TW201003712A - Method for making transmission electron microscope grid - Google Patents

Method for making transmission electron microscope grid Download PDF

Info

Publication number
TW201003712A
TW201003712A TW97126401A TW97126401A TW201003712A TW 201003712 A TW201003712 A TW 201003712A TW 97126401 A TW97126401 A TW 97126401A TW 97126401 A TW97126401 A TW 97126401A TW 201003712 A TW201003712 A TW 201003712A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
nanotube film
metal
grid
film
Prior art date
Application number
TW97126401A
Other languages
Chinese (zh)
Other versions
TWI362678B (en
Inventor
Li-Na Zhang
Zhuo Chen
Chen Feng
Liang Liu
Kai-Li Jiang
Qun-Qing Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97126401A priority Critical patent/TWI362678B/en
Publication of TW201003712A publication Critical patent/TW201003712A/en
Application granted granted Critical
Publication of TWI362678B publication Critical patent/TWI362678B/en

Links

Abstract

The present invention relates to a method for making transmission electron microscope gird. The method includes steps of: providing a plurality of metal girds, and separately disposing the metal girds on a substrate; pulling at least one carbon nanotube film from a carbon nanotube array; covering the metal girds with at least one carbon nanotube film; treating the carbon nanotube film and the metal girds with organic solvent; breaking the carbon nanotube film at the place between every two metal girds, to achieve a plurality of transmission electron microscope girds.

