TW201036203A - GaN-series LED containing Mg-doped layer - Google Patents

GaN-series LED containing Mg-doped layer Download PDF

Info

Publication number
TW201036203A
TW201036203A TW98109726A TW98109726A TW201036203A TW 201036203 A TW201036203 A TW 201036203A TW 98109726 A TW98109726 A TW 98109726A TW 98109726 A TW98109726 A TW 98109726A TW 201036203 A TW201036203 A TW 201036203A
Authority
TW
Taiwan
Prior art keywords
layer
magnesium
type cladding
light
doped layer
Prior art date
Application number
TW98109726A
Other languages
Chinese (zh)
Other versions
TWI385831B (en
Inventor
yu-zhu Li
Xin-Hong Yao
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to TW98109726A priority Critical patent/TW201036203A/en
Publication of TW201036203A publication Critical patent/TW201036203A/en
Application granted granted Critical
Publication of TWI385831B publication Critical patent/TWI385831B/zh

Links

Landscapes

  • Led Devices (AREA)

Abstract

The present invention provides a GaN (Gallium Nitride)-series LED containing Mg (magnesium) -doped layer, which comprises: a n-type cladding unit; a p-type cladding layer spaced at an interval with the n-type cladding unit; a Mg-doped layer between the n-type cladding unit and the p-type cladding layer; and a light-emitting unit between the Mg-doped layer and the p-type cladding layer. The Mg-doped layer is made of GaN-series material and doped with Mg atoms. The Mg-doped layer provides the blocking effect, which can greatly reduce the overflow toward the p-type cladding layer when the electrons flow from the n-type cladding unit into the light-emitting unit. Therefore, when the present invention is operated at high current, the probability of combining the electrons and holes of devices in the light-emitting unit is increased, thereby further increasing the light-emitting efficiency.

