TW201006854A - Chemical mechanical polishing pad - Google Patents

Chemical mechanical polishing pad Download PDF

Info

Publication number
TW201006854A
TW201006854A TW098123685A TW98123685A TW201006854A TW 201006854 A TW201006854 A TW 201006854A TW 098123685 A TW098123685 A TW 098123685A TW 98123685 A TW98123685 A TW 98123685A TW 201006854 A TW201006854 A TW 201006854A
Authority
TW
Taiwan
Prior art keywords
polishing pad
density
isocyanate
polishing
cell structure
Prior art date
Application number
TW098123685A
Other languages
Chinese (zh)
Other versions
TWI482789B (en
Inventor
Mary Jo Kulp
T Todd Crkvenac
Original Assignee
Rohm & Haas Elect Mat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41203879&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TW201006854(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Rohm & Haas Elect Mat filed Critical Rohm & Haas Elect Mat
Publication of TW201006854A publication Critical patent/TW201006854A/en
Application granted granted Critical
Publication of TWI482789B publication Critical patent/TWI482789B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

The polishing pad is for polishing patterned semiconductor substrates. The pad includes a polymeric matrix and hollow polymeric particles within the polymeric matrix. The polymeric matrix is a polyurethane reaction product of a curative agent and an isocyanate-terminated polytetramethylene ether glycol at an NH2 to NCO stoichiometric ratio of 80 to 97 percent. The isocyanate-terminated polytetramethylene ether glycol has an unreacted NCO range of 8.75 to 9.05 weight percent. The hollow polymeric particles having an average diameter of 2 to 50 μm and a wt%b and densityb of constituents forming the polishing pad as follows: wt%a*densityb/densitya= wt%b where densitya equals an average density of 60 g/l, where densityb is an average density of 5 g/l to 500g/l, where wt%a is 3.25 to 4.25 wt%. The polishing pad has a porosity of 30 to 60 percent by volume; and a closed cell structure within the polymeric matrix forms a continuous network surrounding the closed cell structure.

Description

201006854 六、發明說明: : 【發明所屬之技術領域】 本說明書係關於適用於研磨或平面化半導體基板之 研磨墊。 【先前技術】 半導體之製備典型係涵蓋若干化學機械研磨(CMP)製 程。於各CMP製程中’研磨墊與研磨溶液(如含有研磨劑之 研磨漿料或不含研磨劑之反應性液體)之組合會以平面化 或保持用於接收後續層之平整度的方式移除過量材料。此 〇 等層之積疊係以形成積體電路之方式組合。由於對具有更 高操作速度、更低漏電流及降低能耗有要求,此等半導體 裝置之製造持續變得更複雜。於裝置構造方面,可說是為 d 對更精細之特徵幾何學及增加金屬化表面有要求。此等愈 加嚴格之裝置設計要求造成越來越小之線間距及相應增加 之圖案密度。裝置之小型化及增加之複雜度已經導致對於 CMP消耗品(如研磨墊及研磨溶液)有更大需求。此外,隨 著積體電路之特徵的尺寸下降,由CMp引致之缺陷(如擦 傷變成更大問題。再者,降低積體電路之膜厚度係要求 改善缺陷並同時為晶片基板提供可接受之形貌;此等形貌 之要求係需要愈加嚴格之平面性、線凹陷dishing) 以及小特徵陣列侵蝕研磨規格。 歷史上,澆鑄之聚胺酯研磨墊已經對用以製造積體電 路之大部份研磨操作提供機械完整性及化學抗性。舉例而 。,聚胺酯研磨墊具有足以抵抗撕裂之拉伸強度及延長 94719 201006854 以及用於 性,用於避免研磨過程中磨損問題之抗研磨性 抵k由強酸性及強鹼性研磨溶液造成之腐蝕的安定性。不 幸的是,有助於改善平面化的澆鑄硬聚胺酯研磨墊也助 缺陷的增加。 長 M. J. Kulp於美國專利案第7,169 〇3〇號中揭露具有 尚拉伸模數之聚胺酯研磨墊家族。此等研磨墊係向若干研磨 墊及研磨漿料之組合提供傑出的平面化及缺陷。舉例而+ ❹此等研磨墊可為研磨氧化矽/氮化矽(如用於直接淺溝槽隔 離(shallow trench isolation, STI)研磨)之應用的含有氣 化鈽之研磨漿料提供傑出研磨效能(perf0rmance)。為了本 說明書之目的,氧化矽係指適用於形成半導體裝置之介電 材料之氧化矽(silica)、氧化矽化合物以及經摻雜氧化矽 配方;而氮化矽係指適用於半導體應用之氮化矽、氮化矽 化合物及經摻雜氮化矽配方。不幸的是,此等墊對於以用 於現今及未來半導體晶片中所含有之多層基板層之所有研 9磨漿料改善研磨效能並不具有普遍適用性。再者,隨著半 導體裝置之成本下降’仍需要不斷進一步增加研磨效能。 增加研磨墊之移除速度可增加產量,而降低半導體製 造廉之設備檯面面積及財政支出。因為這種用於增加效能 之需求,仍對具有增加之效能之用以移除基板層之研磨墊 有需求。舉例而言,氧化物介電材料之移除速度對於層間 介電材料(inter-layer dielectric,ILD)或金屬間介電材 料(inter-metallic dielectric, imd)之研磨過程中移除 介電材料係重要者。所使用之介電氧化物之具體類型包括 94719 5 201006854 下列者:BPSG、自四乙氧基矽酸酯之分解形成之TEOS、高 密度電漿(high-density plasma, HDP)以及低壓化學氣相 沈積物(sub-atm〇spheric chemical vapor deposition, SACVD)°目前存在對於具有增加之移除速度以及可接受之 缺陷效能與晶片一致性之研磨墊的需要。更具體地,對具 有加快之氧化物移除速度以及可接受之平面化與缺陷研磨 效能之適用於ILD研磨之研磨墊有需求。 【發明内容】 本發明係提供一種適用於研磨含有至少下列之一者 之圖形化半導體基板的研磨墊:銅、介電材料、阻擋物以 ^鶴’其中該研磨墊係包括聚合物基質及位於該聚合物基 貝内之中空聚合物顆粒,該聚合物基質係固化劑與異氛酸 酯封端之聚四伸曱基醚二醇之聚胺酯反應產物,該聚胺酯 反物之贿2對NC〇之化學計量比率為8〇%至97%,該異 氰黾酯封端之聚四伸甲基醚二醇具有8.75重量%至9.05 =量%範圍之未反應NC〇,該固化劑含有將該異氰酸酯封端 伸曱基鍵一醇固化以形成該聚合物基質之固化胺; 、及該中空聚合物顆粒具有2至50 _之平均直徑,及如 \所示之形成該研磨墊之成份的wt%b及密度b ·· =Wt%b wf%a *密度& 密度fl ~ 其中’『密度a』等於60 g/L之平均密度, 费度b』係5 g/L至500g/L之平均密度, wt%a』係3. 25重量%至4. 25重量%, ’ 94719 6 201006854 該研磨墊具有30體積%至60體積%之孔隙率,以及位 於該聚合物基質内之閉合單元結構,該閉合單元結構形成 環繞該閉合單元結構之連續網。 本發明之另一具體實施例係提供一種適用於研磨含 有至少下列之一者之圖形化半導體基板的研磨墊:銅、介 電材料、阻擋物以及鎢,其中該研磨墊係包括聚合物基質 及位於該聚合物基質内之中空聚合物顆粒,該聚合物基質 係固化劑與異氰酸酯封端之聚四伸曱基醚二醇之聚胺酯反 m 應產物,該聚胺酯反應產物之NH2與NCO之化學計量比率 為80%至90%,該異氰酸酯封端之聚四伸曱基醚二醇具有 8. 75重量%至9. 05重量%範圍之未反應NCO,該固化劑含有 將該異氰酸酯封端之聚四伸甲基醚二醇固化以形成該聚合 物基質之固化胺;以及該中空聚合物顆粒具有2至50 μιη * 之平均直徑,及如下式所示之形成該研磨墊之成份的wt°/〇b 及密度b201006854 VI. Description of the Invention: [Technical Field of the Invention] This specification relates to a polishing pad suitable for grinding or planarizing a semiconductor substrate. [Prior Art] The preparation of semiconductors typically involves several chemical mechanical polishing (CMP) processes. The combination of the polishing pad and the grinding solution (eg, abrasive slurry containing abrasive or reactive liquid without abrasive) in each CMP process may be removed in a manner that is planarized or maintained to receive the flatness of subsequent layers. Excess material. The stack of layers such as 〇 is combined in such a way as to form an integrated circuit. The manufacture of such semiconductor devices continues to become more complex due to the requirements for higher operating speeds, lower leakage currents, and lower power consumption. In terms of device construction, it can be said that d has requirements for finer feature geometry and increased metallization surface. These increasingly stringent device designs have resulted in smaller and smaller line spacings and correspondingly increased pattern densities. The miniaturization and increased complexity of the device has led to greater demand for CMP consumables such as polishing pads and grinding solutions. In addition, as the size of the features of the integrated circuit decreases, defects caused by CMp (such as scratches become a larger problem. Further, lowering the film thickness of the integrated circuit requires improvement of defects and at the same time providing an acceptable form for the wafer substrate. Appearance; the requirements of these topography require more stringent planarity, line dishing and small feature array erosion grinding specifications. Historically, cast polyurethane polishing pads have provided mechanical integrity and chemical resistance to most of the grinding operations used to make integrated circuits. For example. Polyurethane polishing pad has sufficient tensile strength to resist tearing and prolongs 94719 201006854 and is used for stability, to avoid abrasion problems during grinding, and to resist corrosion caused by strong acidic and strong alkaline grinding solutions. Sex. Unfortunately, cast hard polyurethane abrasive pads that help improve planarization also contribute to the increase in defects. A family of polyurethane abrasive pads having a tensile modulus is disclosed in U.S. Patent No. 7,169,300. These polishing pads provide outstanding planarization and defects to a combination of abrasive pads and abrasive slurries. For example, + 研磨 these polishing pads provide excellent polishing performance for abrasive yttria/tantalum nitride (such as for direct trench isolation (STI) grinding). (perf0rmance). For the purposes of this specification, yttria refers to the cerium oxide, yttria compound, and doped yttrium oxide formulations suitable for forming dielectric materials for semiconductor devices; and lanthanum nitride refers to nitridation for semiconductor applications. Bismuth, tantalum nitride compounds and doped tantalum nitride formulations. Unfortunately, such pads do not have general applicability for improving the polishing performance of all of the abrasive slurry used in the multilayer substrate layers contained in current and future semiconductor wafers. Furthermore, as the cost of semiconductor devices declines, there is still a need to continuously increase the polishing efficiency. Increasing the removal rate of the polishing pad can increase the yield and reduce the floor area and financial expenditure of the semiconductor manufacturing equipment. Because of this need to increase performance, there is still a need for abrasive pads for removing substrate layers with increased performance. For example, the removal rate of the oxide dielectric material removes the dielectric material during the grinding process of an inter-layer dielectric (ILD) or an inter-metallic dielectric (imd). Important. Specific types of dielectric oxides used include 94719 5 201006854 The following: BPSG, TEOS formed from the decomposition of tetraethoxyphthalate, high-density plasma (HDP), and low pressure chemical vapor Sub-atm〇spheric chemical vapor deposition (SACVD) ° There is currently a need for a polishing pad with increased removal speed and acceptable defect performance and wafer uniformity. More specifically, there is a need for a polishing pad suitable for ILD grinding that has an accelerated oxide removal rate and acceptable planarization and defect grinding performance. SUMMARY OF THE INVENTION The present invention provides a polishing pad suitable for use in polishing a patterned semiconductor substrate comprising at least one of: copper, a dielectric material, a barrier, wherein the polishing pad comprises a polymer matrix and is located a hollow polymer particle in the polymer matrix, the polymer matrix is a polyurethane reaction product of a curing agent and an isocyanate-terminated polytetradecyl ether glycol, and the polyurethane ester is a bribe 2 to NC The stoichiometric ratio is from 8 to 97%, and the isocyanurate-terminated polytetramethylene glycol glycol has an unreacted NC〇 ranging from 8.75 wt% to 9.05 = wt%, the curing agent containing the isocyanate The blocked amine is cured to form a solidified amine of the polymer matrix; and the hollow polymer particles have an average diameter of from 2 to 50 Å, and a wt% of the component forming the polishing pad as indicated by \ b and density b ·· =Wt%b wf%a *density & density fl ~ where 'density a' is equal to the average density of 60 g/L, and the cost b′ is an average of 5 g/L to 500 g/L Density, wt%a" is 3.25% by weight to 4.25% by weight, ' 94719 6 201006854 Sanding pad having a porosity of 30 vol% to 60 vol% of, and position within the polymer matrix structure of the closing unit, the closing unit structures forming a continuous network surrounding the closed cell structures. Another embodiment of the present invention provides a polishing pad suitable for use in polishing a patterned semiconductor substrate comprising at least one of: copper, a dielectric material, a barrier, and tungsten, wherein the polishing pad comprises a polymer matrix and Hollow polymer particles located in the polymer matrix, the polymer matrix is a polyurethane and an isocyanate-terminated polytetradecyl ether glycol, and the stoichiometry of the NH2 and NCO of the polyurethane reaction product a ratio of 80% to 90%, the isocyanate-terminated polytetradecyl ether glycol having an unreacted NCO ranging from 8.75% by weight to 9.05% by weight, the curing agent containing the isocyanate terminated The tetramethyl ether glycol is cured to form a solidified amine of the polymer matrix; and the hollow polymer particles have an average diameter of 2 to 50 μm* and a wt° of the composition forming the polishing pad as shown in the following formula: 〇b and density b