Description

201003712 先、發明說明: 【發明所屬之技術領域】 本發明涉及一種透射電鏡微栅的製備方法 【先前技術】 / 在透射電子顯微鏡中’多孔碳支持膜(微栅)係用 了承載粉末樣&,進行透射電子顯微鏡高分辨像 的重要工具。隨著奈米材料研究的不斷 奈米材料的電子顯微學表徵領域的應用曰 前技術中’該應用於透射電子顯微鏡 通爷係在銅網或鎳網等金屬網格上覆蓋一層多 層非晶碳膜製成的。然而,在實際應用中 時,微栅中的非晶碳膜對太::::ί射電鏡高分辨像 觀察的影響很大。自九十;=來的透射太電鏡高分辨像 年代初以來,以奈米碳管(請參 ^Hehcalmicrotubulesof*^ 二:1 二5|4: P56(1991))爲代表的奈米材料以其獨特的 、、、。構和性貝引起了人們極大的關注。將奈米碳管薄膜應 用於微栅:製作,有利於提高透射電鏡的分辨性能。、; :施奈米碳管不易分散,並且奈米碳管薄膜的製備過程 獲雜,難以應用於A批量製備透射電鏡微栅。 有餐於此,提供一種對於奈米級顆粒,尤其直徑小 於5奈米的顆粒,更容易獲得效果更好地透射電鏡 辨像的透身ί電鏡微栅的製備方法實為必I 〇 ^ 【發明内容】 201003712 一種透射電鏡微栅的製備 供多個金屬網格間隔設置在一:二其包括以下步驟:提 ‘中拉取獲得至少-奈米碳管從奈米碳管陣列 ^ ^ ^ ^ Ρ. 寻艇’將至少一奈米碳管薄膜 设盖在該多個間隔設置的金 ' ' ^ ^ ^ ^ ^ ^ , ,,’ 13上;使用有機溶劑處理 的:和屬網格:及斷開該多個金屬網格之間 相車父於先前技術,所# AA、头 n ^…^ 迂的透射電鏡微栅的製備方法, 其通過伙起順排奈米碳管陣 ^ h \碎 早歹]連、戈抽出奈米碳管薄膜並一 二:在夕個金屬網格上’方法簡單、快捷,通過去除全 屬網格以外的奈米碳管薄膜曰 ^ 電鏡用微栅。利用奈米碳管的 m 觀察尺寸小於5請的“==^生’這種微棚有助於 丁卡顆粒的透射電鏡高分辨像。 【實施方式】 下面將結合_對本發明作進—步的詳細說明。 的制及圖2A~2D,本發明實施例透射電鏡微栅 勺衣備方法主要包括以下幾個步驟: 步驟一 ··提供—基底12及多個用於透射電鏡中的金屬 網格14’㈣多個金屬網格14間隔設置於該基底Μ表面。 該基底!2具有-平整表面,其材料不限。本實施例 中,該基底12爲-陶兗片。該金屬網格14爲—形成有_ 個或夕個通孔的金屬片。該通孔的直徑爲ι〇微米〜2毫米。 該金屬網格14材料爲銅或其他金屬材料,該金屬網格η 的網孔孔徑遠大於奈米碳管薄膜16中相鄰奈米碳管之間 的距離,或多層奈来碳管薄膜16重叠形成的奈米碳管薄膜 201003712 結構的微孔孔徑。 兩個相鄰的金屬網格14《間的距離不能過大或過 小’過大則不利於提南透射電鏡微柵的生産效率 使後續步驟中對奈㈣管薄膜16的加卫難度增加 / 降低生産成本。當在後續步驟中使用 光 於 處理奈米碳管薄膜16時’該兩個相鄰的金屬網格3 = 的距離應大於雷射光束18照射在奈米碳管薄膜Μ表面f :形成先斑的直徑’本實施例優選爲5〇〜2〇〇微 地,爲提高奈米碳管薄臈16的利用率並方便切割 = 多個金屬網格U緊密並規則排列於該基底12表面。本= 施例中’料個金屬網格i 4沿行及列排列於該基底工^ 面0 不' 優選地,該陣列爲超 步驟二:提供一奈米碳管陣列 順排奈米碳管陣列。 …本實施例中,超順排奈米碳管陣列的製備方法採用化 學氣相沈積法’其具體步驟包括:(a)提供—平签基底, 該基底可選用p型或夕基底,或選用形成有氧Γ匕層的 矽基底,本實施例優選爲採用4英寸的矽基底;(b)在基 -表句勻开v成一催化劑層,該催化劑層材料可選用鐵 (Fe)、銘(C〇)、鎳(Ni)或其任意組合的合金之一;(c) 將上述形成有催化劑層的基底在7〇〇〜9〇〇 t的空氣中退火 約30分/里〜9〇分鐘;(d )將處理過的基底置於反應爐中, 在保濩乳體環境下加熱到5〇〇〜74(rc,然後通入碳源氣體 反應約5〜30分鐘’生長得到超順排奈米碳管陣列,其高 201003712 ::于畫:微米。5亥超順排奈米碳管陣列爲多個彼此平 ===奈米碳管形成的純奈米碳管陣列。 二= 該超順排奈米碳管陣列中基本不 ^雜貪’如無定型碳或殘留的催化劑金屬顆粒等。該太 米石灰管陣列中的夺乎卢其你 不 成陣列。 Ί &彼此相凡德瓦爾力緊密接觸形 ::施例中碳源氣可選用乙炔等化學性質較活潑的唆 風H保魏體可選職氣、氨氣或惰性氣體。 步驟二:從上述奈米碳管陣列中抽取獲得至少一罝 一定寬度和長度的奈米碳管薄膜16。 ” 私用拉伸工具從奈米碳管陣列巾拉取獲得奈米碳 :膜16。其具體包括以下步驟:“)從上述奈米碳管陣列 们夕1口“奴官片斷’本實施例優選爲採 用具有度的膠帶接觸奈米碳管陣列 的多個奈米碳管片以一定速度沿基本垂直於 碳管陣列生長方向拉伸該多個奈米碳管片_,以形成j 米碳管薄膜16。 $ 在上述拉伸過程中,該多個奈米碳管片斷在拉力作用 下沿拉伸方向逐漸脫離基底的同時’由於凡德瓦爾 用’该選疋的多個奈来碳管片斷分別與其他奈米碳管片斷 首尾相連地連續地被拉出,從而形成—奈米碳管薄膜Μ。 該奈米碳管薄m 16狀向排列的多個奈米碳管束首尾相 連形成的具有-定寬度的奈米碳管薄膜16。該奈米碳 膜16中奈米碳管的排列方向基本平行於奈米竣管薄膜u 201003712 的拉伸方向。 本實施例中’該奈米碳管 '列所生長的基底的尺寸_ =16的減與奈米碳管陣 才有關’该奈米竣管薄膜16的异声尤 ,限,可根據實際需求制得。太…,:厚膜16的長度不 生長超賴奈米碳f用4英寸的基底 一cm,奈姆薄膜;=碳管薄膜16的寬度可爲 小於10微米。中相鄰奈米碳管之間的距離 二=將上述獲仔的奈米碳管薄膜16覆蓋在上述多 個間隔設置的金屬網格14上。 /憂選地i該奈米碳管薄膜16的面積應足够大,從而可 奈未碳官薄膜16完全覆蓋該多個間隔設置的金屬網 格14 〇 可以理解,可進一步將多個奈米碳管薄膜16依次重叠 地鋪設在多個金屬網格14上。具體地,可將抽取獲得的— 奈米碳管薄膜16直接覆蓋在金屬網格14上,再將另— 更多的奈米碳管薄膜16沿預定角度依次覆蓋上一奈米碳 管薄膜16,從而形成一覆蓋於多個金屬網格14上的夺米 碳管薄膜結構。該多個奈米碳管薄膜! 6的鋪設角度不;:: 爲0° < ot $ 90。,本實施例優選爲9〇。。 由於本實施例步驟一中提供的超順排奈米碳管陣列中 的奈求碳管非常純淨,且由於奈米碳管本身的比表面積非 常大,故該奈米碳管薄膜16本身具有較强的粘性。多層奈 米碳管薄膜16之間由於凡德瓦爾力緊密連接形成 的奈米碳官薄膜結構。該預定的角度可根據需求設定爲相 11 201003712 該奈米碳管薄膜結構申奈米碳管 同的角度或不同的角度 薄膜16的層數不限。 另’也可將多層抽取獲得太 角度層芦ϋΑ鍤又于的不未石反官溥膜Ιό以預定的 碳;;架結構上,從而預先形成-奈米 14J/。、、、’σ,再將錢米碳f薄膜結構覆蓋在金屬網格 本實施例還可利用將多芦太丰 报忐目女/立々 f夕層不未石厌官溥膜10部分堆叠 …、有任思I度和長度的奈米碳管薄膜結構,不受本 施例上述方法從奈米碳管陣 反e陣列直接拉出的奈米碳管薄膜 16的寬度限制。 步驟五:使用有機溶劑處理上述奈米碳管薄㈣,從 而使该奈米碳管薄膜16和金屬網格14結合緊密。 上述有機溶劑爲揮發性有機溶劑,如乙醇、甲醇、丙 酮、二氣乙烧或氯仿,本實施例中採用乙醇。該有機溶劑 可直接滴在奈米碳管薄膜16上,使該奈米碳管薄膜心 金屬網格14結合緊密。另,可將上述覆蓋有奈米碳管薄膜 16的金屬網格14整個浸入盛有有機溶劑的容器中浸潤。 該奈米碳管薄膜16經有機溶劑浸潤處理後,在揮發性 有機溶劑的表面張力的作用下,奈米碳管薄膜16中的平行 的奈米碳管片斷會部分聚集成奈米碳管束。該奈米碳管薄 膜16中奈米碳管聚集成束,使得該奈米碳管薄膜16中平 行的奈米碳管束之間基本相互間隔。當將多層奈米碳管薄 膜16沿不同方向重叠覆蓋金屬網格14時,多層奈米碳管 薄膜16中的奈米碳管束交叉排列形成微孔結構。這些微孔 12 201003712 ^順序排列而又互相交叠的奈米藏管,及奈米碳管束構 :領域技術人員應明白,本實施例奈米破管薄膜 :籌中的微孔結構與奈米碳管_16的層數有關 斤形成的微孔結構的孔徑越小。如,當層數爲四 二的尺寸分佈範圍大約從幾個奈米到1微米。這 ;射:2 =米顆粒,奈米線,奈米棒等,以用來進行 远射電鏡硯察分析。 步心:待有機溶劑揮發後’斷開該多個金屬網格14 之間的奈米碳管薄膜16,從而形成多個透射電鏡微栅。 ?體地,可採用雷射光束18聚焦照射去除覆蓋於金屬 網格:U以外的奈米破管薄膜16,其具體包括以下步驟屬 叮/ t’提供—雷射光束18。本實施例中,雷射光束18 =過傳統的氬離子雷射器或二氧化碳雷射器産生,其功 率爲5〜30瓦(W),優選爲18w。 I /、人將11亥田射光束18聚焦照射至覆蓋於所述多個金 屬網格14以外的奈米碳管薄膜16表面,斷開該多個金屬 網格Η之間的奈米石炭管薄膜16。該雷射光束料通過一 透鏡聚焦後從正面直接照射在上述奈米碳管薄膜Μ表 面可以理解’ s亥雷射光束18可採用垂直照射或傾斜照射 ^^焦於奈米碳管薄膜16矣; , 寻联b表面。上述奈米碳管薄膜16吸收 雷射光束18能量從而與空氣中的氧發生反應並分解,從而 使奈米碳管薄膜16斷開。 可以理解,可採用以下方法斷開多個金屬網格14之間 201003712 的奈米碳管薄膜16。 ,P射:射光束18’沿每-金屬網格14邊沿 -射遺不未石厌官缚们6 一周,形成一沿金屬網才各上% ,環繞金屬網格14的公澉p , 口 4的刀離&域144,從而使覆蓋於金屬網格 Γ 管薄膜16與覆蓋於金屬網格14以外的奈求 石炭管薄膜16分離。 τ' :移動f射光束18 ’照射全部金屬網格Μ以 外的示米奴管薄臈16,從而去除全部金屬網格Μ以外的 奈米碳管薄膜16。 =三··當該金屬網格14爲按陣列方式排列於基底 "%,移動雷射光束18,沿直線照射金屬網格14行 間及列間空隙,從而使多個金屬網格14之間 膜16斷開。 丨反b /寻 上述斷開多個金屬網格14之間的奈米碳管薄膜托步 :令,該雷射光束18移動及照射的線路可通過電腦程序控 可以理解,也可採用先前技術中的其它方法去除覆蓋 =屬網格14以外的奈米碳管薄臈16。如在該奈米碳管 :肤16表面塗覆光刻膠’利用化學或物理刻蝕的方法去除 孟屬網格14以外的奈米碳管薄膜16。 、 凊參閱圖3及圖4,本實施例依照上述方法製備得到 2透射電鏡微栅結構10,其包括一金屬網格14及覆蓋在 二屬網格14表面的奈米碳管薄膜結構。該金屬網格14爲 —形成有一個或多個通孔142的金屬片。