Description

201036203 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種發光二極體,特別是指一種氮化 鎵系的發光二極體。 【先前技術】 傳統氮化銦鎵/氮化鎵系發光二極體(InGaN/GaN-LED) 在高電流密度操作下會產生嚴重的發光效率衰減 (efficiency droop)問題,所以不利於高功率LED之應用, Ο 為了改善上述缺失,如圖1所示,為I.V. Rozhansky等人 於期刊「Phys. Stat. Sol.(a) 204, No.l,No· 227-230」所提 出的一種發光二極體1,並包含:一 n型披覆層11、一連 接該η型披覆層11的AlGaN阻障層12、一連接該阻障層 12的p型發光層13’以及一連接該p型發光層13的p型 披覆層14’所述p型發光層13是由InGaN/GaN所構成的 多重量子井(Multiple Quantum Well,簡稱MQW)結構。亦 即,Rozhansky所提出之發光二極體丨,是將以往技術中夫 一 經摻雜或摻雜成η型的發光層,改變為摻雜成p型的發光 層13。 該發光二極體1確實可以改善高電流密度下的效率衰 減問題,但是在發光層13膜層磊晶時需要額外添加電洞 載子,例如加入鎂(Mg)才能使其成為ρ型。雖然在已知技 藝中,於發光層中添加η型載子仍可將磊晶品質控制良 . 好,但是一般而言,當添加Ρ型載子時,膜層之磊晶品質 _ 則無法獲得良好控制,因此上述Rozhansky之發光二極體 201036203 卜將該發光層u摻雜成p型後,其p型發光層13之品 質不佳,即使該元件確實改善了高電流密度的外部量子效 率(External Quantum Efficiency,簡稱 EQE)衰減問題,但 是實際上其元件之發光效率仍然無法提高,此乃因為膜層 品質不佳而造成元件效能不好。 【發明内容】 因此,本發明之目的,即在提供一種在高電流密度下 可以提升發光效率,而且膜層品質佳的含有鎮換雜層的說 化鎵系發光二極體。 於是本發明含有鎂摻雜層的氮化鎵系發光二極體, 包含.一 η型披覆單元、一與該n型披覆單元間隔的p型 披覆層一層位於該η型披覆單元與該?型披覆層之間的 鎂摻雜層’以及一個位於該鎂摻雜層以及該ρ型被覆層之 間的發光單元4中’該鎂摻雜層是由_系材料製成並 且摻雜鎂原子。 藉由設置該鎂摻雜層而具有阻隔效果,降低大電流操 作時由η型披覆單元流人該發光單元的電子朝該ρ型披 覆層的溢流,因此本發明操作於大電流時,可以提升元件 的電子與電洞在該發光單元中結合的機率,進而提升發光 效=。所述鎂摻層之鎂原子的摻雜濃度為5xl〇I6cm_3〜 7 時,可以達到良好的阻隔電子擴散之效果,其中, 當摻雜濃度過低而小於5xlGl6em.3時,對於電子溢流的阻 隔效果不佳,當摻雜濃度過高而大於2xl〇19cm-3時,則會 因為過度摻雜而影響膜層品質,故本發明之鎮原子的推雜 201036203 而且較佳地為lxl0ncm-3〜5x 濃度以上述範圍為佳 l〇18cm'3 ° 其中,該η型披覆單元包括一層第一濃度層,以及一 層位於該帛/農度層與該錢掺雜層之間的第二濃度層,該 等第一、二濃度層之摻雜濃度可以相同亦可以不同。該第 二濃度層可以為單—材料製成之單層結構,也可以由至少 —種以上之材料製成的多層膜層堆疊結構,在本發明之實201036203 VI. Description of the Invention: [Technical Field] The present invention relates to a light-emitting diode, and more particularly to a gallium nitride-based light-emitting diode. [Prior Art] Conventional Indium Gallium Nitride/GaN Gallium Light Emitting Diode (InGaN/GaN-LED) can cause severe luminous efficiency attenuation (fficiency droop) problems under high current density operation, so it is not conducive to high power LEDs. Application, Ο In order to improve the above-mentioned deficiency, as shown in Fig. 1, a light-emitting two proposed by IV Rozhansky et al. in the journal "Phys. Stat. Sol. (a) 204, No. 1, No. 227-230" The pole body 1 includes: an n-type cladding layer 11, an AlGaN barrier layer 12 connecting the n-type cladding layer 11, a p-type light emitting layer 13' connecting the barrier layer 12, and a connection The p-type light-emitting layer 13 of the p-type light-emitting layer 13 is a multiple quantum well (MQW) structure composed of InGaN/GaN. That is, the light-emitting diode enthalpy proposed by Rozhansky is changed to a light-emitting layer 13 doped into a p-type by a light-emitting layer which has been doped or doped into an n-type in the prior art. The light-emitting diode 1 can indeed improve the efficiency attenuation problem at a high current density, but it is necessary to additionally add a hole carrier when the film layer of the light-emitting layer 13 is epitaxial, for example, magnesium (Mg) is added to make it p-type. Although it is known in the art to add an n-type carrier to the light-emitting layer, the epitaxial quality can be well controlled. However, in general, when a germanium-type carrier is added, the epitaxial quality of the film is not obtained. Good control, so the above-mentioned Rozhansky light-emitting diode 201036203 after doping the light-emitting layer u into a p-type, the quality of the p-type light-emitting layer 13 is not good, even if the element does improve the external quantum efficiency of high current density ( External Quantum Efficiency (EQE) is attenuating, but in fact the luminous efficiency of its components still cannot be improved. This is because the film quality is not good and the component performance is not good. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a gallium-based light-emitting diode comprising a town-exchange layer which can improve luminous efficiency at a high current density and which has excellent film quality. Therefore, the gallium nitride-based light-emitting diode of the present invention comprising a magnesium-doped layer includes an n-type cladding unit, and a p-type cladding layer spaced apart from the n-type cladding unit is located in the n-type cladding unit. With that? a magnesium doped layer between the type of cladding layers and a light-emitting unit 4 between the magnesium-doped layer and the p-type coating layer. The magnesium-doped layer is made of a _-based material and doped with magnesium atom. By providing the magnesium doped layer to have a barrier effect, the overflow of the electrons of the light-emitting unit toward the p-type cladding layer by the n-type cladding unit during the high current operation is reduced, so that the present invention operates at a large current It can improve the probability of the electrons and holes of the component being combined in the light-emitting unit, thereby improving the luminous efficacy. When the doping concentration of the magnesium doped magnesium atom is 5xl 〇I6cm_3~7, a good effect of blocking electron diffusion can be achieved, wherein when the doping concentration is too low and less than 5xlGl6em.3, for electron overflow The barrier effect is not good. When the doping concentration is too high and is greater than 2xl 〇 19cm-3, the quality of the film layer is affected by overdoping. Therefore, the town atom of the present invention is notched 201036203 and is preferably lxl0ncm-3. The concentration of ~5x is preferably in the above range: 18 cm'3 °, wherein the n-type cladding unit comprises a first concentration layer, and a second concentration between the germanium/agronomic layer and the money doped layer The doping concentration of the first and second concentration layers may be the same or different. The second concentration layer may be a single layer structure made of a single material, or a multilayer film layer stack structure made of at least one or more materials, in the present invention.