w%a *密度 =wt%b 其中,『密度a』等於60 g/L之平均密度, 『密度b』係10 g/L至300g/L之平均密度 『wt%a』係3. 25重量%至3. 6重量%, 該研磨墊具有35體積%至55體積%之孔隙率,以及位 於該聚合物基質内之閉合單元結構,該閉合單元結構形成 環繞該閉合單元結構之連續網。、 【言施方式】. 7 94719 201006854 本發明係提供適用於平面化半導體、光學及磁性基板 之至少一者的研磨墊,該研磨墊係包含聚合物基質。該研 磨墊尤其適用於研磨及平面化層間介電材料(ILD)應用中 之ILD介電材料,但也可用於研磨金屬如銅或鎢。該墊係 提供較目則所用之墊增加的移除逮度,尤其於研磨之最初 3 0秒。於研磨之早期過程中該墊之加速回應使得藉由縮短 自晶片表面移除特定量之材料所需時間來增加晶片產量成 為可能。 燻矽(fumed silica)之ILD研磨之3〇秒移除速度可 超過3,750埃(入)/分。再者,本發明可提供較似〇肥 聚胺醋研.於相同研相試中所給出之3()秒移除速度 高出至少10%之移除速度(Icl〇1〇係羅門哈斯公司或其附 屬公司之商標)。有利的是’使用本發明之研磨塾並以含氧 化石夕之研磨劑研磨TEGS片狀晶片3{)秒之移除速度係等於 或高於使用IC1_研磨塾並以含氧切 、 〇 麵片狀晶片30秒之移除速度及6〇秒之移除^产研磨 ICHHKP可隨著研磨時間而增加_移除速= 包含可賦予自該成份製作之零件熱黯特 ^里, 酸醋(1_絲門哈斯公司或其附屬公亂 旧刚研磨墊之熱塑性特點似可促進該研^ 間之接觸隨著移除速度之增加而增加,:曰曰片 速度出現為止。將㈣晶片之接觸祕梅】某—最大移除 乎使得料Μ純,^ 如至更高程度似 力的降低。同樣,由於交n 度成刀子量之降低,不包含脂 94719 8 201006854 肪族異氰酸醋之配方將更具熱塑性特點;且其可顯示隨著 研磨時間而增加更多之移除速度。然而,本發明之該塾具 有足夠之孔隙度程度,以於該研磨製程非常早之時期最大 •化塾與晶片之接觸;且相對高度之交聯似可向該塾提供足 夠之局部剛性’以促進該研磨製程。 • 儘管移除速度可隨研磨劑含量而增加,與研磨劑無關 之IC1010研磨塾移除速度的改善係表示研磨效能之重要 進展。舉例而言,此促進以低缺陷增加務除速度並可降低 漿料成本。除了移除速度外,晶片規格之不一致性亦為重 要研磨效能之考量。典型地,因為經研磨晶片之一致性對 於獲付最大數目之良好研磨的晶粒.(die)係重要者,故該晶 片規格之不一致性應低於6%。 為了本說明書之目的,『聚胺酯』係自雙官能異氰酸 酯或多官能異氰酸酯所衍生之產物’如聚醚服 (polyetherureas)、聚異氰酸酯、聚胺酯、聚脲、聚胺酯 _ 脲、其共聚物及混合物。澆鑄聚胺酯研磨墊係適用於平面 化半導體、光學及磁性基板。該墊之特殊研磨性能係部份 源於預聚物二醇與多官能異氰酸酯之預聚物反應產物。該 預聚物產物係以選自包含固化多胺、固化多元醇、固化醇 胺及其混合物之群組之固化劑固化’以形成研磨塾。已經 發現’控制該固化劑與該預聚物反應產物中未反應NC〇之 比例可改善研磨過程中多孔墊之缺陷效能。 胺曱酸酯之製備係涵蓋自多官能芳香異氰酸g旨及預 聚物多元醇製備異氰酸酯封端之胺甲酸酯預聚物。該預聚 9 94719 201006854 物多元醇係聚四伸曱基醚二醇(PTMEG)。該多官能芳香異氰 酸酯之實例係包括2, 4-曱苯二異氰酸酯、2, 6-甲苯二異氰 酸酯、4, 4’-二苯曱烷二異氰酸酯、萘-1,5-二異氰酸酯、 二異氰酸聯甲苯胺、對伸苯基二異氰酸酯、伸二曱苯基二 異氰酸酯及其混合物。該多官能芳香異氰酸酯係含有少於 20重量%之脂肪族異氰酸酯如4, 4’-二環己基甲烷二異氰 酸酯、異佛酮二異氰酸酯及環己烷二異氰酸酯。較佳者, 該多官能芳香異氰酸酯係含有少於15重量%之脂肪族異氰 酸酯,更佳者,含有少於12重量%之脂肪族異氰酸酯。 ® 典型地,該預聚物反應產物係以固化胺(如多胺或含 有多胺之混合物)反應或固化。舉例而言,可將該多胺與 醇胺或單胺混合。為了本說明書之目的,多胺係包括二胺 及其他多官能胺。固化多胺之實例係包括芳香二胺或多胺 (如4,4’-亞曱基-雙-鄰-氣苯胺[肘30六]、4,4’-亞甲基-雙 -(3-氣-2, 6-二乙基苯胺)[MCDEA];二曱基硫基曱苯二胺; 三伸甲基二醇二-對-胺基苯曱酸酯;聚四伸曱基氧化物二-❹ 對-胺基苯甲酸酯;聚四伸曱基氧化物單-對-胺基苯甲酸 酯;聚伸丙基氧化物二-對-胺基苯曱酸酯;聚伸丙基氧化 物單-對-胺基苯曱酸酯;1,2-雙(2-胺基苯基硫基)乙烷; 4, 4’ -亞曱基-雙-苯胺;二乙基曱苯二胺;5_第三丁基-2, 4-甲苯二胺及3 -第三丁基-2,6 -曱苯二胺;5 -第三戍基-2,4-甲苯二胺及3-第三戊基-2, 6-曱苯二胺;以及氯甲苯二 胺。此外,MBCA添加係表示較佳固化胺。視需要而定,可 以避免使用預聚物而以單一混合步驟來製造用於研磨墊之 10 94719 201006854 胺甲酸醋。 較佳係對用以作成該研磨墊之聚合物組成份作選 擇’故所得塾之形態係安定且可輕易複製者。舉例而古, 备此δ 4,4、亞甲基-雙-鄰-氯苯胺[MBCA]輿二異氰酸酯 以形成聚胺g旨聚合物時,控制單胺、二胺與三胺之量一般 係有利者。控制單胺、二胺及三胺之比例可將該化學比例 及所得聚合D子量保持於 一致的範圍。此外,—般來說 鬱控制添加劑(如抗氧化劑)及雜質(如水)對於一致的製造是 重要的。舉例而言,因為水與異氰酸酯反應形成氣態二氧 化碳’控制水濃度可影響於該聚合物基質内形成孔之二氧 化碳氣泡的濃度。異氰酸酯與偶發的水反應還減少用於與 鏈伸長劑反應之可用異氰酸酯,故除了交聯程度(如果存在 過量異氰酸酯基)及所得聚合物之分子量之外,其改化學 量學。 .、子6 該聚胺酯聚合物材料較佳係自甲苯二異氰駿醋與聚 % 四伸曱基醚二醇之預聚物及芳香二胺形成。該芳香二胺最 佳係4,4’-亞甲基-雙-鄰-氣苯胺或4, 4’-亞甲基—雙_(3_ 氣-2,6-二乙基苯胺)。未反應預聚物%NC0之較佳範圍係 8. 75至9. 05。具有此未反應NC0範圍之適宜預聚物之具體 實例係Cheintura製造之AdiPrene®預聚物LF750D。此外, ' LF750D係表示低遊離(low-free)異氰酸酯預聚物,該預聚 物中,遊離2, 4 TDI及2, 6 TDI單體各自係少.於〇. 1重量%, 且該預聚物係具有比傳統預聚物更一致之預聚抑分子量分 布。具有改善之預聚物分子量一致性及低遊離異氰酸酯單 11 94719 201006854 , 體之此『低遊離』預聚物促進更規則之聚合物結構且可改 善研磨墊之一致性。除了控制未反應NC0之重量百分率 外,該固化及預聚物反應產物中,0H或NH2與未反應NC0 的化學計量比典型係80%至97% ’較佳係80%至90% ;更佳 者,0H或NIL·與未反應NC0的化學計量比係83%至87%。此 化學計量學可藉由直接提供該化學計量程度之原料達成, 亦或是故意或是曝露於偶發濕氣而間接藉由使某些NCO與· 水反應而達成。 若該研磨塾係聚胺酯材料,則該完成之研磨墊之密度 ® 較佳係0. 4至0. 8公克(g)/平方公分(cm3)。更佳者,完成 之聚胺酯研磨墊之密度係0.5至0. 75g/cm3。以墊的總配 ‘ 方為基準計,中空聚合物顆粒負載密度(澆鑄前)為3.25 ' 重量%至4. 25重量%、較佳3. 25重量%至3. 6重量%之公稱 20/zm孔或中空聚合物顆粒,可以產生具傑出研磨結果之 該所欲密度。特別地,該中空聚合物顆粒於整個聚合物基 質中提供隨機之孔分佈。特別地,該研磨墊具有閉合單元 ❹ 結構’且該聚合物基質形成環繞該閉合單元結構之連續 網。儘管具有如此高之孔障度,該研磨墊之蕭氏(Shore) D 硬度典型係44至54。為了本說明書之目的,該蕭氏D硬 度之測試係包括於測試前將墊樣本置於相對濕度50%之 25°C環境中5天進行條件處理,並使用ASTMD2240略述之 方法,以改善該硬度測試之再現性。 中空聚合物顆粒之重量平均直徑係2至50微米 (Am)。為了本說明書之目的,重量平均直徑係表示該中空 32 947] 9 201006854 聚合物顆粒於_前之平均直徑;且_粒可具有球狀或 非球狀之形狀。該中空聚合物顆粒最佳係具有球狀形狀。 .該中空聚合物顆粒之重量平均直徑較佳係2至4〇_。該 -中空聚合物顆粒之重量平均直徑最佳係1〇至3〇_;此等 中空聚合物顆粒典型係具有60g/公升(L)之平均密度。為 了本說明f之目的,針找合物雖之平均密度係表示 於1公升體積内’該中空顆粒之緊密封裝未破碎密度 ❹(close-Packed-n〇n-crushed density)。平均直徑為 % 至50口之中空顆粒典型係具有平均為你几之較低 度,蓋因其存在更多孔及更少壁材。不同尺寸及類型 空顆粒可藉由下述方式而以等量孔體積加入:取一種尺、 之中空聚合物顆粒之質量除以其密度來確定孔之寸 體積可隨後乘以其他種孔之密度,以確定該其他尺= 型j中空聚合物顆粒之質量,從而給出等量孔體積' = 而言,如下述等式所顯示般 列 肇 wt%. y〇/〇a * 密度* ==度為6°g/L之2°…空聚合物顆粒的s ::與2.:重:%且密度為離之42_中空聚合物㊉ 里於形成本發明之研磨墊過程中,『密度8』等於 ,平。均密度,『密度b』係5g/LH⑽g/L之平均密度= wt%a』係3.25重量%至4 25.重量%。較佳者,p卜又2 係响/1至15〇机之平均密度以及『wt%a』係 = 至3· 6重量% 〇. 重量 94719 33 201006854 ’ 膨脹之中空聚合物顆粒之重量平均直徑的公稱範圍 係15至90 # m。再者,高孔隙度與小孔尺寸之組合可具有 減少缺陷之特殊益處。不過,如果該孔隙度程度變得過高, 該研磨墊失去機械完整性及強度。舉例而言,加入構築研 磨層30體積%至60體積%之重量平均直徑為2至50//in的 中空聚合物顆粒,促進缺陷之減少。再者,將孔隙度保持 於35體積%與55體積%之間,或更具體而言35體積%與50 體積%之間,可促進移除速度之增加。為了本說明書之目 的,體積%孔隙度係表示如下述方式決定之孔的體積百分 ® 率:1)自無孔隙度之聚合物公稱密度中減去所測量之該配 方密度以確定自立方公分配方中『消失』之聚合物的質量; 以及2)將『消失』之聚合物的質量除以無孔隙度之聚合物 的公稱密度,以確定自cm3配方中消失之聚合物的體積, 再乘以100將其轉化為體積%孔隙度。或者,配方中孔體積 百分率或體積%孔隙度可藉由下述方法決定之:1)自100g 減去100g配方中該中空聚合物顆粒之質量以確定100g配 ❹ 方中聚合物基質之質量;2)將聚合物基質之質量除以該聚 合物之公稱密度以確定100g配方中該聚合物之體積;3)將 10 0g配方中該中空聚合物顆粒之質量除以該中空聚合物 顆粒之公稱密度以確定100g配方中該中空聚合物顆粒之 體積;4)將100g配方中該聚合物之體積加上100g配方中 該中空聚合物顆粒或孔之體積,以確定100g配方之體積; 以及5)將100g配方中該中空聚合物顆粒或孔之體積除以 100g配方之總體積,再乘以100,給出該配方中孔之體積 14 94719 201006854 · 百分率或孔隙度。對於孔隙度或孔之體積%,兩種方法將得 到相似值,儘管第二種方法將顯示較第一種方法低之孔隙 度或2之體積%’於第—種方法中,製程過程之參數如反映 放熱篁可造成中空聚合物顆粒或微球膨脹至超出其公稱 二膨脹體積』。因為對於特定之孔或孔隙度程度而言,孔尺 以增加研磨速度,故控制澆鑄過程之放熱量 ❹ 重要者。舉例而今,物顆粒或微球的進一步膨脹係 預聚物溫度、降低固2入室溫模具、限制塊高度、降低 單體全部可減少由異2溫度、減少NC〇及限制遊離顶 如同大多數傳^之反應產生的放熱量。 鑽石盤修整)用於增知&研磨墊—樣’研磨塾之修整(如 性。儘管修整可以“:f速度並改善晶片規格之非-致 用)或以連續方式予以 各晶片修整30秒後)予以作 條件的優點,以改美 連續仏整係長^供建立穩態研磨 ο 磨塾之移除速度並: = 修整典型係增加該研 移除速度的衰減。特f/、研磨墊之表面磨損相關聯之 過程中捕獲燒石夕顆教之該研磨劑修整係形成可於研磨 矽顆粒可於與該研磨墊_ 第1圖至第3圖係氧化 解。此氧化矽顆粒積 目之該粗糙表面内積累之圖 速度而增加該研磨勢研磨替内似可藉由導致高移除 於漿料之分布、研磨〜致率。除了修整外’槽及穿孔可對 度捩供進—步之益處。致性碎屑之移除及基板之移除速 實施教 94719 15 201006854 * 對於本發明之實施例’該聚合物墊材料係藉由將作為 ' 胺甲酸酯預聚物之各種量之異氰酸酯(49°C,比較例包括 43°C至63°C預聚物)與4,4’-亞甲基-雙-鄰-氣苯胺[仙(:幻 (115°C)混合而製備之。特別地’特定曱苯二異氰酸酯[TDI] 與聚四伸甲基醚二醇[PTMEG]預聚物提供具有不同性能之 研磨墊。該胺曱酸酯/多官能胺混合物係與中空聚合物微球 (AkzoNobel 製造之 EXPANCEL® 551DE20d60 或 551DE40d42) 於將該預聚物與鏈伸長劑混合之前或之後混合。該中空聚 合物微球可於加入該多官能胺之前與該預聚物於6〇rpni混 ❹ 合,隨後將該混合物於4500rpm混合;或該中空聚合物微 球可加入至位於3600rpm之混合頭内的該胺甲酸酯/多官 能胺混合物中。該微球之重量平均直徑為15至50 μπι,其 範圍為5至200 //m。將最終混合物轉移至模具並准許其凝 膠化約15分鐘。 隨後將該模具置於固化爐中,且以如下之循環固化: 於別为鐘内自環境溫度均勻升溫至設定溫度104。(:,於❹ lO^C保持15·5小時,再於2小時内自該設定溫度降溫至 C比較例F至比較例κ使用更短之固化循環,於100°c ,持力:8小時。隨後將該模製件『切削』成薄片,且於室 可下2該表面上機械加工出大通道或槽;於較高溫度切削 表面粗糙度及片厚度—致性。如表中所示,樣本1 一 2係表示本發明之研磨墊,而樣本A至樣本 Z係表 不比較例。 16 94719 201006854 表1 配方 配方 NCOCwt%) 預聚物 化學計量 學⑻ 中空聚合 物球 (wt%) 公稱球直 徑(卵) 1 MJK1859C 8.75-9.05 LF750D 85 3. 36 20 2 MJK1859C 8. 75-9. 05 LF750D 85 3.36 20 A S58 8. 75-9. 05 LF750D 85 2. 25 40 B T58 8. 75-9. 05 LF750D 85 3.21 20 C S52 8. 75-9. 05 LF750D 105 0.75 40 D S53 8. 75-9. 05 LF750D 85 0.75 40 E T53 8. 75-9. 05 LF750D 85 1.07 20 F MJK3101A 11.4-11.8 Royalcast 2505 85 3.01 20 G MJK3101C 11.4-11.8 Royalcast 2505 85 3.01 20 H MJK3101B 11.4-11.8 Royalcast 2505 95 2.93 20 I MJK3101D 11.4-11.8 Royalcast 2505 95 2. 93 20 J MJK1864A 11.4-11.8 Royalcast 2505 105 - 2. 86 20 K MJK1864J 11.4-11.8 Royalcast 2505 105 2. 86 20 L MJI3122B 8. 75-9. 05 LF750D 85.00 3.87 20 M MJK3122F 8. 75-9. 05 LF750D 90.00 3.83 20 N MJK3122E 8. 75-9. 05 LF750D 95.00 3. 79 20 0 M.IK3122D 8. 75-9. 05 LF750D . 100.00 3. 74 20 P MJI3122A 8.45-8. 75 LF750D 105.00 3. 70 20 Q MJI3122C 8.45-8. 75 LF750D 110.00 3. 66 20 R VP3000 7.1-7.4 LF600D 85 1.8 40 S MJK1803C 8. 75-9. 05 LF750D 90.00 2. 94 20 T MJK1803E 8. 75-9. 05 LF750D 90.00 2.94 20 ϋ MJK1803A 8. 75-9. 05 LF750D 115.00 2. 94 20 V MJK1803F 8. 75-9. 05 LF750D 115.00 2. 94 20 17 94719 201006854 W MJK1803D 8. 75-9. 05 LF750D 90.00 2. 20 20 X MJK1803H 8. 75-9. 05 LF750D 90.00 2. 20 20 Υ MJK1803B 8. 75-9. 05 LF750D 115.00 • 2.20 20 Ζ MJK1803G 8. 75-9. 05 115. 〇〇 2. 20 20w%a *density=wt%b where "density a" is equal to an average density of 60 g/L, "density b" is an average density of 10 g/L to 300 g/L "wt%a" is 3.25 weight From 3% to 6% by weight, the polishing pad has a porosity of from 35 to 55% by volume, and a closed cell structure located within the polymer matrix, the closed cell structure forming a continuous web surrounding the closed cell structure. [94] 201006854 The present invention provides a polishing pad suitable for use in planarizing at least one of a semiconductor, an optical, and a magnetic substrate, the polishing pad comprising a polymer matrix. The polishing pad is particularly useful for grinding and planarizing ILD dielectric materials in interlayer dielectric (ILD) applications, but can also be used to polish metals such as copper or tungsten. This mat provides increased removal of the mat for the mats used, especially for the first 30 seconds of grinding. The accelerated response of the pad during the early stages of grinding makes it possible to increase wafer throughput by reducing the time required to remove a specific amount of material from the wafer surface. The 3 minute removal rate of the IMD grinding of fumed silica can exceed 3,750 angstroms per minute. Furthermore, the present invention can provide a removal rate of at least 10% higher than the 3 () second removal rate given in the same phase test (Icl〇1〇Rohma). Trademark of the company or its affiliates). It is advantageous to use the abrasive crucible of the present invention and grind the TEGS flake wafer 3 with an abrasive containing oxidized stone for the second time. The removal speed is equal to or higher than the use of the IC1_grinding crucible and cut with oxygen. The removal speed of the chip wafer is 30 seconds and the removal of 6 seconds. The grinding ICHKP can be increased with the grinding time. _Removal speed = contains the parts that can be made from the ingredients. 