents changing electric characteristics improving electric conduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/165Hollow fillers, e.g. microballoons or expanded particles
    • B29K2105/167Nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A process is described for producing electrically conductive mouldings with a gradient of electrical volume conductivity from a thermoplastic carbon nanoparticle-polymer composite material, as are mouldings produced by this process.

Description

201037735 六、發明說明: 【發明所屬之技術領域】 本發明自藉由射出模製熱塑性聚合物而製造導電模製 物的習知製造方法開始發展。本發明係關於一種自熱塑性 石反奈米粒子-聚合物複合材料製造具有體積導電梯度之導 電模製物的方法及藉此方法所製成的模製物。 【先前技術】 導電聚合物複合材料的製造原理係為已知,例如被敘 述於 WO 2005014259 中。此外,DE 10336473 敘述 了一種 藉著擠出設備的協助而將導電纖維導入聚合物材料的方 法。 1新穎的導電纖維包含碳奈米管,其愈來愈重要。根據 先前技術,碳奈米管被理解為大部分直徑介於丨至5〇() nm 且長度為直徑數倍的圓柱形碳管。此些破管係由一或多層 有序的碳原子所組成且具有一個形態不同的核心。此些碳 奈米管例如亦被稱為「碳纖維」或「中空碳纖維」。 石反奈米官在技術文獻中已被知悉了很長的一段時間。 ,然一般認為 Iijima,Nature 354, 56_58, 1991 發現了奈米 官’但是此些材料尤其是具有複數層石墨層的纖維石墨材 料早在1970年代或腫年代早期便為人所知。加⑵與 Bate (GB 1469930A1,而與 Ep 56〇〇4a2)首次揭露了自 石反氫化合物的催化分解沈積極精細的纖維碳。然而,並未 以直徑特徵化以短鏈碳氫化合物為基質所製造出的碳細 3 201037735 絲。 此些碳奈米管的通常結構為圓柱型結構。在圓枉变錄 構的情況下,單壁碳奈米管與多壁碳奈米管之間有差別。 其常見的製造方法例如為電弧放電處理、雷射剝離法、自 氣相的化學沈積^^0)及自氣相的催化化學沈積(CCVD) ° Iijima,Nature 354, 1991,56-8揭露了在電弧放電處理 中形成碳管,此碳管係由兩或更多石墨層組成且捲成一個 無縫的封閉圓柱且石墨層彼此套疊(nest)。根據捲繞向量, 碳原子能夠相對於碳纖維的長軸作掌性(chiral)及非掌性 (achiral)的配置。201037735 VI. Description of the Invention: [Technical Field of the Invention] The present invention has been developed from a conventional manufacturing method for producing a conductive molded article by injection molding a thermoplastic polymer. The present invention relates to a method of producing a conductive molding having a volumetric conductivity gradient from a thermoplastic reverse nanoparticle-polymer composite and a molded article produced thereby. [Prior Art] The principle of manufacture of a conductive polymer composite is known, for example, as described in WO 2005014259. Furthermore, DE 10336473 describes a method for introducing electrically conductive fibers into a polymeric material with the aid of an extrusion device. 1 Novel conductive fibers contain carbon nanotubes, which are increasingly important. According to the prior art, a carbon nanotube is understood to be a cylindrical carbon tube having a majority of diameters ranging from 丨 to 5 〇 () nm and having a length several times the diameter. These broken tubes are composed of one or more ordered carbon atoms and have a core of different morphology. Such carbon nanotubes are also referred to as "carbon fibers" or "hollow carbon fibers", for example. Stone anti-nano officials have been known for a long time in the technical literature. However, it is generally believed that Iijima, Nature 354, 56_58, 1991 discovered the nanoman's but these materials, especially fibrous graphite materials with a plurality of layers of graphite, were known as early as the 1970s or early. Addition of (2) and Bate (GB 1469930A1, and Ep 56〇〇4a2) revealed for the first time that the catalytic decomposition of self-hydrogen compounds has deposited extremely fine fibrous carbon. However, the carbon fine 3 201037735 filament produced by short-chain hydrocarbons as a matrix has not been characterized by diameter. The general structure of such carbon nanotubes is a cylindrical structure. In the case of a circularly altered recording, there is a difference between a single-walled carbon nanotube and a multi-walled carbon nanotube. Common manufacturing methods are, for example, arc discharge treatment, laser stripping, chemical deposition from the gas phase, and catalytic chemical deposition (CCVD) from the gas phase. Iijima, Nature 354, 1991, 56-8. A carbon tube is formed in the arc discharge treatment, the carbon tube being composed of two or more graphite layers and wound into a seamless closed cylinder and the graphite layers nested on each other. According to the winding vector, the carbon atoms can be chiral and achiral with respect to the long axis of the carbon fiber.

Bacon et al·,J· Appl. Phys· 34, I960, 283-90 首次揭露了 單同調石墨層(「卷軸型」)或中斷石墨層(「洋蔥型」)的碳 官結構以奈米管之結構為基礎。該結構被稱為卷軸型。後 來,Zhou et al.,Science,263, 1994, 1744-47 及 Lavin et al”Bacon et al., J. Appl. Phys· 34, I960, 283-90 first revealed the carbon official structure of a single homologous graphite layer ("reel type") or interrupted graphite layer ("onion type") with a nanotube tube. Structure based. This structure is called a reel type. Later, Zhou et al., Science, 263, 1994, 1744-47 and Lavin et al"

Carbon 40, 2002, 1123-30亦發現了相應的結構。 , 【發明内容】 本發明的目的為藉由射出模製的方法製造由碳夺米 ί的合㈣軸朗物,翁其在表面處具有 處理此目的:在新穎 表面處具有高導電率且:二:的= 電梯度)沿著衫料_料朝向材料深度料減電少率( 201037735 中在该表面處的導電率或電阻率巧*能與模製物中不同點的 率或%阻率相異,且亦可建立不同的梯度。 已發現’尤其是在cnt聚合物複合材料的情況下,非 以自習知梯度材料所知的方式,利用充填與強化材料在成 形體的基質或複數層結構中的#均質分佈而達成不同性 質’而是藉著射出模製參數如射出速度、熔融物溫度(melt temperature)與模具溫度的特定組合而達成。 fU提供自熱塑性聚合物與礙奈米粒子藉由射 製物的方法,該模製物在接近表面的-層 中/、有垂直δ亥表面的導雷產秘 表面的方向上增加,尤其是^俾使導電率沿著垂直於該 四分之-壁厚的—層中且有=製物中接近表面且相當於 相當於每毫米十的二次二的位置’較錢具有 的三次方的梯度。 又更較佳地具有每毫米十Carbon 40, 2002, 1123-30 also found the corresponding structure. SUMMARY OF THE INVENTION [0005] It is an object of the present invention to produce a (4) axis material from carbon by means of injection molding, which has a treatment at the surface for this purpose: high conductivity at a novel surface and: Two: = electric gradient) along the material material to the material depth material reduction rate (201037735 in the surface of the conductivity or electrical resistivity * can be different from the molding rate or % resistivity Different, and different gradients can also be established. It has been found that, especially in the case of cnt polymer composites, the matrix or multiple layers of the shaped body are filled and strengthened in a manner not known by self-learning gradient materials. The #homogeneous distribution in the structure achieves different properties' but is achieved by specific combinations of injection molding parameters such as injection speed, melt temperature and mold temperature. fU is provided from thermoplastic polymers and barrier nanoparticles. By means of a projectile, the molded article increases in a direction close to the surface-layer/the surface of the mine-defining surface having a vertical δH surface, in particular, the conductivity is perpendicular to the four Divided into - wall thickness - In the layer, there is a gradient in which the workpiece approaches the surface and corresponds to a cubic of the position of the second of two tenths per millimeter. It is more preferably ten per millimeter.

兀7、敉佳的方法具有下列特徵. a)首先,為了填充模具的. # 中維持其他處理參數為定值,'"精著在一系列的測試 出模具無法被完全充填為漸降低射出速度直到射 度,最終將射出速度設定在好足夠的最小射出速 小射出速度, Λ $具剛好能約渺真充的該最 b) 基於所用的基礎聚合物 模具中的熔融物溫度設定在高二艰,物混合物,將該射出 的最低處理溫度的至少聚合物或聚合物混合物 、至多 160 0C FbI, c) 基於所用的該聚合物式 l间 a 5物混合物,將該射出模 5 201037735 具的模具溫度設定在低於玻璃轉換溫度(在非晶系熱塑物 的情況下)或設定在低於熔融溫度(在部分結晶系熱塑物的 情況下)’俾使模製物能脫模但不產生扭曲形變。 在射出模製處理中一聚合物的最低處理溫度被理解為 意指:聚合物仍能剛好被適當處理的聚合物熔融溫度。著 作「Werkstoff-Ftihrer Kunststoffe」[Materials Guide to Plastics](作者:Hellerich, Harsch, Haenle; Hanser Verlag,9th edition, 2004, ISBN 3-446-22559-5)敘述了在許多聚合物的 射出模製中處理的通常熔融溫度(處理溫度)及模具溫度(參 考表1)。 表1 T材料_最低 T材料•最高 T棋具-最低 T棋具-最高* PC 280 °C 320 °C 85 °C 120 °C AP6 230 280 80 120 AP 66 260 320 80 120 AP 12 210 250 40 80 PS 180 250 30 60 SAN 200 260 40 60 ABS 200 240(280) 40 85 PMMA 200 250 50 70(90) POM 180 220 50 140 0 硬PVC 170 210 30 60 軟PVC 170 200 20 60 PET 260 290 30 140 PBT 230 270 30 140 201037735 PEEK(耒強化、 _ PEEK(強化) -~~~^L__4〇〇 括弧中的數字適用於抗熱 本發明更提供一種由熱塑性炉太、, 材料所組成的導電模製物,其特徵^"米粒子-聚合物複合 塑性聚合物與碳奈米粒子射出 ,·該模製物係自熱 度俾使導電率在表面處為高但沿著,成且具有導電率梯 ❹ Ο 至該表面下至少〇」毫米處的^直該表面的方向減少 料中間處的導電率。 且該最小值不低於材 較佳的是一種由熱塑性碳奈米 所組成的導電模製物,其特徵在於、子·'聚合物複合材料 聚合物與碳奈米粒子射出模製所製成該模製物係自熱塑性 使導電率在表面處為高但沿著垂 具有導電率梯度俾 表面下至少(U毫米的最小值而^表面的方向減少 至該 處的導電率’此最小值具有較表面處t值不低於材料中間 較佳地低到其1000倍的導電率。等電率低到其100倍, 尤其較細是—種由熱贿 材料所組成的導電模製物,其特徵在、於粒子-聚合物複合 塑性聚合物與碳奈米粒子射出模該模製物係自熱 ,使導電率在表面處為高但沿著垂直^具有導電率梯 虽於每毫米十的二次方較佳地 二表面的方向以相 減少至最小值。 母毛木十的三次方的方式 上述模製物的表面電阻率尤13尸 方至10 1〇歐姆/平方的範圍。 自1歐姆/平 7 201037735 根據本發明在處理中所用的碳奈米粒子較佳地為類石 墨奈米粒子。 該類石墨奈米粒子更較佳地為單層或多層石墨結構。 尤其k佳地’该單層或多層石墨結構為石墨烯或碳奈 米管或其混合物的形式。尤其較佳的是破奈米管。 該類石墨奈米粒子較佳地具有自i至··的直徑範 圍’較佳地具有自3至loo nm的直徑範圍,更較佳地具有 5至50 nm的直徑範圍。 尤其適合用來製造新穎模製物的是例如可自高延伸石 墨所獲得的單層❹層、單壁衫壁的碳奈米管(CNT)、魚 骨或小板結構的碳奈米纖維、或奈米級的石墨或石墨稀。 極尤其適合的是多壁碳奈米管。 在本發明的較佳實施例中,碳奈米粒子的比例為基於 核製物質量的自0.2至15重量%,較佳地自〇 5至1〇重量 % ’更較佳地自1至7重量%。 *新穎方法的更較佳實施例的特徵在於,在^中模具的 模具溫度被設定在:表〗情顯示之用於射出模製處理之τ 棋具-最低上至高於建議模具溫度T料如2() Qc的最 度範圍内。 本發明更提供由熱塑性碳奈米粒子_聚合物複合材料 所組成的新穎模製物,其係由上述方法所製成。此類模製 物在下文中亦被簡稱為「梯度模製物」。 此些尤其包含在不同位置具有不同導電率及不同 率梯度的模製物。 201037735 在本發明背景下可倍 或具有洋S型結構的全la、碳奈米管為圓㈣、卷軸型 柱型或卷軸型或其現合物的ί壁多=管。較佳的是圓 是長度舆外直徑的比例大於5尤其大於兀7, 敉佳的方法 has the following characteristics. a) First, in order to fill the mold. # Maintain other processing parameters for the fixed value, '" fine in a series of tests, the mold can not be fully filled to gradually reduce the injection Speed up to the radiance, and finally set the injection speed to a good enough minimum injection speed and small injection speed, Λ 具 具 刚 该 最 最 最 最 最 最 最 最 最 最 最 最 最 最 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于 基于a mixture of at least a polymer or a polymer mixture of the lowest treatment temperature of the injection, at most 160 ° C FbI, c) based on the polymer mixture of the polymer 5 used, the injection mold 5 201037735 The mold temperature is set below the glass transition temperature (in the case of amorphous thermoplastics) or below the melting temperature (in the case of partially crystalline thermoplastics), so that the molded article can be demolded but No distortion is produced. The minimum processing temperature of a polymer in the injection molding process is understood to mean that the polymer is still just at the polymer melting temperature that is properly treated. Book "Werkstoff-Ftihrer Kunststoffe" [Materials Guide to Plastics] (Author: Hellerich, Harsch, Haenle; Hanser Verlag, 9th edition, 2004, ISBN 3-446-22559-5) is described in many injection molded polymer The usual melting temperature (treatment temperature) and mold temperature of the treatment (refer to Table 1). Table 1 T material _ minimum T material • highest T chess piece - minimum T chess piece - highest * PC 280 °C 320 °C 85 °C 120 °C AP6 230 280 80 120 AP 66 260 320 80 120 AP 12 210 250 40 80 PS 180 250 30 60 SAN 200 260 40 60 ABS 200 240(280) 40 85 PMMA 200 250 50 70(90) POM 180 220 50 140 0 Hard PVC 170 210 30 60 Soft PVC 170 200 20 60 PET 260 290 30 140 PBT 230 270 30 140 201037735 PEEK (耒 reinforced, _ PEEK (enhanced) -~~~^L__4 The number in brackets is suitable for heat resistance. The invention further provides a conductive molding composed of a thermoplastic furnace, material, The characteristic ^" rice particle-polymer composite plastic polymer and carbon nanoparticle are emitted, the molding system is self-heating, so that the conductivity is high at the surface but along, and has a conductivity ladder Ο The direction to the surface at least 〇" mm below the surface reduces the conductivity at the middle of the material. And the minimum value is not lower than the material, preferably a conductive molding composed of thermoplastic carbon nanotubes. It is characterized in that the sub-polymer polymer polymer and carbon nanoparticle are emitted. The molded article is made from a thermoplastic such that the electrical conductivity is high at the surface but at least along the surface of the conductivity gradient 垂 (the minimum value of U mm and the direction of the surface is reduced to the electrical conductivity there) The minimum value has a conductivity lower than the surface of the material, which is preferably less than 1000 times lower than the middle of the material. The isoelectric rate is as low as 100 times, and particularly thin is a conductive mold composed of hot bribe materials. The article is characterized in that the particle-polymer composite plastic polymer and the carbon nanoparticle injection mold are self-heating, so that the conductivity is high at the surface but has a conductivity along the vertical axis. The quadratic square of every ten millimeters preferably reduces the direction of the two surfaces to a minimum with respect to the phase. The square of the mother's tenth is the surface resistivity of the above-mentioned molded article, especially 13 cadres to 10 1 ohm/square. Range from 1 ohm/flat 7 201037735 The carbon nanoparticle used in the treatment according to the invention is preferably graphite-like nanoparticle. The graphite nanoparticle of this type is more preferably a single layer or a multilayer graphite structure. k佳地' the single or multi-layer graphite structure is In the form of a ocene or carbon nanotube or a mixture thereof, particularly preferred is a nanotube. The graphite nanoparticle preferably has a diameter range from i to · preferably from 3 to loo The diameter range of nm, more preferably has a diameter range of 5 to 50 nm. Particularly suitable for use in the manufacture of novel moldings are, for example, a single layer of tantalum layer available from highly stretched graphite, a carbon nanotube tube (CNT) of a single wall, a carbon nanofiber of a fishbone or a small plate structure, Or nano-grade graphite or graphite thin. Very suitable for multi-wall carbon nanotubes. In a preferred embodiment of the invention, the proportion of carbon nanoparticles is from 0.2 to 15% by weight, preferably from 5 to 1% by weight, based on the mass of the core product, more preferably from 1 to 7. weight%. A more preferred embodiment of the novel method is characterized in that the mold temperature of the mold is set to: τ chess for the injection molding process displayed on the table - lowest up to above the recommended mold temperature T material such as 2 () Within the maximum range of Qc. The present invention further provides a novel molded article composed of a thermoplastic carbon nanoparticle-polymer composite which is produced by the above method. Such moldings are also referred to hereinafter as "gradient moldings". These include, in particular, moldings having different electrical conductivities and different gradients at different locations. 201037735 In the context of the present invention, a full la, carbon nanotube having a s-type structure or a s-shaped structure is a round (four), a reel type column or a reel type or a varnish thereof. Preferably, the circle is the length of the outer diameter of the crucible is greater than 5, especially greater than

自。.==二的破奈米管,其中尤其團塊具有 mm的平均直徑。 0·1至2mm,更佳地自〇2至1 使用的碳奈米管更佳沾a也 佳地自3至100nm,更車實質上具有1至·細,較 t丄 又佳地自5至50 nm的平均亩泸。 :權捲起(複數卷_)所;成的 === 腦顯細.8之德國專利巾㈣的標的,其在本^ = 的優先權日時尚未被公將其與CNTs及其製造相關的 内容包含於本申請㈣揭露内容中。有·單卷軸型碳奈 米管的CNT結構的行為係與有關單壁圓柱碳奈米管(圓柱 形SWNTs)結構的多壁圓柱單碳奈米管(圓柱形MWNTs)結 構的行為相匹配。 不右洋蔥型結構,以橫剖面觀之,在此些碳奈米管中 的單獨石墨烯或石墨層明顯地自CNTs的中央連續而不中 斷地延伸至外緣。由於相較於具有簡單卷軸結構的CNTs (Cafbon 34, 1996, 1301-3)或具有洋蔥型結構的 9 201037735 CNTs(Science 263, 1994, 1744-7)而言有更多的開放邊緣可 用來作為***的入口區’因此其例如可致使管架構中其他 材料的更佳與更快速的***。 今曰用以製造碳奈米管的已知方法包含電弧放電法、 雷射剝離法及催化處理。許多此些處理會形成副產物如具 有大直徑的煤灰(S00t)、非晶碳及纖維。催化處理可被分成 支樓的催化粒子上的沉積以及同位形成且具有奈米範圍之 直徑的金屬位置上(已知為流動處理)的沉積。在利用自反應 條件下為氣態的碳氫化合物催化碳的沈積而製造的情況下 (此後被稱為CCVD :催化碳氣相沈積)’上述的可能碳供應 者包含乙块、曱烧、乙烧、乙浠、丁院、丁烯、丁二埽、 笨及其他含碳反應物。因此較佳的是使用可自催化處理所 獲得的CNTs。 催化劑通常包含金屬、金屬氧化物或可分解或可還原 的金屬成分。例如,先前技術提及利用Fe、Mo、Ni、V、 Μη、Sn、Co、Cu及其他過渡族群元素來作為催化劑的金 屬。雖然單獨的金屬通常具有促進碳奈米管形成的傾向, 但根據先前技術可利用基於上述金屬之組合的金屬催化劑 來達到高產量及低比例的非晶碳。因此較佳地使用可利用 混合催化劑而獲得的CNTs。 用來製造CNTs的特別有利的催化劑系統係基於一金 屬或金屬化合物的組合,此組合包含選自由Fe、c〇、Mn、 Mo與Ni所組成之族群的兩或更多元素。 經驗顯示’碳奈米管的形成及所形成之奈米管性質係 201037735 以複雜的方式取決於:用來作為催化劑的金屬化合物戋兩 或更多金屬成份的組合、所用的任何催化劑支撐材料1催 化劑與支撐材料間的交互作用、反應物氣體與分壓\氫氣 或其他氣體的添加、反應溫度及滯留時間或所用的反應界;;。 自WO 2006/050903 A2已知用來製造碳奈米管的 較佳方法。 ^ 到目前為止所提及的不同方法中,使用不同的催化劑 系統會製造碳奈米管的各種結構,其可由該處理顯著地^ 到碳奈米管粉末。 更較佳地適合用於本發明的碳奈米管係藉由在下列參 考文獻中已載其原理的方法所獲得: ^ 在ΕΡ 205 556 Β1中首次揭露了製造直徑小於1〇〇 nm 的碳奈米管。關於製造,係使用輕(即,短及中鏈的脂肪或 單-或多環芳香族化合物)碳氫化合物與鐵系催化劑,在催化 劑上的碳載體化合物會在高於800-900 °C的溫度下分解。 WO86/03455A1敘述了製造礙細絲,此碳細絲具有直 徑固定在3.5-70 nm的圓柱形結構、大於100的長寬比(長 度與直徑的比例)及一核心區域。此些細絲係由有序碳原子 的許多連續膜層所組成,這些連續膜層係沿著細絲的圓柱 軸而作同心配置。此些圓柱型的奈米管係自碳化合物在介 於850 C至1200 °C的溫度下藉由金屬粒子而以CVD法所 製造。 W02007/093337 A2揭露了適合用以製造既有具有圓 柱形結構之碳奈米管的催化劑的另一種製造方法。在固定 201037735 床中使用此催化劑的情況下,可獲得直徑範圍落在5至30 nm之較高產量的圓柱形碳奈米管。from. .== Two broken nanotubes, in particular the agglomerates have an average diameter of mm. 0·1 to 2mm, more preferably from 2 to 1 The carbon nanotubes used are better to be from 3 to 100 nm, and the car has 1 to finer, which is better than 5 The average acre to 50 nm. : The right to roll up (multiple volumes _); the === brain fine. 8 of the German patent towel (four) of the subject matter, its priority on the ^ = the fashion is not publicly related to CNTs and its manufacturing The content is included in the disclosure content of (4) of this application. The behavior of the CNT structure of a single-reel type carbon nanotube is matched with the behavior of a multi-walled cylindrical single carbon nanotube (cylindrical MWNTs) structure of a single-walled cylindrical carbon nanotube (cylindrical SWNTs) structure. The non-right onion-type structure, viewed in cross section, the individual graphene or graphite layers in such carbon nanotubes extend significantly from the center of the CNTs without interruption to the outer edge. Since there are more open edges than CNTs with simple scroll structure (Cafbon 34, 1996, 1301-3) or 9 201037735 CNTs with onion structure (Science 263, 1994, 1744-7) can be used as The inserted inlet zone 'so it can, for example, result in a better and faster insertion of other materials in the tube architecture. Known methods for manufacturing carbon nanotubes today include arc discharge methods, laser lift-off methods, and catalytic treatments. Many of these treatments form by-products such as coal ash (S00t) having large diameter, amorphous carbon, and fibers. The catalytic treatment can be divided into deposition on the catalytic particles of the building and deposition at the metal sites (known as flow treatment) formed in-situ and having a diameter in the nanometer range. In the case of using a gaseous hydrocarbon-catalyzed carbon deposition under self-reaction conditions (hereinafter referred to as CCVD: catalytic carbon vapor deposition), the above-mentioned possible carbon suppliers include a block, a smoldering, an sulphur , Ethylene, Dingyuan, Butene, Dibutyl, stupid and other carbon-containing reactants. It is therefore preferred to use CNTs obtainable by autocatalytic treatment. The catalyst typically comprises a metal, a metal oxide or a decomposable or reducible metal component. For example, the prior art refers to metals that utilize Fe, Mo, Ni, V, Tn, Sn, Co, Cu, and other transition group elements as catalysts. Although the metal alone generally has a tendency to promote the formation of the carbon nanotubes, a metal catalyst based on a combination of the above metals can be utilized according to the prior art to achieve high yield and low proportion of amorphous carbon. Therefore, it is preferred to use CNTs which can be obtained by using a mixed catalyst. A particularly advantageous catalyst system for making CNTs is based on a combination of metals or metal compounds comprising two or more elements selected from the group consisting of Fe, c〇, Mn, Mo and Ni. Experience has shown that the formation of carbon nanotubes and the nature of the nanotubes formed is 201037735 in a complex manner depending on the metal compound used as a catalyst, the combination of two or more metal components, and any catalyst support material used. The interaction between the catalyst and the support material, the reactant gas and partial pressure, the addition of hydrogen or other gases, the reaction temperature and residence time, or the reaction boundary used; A preferred method for making carbon nanotubes is known from WO 2006/050903 A2. ^ Among the different methods mentioned so far, the use of different catalyst systems produces various structures of carbon nanotubes which can be significantly treated by this process to carbon nanotube powders. A carbon nanotube system more suitably suitable for use in the present invention is obtained by a method having the principles set forth in the following references: ^ Firstly, the production of carbon having a diameter of less than 1 〇〇 nm is disclosed in 205 205 556 Β1 Nano tube. For the manufacture, light (ie, short and medium chain fats or mono- or polycyclic aromatic compounds) hydrocarbons and iron-based catalysts are used, and the carbon carrier compound on the catalyst will be higher than 800-900 ° C. Decompose at temperature. WO 86/03455 A1 describes the manufacture of filaments having a cylindrical structure with a diameter fixed at 3.5-70 nm, an aspect ratio (ratio of length to diameter) of more than 100, and a core region. These filaments are composed of a plurality of continuous layers of ordered carbon atoms which are concentrically arranged along the cylindrical axis of the filaments. These cylindrical nanotubes are produced by a CVD method from a carbon compound by metal particles at a temperature of 850 C to 1200 °C. Another manufacturing method suitable for the manufacture of a catalyst having a carbon nanotube having a cylindrical structure is disclosed in WO2007/093337 A2. In the case of using this catalyst in a fixed 201037735 bed, a cylindrical carbon nanotube having a higher yield ranging from 5 to 30 nm in diameter can be obtained.

Oberlin,Endo 與 Koyam (Carbon 14,1976,133)敘述了 製造圓柱形碳奈米管的完全不同路徑。這涉及了在金屬催 化劑上轉化芳香族碳氫化合物(如苯)。所形成的碳管具有界 限明顯的石墨中空核心,此核心具有約為催化劑粒子的直 徑且在核心上存在著較少石墨排序程度的其他碳。藉著在 高溫(2500 DC-3000 °〇的處理可將整個管石墨化。 大部分上述的處理(電弧放電、噴霧裂解或CVO)目前 仍被用來製造碳奈米管。然而,根據已知的方法製造單璧 圓柱形碳奈米管會在設備與進行部分非常複雜,其形成速 率極低且常會有許多會導致高比例不想要的雜質之副反 應,即’此類方法的產量相對地較低。因此,即便是規今’ 碳奈米管的製造仍有極大的技術上困難,所以,此類破奈 米管以少量被用於尤其高度特殊化的應用。雖然可考慮將 其用於本發明,但較佳地還是使用圓柱型或卷軸型的多璧 CNTs 0 現今係明顯地利用催化處理以商業方式相對大量地製 造無縫圓柱形奈米管形式且多壁相互套疊的多壁碳奈米管 或上述卷轴或洋蔥結構形式的碳奈米管。此些方法通常权 上述的電弧放電及其他方法呈現出更高的產量,且當下通 常以公斤等級實施(全球數百公斤/天以此方式製造的 MW碳奈米管一般在某種程度上較單壁奈米管便宜,因此 被用來例如作為其他材料中的增進效能添加物。 12 201037735 理論上可用於新穎模製物及其製造方法的熱塑性聚合 物包含了所有的已知熱塑性聚合物。模製物較佳地係以來 自下列物質所組成之族群的熱塑性聚合物為基質··聚碳酸 酯(PC)、聚胺(PA)尤其是尼龍 6、66 或 12(N6、N66、N12)、 聚苯乙婦(ps)、聚(苯乙烯-丙烯氰)(SAN)、丙烯氰_丙二烯_ 苯乙烯塊體共聚物(ABS)、聚丙烯酸酯尤其是聚甲基(甲基) 丙烯酸酯(PMMA)、聚(曱醛χΡ0Μ)、聚氯乙烯(pvc)、聚酯Oberlin, Endo and Koyam (Carbon 14, 1976, 133) describe completely different paths for the manufacture of cylindrical carbon nanotubes. This involves the conversion of aromatic hydrocarbons (such as benzene) on metal catalysts. The carbon tube formed has a well-defined graphite hollow core having a diameter that is approximately the diameter of the catalyst particles and that has less graphite ordering on the core. The entire tube can be graphitized by treatment at elevated temperatures (2500 DC-3000 °〇. Most of the above treatments (arc discharge, spray cracking or CVO) are still used to make carbon nanotubes. However, according to known The method of manufacturing single-turn cylindrical carbon nanotubes is very complicated in the equipment and the process, the rate of formation is extremely low and there are often many side reactions that lead to a high proportion of unwanted impurities, ie the yield of such methods is relatively Therefore, even if it is still very technically difficult to manufacture the carbon nanotubes, such nanotubes are used in small amounts for particularly highly specialized applications, although they can be considered for use. In the present invention, but preferably still using cylindrical or reel type multi-turn CNTs 0, it is now apparent that the catalytic treatment is used to commercially produce a relatively large number of seamless cylindrical nanotube forms and multi-walled nesting. Wall carbon nanotubes or carbon nanotubes of the above-described reel or onion structure. These methods generally exhibit higher yields by arc discharge and other methods as described above, and are usually in kilograms at present. (The MW carbon nanotubes manufactured in this way hundreds of kilograms per day worldwide are generally somewhat cheaper than single-walled nanotubes and are therefore used, for example, as an enhancement additive in other materials. 12 201037735 Theoretically The thermoplastic polymer which can be used in the novel molded article and the method for producing the same contains all of the known thermoplastic polymers. The molded article is preferably a thermoplastic polymer based on a group consisting of the following materials. (PC), polyamine (PA), especially nylon 6, 66 or 12 (N6, N66, N12), polystyrene (ps), poly(styrene-acrylonitrile) (SAN), acrylonitrile-propane Alkene-styrene block copolymer (ABS), polyacrylate, especially polymethyl (meth) acrylate (PMMA), poly(formaldehyde oxime), polyvinyl chloride (pvc), polyester

尤其是聚對苯二甲酸乙二酯(PET)、聚對苯二曱酸丁二酯 (PBT)、聚炔烴尤其是聚乙烯(pE)與聚丙烯(pp)、聚醚醚酮 (PEEK)、聚苯醚(PPE)、聚苯硫醚(ppS)、聚氨酯(τρυ)。在 模製物中尤其可有兩或多種上述聚合物以混合物(mixture) 或摻合物(blend)的方式同時存在。尤其較佳的是聚碳酸酯 (PC)與ABS或PBT的摻合物及聚苯_(卿)與pA的換合 物。 本發明的顯著優點是:根據本發明的方法僅僅藉著調 整射出模製方法中的處理參數的處理技術,便可產生在表 j具有不同導電率之相當不同類型的梯度模製物及不同 度。在此方式下,可以簡單的方式使具有不同的 =率的功能讀適應特定的應用。在材料深度上具有不 ^特性的功能it件發現在不同高科技區域中有更多用 :門在通過最小值後亦可再次增加且在模製物 中間的導電率亦可高於表面。 魅i發!的模製物尤其可用以製造抗靜電或導電外罩, 1如用於重視南表φ導電率的家電器具或汽車零件。 13 201037735 【實施方式】 80 mm 圖i以例示性方式沿著垂直參 迎且厚度2 mm)的剖面及在的方向顯示一碟(直徑 分佈。自圖1中概略顯示的電阻率^平面#的對應電阻率 方向(即麵之厚度方向)上的電白可見,首先在z 間增加。在先前技射,包 數且㈣碟的中 率大致上維持定值。 电咬粒子的模製物的電阻 率係以圖”所 將兩導電銀條2、3(其長产B J迹 施加至圓形的樣本】以分析‘=於兩者_距離L) 助於射出模製技術所製成且Μ _ Sq ’其中樣本1係藉 厚度。接著,將電,的電的 ==上讀出電阻率值。在電阻率上至:1〇7二 2的^況下,所用的量測電㈣ 歐”兄下’所用的量測電璧為二 佈於正個樣本厚度的表面電阻率,將樣本1 \母:人在平行於表面的工作臺平面上磨去㈣〇4 _ ί㈣.5麵,接著再次施加兩導電銀條2、3並以上述方式 量測電阻率。 , 實例1(比較例) 藉著在 Arbug 射出模製設備(Allr〇under 37〇 s 8〇〇_15〇; ^力· 8G0 kN)上進行射出模製而自聚碳酸醋(pc)(市售產 口口 . Makrolon® 2805,製造商·· Bayer Materialsdence AG) 與5重量%的破奈米管(官方參考號為1〇2〇〇7〇44〇31 8的德 14 201037735 國專利中請案,f造商:Bayer Mated.· 的複合材料製$靜8 Glenee AG)所組成 垃装,㈤ 厚度2 mm的碟。 射出所示的射出模製碟上量測表面電阻率。 射出、及量泰lj的表面電阻率係顯示於表2中。 定只是二模製螺桿的移動速度。射出速度設 非是漏通道巾以財的有效熔融 物速度。4〇mm/s的射出速度相# ΟIn particular, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyacetylenes, especially polyethylene (pE) and polypropylene (pp), polyetheretherketone (PEEK) ), polyphenylene ether (PPE), polyphenylene sulfide (ppS), polyurethane (τρυ). In particular, two or more of the above polymers may be present in the molding in the form of a mixture or blend. Particularly preferred are blends of polycarbonate (PC) with ABS or PBT and a combination of polyphenylene (P) and pA. A significant advantage of the present invention is that the method according to the present invention can produce quite different types of gradient moldings and different degrees of different conductivity in Table j simply by adjusting the processing techniques of the processing parameters in the injection molding method. . In this way, functional readings with different = rates can be adapted to specific applications in a simple manner. The function of having a non-characteristic in the depth of the material has been found to be more useful in different high-tech areas: the gate can be increased again after passing the minimum value and the conductivity in the middle of the molded article can also be higher than the surface. The molding material of the fascinating i hair! is especially useful for manufacturing an antistatic or conductive outer cover, such as a household appliance or an automobile part for attaching importance to the φ conductivity of the south meter. 13 201037735 [Embodiment] 80 mm Figure i shows a dish (diameter distribution in a schematic manner along the vertical and 2 mm thick) and in the direction of the direction. The resistivity ^ plane # is schematically shown in Figure 1. Corresponding to the electrical resistivity in the direction of resistivity (ie, the thickness direction of the surface), first increases between z. In the previous technique, the number of packets and the medium rate of the (four) discs are substantially constant. The molding of the electric biting particles The resistivity is based on the two conductive silver bars 2, 3 (the long-producing BJ traces are applied to the circular sample) to analyze '= at both _distance L) to facilitate the injection molding technique and _ Sq 'where sample 1 is by thickness. Then, the electrical, electrical == upper read resistivity value. In the case of resistivity up to: 1〇7 2 2, the measured power (4) The measurement power used by "Brothers" is the surface resistivity of the second sample thickness. The sample 1 \ mother: the person is ground on the plane parallel to the surface (4) 〇 4 _ ί (4). 5 faces, Then, two conductive silver strips 2, 3 are applied again and the resistivity is measured in the above manner. Example 1 (Comparative Example) by shooting in Arbug Molding equipment (Allr〇under 37〇s 8〇〇_15〇; ^力·8G0 kN) is injection molded from polycarbonate (pc) (commercially available mouth. Makrolon® 2805, manufacturer· · Bayer Materialsdence AG) with 5% by weight of broken nanotubes (official reference number 1〇2〇〇7〇44〇31 8 de 14 201037735 national patent application, f manufacturer: Bayer Mated. The material is made of $8 Glenee AG), (5) The disc with a thickness of 2 mm. The measured surface resistivity is measured on the injection molded disc shown. The surface resistivity of the injection and the amount of the surface is shown in Table 2. The setting speed is only the moving speed of the two-molded screw. The injection speed is not the effective melt speed of the leaking channel towel. The injection speed of the 4〇mm/s phase# Ο

的壓力。㈣舰仙之液壓系統 I力「=£係由液壓系統中的壓力感測器所量測。 溫产二:表射出模製螺桿的旋轉速度。「熔融物 =代表兔奈米^聚合物複合材料溶融物的溫度。直係 製螺桿上游端處所量測到。耗“槽通道的射出模 「模具溫度」代表射錢具空腔的溫度。其係藉由敎 耦於空腔的内壁上所量測到。 … 表2 測試號 射出 背壓 螺桿 熔融物 模具 自模製物表 表面電阻率 ----- 速度 速度 溫度 溫度 面的距離a ------- mm/s bar 1/min °C °c mm 〇hm/sq i(PC382.M) ------ 40 150 150 300 90 0 9 ^Qvl _i(PC382.i_2) 40 150 150 300 90 0.04 二oyxiU --- 1 44υ1Π7 _^(PC382.i.3) 40 150 150 300 90 0.5 〜 ____ 9.5xl〇6 报明顯地,在測試1至3中(標準射出速度、溶融物愈 模具溫度位於來自表1之建議區間中),表面電阻率沿著j莫 15 201037735 製物厚度方向的分佈幾乎是常數。 實例2(根據本發明之方法) 藉著在 Arbug 射出模製設備(Aiirounder 370 S 800-150; 夾力:800 kN)上進行射出模製而自聚碳酸酯(PC)(市售產 品.Makrolon® 2805 ’ 製造商:Bayer MaterialScienceAG) 與5重量%的碳奈米管(官方參考號為1〇2〇〇7〇44〇31 8的德 國專利申δ月案’製造商.Bayer Materialscience AG)所組成 的複合材料製出直徑80 mm且厚度2 mm的碟。pressure. (4) Ship's hydraulic system I force "= is measured by the pressure sensor in the hydraulic system. Temperature production 2: The injection speed of the molded screw is injected. "Melted product = rabbit nano polymer composite The temperature of the material melt is measured at the upstream end of the straight screw. The "die temperature" of the "channel" of the groove channel represents the temperature of the cavity of the shot. It is measured by coupling the 敎 to the inner wall of the cavity. ... Table 2 Test No. Injection Back Pressure Screw Mold Mold Self-molded Surface Surface Resistivity----- Speed Velocity Temperature Temperature Surface Distance a ------- mm/s bar 1/min °C ° c mm 〇hm/sq i(PC382.M) ------ 40 150 150 300 90 0 9 ^Qvl _i(PC382.i_2) 40 150 150 300 90 0.04 Two oyxiU --- 1 44υ1Π7 _^(PC382 .i.3) 40 150 150 300 90 0.5 ~ ____ 9.5xl〇6 Reported clearly, in tests 1 to 3 (standard injection speed, melt mold temperature is in the recommended range from Table 1), surface resistivity The distribution along the thickness direction of the fabric is almost constant. Example 2 (method according to the invention) by injection molding on an Arbug injection molding apparatus (Aiirounder 370 S 800-150; clamping force: 800 kN) from polycarbonate (PC) (commercial product. Makrolon) ® 2805 'Manufacturer: Bayer MaterialScienceAG) with 5% by weight of carbon nanotubes (official reference number 1〇2〇〇7〇44〇31 8 German patent application δ month case 'manufacturer. Bayer Materialscience AG) The composite material consisted of a disc with a diameter of 80 mm and a thickness of 2 mm.

接著在圖2中所示的射出模製碟上量測表面 電阻率。Next, the surface resistivity was measured on the injection molded disk shown in Fig. 2.

射出模製參數及量測到的表面電阻率係顯示於表3中 射出速度代表射出模製螺桿的移動速度。射出速度惠 定只是螺桿的速度而非是滑槽通道中或空腔中的有效料 物速度。最小射出速度係以下列方式測定為1Qmm/s。在一 系統的測試中,逐漸下降射出速度但維持其他處理參數為 常數直到射出模具無法被完全填充為止。剛好足夠填充相 具的速度為最小射出速度。最小射出速度主要取決於射注 模具空腔的幾何形狀與尺寸及熔融物的黏度。背壓代表势 螺桿後方之細粒劑量作用之液壓系免 壓系統中的壓城測H所量測。 ^ ^ 「螺桿速度」代表射出模製螺桿 溫度」代表碳奈米管_聚人滅人㈣/做度总㈣ M ^ ^ 6 1物複口材枓熔融物的溫度。 :二射::量製::筒中的_於滑槽通道的射出相 「模具溫度」代表射出模具空腔的溫t其係藉由旁 16 201037735 耦於空腔的内壁上所量測到。 表3 測試號 射出 速度 背壓 螺桿 速度 炫融物 溫度 模具 溫度 自模製物表 面的距離a 表面電阻率 mm/s bar 1/min °C °C mm ohm/sq 4(PC382.1-1) 10 150 150 340 120 0 4.49xl03 5(PC382.1-2) 10 150 150 340 120 0.04 1.45xl04 6(PC382.1-3) 10 150 150 340 120 0.5 1.2xl09 很明顯地,在測試4與5中(最低的可能射出速度、熔 融物溫度比表1中的建議範圍高20 °C而模具溫度位於來自 表1之建議區間的最高限度),表面電阻率自模製物表面至 模製物中間大幅上升。 【圖式簡單說明】 上文參考圖式詳細說明本發明的實施例。 圖1為碟形射出模具所製出的模製物,其在z方向上 的表面電阻率為變數。 圖2為測定CNT聚合物複合材料之表面電阻率的測試 配置。 【主要元件符號說明】 1 :樣本 2、3 :導電銀條 4 :電阻計 17The injection molding parameters and the measured surface resistivity are shown in Table 3. The injection speed represents the moving speed of the injection molding screw. The injection speed benefit is simply the speed of the screw rather than the effective material velocity in the chute channel or in the cavity. The minimum injection speed was measured as 1 Qmm/s in the following manner. In a system test, the injection speed was gradually decreased but other processing parameters were maintained constant until the injection mold could not be completely filled. The speed just enough to fill the phase is the minimum injection speed. The minimum injection speed depends primarily on the geometry and size of the injection mold cavity and the viscosity of the melt. The back pressure is measured by the pressure measurement H in the hydraulic pressure-free system in which the fine particle dose behind the screw is applied. ^ ^ "screw speed" represents the temperature of the injection molding screw. "Represents the carbon nanotubes _ 聚人灭人(四) / Do the total (4) M ^ ^ 6 1 The temperature of the composite 枓 枓 melt. : 二射::量制:: The injection phase of the _ in the cylinder channel "Mold temperature" represents the temperature of the injection mold cavity, which is measured by the coupling of the inner wall of the cavity. Table 3 Test No. Injection Speed Back Pressure Screw Speed Brightness Temperature Temperature of Mold Temperature from Mould Surface a Surface Resistivity mm/s bar 1/min °C °C mm ohm/sq 4(PC382.1-1) 10 150 150 340 120 0 4.49xl03 5(PC382.1-2) 10 150 150 340 120 0.04 1.45xl04 6(PC382.1-3) 10 150 150 340 120 0.5 1.2xl09 Obviously, in tests 4 and 5 (the lowest possible injection speed, melt temperature is 20 °C higher than the recommended range in Table 1 and the mold temperature is at the highest limit from the recommended range in Table 1), and the surface resistivity is large from the surface of the molded object to the middle of the molded article. rise. BRIEF DESCRIPTION OF THE DRAWINGS Embodiments of the present invention are described in detail above with reference to the drawings. Fig. 1 is a molded article produced by a disk-shaped injection mold whose surface resistivity in the z direction is variable. Figure 2 is a test configuration for determining the surface resistivity of a CNT polymer composite. [Main component symbol description] 1 : Sample 2, 3: Conductive silver strip 4 : Resistance meter 17

Claims (1)

201037735 七、申睛專利範圍· :丄-種導電模製物 料所組成,其特徵在於:該米粒子_聚合物複合相 奈米粒子射出模製所製成係自熱紐聚合物與碳 導電率為高,且 j導電率梯度,俾使表面的 至少0.1毫米處的最小值波面^直的方向減少至該表面下 2. -種導電模製物,由C處的導電率。 料所組成,其特徵树 ^奈米粒子·聚合物複合材 奈米粒子射出模製所製成且且熱塑性聚合物與碳 導電率為高,且沿著*=導-电率梯度,俾使表面的 至少0.1毫米處的最小值,方向減少至該表面下 率,並具有比今矣/、不低於材料中間處的導電 其1〇〇〇倍的導電率。"之導電率低到其100倍,較佳低到 二:導米粒子-聚合物複合材 奈米粒子射出模製所製成合物與碳 並沿著與該表面垂直的卜 :的二次方較佳地每毫米十的三次方的方式 如申吻專利範圍第】項之模製物, j M(PA)尤其是尼龍 6、66 或 12(N 6、刪、N12)、 本乙稀(PS)、聚(苯乙埽·丙烯氰)(SAN)、丙烯氰_丙二婦 18 201037735 苯乙稀塊體共聚物(ABS)、聚丙烯酸醋尤其是聚曱基(甲基) 丙烯酸酯(PMMA)、聚(甲酸·)(ρ〇Μ)、聚氣乙稀(pvc)、聚 酯尤其是聚對苯二曱酸乙二酯(PET)、聚對苯二曱酸丁二酯 (PBT)、聚炔烴尤其是聚乙烯(PE)與聚丙烯(pP)、聚醚醚酮 (PEEK)、聚苯醚(PPE)、聚苯硫醚(PPS)、聚氨酯(TPU)或包 含兩或多種上述聚合物的摻合物,尤其是聚碳酸酯(pc)與 ABS或PBT的摻合物及聚苯醚(PPE)與PA的摻合物。 Ο 5.如申請專利範圍第1至4項之模製物,其特徵在於: 該碳奈米粒子為類石墨奈米粒子。 . 6·如申請專利範圍第1至5項中任一項之模製物,其特 徵在於:該碳奈米粒子為單層或多層石墨結構。 7. 如申請專利範圍第1至6項中任一項之模製物,其特 徵在於:該單層或多層石墨結構為石墨烯或碳奈米管或其 混合物。 8. 如申睛專利範圍第1至7項中任一項之模製物,其特 徵在於:該碳奈米粒子為單壁或多壁尤其是多壁的碳奈米 管。 9. 如申睛專利範圍第1至8項中任一項之模製物,其特 徵在於:該碳奈米粒子具有自】至5〇〇nm的直徑範圍, 較佳地具有自3至100 nm的直徑範圍,更較佳地具有5 至50 nm的直徑範圍。 1〇.如申請專利範圍第1至9項中任一項之模製物,其特 徵在於.基於該模製物的質量,該碳奈米粒子的存在比例 201037735 % 係介於0.2至15重量%之間,較佳地介於〇 5至 曰 之間,更較佳地介於丨至7重量%之間。 重篁 η. 一種製造導電模製物的方法,尤其是自 與碳奈米粒子藉由射出模製而製造導電的模 ,己物 物在接近表面的-層中具有垂直該表面的導^ 5亥模製 使導電率沿著垂直於該表面的方向上增加,尤^度」俾 製物中接近表面且對應於四分之—壁厚的—層;$在,模 壁厚的位置,此方法包含下列步驟: 以有最小 a) 首先’填充模具的空腔,藉著在—系列 持其他處理參數為定值,但逐漸降低射出速度直到、、隹 具無法被完全充填為止而決定剛好足夠的最=射出射出模 最終將射出速度設定在該模具剛好能夠被填充的嗲曰、度, 出速度’ 射 b) 基於所用的基礎聚合物或聚合物混合物,將士 模具中的熔融物溫度設定在高於該聚合物或聚合物f$出 的最低處理溫度的至少20 0C與至多160 °c間Γ及此合物 c) 基於所用的該聚合物或聚合物混合物,將兮 具的具溫度設定在低於玻璃轉換溫度(在非€系熱、' 物的情況下)或設定在低於溶融溫度(在部分結晶系'熱^塑 的情況下),俾使該模製物能脫模但不產生扭曲形變、、、塑物 12·如申請專利範圍第11項之方法,其特徵在於:在步驟 b)t該熔融物溫度被設定在下列溫度範圍··比下表〗^所 選定之聚合物的T材料-μ溫度的最高溫度更低2〇〇c 更高 100 °C。 〃 20 201037735 表1 T材料-最低 T材料-最高 T模具-最低 T模具-最高 PC 280 °C 320 °C 85 °C 120 °C AP 6 230 280 80 120 AP 66 260 320 80 120 AP 12 210 250 40 80 PS 180 250 30 60 SAN 200 260 40 60 ABS 200 240(280) 40 85 PMMA 200 250 50 70(90) POM 180 220 50 140 0 硬PVC 170 210 30 60 軟PVC 170 200 20 60 PET 260 290 30 140 PBT 230 270 30 140 PEEK(未強化) 350 380 150 180 PEEK(強化) 370 400 150 180 13. 如申請專利範圍第11項之方法,其特徵在於:在步驟 c)中該模具的模具溫度被設定在:表1中所選定之聚合物 的T模具·最低上至高於建議模具溫度T模具-最高*20 GC的最大值 之溫度範圍内。 14. 一種根據申請專利範圍第12或13項之方法於製造如 家電器具的導電外罩或汽車零件的用途。 21201037735 VII. The scope of the patent scope of the application: 丄- kinds of conductive molding materials, which are characterized in that the rice particles _ polymer composite phase nanoparticle injection molding is made of self-heating polymer and carbon conductivity To be high, and the j conductivity gradient, the direction of the minimum wavefront at least 0.1 mm of the surface is reduced to the underlying surface of the surface 2. Conductive molding, the conductivity at C. The composition of the material, the characteristic tree ^ nanoparticle · polymer composite nanoparticle injection molding and the thermoplastic polymer and carbon conductivity is high, and along the * = conductivity - electric gradient, The minimum of at least 0.1 mm of the surface, the direction is reduced to the subsurface rate, and has a conductivity that is 1 times that of today's 、/, not less than the conductivity at the middle of the material. "The conductivity is as low as 100 times, preferably as low as two: the conductive rice particles-polymer composite nano particles are injected and molded into a compound and carbon along the surface perpendicular to the surface: The secondary method is preferably a cubic method of ten times per millimeter, such as the molding of the patent range of the patent, j M (PA), especially nylon 6, 66 or 12 (N 6, deleted, N12), this B Dilute (PS), poly(styrene-acrylonitrile) (SAN), acrylonitrile-propylene-2 1837737735 styrene block copolymer (ABS), polyacrylic acid vinegar, especially polydecyl (meth) acrylate Ester (PMMA), poly(formic acid) (ρ〇Μ), polyethylene (pvc), polyester, especially polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyacetylenes, especially polyethylene (PE) with polypropylene (pP), polyetheretherketone (PEEK), polyphenylene ether (PPE), polyphenylene sulfide (PPS), polyurethane (TPU) or A blend of two or more of the above polymers, especially a blend of polycarbonate (pc) with ABS or PBT and a blend of polyphenylene ether (PPE) with PA. 5. The molded article of claim 1 to 4, wherein the carbon nanoparticle is a graphite-like nanoparticle. The molded article according to any one of claims 1 to 5, wherein the carbon nanoparticle is a single layer or a multilayer graphite structure. 7. The molded article of any one of claims 1 to 6, wherein the single or multiple layer graphite structure is a graphene or carbon nanotube or a mixture thereof. 8. The molded article of any one of claims 1 to 7, wherein the carbon nanoparticle is a single-walled or multi-walled, especially multi-walled carbon nanotube. 9. The molded article according to any one of claims 1 to 8, wherein the carbon nanoparticle has a diameter ranging from 5 to 5 nm, preferably from 3 to 100. The diameter range of nm, more preferably has a diameter range of 5 to 50 nm. The molded article according to any one of claims 1 to 9, wherein the carbon nanoparticle is present in a ratio of from 0.2 to 15% by weight based on the mass of the molded article. Between %, preferably between 〇5 and 曰, more preferably between 丨 and 7% by weight.篁 .. A method of manufacturing a conductive molding, in particular, from a carbon monoxide particle by injection molding to produce a conductive mold, the object has a vertical surface guide in the layer close to the surface. The galvanic molding increases the electrical conductivity in a direction perpendicular to the surface, particularly in the vicinity of the surface and corresponds to a quarter-thickness-thickness layer; at the position of the mold wall thickness, The method comprises the following steps: taking the smallest a) firstly 'filling the cavity of the mold, by using the other series of processing parameters as the fixed value, but gradually reducing the injection speed until, the cookware can not be completely filled and decided just enough The most = injection injection mold finally sets the injection speed to the enthalpy, degree, and speed at which the mold can be filled. "B) Based on the base polymer or polymer mixture used, the temperature of the melt in the mold is set at Above the minimum processing temperature of the polymer or polymer f at least 20 ° C and at most 160 ° c and the compound c) based on the polymer or polymer mixture used, the temperature of the cookware Set at a temperature lower than the glass transition temperature (in the case of non-heating, 'in the case of non-materials) or set below the melting temperature (in the case of partial crystallization, 'thermal molding), so that the molding can be demolded However, the method of claim 11 is not produced, and the method is as follows: in the step b), the temperature of the melt is set in the following temperature range. The T material of the polymer - the maximum temperature of the μ temperature is lower by 2 〇〇 c and higher by 100 ° C. 〃 20 201037735 Table 1 T material - lowest T material - highest T mold - lowest T mold - highest PC 280 °C 320 °C 85 °C 120 °C AP 6 230 280 80 120 AP 66 260 320 80 120 AP 12 210 250 40 80 PS 180 250 30 60 SAN 200 260 40 60 ABS 200 240 (280) 40 85 PMMA 200 250 50 70 (90) POM 180 220 50 140 0 Hard PVC 170 210 30 60 Soft PVC 170 200 20 60 PET 260 290 30 140 PBT 230 270 30 140 PEEK (unreinforced) 350 380 150 180 PEEK (reinforced) 370 400 150 180 13. The method of claim 11, characterized in that in step c) the mold temperature of the mold is Set in the temperature range of the T mold of the polymer selected in Table 1 from the lowest to the maximum of the recommended mold temperature T mold - the highest * 20 GC. 14. Use of a conductive outer cover or automotive part, such as a household appliance, according to the method of claim 12 or 13. twenty one
TW099107180A 2009-03-13 2010-03-12 Moulding composed of carbon nanoparticle-polymer mixtures with a gradient of electrical volume conductivity TW201037735A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102009012673A DE102009012673A1 (en) 2009-03-13 2009-03-13 Shaped bodies of carbon nanoparticle polymer blends with gradient properties of the electrical volume conductivity

Publications (1)

Publication Number Publication Date
TW201037735A true TW201037735A (en) 2010-10-16

Family

ID=42227723

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099107180A TW201037735A (en) 2009-03-13 2010-03-12 Moulding composed of carbon nanoparticle-polymer mixtures with a gradient of electrical volume conductivity

Country Status (3)

Country Link
DE (1) DE102009012673A1 (en)
TW (1) TW201037735A (en)
WO (1) WO2010102731A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459245B (en) * 2010-12-30 2014-11-01 Hon Hai Prec Ind Co Ltd Touch pen

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011004899U1 (en) * 2011-04-05 2012-07-09 Peguform Gmbh Motor vehicle interior trim component made of plastic
EP2548657A1 (en) 2011-07-22 2013-01-23 International Automotive Components Group GmbH Coated plastic part and method of producing a coated plastic part
DE102014202942A1 (en) * 2014-02-18 2015-08-20 Siemens Aktiengesellschaft Contacting arrangement with mutually movably mounted contact elements
US10049784B2 (en) * 2015-10-07 2018-08-14 King Fahd University Of Petroleum And Minerals Nanocomposite films with conducting and insulating surfaces
EP3364423B1 (en) * 2017-02-16 2020-04-01 Heraeus Deutschland GmbH & Co. KG Electric coating with a particle gradient, in particular for medical devices
CN113306059B (en) * 2021-05-31 2022-01-28 四川大学 Terahertz modulation material with gradient modulation amplitude and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1469930A (en) 1974-10-11 1977-04-06 Atomic Energy Authority Uk Carbon filaments
CA1175616A (en) 1981-01-05 1984-10-09 Exxon Research And Engineering Company Production of iron monoxide and carbon filaments therefrom
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US5591382A (en) * 1993-03-31 1997-01-07 Hyperion Catalysis International Inc. High strength conductive polymers
JP4243949B2 (en) * 2002-11-29 2009-03-25 日精樹脂工業株式会社 Conductive resin molded article having insulating surface layer and molding method thereof
US20070176319A1 (en) 2003-08-06 2007-08-02 University Of Delaware Aligned carbon nanotube composite ribbons and their production
DE10336473A1 (en) 2003-08-08 2005-03-03 Degussa Ag Molding composition and moldings used for dissipating electric charge, e.g. antistatic packaging, structural part in zone protected from explosion or electromagnetic screening, contains electroconductive cellulose fibers in polymer matrix
DE102004054959A1 (en) 2004-11-13 2006-05-18 Bayer Technology Services Gmbh Catalyst for producing carbon nanotubes by decomposition of gaseous carbon compounds on a heterogeneous catalyst
DE102006007147A1 (en) 2006-02-16 2007-08-23 Bayer Technology Services Gmbh Process for the continuous production of catalysts
DE102007044031A1 (en) 2007-09-14 2009-03-19 Bayer Materialscience Ag Carbon nanotube powder, carbon nanotubes and methods of making same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI459245B (en) * 2010-12-30 2014-11-01 Hon Hai Prec Ind Co Ltd Touch pen

Also Published As

Publication number Publication date
WO2010102731A1 (en) 2010-09-16
DE102009012673A1 (en) 2010-09-16

Similar Documents

Publication Publication Date Title
TW201037735A (en) Moulding composed of carbon nanoparticle-polymer mixtures with a gradient of electrical volume conductivity
Tambrallimath et al. Thermal behavior of PC-ABS based graphene filled polymer nanocomposite synthesized by FDM process
KR102320339B1 (en) Electrically conductive molded body with positive temperature coefficient
CA2955235C (en) Conductive polymer composite
Lin et al. Dynamical observation of bamboo-like carbon nanotube growth
JP5457274B2 (en) Highly thermally conductive and moldable thermoplastic composites and compositions
CN101734650B (en) Method for preparing graphene-carbon nano tube hybrid composite
KR101309738B1 (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
Abbasi et al. Properties of microinjection molding of polymer multiwalled carbon nanotube conducting composites
JP6423476B2 (en) Electrically conductive resin composition and molded product thereof
TW200918282A (en) Process for the production of an electrically conducting polymer composite material
CN102161814B (en) Preparation method of oriented carbon nano tube/ polymer composite membrane
US9576706B2 (en) Method for preparing carbon nano material/polymer composites
WO2013122323A1 (en) Carbon nano-material pellets and a method for preparing the pellets from powder of carbon nano-material
JP2009074072A (en) Method for improving conductivity of resin molded body comprising carbon nanotube by heat treatment
JP2012193105A5 (en)
CN105377998A (en) Process for covalently grafting a carbonaceous material
KR101338199B1 (en) Polymer-conductive fillers composites and a preparing method thereof
Zhou et al. Electrical, morphological and thermal properties of microinjection molded polyamide 6/multi-walled carbon nanotubes nanocomposites
JP6705881B2 (en) Conductive resin composition and method for producing the same
TW201027565A (en) Composite material including carbon fibers
KR102172152B1 (en) High heat resistant carbon nanotubes and polymer composite comprising same
Mokhtari et al. A review of electrically conductive poly (ether ether ketone) materials
CN107108954B (en) High strength polymers containing carbon nanotubes
WO2013157621A1 (en) Masterbatch for electrically conductive resin, and electrically conductive resin