施例五中’该第二濃度層包括數個彼此間隔的第-膜層, 以及數個與該等第—膜層交錯排列的第二膜層。所述第一 膜層疋由GaN系材料所製成,所述第二膜層是由inGaN 系材料所製成。 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在 以下配合參考圖式之五個較佳實施例的詳細說明中,將可 清楚的呈現。在本發明被詳細描述之前,要注意的是,在 以下的說明内容中’類似的元件是以相同的編號來表示。 參閱圖2’本發明含有鎂摻雜層的氮化鎵系發光二極 體之第一較佳實施例,包含:一基板單元2、一位於該基 板單元2上的n型披覆單元3、一個間隔位於該η型披覆 單元3上方的ρ型披覆層4、一個位於該η型彼覆單元3 的表面的鎂摻雜層5、一連接該鎂摻雜層5與該ρ型披覆 層4的發光單元6,以及二個分別位於該^型彼覆單元3 和該Ρ型披覆層4之表面的電極7。 該基板單元2包括一基板21,以及一彼覆在該基板 5 201036203 21的表面的緩衝層22。所述基板21可以使用藍寶石基 板、氮化鎵基板或矽基板,本實施例是使用藍寶石基板, 而該緩衝層22之主要材料為氮化鎵(GaN)。 該η型披覆單元3包括一層設置在該緩衝層22上的 第一濃度層31,以及一層位於該第一濃度層31與該鎂摻 雜層5之間的第二濃度層32。其中,該第一濃度層31之 厚度為5ym’前述其中一電極7是位於該第一濃度層31 的表面。所述第一濃度層31與第二濃度層32的主要材料 皆為氮化鎵’該第一濃度層31摻雜有lxl〇i9cm-3的梦(Si) 而形成η型半導體,該第二濃度層32摻雜有5xl〇18cm-3 的碎而亦形成η型半導體。 該Ρ型披覆層4之主要材料為GaN,並摻雜有1χ 102QcnT3的鎂(Mg)而形成ρ型半導體,其厚度為2〇〇nm。 該鎂摻雜層5之主要材料亦為GaN,並摻雜有5χ 1018cnT3的鎂(Mg),其厚度為50nm。 本實施例之發光單元6為多重量子井(MQW)結構,並 包括數個彼此間隔的阻障層61,以及與等阻障層Η交錯 排列的井層62,而且該發光單元6的最上方與最下方皆^ 阻障層61,下方的阻障層61連接該鎂摻雜層5,上方的 阻障層61連接該p型披覆層4。所述阻障層6ι是以 的材料所製成’其厚度$ 12nm。上述井$ 62是以化學式In the fifth embodiment, the second concentration layer comprises a plurality of first film layers spaced apart from each other, and a plurality of second film layers interlaced with the first film layers. The first film layer is made of a GaN-based material, and the second film layer is made of an inGaN-based material. The above and other technical contents, features and effects of the present invention will be apparent from the following detailed description of the preferred embodiments of the invention. Before the present invention is described in detail, it is noted that in the following description, the like elements are denoted by the same reference numerals. Referring to FIG. 2, a first preferred embodiment of a gallium nitride-based light-emitting diode of the present invention comprising: a substrate unit 2, an n-type cladding unit 3 on the substrate unit 2, a p-type cladding layer 4 spaced above the n-type cladding unit 3, a magnesium doped layer 5 on the surface of the n-type cladding unit 3, a connection between the magnesium doped layer 5 and the p-type layer The light-emitting unit 6 of the cladding 4, and two electrodes 7 respectively located on the surface of the pattern-forming unit 3 and the dome-shaped cladding layer 4. The substrate unit 2 includes a substrate 21 and a buffer layer 22 covering the surface of the substrate 5 201036203 21 . The substrate 21 may use a sapphire substrate, a gallium nitride substrate or a germanium substrate. In this embodiment, a sapphire substrate is used, and the main material of the buffer layer 22 is gallium nitride (GaN). The n-type cladding unit 3 includes a first concentration layer 31 disposed on the buffer layer 22, and a second concentration layer 32 between the first concentration layer 31 and the magnesium doped layer 5. The thickness of the first concentration layer 31 is 5 μm'. One of the electrodes 7 is located on the surface of the first concentration layer 31. The main material of the first concentration layer 31 and the second concentration layer 32 are all gallium nitride. The first concentration layer 31 is doped with a dream (Si) of lxl〇i9cm-3 to form an n-type semiconductor, and the second The concentration layer 32 is doped with 5 x 1 〇 18 cm -3 and also forms an n-type semiconductor. The main material of the ruthenium-type cladding layer 4 is GaN, and is doped with magnesium (Mg) of 1 χ 102 QcnT3 to form a p-type semiconductor having a thickness of 2 〇〇 nm. The main material of the magnesium doped layer 5 is also GaN, and is doped with 5 χ 1018cnT3 of magnesium (Mg), and has a thickness of 50 nm. The light-emitting unit 6 of the present embodiment is a multiple quantum well (MQW) structure, and includes a plurality of barrier layers 61 spaced apart from each other, and a well layer 62 interlaced with the equal barrier layer ,, and the uppermost portion of the light-emitting unit 6 The barrier layer 61 is connected to the lowermost portion, the barrier layer 61 is connected to the underlying barrier layer 61, and the upper barrier layer 61 is connected to the p-type cladding layer 4. The barrier layer 6i is made of a material having a thickness of $12 nm. The above well $62 is a chemical formula