1_The thermoplastic characteristics of the Silkenhas company or its affiliated old grinding pad seem to promote the contact between the grinding and the increase of the removal speed: the speed of the squeegee appears. (4) Contact with the secret plum] a - the largest removal makes the material pure, ^ such as a higher degree of force reduction. Similarly, due to the reduction of the amount of knife into the n degree, does not contain grease 94719 8 201006854 aliphatic isocyanic acid The formulation will be more thermoplastic; and it can show more removal speed as the milling time increases. However, the crucible of the present invention has a sufficient degree of porosity to be the largest at the very early stage of the polishing process. Contact between the wafer and the wafer; and the relative height Crosslinking may provide sufficient local stiffness to the crucible to facilitate the polishing process. • Although the removal rate may increase with the abrasive content, the improvement in the removal rate of the IC1010 abrasive crucible independent of the abrasive is indicative of the polishing performance. Important advances. For example, this promotes speed reduction with low defects and reduces slurry costs. In addition to removal speed, wafer specification inconsistency is also an important abrasive performance consideration. Typically, because of the polished wafer Consistency is important for the maximum number of well-grinded die(die), so the wafer specification should be less than 6%. For the purposes of this specification, "polyurethane" is derived from difunctional isocyanate or more. Products derived from functional isocyanates such as polyetherureas, polyisocyanates, polyurethanes, polyureas, polyurethanes, copolymers and mixtures thereof. Cast polyurethane polishing pads are suitable for planarizing semiconductor, optical and magnetic substrates. The special abrasive properties of the mat are derived in part from the prepolymer reaction product of the prepolymer diol and the polyfunctional isocyanate. The product product is cured by a curing agent selected from the group consisting of a cured polyamine, a cured polyol, a cured alcohol amine, and mixtures thereof to form a milled mash. It has been found that 'the control of the curing agent and the prepolymer reaction product is not found. The ratio of the reaction NC〇 can improve the defect performance of the porous mat during the grinding process. The preparation of the amine phthalate includes the preparation of the isocyanate-terminated urethane prepolymer from the polyfunctional aromatic isocyanate g and the prepolymer polyol. The prepolymer 9 94719 201006854 is a polyol polytetradecyl ether glycol (PTMEG). Examples of the polyfunctional aromatic isocyanate include 2,4-nonyl diisocyanate, 2,6-toluene diisocyanate, 4, 4'-diphenylnonane diisocyanate, naphthalene-1,5-diisocyanate, di-toluidine diisocyanate, p-phenylene diisocyanate, diphenyl phenyl diisocyanate, and mixtures thereof. The polyfunctional aromatic isocyanate contains less than 20% by weight of an aliphatic isocyanate such as 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate and cyclohexane diisocyanate. Preferably, the polyfunctional aromatic isocyanate contains less than 15% by weight of an aliphatic isocyanate, and more preferably less than 12% by weight of an aliphatic isocyanate. ® Typically, the prepolymer reaction product is reacted or cured with a solidified amine such as a polyamine or a mixture containing a polyamine. For example, the polyamine can be combined with an alcoholamine or a monoamine. For the purposes of this specification, polyamines include diamines and other polyfunctional amines. Examples of cured polyamines include aromatic diamines or polyamines (eg, 4,4'-fluorenylene-bis-o-haloaniline [elbow 30-hex], 4,4'-methylene-bis-(3- Gas-2,6-diethylaniline)[MCDEA]; dimercaptothiobenzidine; trimethylglycol di-p-aminobenzoate; polytetradecyl oxide -❹-aminobenzoic acid ester; polytetramethylene oxide mono-p-aminobenzoate; poly-propyl oxide di-p-aminobenzoate; poly-propyl Oxide mono-p-aminobenzoate; 1,2-bis(2-aminophenylthio)ethane; 4,4'-arylene-bis-aniline; diethyl anthracene Amine; 5_t-butyl-2,4-toluenediamine and 3-t-butyl-2,6-nonylphenylenediamine; 5-tridecyl-2,4-toluenediamine and 3- Third amyl-2,6-nonylphenylenediamine; and chlorotoluenediamine. In addition, MBCA addition means better curing of the amine. If necessary, it can be avoided by using a prepolymer and using a single mixing step. 10 94719 201006854 urethane sulphate on the polishing pad. It is preferred to select the polymer component used to make the polishing pad. It can be easily replicated. For example, when δ 4,4, methylene-bis-o-chloroaniline [MBCA] guanidine diisocyanate is formed to form a polyamine g-polymer, monoamines and diamines are controlled. The amount of the triamine is generally advantageous. The ratio of the monoamine, the diamine and the triamine can be controlled to maintain the chemical ratio and the amount of the obtained polymeric D in a consistent range. In addition, generally, the control additive (such as anti- Oxidants) and impurities such as water are important for consistent manufacturing. For example, because water reacts with isocyanate to form gaseous carbon dioxide's control water concentration can affect the concentration of carbon dioxide bubbles forming pores in the polymer matrix. Isocyanate and sporadic The water reaction also reduces the usable isocyanate used to react with the chain extender, so that in addition to the degree of crosslinking (if excess isocyanate groups are present) and the molecular weight of the resulting polymer, it is chemically modified. Preferably, the material is formed from a prepolymer of toluene diisocyanuric vinegar and poly(tetramethyl ether ether glycol) and an aromatic diamine. The aromatic diamine is preferably 4,4'-methylene-bis- adjacent- An aniline or a 4,4'-methylene-bis-(3_ gas-2,6-diethylaniline). The preferred range of the unreacted prepolymer %NC0 is 8.75 to 9. 05. A specific example of a suitable prepolymer of the reaction NC0 range is AdiPrene® prepolymer LF750D manufactured by Cheintura. In addition, 'LF750D series means a low-free isocyanate prepolymer in which free 2, 4 The TDI and 2,6 TDI monomers are each less than 1% by weight, and the prepolymer has a more prepolymerized molecular weight distribution than the conventional prepolymer. With improved molecular weight consistency of the prepolymer and low free isocyanate mono 11 94719 201006854, the "low free" prepolymer promotes a more regular polymer structure and improves the consistency of the polishing pad. In addition to controlling the weight percentage of unreacted NC0, the stoichiometric ratio of 0H or NH2 to unreacted NC0 in the curing and prepolymer reaction products is typically 80% to 97% 'better 80% to 90%; better The stoichiometric ratio of 0H or NIL· to unreacted NC0 is 83% to 87%. This chemometrics can be achieved by directly providing the stoichiometric amount of material, either indirectly or by exposure to incidental moisture, indirectly by reacting certain NCOs with water.至其。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 More preferably, the density of the finished polyurethane polishing pad is from 0.5 to 0.75 g/cm3. The weight of the hollow polymer particles (before casting) is from 3.25 重量% to 0.25 wt%, preferably 325 wt% to 3.6 wt% of the nominal 20/. Zm pores or hollow polymer particles can produce the desired density with outstanding milling results. In particular, the hollow polymer particles provide a random pore distribution throughout the polymer matrix. In particular, the polishing pad has a closed cell structure & and the polymer matrix forms a continuous web surrounding the closed cell structure. Despite such a high degree of porosity, the Shore D hardness of the polishing pad is typically 44 to 54. For the purposes of this specification, the Shore D hardness test is performed by placing the pad sample in a 25 ° C environment at a relative humidity of 50% for 5 days prior to testing, and using the method outlined in ASTM D2240 to improve the Reproducibility of hardness testing. The hollow polymer particles have a weight average diameter of 2 to 50 μm (Am). For the purposes of this specification, the weight average diameter refers to the average diameter of the hollow particles of the hollow 32 947] 9 201006854; and the granules may have a spherical or non-spherical shape. The hollow polymer particles preferably have a spherical shape. The hollow polymer particles preferably have a weight average diameter of 2 to 4 Å. The