該通孔142的直 14 201003712[Technical Field] The present invention relates to a method for preparing a transmission electron microstrip [Prior Art] / In a transmission electron microscope, a porous carbon support film (microgrid) is used to carry a powder sample &;, an important tool for high resolution images of transmission electron microscopy. With the application of nanomaterials in the field of electron microscopy characterization of nanomaterials, the application of the transmission electron microscope is applied to a metal mesh such as a copper mesh or a nickel mesh. Made of carbon film. However, in practical applications, the amorphous carbon film in the micro-gate has a great influence on the observation of the high resolution image of the ::::ί radio microscope. Since the 90th; = the high resolution of the transmission of the telescope, since the beginning of the year, the nanomaterial represented by the carbon nanotubes (please refer to Hehcalmicrotubulesof*^ 2:1 2 5|4: P56 (1991)) Unique,,,. The structure and sex have caused great concern. The application of the carbon nanotube film to the micro-gate: fabrication is beneficial to improve the resolution of the transmission electron microscope. , :: Schneider carbon tube is not easy to disperse, and the preparation process of the carbon nanotube film is complicated, it is difficult to apply to the A batch preparation of the transmission electron microstrip. There is a meal here, which provides a kind of nano-particles, especially those with a diameter of less than 5 nm, which is easier to obtain. The better way to obtain the transmission electron microscopy image is to prepare the electron micro-mirror. SUMMARY OF THE INVENTION 201003712 A TEM micro-grid is prepared for a plurality of metal grids spaced apart in one: two steps comprising the following steps: extracting at least - obtaining a carbon nanotube from a carbon nanotube array ^ ^ ^ ^寻. 寻艇's cover at least one carbon nanotube film on the plurality of spaced gold ' ' ^ ^ ^ ^ ^ ^ , , ' 13; treated with organic solvent: and genus grid: and Disconnecting the plurality of metal grids from the prior art, the method of preparing the transmission electron microstrip of the #AA, head n ^...^ ,, by arranging the tandem carbon nanotube array ^ h \ Broken early 歹] Lian, Ge extracted the carbon nanotube film and one or two: on the metal grid on the eve of the 'method is simple and fast, by removing the carbon nanotube film outside the grid 曰Using the m of the carbon nanotubes to observe a size of less than 5, the "==^生" micro-cavity contributes to the TEM high-resolution image of the Dingka particles. [Embodiment] The following will be combined with the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT AND EMBODIMENT 2A~2D, the TEM micromirror preparation method of the embodiment of the present invention mainly comprises the following steps: Step 1··providing—the substrate 12 and a plurality of metal meshes used in the transmission electron microscope A plurality of metal grids 14 are disposed at intervals on the surface of the substrate. The substrate has a flat surface and is not limited in material. In this embodiment, the substrate 12 is a ceramic tile. 14 is a metal piece formed with _ or a through hole. The diameter of the through hole is ι 〇 2 mm. The metal mesh 14 is made of copper or other metal material, and the mesh of the metal mesh η The pore size is much larger than the distance between adjacent carbon nanotubes in the carbon nanotube film 16, or the microporous pore size of the carbon nanotube film 201003712 formed by overlapping the multilayer carbon nanotube film 16. Two adjacent metals Grid 14 "The distance between them should not be too large or too small. The production efficiency of the TEM microgrid in Tienan increases the difficulty of the maintenance of the naphthalene film 16 in the subsequent steps/reduced the production cost. When using the light in the subsequent step to process the carbon nanotube film 16, the two The distance between the adjacent metal grids 3 = should be greater than the surface of the laser beam 18 irradiated on the surface of the carbon nanotube film f: the diameter of the first spot is formed 'this embodiment is preferably 5 〇 2 〇〇 〇〇 micro, for improving the nai The utilization of the carbon tube thin crucible 16 is convenient for cutting = a plurality of metal grids U are closely and regularly arranged on the surface of the substrate 12. In this example, the material metal grids i 4 are arranged in rows and columns on the substrate. Preferably, the array is super-step two: providing a carbon nanotube array of aligned carbon nanotube arrays. In this embodiment, the preparation method of the super-sequential carbon nanotube array is chemical. The specific steps of the vapor deposition method include: (a) providing a flat-label substrate, the substrate may be selected from a p-type or an enamel substrate, or a germanium substrate forming an aerobic layer, which is preferably 4 inches in this embodiment.