In〇.15Ga0.85N的材料所製成,其厚度為2 5nm,井層 能隙小於阻障層6 1,而日鉍ν土 & & a ο 構 早增οι而且較佳地井層62可具有量子點結 201036203 本發明含有鎂摻雜層的氮化鎵系發光二極體之第二〜 第四較佳實施例,與該第一較佳實施例之結構大致相同, 不同之處僅在於該第二濃度層32的si摻雜濃度,或是鎂 掺雜層5中的Mg摻雜濃度,請見表一。另外’表一之比 較例一與本發明不同之處在於:比較例一為一般傳統的氮 化鎵系發光二極體’比較例一沒有設置本發明之鎂摻雜層The material of In〇.15Ga0.85N is made of a material having a thickness of 25 nm, the well layer energy gap is smaller than the barrier layer 161, and the 铋ν铋土 && a ο 早 ο ο There may be a quantum dot junction 201036203. The second to fourth preferred embodiments of the gallium nitride-based light-emitting diode of the present invention containing the magnesium-doped layer are substantially the same as the structure of the first preferred embodiment, and the difference is only The Si doping concentration of the second concentration layer 32 or the Mg doping concentration in the magnesium doping layer 5 is shown in Table 1. Further, the ratio of Table 1 differs from that of the present invention in that Comparative Example 1 is a conventional conventional gallium nitride-based light-emitting diode. Comparative Example 1 does not have the magnesium doped layer of the present invention.