hollow polymer particles preferably have a weight average diameter of from 1 Torr to 3 Torr. These hollow polymer particles typically have an average density of 60 g/liter (L). For the purposes of this description, the average density of the needle-like compound is expressed in a volume of 1 liter of 'close-packed-n〇n-crushed density' of the hollow particles. Hollow particles with an average diameter of from 100 to 50 typically have an average of a few lower levels, due to the presence of more pores and less wall material. Empty particles of different sizes and types can be added in equal pore volumes by taking the mass of a hollow polymer particle divided by its density to determine the volume of the pore and then multiplying the density of the other pores. To determine the mass of the other size = type j hollow polymer particles, giving an equivalent pore volume ' =, as shown by the following equation, 肇 肇 wt%. y〇 / 〇a * density * == 2°...6°g/L of 2°... empty polymer particles s :: and 2.: weight: % and density is 42_ hollow polymer ten miles during the formation of the polishing pad of the present invention, "density 8" equals, flat. The average density, "density b" is an average density of 5 g/LH (10) g/L = wt% a" from 3.25 wt% to 4 25. wt%. Preferably, the average density of the p-and 2-ring/1 to 15-inch machine and the "wt%a" system = to 3.6 wt% 〇. Weight 94719 33 201006854 'The weight average diameter of the expanded hollow polymer particles The nominal range is 15 to 90 # m. Moreover, the combination of high porosity and small pore size can have the particular benefit of reducing defects. However, if the degree of porosity becomes too high, the polishing pad loses mechanical integrity and strength. For example, 30% by volume to 60% by volume of hollow polymer particles having a weight average diameter of 2 to 50//in, which constitutes the grinding layer, are added to promote the reduction of defects. Further, maintaining the porosity between 35 vol% and 55 vol%, or more specifically between 35 vol% and 50 vol%, may promote an increase in removal speed. For the purposes of this specification, vol% porosity refers to the volume percent of the pores determined as follows: 1) subtracting the measured density of the polymer from the nominal density of the non-porosity polymer to determine the self-cubic centimeter The mass of the "disappearing" polymer in the formulation; and 2) dividing the mass of the "disappearing" polymer by the nominal density of the non-porous polymer to determine the volume of the polymer that has disappeared from the cm3 formulation, and then multiplying It was converted to volume % porosity at 100. Alternatively, the percent pore volume or volume percent porosity in the formulation can be determined by the following method: 1) subtracting 100 g of the mass of the hollow polymer particles from the formulation to determine the mass of the polymer matrix in the 100 g formula; 2) dividing the mass of the polymer matrix by the nominal density of the polymer to determine the volume of the polymer in 100 g of the formulation; 3) dividing the mass of the hollow polymer particles in the 100 g formulation by the nominal number of the hollow polymer particles Density to determine the volume of the hollow polymer particles in a 100g formulation; 4) adding the volume of the polymer in the 100g formulation to the volume of the hollow polymer particles or pores in the 100g formulation to determine the volume of the 100g formulation; and 5) The volume of the hollow polymer particles or pores in the 100 g formulation was divided by the total volume of the 100 g formulation and multiplied by 100 to give the volume of the pores in the formulation of 14 94719 201006854 · percent or porosity. For porosity or pore volume %, the two methods will give similar values, although the second method will show lower porosity or 2% by volume of the first method in the first method, the parameters of the process If the exothermic enthalpy is reflected, the hollow polymer particles or microspheres may expand beyond their nominal two expansion volumes. Since the hole ruler increases the grinding speed for a specific hole or degree of porosity, it is important to control the amount of heat released during the casting process. For example, further expansion of the particles or microspheres is based on the temperature of the prepolymer, lowering the solids into the room temperature mold, limiting the height of the block, reducing the total amount of the monomers, reducing the temperature from the difference of 2, reducing the NC enthalpy and limiting the free top as most passes. The heat generated by the reaction of ^. Diamond disc trimming) is used to enhance & polishing pad-like 'grinding 塾 trimming (such as sex. Although trimming can be: "f speed and improve wafer specification non-use" or wafers in a continuous manner for 30 seconds Afterwards, the advantage of the conditions is to change the length of the system to establish a steady-state grinding ο the removal speed of the honing and: = trimming the typical system to increase the attenuation of the grinding removal speed. Special f /, polishing pad In the process of surface wear associated with the process, the abrasive dressing system is formed to be etchable, and the granules can be oxidized in the same manner as the polishing pad _Fig. 1 to Fig. 3. Increasing the speed of the pattern accumulated in the rough surface, the grinding rate can be increased by the distribution of the slurry and the grinding rate. In addition to the trimming, the groove and the perforation can be supplied to each other. Benefits. Removal of the crumbs and removal of the substrate is taught. 94719 15 201006854 * For the examples of the present invention, the polymer mat material is used as the amount of the 'urethane prepolymer. Isocyanate (49 ° C, comparative package) 43 ° C to 63 ° C prepolymer) prepared with 4,4 '-methylene-bis-o-aniline aniline [Xian (115 ° C) mixed. In particular 'specific benzene diisocyanate [TDI] and polytetramethylene glycol diol [PTMEG] prepolymers provide abrasive mats with different properties. The amine phthalate/polyfunctional amine blends with hollow polymer microspheres (EXPANCEL® 551DE20d60 by AkzoNobel) Or 551DE40d42) before or after mixing the prepolymer with the chain extender. The hollow polymer microspheres may be mixed with the prepolymer at 6 rpni before the addition of the polyfunctional amine, and then the mixture is Mixing at 4500 rpm; or the hollow polymer microspheres can be added to the urethane/polyfunctional amine mixture in a mixing head at 3600 rpm. The microspheres have a weight average diameter of 15 to 50 μm and a range of 5 Up to 200 //m. Transfer the final mixture to the mold and allow it to gel for about 15 minutes. The mold is then placed in a curing oven and cured in the following cycle: Set the temperature 104. (:, at ❹ lO^C for 15 hours, then at 2 During the period, the temperature was lowered from the set temperature to C. Comparative Example F to Comparative Example κ used a shorter curing cycle at 100 ° C, holding force: 8 hours. The molded part was then "cut" into a thin sheet and was placed in a chamber. The lower surface of the lower surface is machined with a large channel or groove; the surface roughness and the sheet thickness are cut at a higher temperature. As shown in the table, the samples 1 to 2 represent the polishing pad of the present invention, and the sample A to Sample Z series is not a comparative example. 16 94719 201006854 Table 1 Formulation formula NCOCwt%) Prepolymer stoichiometry (8) Hollow polymer sphere (wt%) Nominal sphere diameter (egg) 1 MJK1859C 8.75-9.05 LF750D 85 3. 36 20 2 MJK1859C 8. 75-9. 05 LF750D 85 3.36 20 A S58 8. 75-9. 05 LF750D 85 2. 25 40 B T58 8. 75-9. 05 LF750D 85 3.21 20 C S52 8. 75-9. 05 LF750D 105 0.75 40 D S53 8. 75-9. 05 LF750D 85 0.75 40 E T53 8. 75-9. 05 LF750D 85 1.07 20 F MJK3101A 11.4-11.8 Royalcast 2505 85 3.01 20 G MJK3101C 11.4-11.8 Royalcast 2505 85 3.01 20 H MJK3101B 11.4-11.8 Royalcast 2505 95 2.93 20 I MJK3101D 11.4-11.8 Royalcast 2505 95 2. 93 20 J MJK1864A 11.4-11.8 Royalcast 2505 105 - 2. 86 20 K MJK1864J 11.4-11.8 Royalcast 2505 105 2. 86 20 L MJI3122B 8. 75-9. 05 LF750D 85.00 3.87 20 M MJK3122F 8. 75-9. 05 LF750D 90.00 3.83 20 N MJK3122E 8. 75-9. 05 LF750D 95.00 3. 79 20 0 M.IK3122D 8. 75-9. 05 LF750D . 100.00 3. 74 20 P MJI3122A 8.45-8. 75 LF750D 105.00 3. 70 20 Q MJI3122C 8.45-8 75 LF750D 110.00 3. 66 20 R VP3000 7.1-7.4 LF600D 85 1.8 40 S MJK1803C 8. 75-9. 05 LF750D 90.00 2. 94 20 T MJK1803E 8. 75-9. 05 LF750D 90.00 2.94 20 ϋ MJK1803A 8. 75 -9. 05 LF750D 115.00 2. 94 20 V MJK1803F 8. 75-9. 05 LF750D 115.00 2. 94 20 17 94719 201006854 W MJK1803D 8. 75-9. 05 LF750D 90.00 2. 20 20 X MJK1803H 8. 75-9 05 LF750D 90.00 2. 20 20 Υ MJK1803B 8. 75-9. 05 LF750D 115.00 • 2.20 20 Ζ MJK1803G 8. 75-9. 05 115. 〇〇2. 20 20

Adiprene LF600D、LF750D 及 Royalcast 2505 係對應 於甲苯二異氰酸酯與由Chemtura製造之PTMEG產品的混 合物。LF600D及LF750D係低遊離異氰酸酯預聚物,而 Royalcast 2505係具有高度之遊離異氰酸酯單體。 於來自應用材料公司(Applied Materials,Inc.)之 Mirra ®研磨機上使用93rpm之檯板轉動速度、87rpm之晶 片載體頭轉動速度以及5磅/平方英吋(psi)之下壓力研磨 TE0S片狀晶片,從而測試各實施例之研磨墊。該研磨浆料 係ILD3225與DI水之1:1混合物’並以150毫升(mi)/分 鐘(miη)之速度提供至該研磨塾之表面上。使用原位修整製 程而使用Diagrid ® AD3BG150855修整盤對該研磨墊進行 鑽石修整。研磨TE0S片狀晶片30秒或60秒,使用實施例 墊之各測試還包括使用IC1010墊之晶片作為基線。最重要 者係相對於IC1010之30秒研磨速度,蓋因其將對降低該 標準研磨墊之研磨時間具有最大效果。該研磨绪果係顯示 於下表2。 201006854 表·2 配方 配方 中空聚 合物球 (wt%) 公稱球 直徑 ("m) 30秒之 RR(A /min) RR,30 秒標準 60秒之 RR(A /min) RR, 60 秒標準 NU,% 目標 >3750 1.10 4100 1.08 < 6.0 1 MJK1859C 3. 36 20 3778 1.18 4183 1.15 2.5 2 MJK1859C 3. 36 20 3949 1.10 4235 1.08 5.7 A S58 2. 25 40 3802 1.08 4263 1.10 3.0 B T58 3.21 20 4043 1.15 4414 1.17 2.8 C S52 0. 75 40 3786 1.07 4070 1. 04 5.5 D S53 0. 75 40 3582 1.02 4043 1.01 3.4 E T53 1.07 20 3736 1.06 4175 1.05 3.1 F MJK3101A 3.01 20 3303 0.94 3755 0.95 4.2 G MJK3101C 3.01 20 3123 0. 89 3600 0.91 4.6 Η MJK3101B 2.93 20 3162 0.90 3652 0. 92 4.6 I MJK3101D 2. 93 20 3087 0.88 3587 0. 91 4.5 J MJK1864A 2.86 20 3180 0.91 3611 0.91 4.3 κ MJK1864J 2.86 20 3114 0. 89 3583 0.91 5.4 L MJK3122B 3. 87 20 3886 1.09 4219 1.07 6.0 Μ MJK3122F 3. 83 20 3788 1.06 4050 1.03 6.0 N MJK3122E 3.79 20 3747 1.05 4079 1.04 11.4 0 MJK3122D 3. 74 20 3715 1.04 4015 1.02 7.8 P MJK3122A 3. 70 20 3683 1.03 3915 1.00 7.1 Q MJK3122C 3. 66 20 3450 0.97 3647 0.93 8.4 R VP3000 1.8 40 3330 0.80 2. 3 S MJK1803C 2. 94 20 3893 1.06 4219 1.03 3.2 T MJK1803E 2. 94 20 4025 1.11 4251 1.05 7. 6 U MJK1803A 2. 94 20 3803 1.03 4025 0.98 4.8 V MJK1803F 2. 94 20 3673 1.01 3856 0.95 8.2 W MJK1803D 2. 20 20 3688 1.00 4029 0.98 3.8 X MJK1803H 2. 20 20 3692 1.01 3976 0.98 5.5 Y MJK1803B 2. 20 20 3783 1.03 4053 0.99 4.6 z MJK1803G 2.20 20 3654 1.00 3859 0.95 7. 6. 此等數據說明,負載有3. 36重量%之中空聚合物微球 係提供未預期之移除速度的增加。特別地,樣本1及樣本 2具有傑出之30秒移除速度及60秒移除速度。該樣本1 及樣本2之30秒移除速度說明,該研磨墊於支援更高產量 的_短研磨製程的早期具有高移除速度。負載有3. 01重量 19 94719 201006854 %(相同預聚物為2· 94重量%)或3. 66重量%或更多之中空 聚合物微球的比較例得到較低之3〇秒移除速度及較低之 整體移除速度。此外,第1圖至第3圖說明,該研磨墊之 表面似可於研磨優勢位置處捕獲燻矽。此對於燻矽之親和 性似乎導致研磨效能增加。 表3 配方 配方 ,中空聚 合物球 (wt%) 球之公 稱直徑 (jam) 以配方為基 準所計算之 於cm3配方内 的球# 以墊密度為 基準所之於 cm3配方内的 球# 所計算之 球#的差異 較佳者 >3.1 20 >9. 25E+07 1 MJK1859C 3.36 20 9. 79E+07 9. 50E+07 2.89E+06 2 MJK1859C 3. 36 20 9. 79E+07 9. 34E+07 4.42E+06 A S58 2.25 40 1.18E+07 1.27E+07 -8. 73E+05 B T58 3.21 20 9. 52E+07 1.05E+08 -9. 55E+06 C S52 0.75 40 5.30E+06 5.95E+06 -6. 53E+05 D S53 0.75 40 5.30E+06 5.80E+06 -4. 99E+05 E T53 1.07 20 4.25E+07 4.33E+07 -8. 60E+05 F ·*- MJK3101A 3.01 20 9. 21E+07 1.10E+08 -1.80E+07 一 G MJK3101C 3.01 20 9. 21E+07 9.56E+07 -3.46E+06 MJK3101B 2. 93 20 9. 04E+07 1.10E+08 -2. O0E+07 __ I MJK3I01D 2.93 20 9. 04E+07 9.55E+07 -5.01E+06 —J MJK1864A 2.86 20 8. 90E+07 9.56E+07 -6. 53E+06 K MJK1864J 2. 86 20 8. 90E+07 9.98E+07 -1.07E+07 _ L MJK3122B 3. 87 20 1. 07E+08 1.14E+08 -7. 20E+06 Μ MJK3122F 3. 83 20 1.06E+08 1.30E+08 -2.40E+07 Ν MJK3122E 3. 79 20 1.05E+08 1.18E+08 -1.32E+07 0 MJK3122D 3. 74 20 1.04E+08 1.17E+08 -1.26E+07 Ρ MJK3122A 3.70 20 1.04E+08 1.20E+08· -1.63E+07 MJK3122C 3. 66 20 1. 03E+08 1.22E+08 -1. 92E+07 R ——— VP3000 1.8 40 1.00E+07 2. 98E+07— -1.98E+07 S 一 MJK1803C 2.94 20 9. 01E+07 9. 21E+07 卜-2· 02E+06 —τ MJK1803E 2. 94 20 9. 01E+07 1.06E+08 -1. 60E+07 U —— MJK1803A 2.94 20 9. 01E+07 Γ 1.07E+08 -1. 68E+07 V 5 MJK1803F 2.94 20 9. 01E+07 1.17E+08 -2. 70E+07 5. 91E+06 f ——-— MJK1803D 2.20 20 7. 41E+07 6.82E+07 X 一 »— MJK1803H 2. 20 20 7.41E+07 9. 73E+07 -2.32E+07 Y —丨丨― MJK1803B 2.20 20 7.41E+07 8. 71E+07 -1.31E+07 —1 MJK1803G 2.20 20 7. 41E+07 9.45E+07 -2.04E+07 20 94719 201006854 ’ 表3係說明該中空聚合物微球達成超過每立方公分之 墊配方中一百萬個微球的負載程度° 、 下表4係顯示預聚物%NC0,並比較多個無填料或孔隙 . 度之經MBCA-固化之彈性體的機械強度性能’該彈性體係 自以ASTM D412方法測試之該實施例配方中所使用之預聚 物作成者。所顯示之彈性性能係ASTMD1566-08A中定義。 此外,表4係顯示如該預聚物製造商所報告之以MBCA固化 之該預聚物的公稱密度。 m 零表4 預聚物 預聚物NCO (Ft%) 未填充之以 MBCA固化的 拉伸強度, psi(MPa) 於100%延長 之拉伸張 力,psi(MPa) 於200%延長 之拉伸張力, psi(MPa) — Ί 公稱聚合 物密度 (g/cm3) Adiprene LF600D 7.1-7.4 6700 (46.2) 3600 (24.8) 4800 (33.1) ----- 1. 16 Adiprene LF750D 8. 75-9. 05 7100 (48.9) 5300 (36.5) 5900 (40.7) 1.20 Royal cast 2505 11.4-11.8 9200 (63) — - 1.21 表4係說明’除了填料濃度外,該研磨墊之機械性能 似乎亦可影響研磨效能。具體而言,使用LF6〇〇D之比較例 R之該聚合物之剛性(藉由其1〇〇%模數作為最佳指示者)似 乎不足以支援用於燻矽研磨之高移除速度 ;而使用Adiprene LF600D, LF750D and Royalcast 2505 correspond to a mixture of toluene diisocyanate and PTMEG products manufactured by Chemtura. LF600D and LF750D are low free isocyanate prepolymers, while Royalcast 2505 has a high degree of free isocyanate monomer. A platen rotation speed of 93 rpm, a wafer carrier head rotation speed of 87 rpm, and a pressure-milled TEOS sheet at 5 psig on a Mirra® mill from Applied Materials, Inc. Wafers were tested to test the polishing pads of the various embodiments. The abrasive slurry was a 1:1 mixture of ILD 3225 and DI water and was supplied to the surface of the abrasive crucible at a rate of 150 ml (mi) / minute (miη). The polishing pad was diamond trimmed using an in-situ trimming process using a Diagrid® AD3BG150855 conditioning disc. The TE0S sheet wafer was ground for 30 seconds or 60 seconds, and each test using the example pad also included the use of the IC1010 pad wafer as a baseline. The most important is the 30 second grinding speed relative to IC1010, which has the greatest effect on reducing the grinding time of the standard polishing pad. The grinding results are shown in Table 2 below. 201006854 Table·2 Formulation Hollow Polymer Ball (wt%) Nominal Ball Diameter ("m) 30 Seconds RR (A / min) RR, 30 Seconds Standard 60 Seconds RR (A / min) RR, 60 Seconds Standard NU,% Target>3750 1.10 4100 1.08 < 6.0 1 MJK1859C 3. 36 20 3778 1.18 4183 1.15 2.5 2 MJK1859C 3. 36 20 3949 1.10 4235 1.08 5.7 A S58 2. 25 40 3802 1.08 4263 1.10 3.0 B T58 3.21 20 4043 1.15 4414 1.17 2.8 C S52 0. 75 40 3786 1.07 4070 1. 04 5.5 D S53 0. 75 40 3582 1.02 4043 1.01 3.4 E T53 1.07 20 3736 1.06 4175 1.05 3.1 F MJK3101A 3.01 20 3303 0.94 3755 0.95 4.2 G MJK3101C 3.01 20 3123 0. 89 3600 0.91 4.6 Η MJK3101B 2.93 20 3162 0.90 3652 0. 92 4.6 I MJK3101D 2. 93 20 3087 0.88 3587 0. 91 4.5 J MJK1864A 2.86 20 3180 0.91 3611 0.91 4.3 κ MJK1864J 2.86 20 3114 0. 89 3583 0.91 5.4 L MJK3122B 3. 87 20 3886 1.09 4219 1.07 6.0 Μ MJK3122F 3. 83 20 3788 1.06 4050 1.03 6.0 N MJK3122E 3.79 20 3747 1.05 4079 1.04 11.4 0 MJK3122D 3. 74 20 3715 1.04 4015 1.02 7.8 P MJK3122A 3. 70 20 3683 1.03 3915 1.00 7.1 Q MJK31 22C 3. 66 20 3450 0.97 3647 0.93 8.4 R VP3000 1.8 40 3330 0.80 2. 3 S MJK1803C 2. 94 20 3893 1.06 4219 1.03 3.2 T MJK1803E 2. 94 20 4025 1.11 4251 1.05 7. 6 U MJK1803A 2. 94 20 3803 1.03 4025 0.98 4.8 V MJK1803F 2. 94 20 3673 1.01 3856 0.95 8.2 W MJK1803D 2. 20 20 3688 1.00 4029 0.98 3.8 X MJK1803H 2. 20 20 3692 1.01 3976 0.98 5.5 Y MJK1803B 2. 20 20 3783 1.03 4053 0.99 4.6 z MJK1803G 2.20 20 3654 1.00 3859 0.95 7. 6. These data indicate that 3.36% by weight of hollow polymer microspheres are loaded to provide an unexpected increase in removal rate. In particular, Sample 1 and Sample 2 have an outstanding 30 second removal speed and a 60 second removal speed. The 30 second removal speed for Sample 1 and Sample 2 indicates a high removal rate early in the _short grinding process that supports higher throughput. The comparative example of the hollow polymer microspheres having a loading of 3.11 weight 19 94719 201006854% (the same prepolymer is 2.94% by weight) or 3.6 wt% or more gives a lower 3 sec removal speed. And lower overall removal speed. In addition, Figures 1 through 3 illustrate that the surface of the polishing pad appears to capture smoker at a preferred location of the abrasive. This affinity for smoked sputum seems to result in increased grinding performance. Table 3 Formulation Formulation, Hollow Polymer Ball (wt%) Ball Nominal Diameter (jam) The ball calculated in the cm3 formula based on the formula # is calculated based on the pad density and the ball # in the cm3 formula. The difference between the ball # is better. >3.1 20 > 9.25E+07 1 MJK1859C 3.36 20 9. 79E+07 9. 50E+07 2.89E+06 2 MJK1859C 3. 36 20 9. 79E+07 9. 34E+07 4.42E+06 A S58 2.25 40 1.18E+07 1.27E+07 -8. 73E+05 B T58 3.21 20 9. 52E+07 1.05E+08 -9. 55E+06 C S52 0.75 40 5.30E +06 5.95E+06 -6. 53E+05 D S53 0.75 40 5.30E+06 5.80E+06 -4. 99E+05 E T53 1.07 20 4.25E+07 4.33E+07 -8. 60E+05 F · *- MJK3101A 3.01 20 9. 21E+07 1.10E+08 -1.80E+07 One G MJK3101C 3.01 20 9. 21E+07 9.56E+07 -3.46E+06 MJK3101B 2. 93 20 9. 04E+07 1.10E +08 -2. O0E+07 __ I MJK3I01D 2.93 20 9. 04E+07 9.55E+07 -5.01E+06 —J MJK1864A 2.86 20 8. 90E+07 9.56E+07 -6. 53E+06 K MJK1864J 2 86 20 8. 90E+07 9.98E+07 -1.07E+07 _ L MJK3122B 3. 87 20 1. 07E+08 1.14E+08 -7. 20E+06 Μ MJK3122F 3. 83 20 1.06E+08 1.30 E+08 -2.40E+07 Ν MJK3122E 3. 79 20 1.05E+08 1.18E+08 -1.32E+07 0 MJK3122D 3. 74 20 1.04E+08 1.17E+08 -1.26E+07 Ρ MJK3122A 3.70 20 1.04E+08 1.20E+08· -1.63E+ 07 MJK3122C 3. 66 20 1. 03E+08 1.22E+08 -1. 92E+07 R ——— VP3000 1.8 40 1.00E+07 2. 98E+07— -1.98E+07 S One MJK1803C 2.94 20 9. 01E+07 9. 21E+07 Bu-2· 02E+06 —τ MJK1803E 2. 94 20 9. 01E+07 1.06E+08 -1. 60E+07 U —— MJK1803A 2.94 20 9. 01E+07 Γ 1.07 E+08 -1. 68E+07 V 5 MJK1803F 2.94 20 9. 01E+07 1.17E+08 -2. 70E+07 5. 91E+06 f —————— MJK1803D 2.20 20 7. 41E+07 6.82E+ 07 X 一»— MJK1803H 2. 20 20 7.41E+07 9. 73E+07 -2.32E+07 Y —丨丨 — MJK1803B 2.20 20 7.41E+07 8. 71E+07 -1.31E+07 —1 MJK1803G 2.20 20 7. 41E+07 9.45E+07 -2.04E+07 20 94719 201006854 ' Table 3 shows the degree to which the hollow polymer microspheres achieve a load of more than one million microspheres per cubic centimeter of the pad formulation. Table 4 shows the prepolymer %NC0 and compares the mechanical strength properties of a plurality of MBCA-cured elastomers without filler or porosity. The elastic system is ASTM D41. 2 Method The prepolymer used in the formulation of this example was tested. The elastic properties shown are defined in ASTM D1566-08A. In addition, Table 4 shows the nominal density of the prepolymer cured with MBCA as reported by the prepolymer manufacturer. m Zero Table 4 Prepolymer Prepolymer NCO (Ft%) Unfilled tensile strength with MBCA cure, psi (MPa) at 100% extended tensile tension, psi (MPa) at 200% extended stretch Tension, psi(MPa) — Ί Nominal polymer density (g/cm3) Adiprene LF600D 7.1-7.4 6700 (46.2) 3600 (24.8) 4800 (33.1) ----- 1. 16 Adiprene LF750D 8. 75-9. 05 7100 (48.9) 5300 (36.5) 5900 (40.7) 1.20 Royal cast 2505 11.4-11.8 9200 (63) — - 1.21 Table 4 shows that in addition to the filler concentration, the mechanical properties of the pad may also affect the grinding performance. In particular, the rigidity of the polymer of Comparative Example R using LF6〇〇D (with its 1% modulus as the best indicator) does not appear to be sufficient to support the high removal rate for the smoked ablation; And use