矽 base; (b) in the base-table sentence evenly v into a catalyst layer, the reminder The material of the chemical layer may be selected from one of iron (Fe), indium (C〇), nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed is in the range of 7〇〇~9〇〇t Annealing in air for about 30 minutes / mile ~ 9 〇 minutes; (d) placing the treated substrate in a reaction furnace, heating to 5 〇〇 ~ 74 (rc, and then into the carbon source in a protected milk environment) Gas reaction for about 5~30 minutes' growth to obtain a super-sequential carbon nanotube array, its high 201003712:: painting: micron. 5 Hai super-shun carbon nanotube array for multiple flat === nanocarbon The array of pure carbon nanotubes formed by the tube. 2 = The super-shun-line carbon nanotube array is basically not sloppy, such as amorphous carbon or residual catalyst metal particles. The array of meters in the limestone tube is not in the array. Ί & Each side is in close contact with Van der Waals force. :: The carbon source gas in the application can be selected from acetylene and other chemically active hurricane H. Step 2: Extracting at least one carbon nanotube film 16 of a certain width and length from the carbon nanotube array. The private stretching tool is taken from the carbon nanotube array towel to obtain nano carbon: film 16. The specific steps include the following steps: ") from the above-mentioned carbon nanotube array, a "slave piece" this embodiment Preferably, the plurality of carbon nanotube sheets of the carbon nanotube array having a degree of tape contact are used to stretch the plurality of carbon nanotube sheets at a speed substantially perpendicular to the growth direction of the carbon tube array to form a j-meter carbon. Tube film 16. In the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the action of pulling force, and the plurality of carbon nanotubes are selected by Van der Waals. The segments are continuously pulled out continuously with the other carbon nanotube segments, thereby forming a carbon nanotube film crucible. The carbon nanotubes are thinly m 16 arranged in a row and a plurality of carbon nanotube bundles are connected end to end. A carbon nanotube film 16 having a constant width. The arrangement direction of the carbon nanotubes in the nanocarbon film 16 is substantially parallel to the stretching direction of the nanotube film u 201003712. In the present embodiment, the carbon nanotube The size of the substrate grown by the tube 'column _ = 16 minus the carbon nanotubes Only about the specific sound of the nano-tube film 16, can be made according to actual needs. Too...,: the length of the thick film 16 does not grow over the lining carbon f with a 4 inch base a cm, Nai The film of the carbon nanotube film 16 may have a width of less than 10 micrometers. The distance between the adjacent carbon nanotubes is two. The above-mentioned carbon nanotube film 16 is covered on the plurality of spaced metal meshes. On the grid 14 / / sadly i the area of the carbon nanotube film 16 should be large enough, so that the carbon film 16 completely covers the plurality of spaced metal grids 14 〇 understandably, more The carbon nanotube film 16 is sequentially laid on the plurality of metal meshes 14. In particular, the carbon nanotube film 16 obtained by the extraction can be directly covered on the metal mesh 14, and the other is further The carbon nanotube film 16 sequentially covers the upper carbon nanotube film 16 at a predetermined angle to form a carbon nanotube film structure covering the plurality of metal meshes 14. The plurality of carbon nanotube films! 6 The laying angle is not;:: 0° < ot $ 90. This embodiment is preferably 9 〇. Since the carbon nanotube in the super-sequential carbon nanotube array provided in the first step of the embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film 16 itself has a relatively high Strong viscosity. The nano-carbon film structure formed by the close connection of the multi-layered carbon nanotube film 16 due to the van der Waals force. The predetermined angle can be set to phase 11 according to the demand. 201003712 The carbon nanotube film structure Shennai The carbon nanotubes have the same angle or different angles. The number of layers of the film 16 is not limited. Alternatively, the multilayer layer can be extracted to obtain a too-corner layer of reeds and a non-stone anti-burst film to a predetermined carbon; Structurally, thus pre-formed - nano 14J /.,,, 'σ, and then cover the carbon rice carbon film structure in the metal grid. This embodiment can also be used to report the number of women. The octagonal layer is not stacked on the 10th part of the ruthenium film, and the carbon nanotube film structure having the I degree and the length is not directly extracted from the nano carbon tube array anti-e array by the above method. The width of the carbon nanotube film 16 is limited. Step 5: treating the above carbon nanotube thin (4) with an organic solvent, so that the carbon nanotube film 16 and the metal mesh 14 are tightly bonded. The above organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, diethylene bromide or chloroform, and ethanol is used in this embodiment. The organic solvent can be directly dropped on the carbon nanotube film 16, so that the carbon nanotube film core metal mesh 14 is tightly bonded. Alternatively, the metal mesh 14 covered with the carbon nanotube film 16 described above may be entirely immersed in a container containing an organic solvent to be infiltrated. After the carbon nanotube film 16 is infiltrated with an organic solvent, the parallel carbon nanotube segments in the carbon nanotube film 16 are partially aggregated into a carbon nanotube bundle under the action of the surface tension of the volatile organic solvent. The carbon nanotubes in the carbon nanotube film 16 are gathered into a bundle such that the parallel carbon nanotube bundles in the carbon nanotube film 16 are substantially spaced apart from each other. When the multilayered carbon nanotube film 16 is overlaid to cover the metal mesh 14 in different directions, the carbon nanotube bundles in the multilayered carbon nanotube film 16 are cross-aligned to form a microporous structure. These micropores 12 201003712 ^Negative tubes which are arranged in series and overlap each other, and carbon nanotube bundles: It will be understood by those skilled in the art that the nanotube membrane of this embodiment: the microporous structure and the nanometer in the preparation The number of layers of the carbon tube _16 is smaller with respect to the pore size of the microporous structure formed by the jin. For example, when the number of layers is 42, the size distribution ranges from about several nanometers to 1 micrometer. This; shot: 2 = rice particles, nanowires, nanorods, etc., for long-range electron microscopy analysis. Step: After the organic solvent is volatilized, the carbon nanotube film 16 between the plurality of metal meshes 14 is broken, thereby forming a plurality of transmission electron microscope micro-gates. Alternatively, the laser beam 18 can be used to focus illumination to remove the nanotube film 16 that covers the metal grid: U, which specifically includes the following steps: a laser beam 18 is provided. In this embodiment, the laser beam 18 is produced by a conventional argon ion laser or carbon dioxide laser having a power of 5 to 30 watts (W), preferably 18 watts. I /, a person focuses the 11 haitian beam 18 onto the surface of the carbon nanotube film 16 covering the plurality of metal grids 14, and disconnects the carbon nanotube between the plurality of metal grids Film 16. The laser beam is focused by a lens and directly irradiated from the front surface to the surface of the above-mentioned carbon nanotube film. It can be understood that the laser beam 18 can be vertically or obliquely irradiated with ^6 focusing on the carbon nanotube film. ; , Seeking b surface. The above-mentioned carbon nanotube film 16 absorbs the energy of the laser beam 18 to react with and decompose the oxygen in the air, thereby breaking the carbon nanotube film 16. It can be understood that the carbon nanotube film 16 of 201003712 between the plurality of metal meshes 14 can be broken by the following method. , P shot: the beam 18' along the edge of each - metal grid 14 - shots are not ruthless, they are 6 weeks, forming a metal mesh around each other, around the metal grid 14 of the public p, mouth The knife of 4 is separated from the & field 144 so that the metal mesh manifold film 16 is separated from the carbonaceous tube film 16 covering the metal mesh 14. τ': The moving f-beam 18' illuminates the thin carbon nanotubes 16 other than the entire metal mesh, thereby removing the carbon nanotube film 16 other than the entire metal mesh. = three · when the metal grid 14 is arranged in an array on the substrate "%, moving the laser beam 18, illuminating the metal grid 14 between the rows and the inter-column gaps in a straight line, thereby making the plurality of metal grids 14 The membrane 16 is broken.丨 反 b / 找 上述 断开 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈 奈Other methods in the removal of the carbon nanotubes 16 outside the cover = genus grid 14. The carbon nanotube film 16 other than the Menger mesh 14 is removed by chemical or physical etching, such as by coating the surface of the carbon nanotube: skin 16 with a photoresist. Referring to FIG. 3 and FIG. 4, in this embodiment, a TEM micro-gate structure 10 is prepared according to the above method, which comprises a metal mesh 14 and a carbon nanotube film structure covering the surface of the second-genus mesh 14. The metal mesh 14 is a metal piece formed with one or more through holes 142. The through hole 142 is straight 14 201003712

控爲10微米〜2毫半。兮人s A 材料,該金屬網袼;:通;= '結構的微孔孔徑。…二的孔㈣大於細管薄膜 薄膜16,或者 营薄膜結構包括-層奈米碳管 度堆叠开n轉 層奈米碳管薄膜16按照預定的角 管、等:1:二:孔薄膜結構。該微孔薄膜的孔徑與奈米碳 I16的層數有關,可爲!奈米〜10微米。 採用發明實施例透射電鏡微栅結構10 t 描電鏡昭片\ s賴16構成的奈米碳管薄膜結構的掃 孔奈米碳管薄膜16以90°角重叠形成微 、…,母—層奈米碳管薄膜16中的奈米碳管 排列’兩奈米碳管薄 Π 米碳管_ U 德瓦爾力結合。該奈 二、 的奈米碳管聚集成束,該奈米碳管薄膜姓 舞中:米碳管束交又形成多個微孔結構心 1奈米〜10微米。 f且仫為 本實轭例透射電鏡微栅10在應用時,可利用這此小尺 有較大尺寸的奈米顆粒,奈轉,:米ί 丁透射電鏡觀察分析。對於尺寸小於5nm的單個存 山2顆粒來說,微孔的作用不大,起作用的主要係奈 =故官的吸附作用,這些尺寸極小的奈米顆粒能够被穩定 =附在奈米碳管管壁邊沿,便於進行觀察。請參閱圖6 7圖中黑色顆粒爲待觀察的奈米金顆粒。該奈米金 顆粒穩定地吸附在奈米碳管管壁邊沿,有利 顆粒的高分辨像。 /丁、不木i 另’由於用於抽取奈米碳管薄膜16的超順排奈米碳管 15 201003712 陣列中的碳管純淨度高,尺寸均―,管壁缺陷少 例透射電鏡微栅10對承载於苴 Λ ^ 1構八狀笼…J 的4硯測樣品的形貌和 ,影響很小。 )不、未顆粒的南分辨像 本發明實施例所提供的透射電鏡微栅的製備方法,1 ㈣從超賴奈米碳管陣列可連續抽 /、 屬欠:;在多個金屬網格上,方法簡單、快捷, ί網格以外的奈米0薄臈,可批量製備性«定的= 電鏡用微栅。同時,利用夺f 4 Α 〜 透射 兹口 1 丁卡反官的吸附特性,有助於顴 ①尺寸小於5nm的奈米顆粒的透射電鏡高分辨像。 綜上所述,本發明確已符合發明專利之 提出專利申請。惟,以上所述者僅 。 自不能以此限制本案專利Μ ^之較佳實施例’ 夕,, 甲明專利乾圍。舉凡習知本案技蓺 之人士援依本發明之精神所作之耸 ’、" 蓋於以下申請專利範圍内專欢修飾或變化,皆應涵 【圖式簡單說明】 圖^本技術方案實施例透射電鏡微棚 机程不意圖。 工 圖 藝流=A:2D為本技術方案實施例透射電鏡微栅的製備 圖3爲本技術方案實施例透射電鏡微棚的結構示意 二)4照爲/技術方案實施例透射電鏡微栅的掃描電鏡 16 201003712 ▲圖5爲本技術方案實施例透射 膜的透射電鏡照片。 電鏡微栅中奈米碳管薄 圖6爲應用本技術方案實施例透射 金顆粒的透射電鏡照片。 電鏡微栅觀察奈米 圖7爲圖6的局部放大示意圖 【主要元件符號說明】 透射電鏡微栅結構 1〇 基底Control is 10 microns ~ 2 half.兮人 s A material, the metal mesh 袼;: pass; = 'structure of the micropore aperture. The second hole (four) is larger than the thin film film 16 or the film structure includes a layer of carbon nanotubes stacked to open the n-thick carbon nanotube film 16 according to a predetermined angle tube, etc.: 1: two: pore film structure. The pore size of the microporous membrane is related to the number of layers of nanocarbon I16, which can be! Nano ~ 10 microns. According to the embodiment of the invention, the scanning electron microscope micro-gate structure 10 t is used to form a carbon nanotube film structure of the carbon nanotube film structure 16 at a 90° angle to form a micro, ..., mother layer The carbon nanotubes in the carbon nanotube film 16 are arranged in a 'two-nano carbon tube thin Π m carbon tube _ U Deval force combination. The nanotube, the carbon nanotubes are gathered into a bundle, and the carbon nanotube film is named in the dance: the carbon nanotube bundles are formed into a plurality of microporous structures with a core of 1 nm to 10 μm. f and 仫 本 本 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射 透射For a single Cangshan 2 particle with a size of less than 5 nm, the effect of micropores is not large, and the main function of the system is the adsorption of Nail = the official, these very small nanoparticles can be stabilized = attached to the carbon nanotubes The edge of the pipe wall is easy to observe. Please refer to Figure 6 for the black particles as the nano gold particles to be observed. The nano gold particles are stably adsorbed on the edge of the carbon nanotube wall, which is advantageous for high resolution images of the particles. /丁,不木i Another 'Because of the super-sequential carbon nanotubes for extracting the carbon nanotube film 16 201003712 The carbon tubes in the array have high purity and size--the wall-wall defects are few examples of TEM micro-gates The morphology and influence of 10 pairs of 4 samples tested on 苴Λ ^ 1 occlusion cage J were small. The method for preparing a TEM micro-gate provided by the embodiment of the present invention, 1 (4) can be continuously pumped from a super-Lini carbon nanotube array, and is owed: on a plurality of metal grids The method is simple and fast, and the nanometer outside the grid is thin, and can be prepared in batches «determined = micro-gate for electron microscopy. At the same time, the use of the adsorption characteristics of the f 4 Α ~ transmission 口 1 丁 反 反 , , , 颧 颧 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸 尺寸In summary, the present invention has indeed met the patent application for the invention patent. However, the above is only for . It is not possible to limit the preferred embodiment of the patent in this case. Anyone who knows the skill of the present invention will be able to modify or change in the scope of the following patent application, which should be included in the following patent application. Transmission electron microscopy micro-cavity machine is not intended. The art flow = A: 2D is the preparation of the transmission electron microstrip of the embodiment of the technical solution. FIG. 3 is a schematic diagram of the structure of the transmission electron microscope micro-shed according to the embodiment of the present invention. 2) 4 is a technical solution embodiment of a transmission electron micro-gate Scanning Electron Microscope 16 201003712 ▲ Figure 5 is a transmission electron micrograph of a transmission film of an embodiment of the present technology. Thin Carbon Nanotubes in Electron Micromirrors Figure 6 is a transmission electron micrograph of the transmission gold particles using the embodiment of the present technical solution. Electron micro-gate micro-viewing of nanometer Figure 7 is a partial enlarged view of Figure 6 [Major component symbol description] Transmission electron micro-grid structure 1〇 Substrate

14 金屬網格 通孔 分離區域 奈米碳管薄膜 雷射光束 142 144 16 18 1714 Metal mesh Through hole Separation area Carbon nanotube film Laser beam 142 144 16 18 17

Claims (1)

201003712 ‘ +、申請專利範園 1.種透射電鏡微栅的製備方法,j:句括以下牛驟. 提供多個全眉綑坆„ 法其包括下步驟. 、,金屬,屑4間隔設置在一基底表面; ::'米石反官陣列中拉取獲得至少-奈米碳管薄膜; 網ΐί、^奈米碳管薄膜覆蓋在該多個間隔設置的金屬 f用有機溶劑處理該奈米碳管薄膜和金屬網格,·及 開5亥多個金屬網格之間的奈米碳管薄膜,從而形成多 個透射電鏡微栅。 2·,申請㈣範圍第1項所述的透射電鏡微栅的製備方 中,所述斷開奈米碳管薄膜的方法爲採用雷射 J束♦焦照射覆蓋於金屬網格以外的奈米碳管薄膜, 其具體包括以下步驟: 提供一雷射光束;及 ㈣雷射光束聚焦照射至覆蓋於所述多個金屬網格以 夕卜::米碳管薄膜表面,斷開該多個金屬網格之間的奈 米石反官薄膜。 3·:申請專利範圍第2項所述的透射電鏡微栅的製備方 法、中,所达雷射光束沿每一金屬網格邊沿昭射一 周,使覆蓋於金屬網格上的奈米碳管薄膜盘覆蓋於金 屬網格以外的奈米碳管薄膜分離。 、 4. 如申請專利範圍第2項所述的透 法,其中,所述金屬網格按 5. Γ1Τ=二所述的透射電鏡微栅的製備方 法,其中’所立雷射先束沿直線照射金屬網格行間及 18 201003712 ‘列間空隙’使該多個金屬網格之間的奈米碳管薄膜斷 開。 如中請專刺範圍第2項所述的透射電鏡微栅的製備方 -法,其中’所述雷射光束照射並去除全部金屬網格以 外的奈米碳管薄膜。 7.如申請專利範圍第2項所述的透射電鏡微栅的製備方 法’其中,所述雷射光束的移動及照射路線由 程序控制。 細 8·如申請專利範圍第2項所述的透射電鏡微栅的製備方 法’其中’所述雷射光束功率爲5〜3〇瓦 9.如申請專利範圍第i項所述的透射電鏡微栅的製備方 法,其中,所述從奈米碳管陣列拉取獲得奈米碳管 膜的方法包括以下步驟: Λ 從奈米碳管陣列中選定一定寬度的多個奈米碳 斷;及 以一疋速度沿基本垂直於奈米碳管陣列生長方向拉伸 c 該多個奈米碳管片斷,以形成一連續的奈米碳管薄膜, 該奈米碳管薄膜中奈米石炭管首尾㈣沿拉㈣向擇 取向排列。 10.如申請專利範圍第9項所述的透射電鏡微栅的製備方 法,其中,所述奈米碳管陣列的製備方法包括以下+ 驟: / 提供一平整基底; 在基底表面均勻形成一催化劑層; 將上述形成有催化劑層的基底在700〜900〇C的空氣中 19 201003712 退火約30分鐘〜9〇分鐘;及 境下加 分鐘, 5 製備方 隔設置 管薄獏 啦 riLi 斤々 术故官 製備方 隔設置 將處理過的基底置於反應爐中,在保護氣體環 熱到500〜740Ϊ,然後通入碳源氣反應約5〜3〇 生長传到南度爲2〇〇~400微米的奈米碳管陣列 如申請專利範圍第1項所述的透射電鏡微栅的 法,其中,所述將奈米碳管薄臈覆蓋在多個間 的金屬網格上的步驟進一步包括將多個奈米碳 依次重叠地鋪設在多個金屬網格上,該多個奈 薄膜的鋪設角度爲0。< α $ 90。。 12.如申請專利範圍第1項所述的透射電鏡微栅的 法,其中,所述將奈米碳管薄膜覆蓋在多個間 的金屬網格上的步驟包括以下步驟: 提供一框架結構; 在”亥框架結構上依次重叠鋪言史多個奈米碳管薄膜,從而 形成一奈米碳管薄膜結構;及 將該奈米碳管薄膜結構覆蓋在多個金屬網格上。 11、如申請專·圍第!項所述的透射電鏡微栅的製備方 =,其中,所述使用有機溶劑處理的方法包括通過試 :,有機溶劑滴落在奈米碳管薄膜表面浸潤整個奈米 =g 4臈,或將上述覆蓋有奈米碳管薄膜的金屬網格 正個浸入盛有有機溶劑的容器中浸潤。 14二申請專利範圍第。項所述的透射電鏡微栅的製備 —法,其中,所述有機溶劑爲乙醇、甲醇、丙酮、二 氯乙烷或氣仿。 20201003712 '+, application for patent garden 1. Preparation method of TEM microgrid, j: sentence includes the following bovine steps. Provide multiple full eyebrow bundles 法 法 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括 包括a substrate surface; :: 'Mine stone reverse array to pull at least - carbon nanotube film; net ΐ, ^ nano carbon tube film covering the plurality of spaced metal f treated with organic solvent The carbon tube film and the metal grid, and the carbon nanotube film between the plurality of metal grids of 5 hai, to form a plurality of TEM micro-gates. 2, the application of (4) TEM according to the first item In the preparation method of the micro-gate, the method for breaking the carbon nanotube film is to irradiate the carbon nanotube film covering the metal mesh with the laser beam, and the specific steps include the following steps: And (4) the laser beam is focused and irradiated to cover the plurality of metal grids to cover the surface of the carbon nanotube film, and the nano stone reverse film between the plurality of metal grids is broken. : Manufacture of TEM micro-grid as described in item 2 of the patent application scope In the method, the laser beam is irradiated along the edge of each metal grid for one week, so that the carbon nanotube film disk covering the metal grid covers the carbon nanotube film outside the metal mesh to separate. The method of claim 2, wherein the metal mesh is a method for preparing a transmission electron microstrip according to 5. Γ1Τ=2, wherein the laser beam is irradiated along a straight line Between the grid rows and 18 201003712 'Inter-column gaps', the carbon nanotube film between the plurality of metal grids is broken. For example, the preparation method of the TEM micro-grid described in the second item Wherein the laser beam illuminates and removes the carbon nanotube film other than the entire metal mesh. 7. The method for preparing a TEM micro-grid according to claim 2, wherein the laser beam The movement and illumination route are controlled by the program. 细8· The preparation method of the TEM micro-grid as described in claim 2, wherein the laser beam power is 5~3 〇9. Transmission electron microscopy The method for preparing a grid, wherein the method for extracting a carbon nanotube film from a carbon nanotube array comprises the following steps: 选定 selecting a plurality of nano carbon rings of a certain width from a carbon nanotube array; The plurality of carbon nanotube segments are stretched along a growth direction substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film, and the carbon nanotube film has a first (4) edge along the carbon nanotube tube The method for preparing a TEM micro-grid according to claim 9, wherein the method for preparing the carbon nanotube array comprises the following steps: / providing a flat substrate; A catalyst layer is uniformly formed on the surface of the substrate; the substrate on which the catalyst layer is formed is annealed in air of 700 to 900 〇C for 19 to 30 〜 minutes for about 30 minutes to 9 minutes; and the circumference is added for 5 minutes.貘 riLi 々 故 故 故 故 制备 制备 制备 制备 制备 ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri ri The method of transmitting a TEM microgrid according to claim 1, wherein the carbon nanotube is covered with a metal grid of a plurality of thin carbon nanotubes The above step further includes laying a plurality of nanocarbons on the plurality of metal grids in an overlapping manner, the plurality of naphthalene films being laid at an angle of zero. < α $ 90. . 12. The method according to claim 1, wherein the step of covering the carbon nanotube film on the plurality of metal grids comprises the steps of: providing a frame structure; A plurality of carbon nanotube films are sequentially stacked on the "Hai frame structure" to form a carbon nanotube film structure; and the carbon nanotube film structure is covered on a plurality of metal grids. The preparation method of the TEM micro-grid described in the above application, wherein the method using the organic solvent treatment comprises: testing: the organic solvent dripping on the surface of the carbon nanotube film to infiltrate the entire nanometer = g 4臈, or infiltrating the above-mentioned metal mesh covered with the carbon nanotube film in a container filled with an organic solvent. The preparation method of the TEM micro-grid described in the above-mentioned patent scope, Wherein, the organic solvent is ethanol, methanol, acetone, dichloroethane or gas. 20
TW97126401A 2008-07-11 2008-07-11 Method for making transmission electron microscope grid TWI362678B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97126401A TWI362678B (en) 2008-07-11 2008-07-11 Method for making transmission electron microscope grid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97126401A TWI362678B (en) 2008-07-11 2008-07-11 Method for making transmission electron microscope grid

Publications (2)

Publication Number Publication Date
TW201003712A true TW201003712A (en) 2010-01-16
TWI362678B TWI362678B (en) 2012-04-21

Family

ID=44825677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97126401A TWI362678B (en) 2008-07-11 2008-07-11 Method for making transmission electron microscope grid

Country Status (1)

Country Link
TW (1) TWI362678B (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396219B (en) * 2010-03-26 2013-05-11 Hon Hai Prec Ind Co Ltd Transmission electron microscope grid
TWI407479B (en) * 2010-04-07 2013-09-01 Beijing Funate Innovation Tech Transmission electron microscope grid
TWI410998B (en) * 2010-04-21 2013-10-01 Beijing Funate Innovation Tech Method for making transmission electron microscope grid
TWI410997B (en) * 2010-04-21 2013-10-01 Beijing Funate Innovation Tech Transmission electron microscope grid
TWI410999B (en) * 2010-04-21 2013-10-01 Beijing Funate Innovation Tech Transmission electron microscope grid
TWI411005B (en) * 2010-04-07 2013-10-01 Beijing Funate Innovation Tech Method for making transmission electron microscope grid
TWI411004B (en) * 2010-04-07 2013-10-01 Beijing Funate Innovation Tech Transmission electron microscope grid and method for making the same
US8551392B2 (en) 2010-02-08 2013-10-08 Beijing Funate Innovation Technology Co., Ltd. Method for manufacturing transmission electron microscope micro-grid
TWI413150B (en) * 2010-07-13 2013-10-21 Hon Hai Prec Ind Co Ltd Transmission electron microscope grid and method for making same
CN103357738A (en) * 2012-04-03 2013-10-23 清华大学 Micro grid cutting method
TWI415156B (en) * 2010-12-28 2013-11-11 Hon Hai Prec Ind Co Ltd Field emission cathode device and method for making same
TWI416587B (en) * 2010-04-21 2013-11-21 Beijing Funate Innovation Tech Method for making transmission electron microscope grid
TWI417934B (en) * 2010-03-26 2013-12-01 Hon Hai Prec Ind Co Ltd Method for making transmission electron microscope grid
US8650739B2 (en) 2010-04-14 2014-02-18 Beijing Funate Innovation Technology Co., Ltd. Method for manufacturing transmission electron microscope micro-grid
US8772736B2 (en) 2010-04-14 2014-07-08 Beijing FUNATE Innovation Co., Ltd. Transmission electron microscope micro-grid using carbon nanotubes
TWI447773B (en) * 2011-04-14 2014-08-01 Hon Hai Prec Ind Co Ltd Transmission electron microscope micro-grid
TWI452596B (en) * 2012-04-03 2014-09-11 Hon Hai Prec Ind Co Ltd Device for cutting grids
US9184023B2 (en) 2010-04-14 2015-11-10 Beijing Funate Innovation Technology Co., Ltd. Transmission electron microscope micro-grid

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8551392B2 (en) 2010-02-08 2013-10-08 Beijing Funate Innovation Technology Co., Ltd. Method for manufacturing transmission electron microscope micro-grid
TWI417934B (en) * 2010-03-26 2013-12-01 Hon Hai Prec Ind Co Ltd Method for making transmission electron microscope grid
TWI396219B (en) * 2010-03-26 2013-05-11 Hon Hai Prec Ind Co Ltd Transmission electron microscope grid
TWI411004B (en) * 2010-04-07 2013-10-01 Beijing Funate Innovation Tech Transmission electron microscope grid and method for making the same
TWI407479B (en) * 2010-04-07 2013-09-01 Beijing Funate Innovation Tech Transmission electron microscope grid
TWI411005B (en) * 2010-04-07 2013-10-01 Beijing Funate Innovation Tech Method for making transmission electron microscope grid
US9184023B2 (en) 2010-04-14 2015-11-10 Beijing Funate Innovation Technology Co., Ltd. Transmission electron microscope micro-grid
US8772736B2 (en) 2010-04-14 2014-07-08 Beijing FUNATE Innovation Co., Ltd. Transmission electron microscope micro-grid using carbon nanotubes
US8650739B2 (en) 2010-04-14 2014-02-18 Beijing Funate Innovation Technology Co., Ltd. Method for manufacturing transmission electron microscope micro-grid
TWI410999B (en) * 2010-04-21 2013-10-01 Beijing Funate Innovation Tech Transmission electron microscope grid
TWI410997B (en) * 2010-04-21 2013-10-01 Beijing Funate Innovation Tech Transmission electron microscope grid
TWI416587B (en) * 2010-04-21 2013-11-21 Beijing Funate Innovation Tech Method for making transmission electron microscope grid
TWI410998B (en) * 2010-04-21 2013-10-01 Beijing Funate Innovation Tech Method for making transmission electron microscope grid
TWI413150B (en) * 2010-07-13 2013-10-21 Hon Hai Prec Ind Co Ltd Transmission electron microscope grid and method for making same
TWI415156B (en) * 2010-12-28 2013-11-11 Hon Hai Prec Ind Co Ltd Field emission cathode device and method for making same
TWI447773B (en) * 2011-04-14 2014-08-01 Hon Hai Prec Ind Co Ltd Transmission electron microscope micro-grid
TWI452596B (en) * 2012-04-03 2014-09-11 Hon Hai Prec Ind Co Ltd Device for cutting grids
TWI468277B (en) * 2012-04-03 2015-01-11 Hon Hai Prec Ind Co Ltd Method for cutting grids
CN103357738B (en) * 2012-04-03 2015-07-01 清华大学 Micro grid cutting method
CN103357738A (en) * 2012-04-03 2013-10-23 清华大学 Micro grid cutting method
US9522823B2 (en) 2012-04-03 2016-12-20 Tsinghua University Apparatus for cutting transmission electron microscope micro-grids

Also Published As

Publication number Publication date
TWI362678B (en) 2012-04-21

Similar Documents

Publication Publication Date Title
TW201003712A (en) Method for making transmission electron microscope grid
US8623227B2 (en) Transmission electron microscope grid and method for making same
US20110017921A1 (en) Carbon nanotube film composite structure, transmission electron microscope grid using the same, and method for making the same
US8207431B2 (en) Transmission electron microscope micro-grid and method for manufacturing the same
US20100285300A1 (en) Nano-materials
JP2010115778A (en) Manufacturing method of nanowire structure
TW200917947A (en) Composite for electromagnetic shielding and method for making the same
Xu et al. Dynamic In‐Situ Experimentation on Nanomaterials at the Atomic Scale
Ryu et al. Stabilized electron emission from silicon coated carbon nanotubes for a high-performance electron source
CN103359722A (en) Preparation method of narrow graphene nanoribbons
TW201137919A (en) Transmission electron microscope grid
TWI411572B (en) Transmission electron microscope grid and method for making same
TWI342864B (en) Method for making a carbon nanotube film
TW200929292A (en) Super capacitor
TWI329095B (en) Transmission electron microscope grid and method for making same
TW200900348A (en) Method for making a carbon nanotube film
CN102452646B (en) Method for preparing hydrophilic carbon nanotube film
CN102148115B (en) Manufacturing method for transmission electron microscope micro-gate
CN110729162B (en) High-mesh-number micro grid loading net for transmission electron microscope characterization and preparation method thereof
JP2005306706A (en) Needle crystal having hollow structure comprising fullerene molecule, and its preparation method
TWI413150B (en) Transmission electron microscope grid and method for making same
TW201137922A (en) Transmission electron microscope grid
Apte et al. Vertically aligned self-assembled gold nanorods as low turn-on, stable field emitters
TWI387743B (en) Method for making transmission electron microscope sample
Chang et al. Fabrication of free-standing carbon nanotube electrode arrays on a quartz wafer