實施例 Si掺雜濃度(cm·3) Mg摻雜濃度(cm'3) 一 5xl018 5xl018 二 5xl018 2.5xl018 三 5xl018 1.25xl018 四 比較例一 lxlO19 5xl018 X 配合參閱圖3 ’為本發明實施例·—四與比較例一之外 部量子效率(External Quantum Efficiency,簡稱 EQE)·電流 密度(current density)比較圖,而且縱輛之外部量子效率為 歸一化(normalized)的數值。比較例一之曲線顯示該發光二 極體在電流密度約為10 A/cm2左右,其外部量子效率達到 最大值,之後隨著電流密度增加而明顯地下降。反觀本發 明實施例一 ~三,其外部量子效率皆是隨著電流密度增加 而增加,而實施例四的外部量子效率則是在電流密度約為 7 201036203 Γ,A::2左右達到最大值,之後雖然隨著電流增加而降 -旦八降低幅度極為緩和,並且仍維持在8〇%以上, 施例四之特性顯*,其可適料電流操作範圍更廣。= 此,發明確實可以降低在大電流操作下的效率衰 題,有利於應用在高功率的發光二極體。 ° 由以上說明可知,本發明具有下列優點. (-)本發明藉由設置該鎖摻雜層5,利用 子的摻雜,使該鎂摻雜 、有鎂原 此·電m 電子擴散的功效,因 =子與電洞注入該發光單元6時,該鎂摻雜層5可以 電子往該P型披覆層4移動,進而提升 該發光單元6巾結合_ 同在 密度之效率衰域心 明可以改善高電流 羊哀減問4、提升發光效率, 二極體之良好靡田7作為间功率發光 因為叫的說明的是,摻雜層5是否會 要藉由=ρ型半導體層,並非所問,因為只 要藉由鎂原子的摻雜 散之功效即可。 子朝該Ρ型披覆層4擴 (二)本發明是在該鎂摻雜 發光單元6則不兩Φ 作摻雜的動作,沉積該 膜層在蟲晶二:摻雜製程,因此該發光單元6各 曰π猫曰曰^儿積時,品質仍 影響其膜層& ,·、、良好,不會有掺雜原子 一發:極:^ 媒層品質而;=:較之下,確實具有較佳之發光層 參閱圖4 電流操作下的發光效率。 體之第五較佳實=明:有鎂摻雜層的氮化鎵系發光二極 歹,、該第四較佳實施例之結構大致相 201036203 .同,不同之處在於:本實施例之n型披覆單元3的第二濃 度層32’包括數個彼此交錯排列的第一膜層321以及第二 膜層322,所述第一膜層321是以化學式GaN的材料所製 成,其厚度為12 nm,第二膜層322是以111〇1(}&〇以材料 所製成,其厚度為2.5 nm。該第二濃度層32之矽摻雜濃 度為lxlO19 cm·3 ’並且藉由第一、二膜層321、322交錯 排列而形成超晶格(super lattice)結構。 本實施例之發光單元6的阻障層61是以化學式GaN 〇 的材料所製成,而井層62是以In〇_25GaQ.75N材料所製成。 本實施例之鎂摻雜層5的鎂摻雜濃度為125xl〇i8cm·3。 配合參閱圖5,為本發明實施例五與比較例二之外部 量子效率-電流密度比較圖,比較例二之各層的結構與濃度 • 皆與實施例五相同,但是該比較例二沒有設置本發明之鎂 摻雜層5。圖5之縱轴數值為實測數值,並未歸一化,由 圖中可看出當電流密度大於15 A/Cm2之後,本發明之外部 量子效率高於比較例二,所以本發明確實提高元件操作於 〇 大電流下的發光效率,有助於高功率發光二極體之應用。 综上所述,本發明主要是藉由該鎂摻雜層5來提升發 光效率並且可以維持良好膜層品質,而且該鎂摻雜層5與 其它膜層的相對關係,是必須位於η型披覆單元3及發光 單元6之間。而任何其它類似之結構,無論其膜層結構如 何變化’例如即使在鎂摻雜層5與η型披覆單元3之間又 多加其它膜層時,只要該鎂摻雜層5的相對位置是在η型 彼覆單元3及發光單元6之間,即為本發明所保護之範 201036203 圍:。此外i實施時不需以該發光單^ 6之型態為限制,只 要該發光單兀6未經p型摻雜並且可供電子、電洞結合即 可’所以例如多看县1 1 . 夕重篁子井、至少二種材料堆疊之異質接 面’或者單一材料形成之膜層…等結構皆可使用。 惟以上所述者,僅為本發明之較佳實施例而已,當不 能以此限定本發明實施之範圍,即大凡依本發㈣請專利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一種已知發光二極體的結構示意圖; 圖2是一示tW,顯示本發明含有鎮換雜層的氮化錄 系發光二極體之一第一較佳實施例; 圖3是本發明實施例一〜四與比較例一之外部量子效 率-電流密度比對圖,而且縱軸之外部量子效率為被歸一化 (normalized)後的數值; 圖4是一不意圖,顯示本發明含有鎮推雜層的氣化錄 系發光二極體之一第五較佳實施例;及 圖5是本發明實施例五與比較例二之外部量子效率_ 電流密度比對圖,縱軸之數值為實際測試數值,並未歸一 化。 10 201036203 【主要元件符號說明】 〇 基板單元 322 〇 1 / I «丨 «6» -基板 4… 22……… •緩衝層 5 ·· 2 • η型披覆單元 6 * 〇 1 ,第一濃度層 61 3 2 '* -第二濃度層 62 321 *»^f * * •第一膜層 7… -…第二膜層 …· P型披覆層 •…鎂摻雜層 …-發光單元 •…阻障層 •…井層 …電極Example Si doping concentration (cm·3) Mg doping concentration (cm'3) a 5xl018 5xl018 two 5xl018 2.5xl018 three 5xl018 1.25xl018 four comparative examples one lxlO19 5xl018 X with reference to Figure 3 'is an embodiment of the invention · 4. Comparison of external quantum efficiency (EQE) and current density of Comparative Example 1, and the external quantum efficiency of the vertical vehicle is a normalized value. The curve of Comparative Example 1 shows that the light-emitting diode has a current density of about 10 A/cm2, its external quantum efficiency reaches a maximum value, and then decreases remarkably as the current density increases. In contrast, in the first to third embodiments of the present invention, the external quantum efficiency increases with increasing current density, and the external quantum efficiency of the fourth embodiment is at a current density of about 7 201036203 Γ, and A::2 reaches a maximum value. After that, although the current decreases, the reduction is extremely moderate, and it is still maintained above 8〇%. The characteristics of the fourth embodiment are *, which can accommodate a wider range of currents. = This invention can indeed reduce the efficiency degradation under high current operation and is beneficial for high power LEDs. It can be seen from the above description that the present invention has the following advantages. (-) The present invention provides the effect of the magnesium doping and the diffusion of magnesium and electrons by using the doping layer 5 by using the doping layer 5. When the sub-electrode and the hole are injected into the light-emitting unit 6, the magnesium-doped layer 5 can be electronically moved to the P-type cladding layer 4, thereby enhancing the light-emitting unit 6 to be combined with the density. It can improve the high current sheep sorrow and ask for 4, improve the luminous efficiency, and the good 靡田7 of the diode is used as the inter-power illuminating because it is stated whether the doping layer 5 is to be replaced by the =ρ-type semiconductor layer. Q, because it only needs to be doped by the doping of magnesium atoms. The invention is characterized in that the magnesium-doped light-emitting unit 6 does not have two Φ doping actions, and the film layer is deposited in the worm crystal two: doping process, so the luminescence When the unit 6 曰 曰曰 曰曰 儿 , , , , , , , , , , , , , , , , , , , 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质 品质It is