Royalcast ® 2505準預聚物作成之比較例ρ至比較例j(之 剛性似乎超過支援燒發研磨之高移除速度所需者。自 Royalcast 2505洗鑄之聚胺酯材料係如此之脆,以至於其 於達到100%延長之前即已破碎。 21 94719 201006854 總之,該研磨墊係有效用於研磨銅、介電材料、阻擋 物及鎢晶片。特別地,該研磨墊係適用於ILD研磨,尤其 適用於燻矽之ILD研磨應用。該研磨墊係具有用以有效研 磨之快速斜面(ramp),該斜面於30秒提供高移除速度。本 、 發明之研磨墊之30秒移除速度及60秒移除速度兩者均可 超出IC1000研磨墊之30秒移除速度及60秒移除速度。本 發明之墊之此種快速研磨回應促進高於傳統多孔研磨墊之 晶片產量。 【圖式簡單說明】 ® 第1圖係本發明之墊之研磨表面的250X放大之研磨 後掃描電子顯微照片(post-polishing scanning electron photomicrograph) ° 第2圖係本發明之墊之研磨表面的500X放大之研磨 後掃描電子顯微照片。 第3圖係第1圖及第2圖中該研磨墊於第2圖相同區 域之500XEDS圖像,係說明以含氧化矽之研磨漿料研磨後 0 之尚濃度砍。 【-主要元件符號說明】 無 22 94719Comparative Example ρ of Royalcast ® 2505 quasi-prepolymer was prepared to Comparative Example j (the rigidity seems to exceed the requirement for high removal speeds to support burn-in grinding. The polyurethane material washed from Royalcast 2505 is so brittle that it In general, the polishing pad is effective for grinding copper, dielectric materials, barriers and tungsten wafers. In particular, the polishing pad is suitable for ILD grinding, especially for A smoked ILD grinding application. The polishing pad has a fast ramp for effective grinding, which provides a high removal speed in 30 seconds. The 30 second removal speed and 60 second shift of the inventive polishing pad Both the speed and the speed can exceed the 30 second removal speed of the IC1000 polishing pad and the 60 second removal speed. This rapid grinding response of the pad of the present invention promotes wafer yield higher than that of the conventional porous polishing pad. ® Figure 1 is a 250X magnification post-polishing scanning electron photomicrograph of the abrasive surface of the pad of the present invention. Figure 2 is a polishing of the pad of the present invention. Scanning electron micrographs of the surface after 500X magnification. Fig. 3 is a 500XEDS image of the same area of the polishing pad in Fig. 1 and Fig. 2, illustrating the grinding with a slurry containing cerium oxide. After the 0 concentration is cut. [- Main component symbol description] None 22 94719

Claims (1)

201006854 七、申請專利範圍: 1. 一種適用於研磨含有銅、介電材料、阻擋物以及鎢之至 少一者之圖形化半導體基板的研磨墊,該研磨墊係包括 ,聚合物基質及位於該聚合物基質内之中空聚合物顆 粒,該聚合物基質係固化劑與異氰酸酯封端之聚四伸甲 基醚二醇之聚胺酯反應產物,該聚胺酯反應產物之nh2 • 對NC0之化學計量比率為80%至97%,該異氰酸酯封端 之聚四伸曱基醚二醇具有8. 75重量%至9. 05重量%範圍 ❿ 之未反應NCO,該固化劑含有將該異氰酸酯封端之聚四 伸甲基醚二醇固化以形成該聚合物基質之固化胺;以及 該中空聚合物顆粒具有2至&0 μπι之平均直徑,及如下 式所示之形成該研磨墊之成份的wt%b及密度b : =wt%b 其中,密度a等於60g/L之平均密度, 密度b係5g/L至500g/L之平均密度, wt°/Da係3. 25重量%至4. 25重量%,. 該研磨墊具有30體積%至60體稂%之孔隙率,以及 位於該聚合物基質内之閉合單元結構,該閉合單元結構 形成環繞該閉合單元結構之連續網。 2. 如申請專利範圍第.1項之研磨墊,其中,以研磨劑修整 時,該連續網係形成粗糙化表面;以及該粗糙化表面能 於研磨過程中捕獲燻矽顆粒。 3. 如申請專利範圍第1項之研磨墊,其中,該研磨墊係具 23 94719 201006854 有44至54之蕭氏D硬度。 4. 如申請專利範圍第1項之研磨墊,其中,該研磨墊係具 有35體積%至55體積%之孔隙率。 5. 如申請專利範圍第1項之研磨墊,其中,該中空聚合物 顆粒係具有10至30/zm之平均直徑。201006854 VII. Patent Application Range: 1. A polishing pad suitable for polishing a patterned semiconductor substrate containing at least one of copper, a dielectric material, a barrier, and tungsten, the polishing pad comprising a polymer matrix and being located in the polymerization a hollow polymer particle in a matrix of a polyurethane and a polyamine reaction product of an isocyanate-terminated polytetramethylene glycol diol. The nh2 of the polyurethane reaction product • a stoichiometric ratio to NC0 of 80% To 97%, the isocyanate-terminated polytetradecyl ether glycol has an unreacted NCO of 8.75% by weight to 9.55% by weight, and the curing agent contains the polyisocyanate terminated by the isocyanate The ether ether diol is cured to form a solidified amine of the polymer matrix; and the hollow polymer particles have an average diameter of from 2 to < 0 μm, and a wt% b and density of the components forming the polishing pad as shown in the following formula 5重量%至4. 25重量%,. The weight density is equal to an average density of from 5g / L to 500g / L, wt / Da is 325. The polishing pad has 30% to 60% The porosity of the body %, and the closed cell structure located within the polymer matrix, the closed cell structure forming a continuous web surrounding the closed cell structure. 2. The polishing pad of claim 1, wherein the continuous network forms a roughened surface when trimmed with an abrasive; and the roughened surface is capable of capturing smoked particles during the grinding process. 3. The polishing pad of claim 1, wherein the polishing pad has a hardness of 44 to 54 and a Shore D hardness of 44 to 54. 4. The polishing pad of claim 1, wherein the polishing pad has a porosity of from 35 to 55% by volume. 5. The polishing pad of claim 1, wherein the hollow polymer particles have an average diameter of 10 to 30/zm. 6. —種適用於研磨含有銅、介電材料、阻擋物以及鎢之至 少一者之圖形化半導體基板的研磨墊,該研磨墊係包括 聚合物基質及位於該聚合物基質内之中空聚合物顆 粒,該聚合物基質係固化劑與異氰酸酯封端之聚四伸甲 基醚二醇之聚胺酯反應產物,該聚胺酯反應產物之NH2 對NC0之化學計量比率為80%至90%,該異氰酸酯封端 之聚四伸曱基醚二醇具有8. 75重量%至9. 05重量%範圍 之未反應NCO,該固化劑含有將該異氰酸酯封端之聚四 伸甲基醚二醇固化以形成該聚合物基質之固化胺;以及 該中空聚合物顆粒具有2至50/zm之平均直徑,及如下 式所示之形成該研磨墊之成份的Wt%b及密度b : wt%t 其中,密度a等於60g/L之平均密度, 密度b係10g/L至300g/L之平均密度, wt%a係3. 25重量%至3. 6重量%, .該研磨墊具有35體積%至55體積%之孔隙率,以及 位於該聚合物基質内之閉合單元結構,該閉合單元結構 形成環繞該閉合單元結構之連續網。 24 94719 201006854 7.如申請專利範圍第6項之研磨墊,其中,以研磨劑修整 時,該連續網係形成粗糙化表面;以及該粗糙化表面能 r 於研磨過程中捕獲燻矽顆粒。 , 8.如申請專利範圍第1項之研磨墊,其中,該研磨墊係具 有44至54之蕭氏D硬度。 9. 如申請專利範圍第6項之研磨墊,其中,該研磨墊係具 有35體積%至50體積%之孔隙率。 10. 如申請專利範圍第6項之研磨墊,其中,該中空聚合物 顆粒係具有10至30 μ m之平均直徑。6. A polishing pad suitable for use in polishing a patterned semiconductor substrate comprising at least one of copper, a dielectric material, a barrier, and tungsten, the polishing pad comprising a polymer matrix and a hollow polymer positioned within the polymer matrix a granule, the polymer matrix-based curing agent and a polyamine ester reaction product of an isocyanate-terminated polytetramethylene glycol diol having a stoichiometric ratio of NH2 to NC0 of 80% to 90%, the isocyanate terminated The polytetradecyl ether glycol has an unreacted NCO ranging from 8.75% by weight to 9.05% by weight, and the curing agent contains the isocyanate-terminated polytetramethylene glycol diol to form the polymerization. a solidified amine of the substrate; and the hollow polymer particles have an average diameter of 2 to 50/zm, and a Wt%b and a density b of the composition forming the polishing pad as shown in the following formula: wt%t, wherein the density a is equal to The average density of 60 g/L, the density b is an average density of 10 g/L to 300 g/L, and the wt% a is 325 wt% to 3.6 wt%. The polishing pad has a volume of 35 vol% to 55% by volume. Porosity, as well as closure in the polymer matrix Cell structure, the cell structure is closed around the continuous web is formed of a closed cell structure. The abrasive pad of claim 6, wherein the continuous mesh forms a roughened surface when trimmed with an abrasive; and the roughened surface energy captures the smoked particles during the grinding process. 8. The polishing pad of claim 1, wherein the polishing pad has a Shore D hardness of 44 to 54. 9. The polishing pad of claim 6, wherein the polishing pad has a porosity of from 35 to 50% by volume. 10. The polishing pad of claim 6, wherein the hollow polymer particles have an average diameter of 10 to 30 μm. 25 947] 925 947] 9
TW098123685A 2008-08-05 2009-07-14 Chemical mechanical polishing pad TWI482789B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/221,581 US20100035529A1 (en) 2008-08-05 2008-08-05 Chemical mechanical polishing pad

Publications (2)

Publication Number Publication Date
TW201006854A true TW201006854A (en) 2010-02-16
TWI482789B TWI482789B (en) 2015-05-01

Family

ID=41203879

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098123685A TWI482789B (en) 2008-08-05 2009-07-14 Chemical mechanical polishing pad

Country Status (6)

Country Link
US (1) US20100035529A1 (en)
EP (1) EP2151299B1 (en)
JP (1) JP2010041056A (en)
KR (1) KR20100017064A (en)
CN (1) CN101642897B (en)
TW (1) TWI482789B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9079289B2 (en) 2011-09-22 2015-07-14 Toyo Tire & Rubber Co., Ltd. Polishing pad
US9181386B2 (en) 2010-03-26 2015-11-10 Toyo Tire & Rubber Co., Ltd. Polishing pad, manufacturing method therefor, and method for manufacturing a semiconductor device
US9884400B2 (en) 2015-01-12 2018-02-06 San Fang Chemical Industry Co., Ltd Polishing pad and method for making the same

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257544B2 (en) 2009-06-10 2012-09-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad having a low defect integral window
US8551201B2 (en) * 2009-08-07 2013-10-08 Praxair S.T. Technology, Inc. Polyurethane composition for CMP pads and method of manufacturing same
JP5534907B2 (en) * 2010-03-31 2014-07-02 富士紡ホールディングス株式会社 Polishing pad and method of manufacturing polishing pad
US8257545B2 (en) * 2010-09-29 2012-09-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad with light stable polymeric endpoint detection window and method of polishing therewith
US9211628B2 (en) * 2011-01-26 2015-12-15 Nexplanar Corporation Polishing pad with concentric or approximately concentric polygon groove pattern
JP5738729B2 (en) * 2011-09-22 2015-06-24 東洋ゴム工業株式会社 Polishing pad
JP5738730B2 (en) * 2011-09-22 2015-06-24 東洋ゴム工業株式会社 Polishing pad
JP5738731B2 (en) * 2011-09-22 2015-06-24 東洋ゴム工業株式会社 Polishing pad
JP5738728B2 (en) * 2011-09-22 2015-06-24 東洋ゴム工業株式会社 Polishing pad
US9144880B2 (en) * 2012-11-01 2015-09-29 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical polishing pad
US9102034B2 (en) 2013-08-30 2015-08-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of chemical mechanical polishing a substrate
US20150306731A1 (en) * 2014-04-25 2015-10-29 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US10946495B2 (en) * 2015-01-30 2021-03-16 Cmc Materials, Inc. Low density polishing pad
JP2017185563A (en) * 2016-04-01 2017-10-12 富士紡ホールディングス株式会社 Polishing pad
KR101853021B1 (en) * 2017-01-12 2018-04-30 에스케이씨 주식회사 Porous polyurethane polishing pad and preparation method thereof
KR102102973B1 (en) * 2017-11-14 2020-04-22 에스케이씨 주식회사 Polishing pad
KR102058877B1 (en) * 2018-04-20 2019-12-24 에스케이씨 주식회사 POROUS POLYURETHANE POLISHING PAD and PREPARATION METHOD THEREOF
KR102188525B1 (en) * 2019-10-29 2020-12-08 에스케이씨 주식회사 Polishing pad, preparation method thereof, and preparation method of semiconductor device using same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY114512A (en) * 1992-08-19 2002-11-30 Rodel Inc Polymeric substrate with polymeric microelements
US6514301B1 (en) * 1998-06-02 2003-02-04 Peripheral Products Inc. Foam semiconductor polishing belts and pads
JP3685066B2 (en) * 1998-11-09 2005-08-17 東レ株式会社 Polishing pad and polishing apparatus
AU2001262716A1 (en) * 2000-06-13 2001-12-24 Toyo Boseki Kabushiki Kaisha Process for producing polyurethane foam, polyurethane foam, and abrasive sheet
US20050171224A1 (en) * 2004-02-03 2005-08-04 Kulp Mary J. Polyurethane polishing pad
US7329174B2 (en) * 2004-05-20 2008-02-12 Jsr Corporation Method of manufacturing chemical mechanical polishing pad
JP4475404B2 (en) * 2004-10-14 2010-06-09 Jsr株式会社 Polishing pad
US7169030B1 (en) * 2006-05-25 2007-01-30 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US7445847B2 (en) * 2006-05-25 2008-11-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad
US7371160B1 (en) * 2006-12-21 2008-05-13 Rohm And Haas Electronic Materials Cmp Holdings Inc. Elastomer-modified chemical mechanical polishing pad
US7569268B2 (en) * 2007-01-29 2009-08-04 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9181386B2 (en) 2010-03-26 2015-11-10 Toyo Tire & Rubber Co., Ltd. Polishing pad, manufacturing method therefor, and method for manufacturing a semiconductor device
US9079289B2 (en) 2011-09-22 2015-07-14 Toyo Tire & Rubber Co., Ltd. Polishing pad
TWI558747B (en) * 2011-09-22 2016-11-21 羅門哈斯電子材料Cmp控股股份有限公司 Polishing pad
US9884400B2 (en) 2015-01-12 2018-02-06 San Fang Chemical Industry Co., Ltd Polishing pad and method for making the same

Also Published As

Publication number Publication date
TWI482789B (en) 2015-05-01
CN101642897B (en) 2011-08-03
JP2010041056A (en) 2010-02-18
EP2151299A2 (en) 2010-02-10
CN101642897A (en) 2010-02-10
EP2151299B1 (en) 2014-06-11
KR20100017064A (en) 2010-02-16
US20100035529A1 (en) 2010-02-11
EP2151299A3 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
TW201006854A (en) Chemical mechanical polishing pad
TWI480123B (en) Multi-functional polishing pad
US7074115B2 (en) Polishing pad
TWI589613B (en) Polyurethane polishing pad
TWI402334B (en) Chemical mechanical polishing pad
TWI568531B (en) Chemical mechanical polishing method
JP5270182B2 (en) Chemical mechanical polishing pad
JP6113331B2 (en) Polishing pad and manufacturing method thereof
JP6849389B2 (en) Chemical mechanical polishing method
EP1522385B1 (en) Polishing Pad
JP2018171702A (en) Chemical mechanical polishing pad
TW201623442A (en) High-stability polyurethane polishing pad
CN115555987A (en) CMP polishing pad
TWI842767B (en) Chemical mechanical polishing pad having a positive zeta potential for polishing a substrate
US20210094143A1 (en) Polishing pad, method for manufacturing polishing pad, and polishing method applying polishing pad
TW202018056A (en) Chemical mechanical polishing pad and polishing method
TW202017696A (en) Chemical mechanical polishing pad and polishing method