true that there is a better luminescent layer. See Figure 4 for luminous efficiency under current operation. The fifth preferred embodiment of the body is: a gallium nitride-based light-emitting diode having a magnesium-doped layer, and the structure of the fourth preferred embodiment is substantially the same as 201036203. The difference is that the embodiment is The second concentration layer 32' of the n-type cladding unit 3 includes a plurality of first film layers 321 and a second film layer 322 which are staggered with each other, and the first film layer 321 is made of a material of a chemical GaN type. The thickness of the second film layer 322 is 111 〇 1 (} & 〇 made of material, the thickness of which is 2.5 nm. The second concentration layer 32 has a erbium doping concentration of lxlO19 cm·3 'and The super lattice structure is formed by staggering the first and second film layers 321 and 322. The barrier layer 61 of the light-emitting unit 6 of the embodiment is made of a chemical GaN germanium material, and the well layer 62 is made of In〇_25GaQ.75N material. The magnesium doping layer 5 of the present embodiment has a magnesium doping concentration of 125xl〇i8cm·3. Referring to FIG. 5, it is the fifth embodiment and the second comparative example of the present invention. The external quantum efficiency-current density comparison map, the structure and concentration of each layer of Comparative Example 2 are the same as in the fifth embodiment, but the ratio The magnesium doped layer 5 of the present invention is not provided in the second embodiment. The vertical axis value of FIG. 5 is the measured value and is not normalized. It can be seen from the figure that when the current density is greater than 15 A/cm 2 , the outside of the present invention The quantum efficiency is higher than that of the second embodiment, so the present invention does improve the luminous efficiency of the device operating at a large current, and contributes to the application of the high-power light-emitting diode. In summary, the present invention mainly utilizes the magnesium doping. The impurity layer 5 is used to improve the luminous efficiency and maintain good film quality, and the relative relationship between the magnesium doping layer 5 and other film layers must be between the n-type cladding unit 3 and the light-emitting unit 6. Any other similar The structure, regardless of how the film structure changes, for example, even when other film layers are added between the magnesium doped layer 5 and the n-type cladding unit 3, as long as the relative position of the magnesium doped layer 5 is at the n-type Between the cover unit 3 and the light-emitting unit 6, it is the protection of the invention 201036203: In addition, the implementation of i does not need to be limited by the type of the light-emitting unit 6, as long as the light-emitting unit 6 is not p-type Doped and can be combined with electrons and holes Therefore, for example, it is possible to use a structure such as a heterogeneous junction of at least two kinds of materials stacked or a film layer formed of a single material, etc., but only the above is only the comparison of the present invention. The present invention is not limited to the scope of the invention, and the simple equivalent changes and modifications made by the present invention in accordance with the scope of the invention and the scope of the invention are still within the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the structure of a known light-emitting diode; FIG. 2 is a tW showing the first preferred one of the nitride-based light-emitting diodes of the present invention containing a town-exchange layer. 3 is an external quantum efficiency-current density comparison diagram of Embodiments 1 to 4 of the present invention and Comparative Example 1, and the external quantum efficiency of the vertical axis is normalized; FIG. 4 is A fifth preferred embodiment of a gasification-recorded light-emitting diode of the present invention containing a town-inducing layer; and FIG. 5 is an external quantum efficiency_current density of Example 5 and Comparative Example 2 of the present invention. Comparison graph, the number of vertical axes The actual test value, not normalized. 10 201036203 [Description of main component symbols] 〇Substrate unit 322 〇1 / I «丨«6» -Substrate 4...22.........•Buffer layer 5 ·· 2 • η-type cladding unit 6 * 〇1 , first concentration Layer 61 3 2 '* - second concentration layer 62 321 *»^f * * • first film layer 7... -... second film layer...·P-type cladding layer......magnesium doped layer...-lighting unit• ...the barrier layer•...well layer...electrode

1111

Claims (1)

201036203 七、申請專利範圍: ι· 一種含有鎂摻雜層的氮化鎵系發光二極體,包含. 一 η型彼覆單元; 一 Ρ型披覆層’與該η型披覆單元間隔; 一鎂摻雜層,位於該η型披覆單元與該卩型披覆層之 間,該鎂掺雜層是由GaN系材料製成並且摻雜鎮原子. 及 ' * 一發光單元,位於該鎂摻雜層以及該p型披覆層之 間。 2.依據申請專利範圍第 系發光二極體,其中 xl016cm'3~2xl019cm'3 1項所述之含有鎂摻雜層的氮化鎵 該鎂摻層之鎂原子的摻雜濃度為5 3. 依據申請專利範圍第 系發光二極體,其中 xl017cm'3~5xl〇18cm'3 2項所述之含 ’鎂摻雜層的氮化鎵 ,該鎂摻層之鎂屌 原子的摻雜濃度為1 4. 依據申請專利範圍第 系發光二極體,其中, 層,以及一層位於該第 濃度層。 項所述之3有鎂摻雜層的氮化鎵 該n型披覆單元包括—層第一濃度 濃度層與該鎂摻雜層之間的第二 5. 依據申請專利範圍第 系發光二極體,其中 1項所述之含有 該η型披覆單元 的第-膜層,以及數個與該等第 層。 鎂摻雜層的氮化鎵 包括數個彼此間隔 交錯排列的第二膜 6.依據申請專利範圍第 5項所述之含有 鎂摻雜層的氮化鎵 12 201036203 系發光二極體,其中,所述第一膜層是由GaN系材料所 製成,所述第二膜層是由InGaN系材料所製成。201036203 VII. Patent application scope: ι· A gallium nitride-based light-emitting diode containing a magnesium-doped layer, comprising: an n-type cladding unit; a germanium-type cladding layer' is spaced apart from the n-type cladding unit; a magnesium doped layer between the n-type cladding unit and the germanium-type cladding layer, the magnesium doped layer being made of a GaN-based material and doped with a town atom; and a *-lighting unit located at the Between the magnesium doped layer and the p-type cladding layer. 2. According to the patent application range, the first embodiment of the light-emitting diode, wherein the magnesium-doped layer containing gallium nitride as described in xl016cm '3~2xl019cm'3 1 has a doping concentration of magnesium atoms of 5 . According to the patent application range of the first light-emitting diode, wherein the magnesium-doped layer has a doping concentration of the magnesium-doped layer of the magnesium-doped layer of the magnesium-doped layer of xl017cm'3~5xl〇18cm'3 2 1 4. A light-emitting diode according to the scope of the patent application, wherein a layer, and a layer are located in the first concentration layer. The gallium nitride having a magnesium doped layer, wherein the n-type cladding unit comprises a second layer between the first concentration layer and the magnesium doped layer. a body, wherein the one of the first film layers containing the n-type cladding unit, and the plurality of the first layer. The gallium nitride of the magnesium-doped layer includes a plurality of second films which are alternately arranged in a staggered manner. 6. The gallium nitride 12 201036203-based light-emitting diode containing the magnesium-doped layer according to claim 5, wherein The first film layer is made of a GaN-based material, and the second film layer is made of an InGaN-based material. 〇 13〇 13
TW98109726A 2009-03-25 2009-03-25 GaN-series LED containing Mg-doped layer TW201036203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98109726A TW201036203A (en) 2009-03-25 2009-03-25 GaN-series LED containing Mg-doped layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98109726A TW201036203A (en) 2009-03-25 2009-03-25 GaN-series LED containing Mg-doped layer

Publications (2)

Publication Number Publication Date
TW201036203A true TW201036203A (en) 2010-10-01
TWI385831B TWI385831B (en) 2013-02-11

Family

ID=44856146

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98109726A TW201036203A (en) 2009-03-25 2009-03-25 GaN-series LED containing Mg-doped layer

Country Status (1)

Country Link
TW (1) TW201036203A (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7339255B2 (en) * 2004-08-24 2008-03-04 Kabushiki Kaisha Toshiba Semiconductor device having bidirectionally inclined toward <1-100> and <11-20> relative to {0001} crystal planes
US8076165B2 (en) * 2005-04-01 2011-12-13 Sharp Kabushiki Kaisha Method of manufacturing p-type nitride semiconductor and semiconductor device fabricated by the method

Also Published As

Publication number Publication date
TWI385831B (en) 2013-02-11

Similar Documents

Publication Publication Date Title
US10147845B2 (en) Semiconductor structure
US7429756B2 (en) Nitride semiconductor light emitting device
KR100541104B1 (en) Nitride based semiconductor light emitting device
WO2012089003A1 (en) Nitride light emitting diode with compound current spreading layer
CN105977356A (en) UV light emitting diode with compound electronic barrier layer structure
CN105990478A (en) GaN-based light emitting diode epitaxial structure
US9570657B2 (en) LED that has bounding silicon-doped regions on either side of a strain release layer
US8053794B2 (en) Nitride semiconductor light emitting device and fabrication method thereof
US11817528B2 (en) Nitride-based light-emitting diode device
CN103811609A (en) Oxide semiconductor light-emitting diode epitaxial wafer, device and manufacturing method thereof
TW201421727A (en) Nitride semiconductor structure and semiconductor light-emitting element
TWI524551B (en) Nitride semiconductor structure and semiconductor light-emitting element
KR101497082B1 (en) Nitride semiconductor light emitting device using electron reservoir and spreading layer
TW201036203A (en) GaN-series LED containing Mg-doped layer
CN205900578U (en) Light emitting diode epitaxial wafer
TWI568022B (en) Semiconductor stack structure
TWI570954B (en) Nitride semiconductor structure and semiconductor light-emitting element
JP2021516444A (en) Light emitting diode
US10153394B2 (en) Semiconductor structure
TWI610460B (en) Nitride semiconductor structure
TWI359513B (en)
WO2023283869A1 (en) Semiconductor light-emitting element and light-emitting device
TWI637531B (en) Nitride semiconductor structure and semiconductor light-emitting element
TWI508326B (en) Nitride semiconductor structure and semiconductor light-emitting element
KR20130017649A (en) Light emmitting device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees