TW201003488A - Method for making touch panel - Google Patents

Method for making touch panel Download PDF

Info

Publication number
TW201003488A
TW201003488A TW97126325A TW97126325A TW201003488A TW 201003488 A TW201003488 A TW 201003488A TW 97126325 A TW97126325 A TW 97126325A TW 97126325 A TW97126325 A TW 97126325A TW 201003488 A TW201003488 A TW 201003488A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
layer
polymer material
preparing
carbon
Prior art date
Application number
TW97126325A
Other languages
Chinese (zh)
Other versions
TWI403928B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Ga-Lane Chen
Jia-Shyong Cheng
Jeah-Sheng Wu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97126325A priority Critical patent/TWI403928B/en
Publication of TW201003488A publication Critical patent/TW201003488A/en
Application granted granted Critical
Publication of TWI403928B publication Critical patent/TWI403928B/en

Links

Abstract

The present invention relates to a method for making touch panel. The method includes the following steps: providing a first substrate; forming a carbon nanotube composite layer on a surface of the first substrate, to achieve a first electrode plate; repeating the former steps and forming a second electrode plate; encapsulating the first electrode plate and the second electrode, to achieve the touch panel.

Description

201003488 【發明所屬之技術領域】 本發明涉及一種觸摸屏,尤其涉及一種基於奈米碳 管的觸摸屏。 【先前技術】 近年來,伴隨著移動電話與觸摸導航系統等各種電子 設備的高性能化和多樣化的發展,在液晶等顯示元件的前 面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電子 設備的利用者通過觸摸屏,一邊對位於觸摸屏背面的顯示 元件的顯示内容進行視覺確認,一邊利用手指或筆等方式 按壓觸摸屏來進行操作。由此,可操作電子設備的各種功 能。 按照觸摸屏的工作原理和傳輸介質的不同,先前的觸 摸屏通常分為四種類型,分別為電阻式、電容感應式、紅 外線式以及表面聲波式。其中電阻式觸摸屏的應用最為廣 泛,請參見文獻 “Production of Transparent Conductive Films with Inserted Si02 Anchor Layer, and Application to a Resistive Touch Panel” Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol.84, P39-45(2001) ° 先前的電阻式觸摸屏一般包括一上基板,該上基板的 下表面形成有一上透明導電層;一下基板,該下基板的上 表面形成有一下透明導電層;以及複數個點狀隔離物(Dot Spacer)設置在上透明導電層與下透明導電層之間。其中, 該上透明導電層與該下透明導電層通常採用具有導電特 性的銦錫氧化物(Indium Tin Oxide, ITO)層(下稱IT0層)。 7 201003488 .當使用手指或筆按麼上基板時 壓處的上透明導雷岸盘·^令、..土板务生扭曲,使得按 ' * t -f φ v , I、透明導電層彼此接觸。通過外捿 的::電路分別向上透明導電層與下卜: 加電屋’觸摸屏控制器通過 电曰依-人知 變化與第二導電層上的電測m層上的電愿 給中央處理器。中央處理數位化的觸點座標傳遞 啟動電子設備…據觸點座標發出相應指令, 顯示元各種功能切換,並通過顯示器控制器控制 先前的電阻式觸摸屏的#借 賤射或蒸錢等工親在上TAH方法通常係採用離子束 、首; 下基板上沈積一層ITO声作Λ、#叫 層,在製備的過程,需要較高的真空‘要 到200〜3〇〇t:,钕,你ρ m τ 兄汉而要加熱 吏于採用I丁〇層作為透明導雷Μ沾締 摸屏的製備成本較高。此外,ΙΤ〇層作為的觸 :械性能不夠好、難以彎曲及阻值分佈不均勾;有 、ΙΤΟ在潮濕的空氣中透明度會逐漸下降。從而導致先 :的=式觸摸屏及顯示展置存在耐用性不夠 低、線性及準確性較差等缺點。 畋又 有鑑於此,提供一種耐用性好,且愈 準確性強的觸摸屏實為必要。 i又冋、、、’i性及 【發明内容】 一電極板,該第一電極板包 ,該第一導電層設置在該 二電極板,該第二電極板 一種觸摸屏,包括:―第 括一第一基體及一第一導電層 第一基體的下表面;以及—第 201003488 與第:電極板間隔設置,該第二電極板包括一第二基體 及一第二導電層,該第二導電層設置在該第二基體的上 表面,其中,上述第一導電層和第二導電層均包括一奈 管複合材料層,該奈米碳管複合材料層包括—奈: 碳管層和均勻滲入於該奈米碳管層中的高分子材料。 山,較於先前技術,本技術方案實施例提供的採用奈 米碳管複合材料層作為透明導電層的觸摸屏具有以下^ 點:其―,奈米碳管具有優異的力學特性,奈米碳管^ 設置於高分子材料形成的複合結構使得透明導電層罝^ 很好㈣性和機械強度,&,可相應的提高觸摸^的耐 用性;其二,由於奈米碳管具有優異的導電性能,上述 該奈米碳管層包括複數個均勻分佈的奈米碳管,故,採 用上述奈米碳管複合材料層作透明導電層,可使得透明 導電層具有均勻的阻值分佈,從而提高觸摸屏及使用該 觸摸屏的顯示裝置的解析度和精確度。其三,由於高分 子材料層至少部分滲入奈米碳管層中,使奈米碳管層與 基體的結合牢固,增加了觸摸屏的使用壽命。 【實施方式】 以下將結合附圖詳細說明本技術方案實施例提供的觸 摸屏及其製備方法。 請參閱圖1及圖2,本技術方案實施例提供一種觸摸 屏10,該觸摸屏10包括一第一電極板12,一第二電極板 14以及設置在該第一電極板12與第二電極板14之間的複 數個透明點狀隔離物16。 201003488 . 該第一電極板12包括一第一基體120, 一第一導電層 122以及兩個第一電極124。該第一基體120為平面結構, 該第一導電層122與兩個第一電極124均設置在第一基體 120的下表面。兩個第一電極124分別設置在第一導電層 122沿第一方向的兩端並與第一導電層122電連接。該第 二電極板14包括一第二基體140, 一第二導電層142以及 兩個第二電極144。該第二基體140為平面結構,該第二 導電層142與兩個第二電極144均設置在第二基體140的 上表面。兩個第二電極144分別設置在第二導電層142沿 第二方向的兩端並與第二導電層142電連接。該第一方向 垂直於該第二方向,即兩個第一電極124與兩個第二電極 144正交設置。 該第一導電層122與第二導電層142均採用一奈米 碳管複合材料層,請參見圖3,該奈米碳管複合材料層包 括一奈米碳管層和均勻滲入於該奈米碳管層中的高分子 ( 材料。所述奈米碳管複合材料層的厚度不限,優選為0.5 奈米-1毫米。所述高分子材料為一透明高分子材料,其 包括聚苯乙烯、聚乙烯、聚碳酸酯、聚曱基丙烯酸曱酯 (PMMA)、聚碳酸酯(PC)、對苯二曱酸乙二醇酯(PET)、 苯丙環丁烯(BCB)、聚環烯烴等。本實施例中,所述之高 分子材料為PMMA。奈米碳管複合材料層中的高分子材 料可使奈米碳管層與柔性基體結合牢固,同時,請參見 圖4,由於高分子材料滲入奈米碳管層中,使奈米碳管層 中的奈米碳管之間的短路現象消除,使奈米碳管層的電 10 201003488 . 阻呈較好的線性關係。 ..肖奈米碳管層為由有序的或無序的奈米碳管形成的| -有均勻厚度的層狀結構,所述之奈米碳管在奈米碳管層中 /句勻刀佈且相互接觸。奈米碳管層的厚度為奈米 微米。具體地’該奈米碳管層包括至少—層奈米碳管薄膜, 该奈米碳管薄膜包括無序的奈米碳管薄膜或者有序的夺米 石 =薄膜。無序的奈米碳管薄臈中,奈米碳管為無序或各 向同性排列。有序的奈米碳管薄膜中,奈米碳管為沿同— 向排列或沿不同方向擇優取向排列。所述之奈 ;卡=中的奈米碳管包括單壁奈米碳管、雙壁TECHNICAL FIELD The present invention relates to a touch screen, and more particularly to a carbon nanotube-based touch screen. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display element such as a liquid crystal are gradually increasing. The user of such an electronic device operates by pressing the touch panel by a finger, a pen, or the like while visually checking the display content of the display element located on the back surface of the touch panel through the touch panel. Thereby, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the previous touch screens are generally divided into four types, namely resistive, capacitive sensing, infrared, and surface acoustic wave. Among them, the resistive touch screen is the most widely used, please refer to the document "Production of Transparent Conductive Films with Inserted Si02 Anchor Layer, and Application to a Resistive Touch Panel" Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol.84 , P39-45 (2001) ° The prior resistive touch screen generally comprises an upper substrate, the upper surface of the upper substrate is formed with an upper transparent conductive layer; the lower substrate, the upper surface of the lower substrate is formed with a transparent conductive layer; A dot spacer (Dot Spacer) is disposed between the upper transparent conductive layer and the lower transparent conductive layer. The upper transparent conductive layer and the lower transparent conductive layer are usually made of an indium tin oxide (ITO) layer (hereinafter referred to as an IT0 layer) having a conductive property. 7 201003488 . When using a finger or a pen to press the upper substrate, the upper transparent guide bank disk is pressed, and the earth plate is twisted, so that '* t -f φ v , I, transparent conductive layer with each other contact. Through the outer:: circuit respectively upwards the transparent conductive layer and the lower: the power-up house' touch screen controller through the electric-power-dependent change and the second conductive layer on the electrical measurement m layer is willing to the central processor. The central processing digitized contact coordinate transmission starts the electronic device... according to the contact coordinates, the corresponding command is issued, and the display unit switches various functions, and controls the previous resistive touch screen by the display controller to control the The upper TAH method usually uses an ion beam and a head; a layer of ITO sound is deposited on the lower substrate as the Λ, #叫层, in the process of preparation, a higher vacuum is required to reach 200~3〇〇t:, 钕, you ρ m τ brothers want to heat up and use the I 〇 layer as a transparent guide Μ Μ 摸 的 的 的 的 的 的 的 的 的 制备 制备 制备. In addition, the enamel layer acts as a touch: the mechanical properties are not good enough, it is difficult to bend and the resistance distribution is not uniform; the transparency of the enamel in the humid air will gradually decrease. As a result, the first type of touch screen and the display display have disadvantages such as insufficient durability, linearity, and poor accuracy. In view of this, it is necessary to provide a touch screen with good durability and high accuracy. i 冋, , , 'i, and [invention] an electrode plate, the first electrode plate package, the first conductive layer is disposed on the two electrode plate, the second electrode plate is a touch screen, including: a first substrate and a lower surface of the first substrate of the first conductive layer; and - the 201003488 is spaced apart from the first electrode plate, the second electrode plate includes a second substrate and a second conductive layer, the second conductive The layer is disposed on the upper surface of the second substrate, wherein the first conductive layer and the second conductive layer each comprise a layer of a nanotube composite material, the carbon nanotube composite layer comprises: a carbon nanotube layer and uniform infiltration a polymer material in the carbon nanotube layer. In the mountain, compared with the prior art, the touch screen using the carbon nanotube composite material layer as the transparent conductive layer provided by the embodiment of the technical solution has the following points: the carbon nanotube has excellent mechanical properties, the carbon nanotube ^ The composite structure formed by the polymer material makes the transparent conductive layer 很好^ very good (four) and mechanical strength, &, can improve the durability of the touch ^; second, because the carbon nanotube has excellent electrical conductivity The carbon nanotube layer comprises a plurality of uniformly distributed carbon nanotubes. Therefore, the above-mentioned carbon nanotube composite material layer is used as a transparent conductive layer, so that the transparent conductive layer has a uniform resistance distribution, thereby improving the touch screen. And the resolution and accuracy of the display device using the touch screen. Third, since the high molecular material layer is at least partially infiltrated into the carbon nanotube layer, the combination of the carbon nanotube layer and the substrate is firm, which increases the service life of the touch screen. [Embodiment] Hereinafter, a touch panel provided by an embodiment of the present technical solution and a method for fabricating the same will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , the embodiment of the present disclosure provides a touch screen 10 . The touch screen 10 includes a first electrode plate 12 , a second electrode plate 14 , and the first electrode plate 12 and the second electrode plate 14 . A plurality of transparent dot spacers 16 therebetween. 201003488. The first electrode plate 12 includes a first substrate 120, a first conductive layer 122 and two first electrodes 124. The first substrate 120 is a planar structure, and the first conductive layer 122 and the two first electrodes 124 are disposed on the lower surface of the first substrate 120. The two first electrodes 124 are respectively disposed at both ends of the first conductive layer 122 in the first direction and are electrically connected to the first conductive layer 122. The second electrode plate 14 includes a second substrate 140, a second conductive layer 142 and two second electrodes 144. The second substrate 140 is a planar structure, and the second conductive layer 142 and the two second electrodes 144 are disposed on the upper surface of the second substrate 140. The two second electrodes 144 are respectively disposed at both ends of the second conductive layer 142 in the second direction and are electrically connected to the second conductive layer 142. The first direction is perpendicular to the second direction, i.e., the two first electrodes 124 are orthogonal to the two second electrodes 144. The first conductive layer 122 and the second conductive layer 142 each adopt a carbon nanotube composite layer. Referring to FIG. 3, the carbon nanotube composite layer includes a carbon nanotube layer and uniformly infiltrates into the nanometer. a polymer (material) in the carbon tube layer. The thickness of the carbon nanotube composite material layer is not limited, preferably 0.5 nm to 1 mm. The polymer material is a transparent polymer material including polystyrene. , polyethylene, polycarbonate, decyl acrylate (PMMA), polycarbonate (PC), ethylene terephthalate (PET), phenylcyclobutene (BCB), polycycloolefin In this embodiment, the polymer material is PMMA. The polymer material in the carbon nanotube composite layer can make the carbon nanotube layer and the flexible substrate firmly combined, and at the same time, please refer to FIG. The molecular material infiltrates into the carbon nanotube layer, so that the short circuit between the carbon nanotubes in the carbon nanotube layer is eliminated, so that the electricity of the carbon nanotube layer is in a good linear relationship. The Schneider carbon nanotube layer is formed of ordered or disordered carbon nanotubes | - Layered layer of uniform thickness The carbon nanotubes are in a layer of carbon nanotubes and are in contact with each other. The thickness of the carbon nanotube layer is nanometer micrometer. Specifically, the carbon nanotube layer includes at least a layer. a carbon nanotube film comprising a disordered carbon nanotube film or an ordered smectite=film. In a disordered carbon nanotube thinner, the carbon nanotubes are disordered or Isotropic arrangement. In the ordered carbon nanotube film, the carbon nanotubes are arranged along the same direction or in different directions. The carbon nanotubes in the card = single-walled nai Carbon tube, double wall

和多壁奈米碳管中的 B η 的種或幾種。其中,單壁奈米碳管的 直J為0.5奈米〜50奈米’雙壁奈米碳管的直徑為1〇奈米 〜50示米,多壁奈米碳管的直徑為15奈米〜5〇奈米。 =地’所述有序的奈米碳管薄膜包括至少一層從夺 請:ΓΓΓ直Γ取獲得奈米碳管拉膜結構。具體地,、 碳管,兮太拉膜結構進-步包括複數個奈米 口乂不未石厌s百尾相連且沿奈米 排列。所述奈求碳管均句八# n τ 膜的拉伸方向 構的表面。所述μ/ 了於奈米碳管拉膜結 瓦爾力連接,一方面,首尾相遠:::遍官通過凡德 力首尾相接;另一方面,承一示来碳管通過凡德瓦爾 瓦爾力結合。彳4 的奈米唆管部分亦通過凡德 有均勺二 火官拉膜結構中的奈米碳管之間形成 ==隙’該間隙的直徑為i奈米_10微 材抖均句填充於奈米碳管之間的間隙内: 11 201003488 包括複數個奈米碳管拉膜結構時 管的排列方向形成一失“,其中,α::;: =米碳 於等於90度(〇Sc^9〇。)。 ;令又且小 宮声又阳 。玄不未石反官溥拉膜結構的長度及 厚Ϊ為二’I:據實際需求製備’該奈米碳管拉膜結構的 與;二導二 微米。本實施例中’該第-導電層122 ρ、 “ ^ 142均採用單層的奈米碳管拉膜結構與 AMM形成的奈米碳管複合材料層,pAMM :二 管拉膜結構中奈米碳f之間關隙内,第—導 方向定向排列,第二導電層 未反e /口上述弟一方向定向排列。 :斤述觸摸屏10的第—基體12〇與第二基體14〇均為透 日、涛膜或薄板。該第—基體120具有-定柔軟度,可由 塑膠或ΜI等柔性材料形成。該第二基體⑽的材料可為 玻璃、石央、金剛石等硬性材料。當用於柔性觸摸式液晶 顯=幕300中時’該第二基體14〇的材料也可為塑膠或樹 脂等柔性材料。具體地,該第—基體12G及第二基體14〇 所用的材料可為聚碳酸酯(PC)、聚甲基丙烯酸曱酯 (PMMA)、聚對笨二曱酸乙二醇醋(pET)等聚酯材料,以及 聚醚石風(PES)、纖維素H氣乙稀(PVC)、苯並環丁稀(BCB) 及丙烯酸樹脂等材料。該第一基體12〇和第二基體i4〇的 厚度為0.1毫米〜1厘米。本實施例中,該第一基體120及 第二基體140的材料均為pET,厚度均為2毫米。可以理 解,形成所述第—基體120及第二基體140的材料並不限 12 201003488 於上述列舉的材料,只要能使第一 〃一 起到支擇的作用,並具有較好的透日/度,且^V成體第⑽ 基體二一定柔性’都在本發明保護的範圍内。 述觸扠屏10的第一電極124與第二 材,成,具體可選擇為金屬材料、導電聚合物 米石反官層。所述金屬層的材 "、5不 性好的金屬。所述…: 為金、銀或銅等導電 聚對茇轳…“導电“物層的材料可選擇為聚乙炔、 ,太/、來本胺、聚咪吩、聚毗咯、聚噻吩等。優選的, δ亥示米碳管層包括至少一 中,纺键丁不厌g拉膜結構。本實施例 =一電極124與第二電極144為導電的銀漿層。 步地,在所述觸摸屏1()巾,該第二電極板 = 的表面週邊設置有一絕緣層18。上述的 的第Π 在該絕緣層18上,且該第-電極板12 •^置層122正對第二電極板14的第二導電層142 第\導點狀隔離物16設置在第二電極板“的 置。第-二技複數個點狀隔離物16彼此間隔設 微平: 12與第二電極板14之間的距離為2〜10 U木。该絕緣層18盥點狀隔燄铷 其他絕㈣斗…、 採用絕緣樹脂或 、、彖材枓衣成,並且,該點狀隔離物16應 :斗製成。設置絕緣層18與點狀隔離物16可使得第—電: 二電極板12電絕緣。可以理解,當觸摸屏10 一雷::點f隔離物16為可選擇的結構,只需確保第 D板14與第二電極板12電絕緣即可。 使用時,第一電極板12與第二電極板14分別通入 201003488 _ 5 V电£,使用者通過手指或筆 U進行操作時,坌^ 1觸拉屏10弟—電極板 …曲弟—電極板U中第一基體12〇笋 -曲,使得按壓處的第—導 ^生育 二電極層與第二電極板14的第 於按壓處不同時,*亥接觸點形成導通,由 不同的電信號,進而可實現信^個接觸點對應 作為=彳Γ”施職供的㈣奈米碳管複合材料芦 明導電層的觸摸屏具有以下優 才3 官具有優異的力學特 太 不未石反 來忐沾、>•人 不米石反官層設置於高分子材料 強度,故,可知處 竽冤層,、有很好的轫性和機械 — 相應的提高觸摸屏的耐用性;其二,由於 不米石反管具有優異的導雷 ; 複數個均句分佈的奈米碳管, 二二層包括 合材料層作透明導電# 述不米石反官複 阳棺八徒 層,可使得透明導電層具有均勾的 的解析度和精確度。且一 ^ =觸摸屏的顯示裝置 八—,由於尚分子材料層至少部分 …米碳管層中,使奈米碳管層與基體的結合牢固, 增加了觸摸屏的使用壽命。 月乡閱圖6 ’本技術方案實施例提供一種製備上述觸 摸屏10的方法,其具體包括以下步驟: 步驟 :提供一第一基體 、,所述第一基體為柔性平面結構,厚度為〇 ι毫米〜1 厘米。該第-基體由塑膠,樹脂等柔性材料形成。具體 地’所述第-基體的材料可為聚碳酸§旨(pc)、聚甲基丙歸 14 201003488 'I甲^ (PMMA)、聚對苯二甲酸乙二醇酯(PET)等聚酯材 •.料,以及聚醚砜(PES)、聚亞醯胺(PI)、纖維素酯、苯並 環丁烯(BCB)、聚氯乙烯(pvc)及丙烯酸樹脂等材料。可 以理解,形成所述第一基體的材料並不限於上述列舉的 材料z、要確保所述柔性基體具有一定柔性及較好的透 明度即可。 本技術方案實施例t,所述第一基體為一聚對苯二甲 酸乙二醇醋㈣τ)薄膜(以下簡稱PET薄膜)。該㈣薄膜 的厚度為2毫米,寬度為20厘米,長度為30厘米。 層:二在電第;板基體的表面形成-奈米碳管複合材料 的方:Ϊ:在第一基體表面形成—奈米碳管複合材料層 的方法包括以下步驟: μ rr /曰 液。(一)在第一基體的表面塗覆形成-層高分子材料溶 採用刷子或其他工具沾取 液,均勻塗敷於柔性美雕的本疋置的间刀子材料溶 …分子材料溶液中直接沾取 的古八::面- 液,形成一高分子材料溶液層。可?:、材枓溶 性基體的表面塗敷高分 述在該柔 以在柔性基體的表面::=的方式不限,只要可 可。 成均句的-層高分子材料溶液即 所形包括高分子材料溶於有機溶劑And several or several types of B η in multi-walled carbon nanotubes. Among them, the straight J of a single-walled carbon nanotube is 0.5 nm to 50 nm. The diameter of the double-walled carbon nanotube is 1 〇 nanometer to 50 metre, and the diameter of the multi-walled carbon nanotube is 15 nm. ~5〇 nano. The grounded carbon nanotube film comprises at least one layer of the carbon nanotube film structure obtained from the enthalpy. Specifically, the carbon tube, the ruthenium membrane structure further comprises a plurality of nanometer mouths, which are not connected to each other and arranged along the nanometer. The carbon nanotubes are all in the direction of the stretching direction of the film #n τ film. The μ/ is connected to the nano-carbon tube to form a Valerian connection. On the one hand, the end-to-end phase is far away:::The whole body is connected end to end by Van der force; on the other hand, the carbon tube is passed through Van der Waals. Valli combines. The nano-tube part of 彳4 is also formed by the formation of the == gap between the carbon nanotubes in the structure of the two-fired two-layered fire-film structure. The diameter of the gap is filled with i nano_10 micro-waves. Within the gap between the carbon nanotubes: 11 201003488 When a plurality of carbon nanotube film structures are included, the arrangement direction of the tubes forms a loss, wherein α::;: = m carbon is equal to 90 degrees (〇Sc ^9〇.).; and the small palace sounds and yang. The length and thickness of the structure of the sturdy structure of the sacred stone is not the same as the thickness of the 'I: according to the actual demand, 'the structure of the carbon nanotube film Two guides and two micrometers. In the present embodiment, the first conductive layer 122 ρ and " ^ 142 are both a single-layer carbon nanotube film structure and a carbon nanotube composite layer formed by AMM, pAMM: two tubes In the closed structure of the nano-carbon f in the film structure, the first-direction direction is aligned, and the second conductive layer is not arranged in the opposite direction of the e-port. The first base 12 〇 and the second base 14 触摸 of the touch screen 10 are both transparent, smear or thin. The first substrate 120 has a constant softness and may be formed of a flexible material such as plastic or enamel. The material of the second substrate (10) may be a hard material such as glass, stone, or diamond. When used in the flexible touch liquid crystal display screen, the material of the second substrate 14A may also be a flexible material such as plastic or resin. Specifically, the material used for the first base 12G and the second base 14 can be polycarbonate (PC), poly(meth) methacrylate (PMMA), poly(p-butyl phthalate) (pET), etc. Polyester materials, as well as polyether stone (PES), cellulose H ethylene (PVC), benzocyclobutyl (BCB) and acrylic materials. The first base 12 and the second base i4 have a thickness of 0.1 mm to 1 cm. In this embodiment, the materials of the first substrate 120 and the second substrate 140 are both pET and the thickness is 2 mm. It can be understood that the materials forming the first base body 120 and the second base body 140 are not limited to the materials listed in the above, as long as the first enthalpy can be used together to have a selective effect and have a better day/degree. And ^V adult body (10) base body 2 certain flexibility 'is within the scope of the present invention. The first electrode 124 and the second material of the touch panel 10 are formed, and may be selected as a metal material or a conductive polymer. The metal layer material ", 5 is not good metal. The ...: is a conductive poly-ply of gold, silver or copper... The material of the "conductive" layer may be selected from the group consisting of polyacetylene, tetra/, amide, polyimibe, polypyrrole, polythiophene, etc. . Preferably, the δHear carbon nanotube layer comprises at least one of the spunbonded structure. This embodiment = one electrode 124 and the second electrode 144 are electrically conductive silver paste layers. Stepwise, an insulating layer 18 is disposed around the surface of the touch panel 1 (), the second electrode plate =. The above-mentioned third electrode is on the insulating layer 18, and the first electrode plate 12 is disposed opposite to the second conductive layer 142 of the second electrode plate 14 at the second electrode layer. The plate is placed. The second and second plurality of dot spacers 16 are spaced apart from each other by a flat level: the distance between the 12 and the second electrode plate 14 is 2 to 10 U. The insulating layer 18 has a point-like flame. Other absolute (four) buckets..., made of insulating resin or enamel, and the point spacers 16 should be made of a bucket. The insulating layer 18 and the dot spacers 16 can be provided to make the first electricity: two electrodes The board 12 is electrically insulated. It can be understood that when the touch screen 10: a point f: the spacer 16 is an optional structure, it is only necessary to ensure that the D board 14 is electrically insulated from the second electrode board 12. In use, the first electrode The plate 12 and the second electrode plate 14 respectively pass into the 201003488 _ 5 V electric power. When the user operates through the finger or the pen U, the 触^1 touches the screen 10, the electrode plate...the first one of the electrode plate-electrode plate U The base body 12 has a bamboo shoot-curve such that the first electrode-forming electrode layer at the pressing portion is different from the first pressing portion of the second electrode plate 14 Forming the conduction, by different electrical signals, and thus achieving the contact point of the contact point as the 彳Γ 彳Γ 施 ( 四 四 四 四 四 四 四 四 四 四 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸 触摸It’s not too stone, but it’s not the stone, it’s set in the strength of polymer materials, so it’s known that it’s in the layer, it’s very good, and it’s mechanically improved. Durability; Secondly, due to the excellent guide mine for the non-meter stone anti-tube; a plurality of carbon nanotubes with a uniform sentence distribution, the second and second layers including the composite material layer for transparent conduction # 述米米反反官复阳棺八The layer can make the transparent conductive layer have the resolution and precision of the uniform hook. And a == display device of the touch screen VIII, because the molecular material layer is at least part of the carbon nanotube layer, the combination of the carbon nanotube layer and the substrate is firm, which increases the service life of the touch screen. The present invention provides a method for preparing the above touch screen 10, which specifically includes the following steps: Step: providing a first substrate, the first substrate is a flexible planar structure, and the thickness is 〇ι mm ~1 cm. The first substrate is formed of a flexible material such as plastic or resin. Specifically, the material of the first substrate may be polyester such as polycarbonate (pc), polymethyl propyl 14 201003488 'IMA (PMMA), polyethylene terephthalate (PET), and the like. Materials, and materials such as polyethersulfone (PES), polyammonium (PI), cellulose ester, benzocyclobutene (BCB), polyvinyl chloride (PVC) and acrylic resin. It is to be understood that the material forming the first substrate is not limited to the materials z listed above, and it is sufficient to ensure that the flexible substrate has a certain flexibility and a good transparency. In the embodiment t of the technical solution, the first substrate is a polyethylene terephthalate (tetra) τ) film (hereinafter referred to as a PET film). The (4) film has a thickness of 2 mm, a width of 20 cm, and a length of 30 cm. Layer: two in the electricity; the surface of the substrate is formed - the carbon nanotube composite material: Ϊ: The method of forming the carbon nanotube composite layer on the surface of the first substrate comprises the following steps: μ rr / 曰 liquid. (1) coating the surface of the first substrate to form a layer of polymer material, using a brush or other tool to pick up the liquid, uniformly coating the flexible knife to the middle of the knife material dissolved in the ... Take the ancient eight:: face-liquid, forming a layer of polymer material solution. can? The surface coating of the material-soluble matrix is highly defined in the manner of the surface of the flexible substrate::=, as long as it is acceptable. The solution of the layered polymer material in the form of a uniform sentence includes the dissolution of the polymer material in an organic solvent.

、具有―"的枯度’優選地,高分子材;I 15 201003488 :液的枯度大於1Pa s。所述之高分子材料在常溫下為固 怨’且具有的透明度。所述有機溶劑包括乙醇、甲醇、 丙酮-氣乙燒或氯仿等。所述高分子材料包括聚苯乙稀、 聚乙烯、聚碳酸醋、聚甲基丙烯酸甲酯(pmma)、聚碳酸 酯(PC)、對苯二甲酸乙二醇醋(pET)、苯丙環丁婦(bcb)、 聚壤婦烴等。本實施例中,所述之高分子材料為pMMA, 所述南分子材料溶液為PMMA溶於乙醇形成的溶液。 (一)製備一奈米碳管薄膜。 —料奈米碳管薄膜為有序奈米碳管薄膜或無序奈米 碳管薄臈,該奈米碳管薄膜可通過碾壓方法、絮化方法、 或直接從奈米碳管陣列中拉取獲得。優選地:本實施例 中’該奈米碳管薄膜為—直接從奈米碳管陣列中拉取獲 得的奈来碳管拉膜結構。所述奈米碳f拉膜結構的製^ 方法具體包括以下步驟: 首先,提供一奈米碳管陣列’優選地,該陣列為超順 排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列為單壁奈米 石反官陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的 -種或多種。本實施例巾,該超順排奈米碳管陣列的製 備方法彳木用化學氣相沈積法,其具體步驟包括:(& )提供 一平整基底,該基底可選用p型或N型矽基底,或選用 形成有氧化層的矽基底,本實施例優選為採用4英寸的 矽基底;(b)在基底表面均勻形成一催化劑層,哼催化 劑層材料可選用鐵(Fe)、鈷(c〇)、鎳(Ni)或其任意 16 201003488 …组合的合金之-;(c)將上述形成有催化劑層的基底在 7CKTC〜900aC的空氣中退火約30分鐘〜9〇分鐘;(d)將 •處理過的基底置於反應爐中,在保護氣體環境下加熱到 500°C〜740°C,然後通入碳源氣體反應約5〜3〇分鐘,生 長得到超順排奈米碳管陣列,其高度為5〇微米〜5毫米。 該超順排奈米碳管陣列為複數個彼此平行且垂直於基底 生長的奈米碳管形成的純奈米碳管陣列。通過上述控制 ,生長條件,該超順排奈米碳管陣列中基本不含有雜質, 如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳管陣 列中的奈米碳管彼此通過凡德瓦爾力緊密接觸形成陣 列。該奈米碳管陣列與上述基底面積基本相同。 併本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性 質較活潑的破氫化合物,本實施例優選的碳源氣為乙 炔,保濩氣體為氮氣或惰性氣體,本實施例優選的保 氣體為氬氣。 制可以理解,本實施例提供的奈米碳管陣列不限於上述 製備方法。也可為石墨電極恒流電弧放電沈積法、雷射 蒸發沈積法等。 太、,其次,採用一拉伸工具從奈米碳管陣列中拉取獲得一 奈管拉膜結構。其具體包括以下步驟:(a)從上述奈 2反s陣列中選定部分奈米碳管,本實施例優選為採用 :t 定寬度的膠帶接觸奈米碳管陣列以選定部分奈米 厌g,( b )以一定速度沿基本垂直於奈米碳管陣列生長 方向拉伸該部分奈米碳^;,以升Μ 一連續的奈米碳管拉 201003488 膜結構。 仙上述拉伸過程中,該部分奈米碳管在拉力作用下 :拉伸方向逐漸脫離基底的同時,由於凡德瓦爾:: 管陣列中的其他夺;f的奈米碳管分別與奈米碳 不水石反官耳尾相連地連續地被拉出, 而形成一奈米碳營;^^ * 拉膜…構。所述奈米碳管拉膜結構的 j和厚度編碳管陣列的寬度和高度有關,本實施 二’奈米碳官拉膜結構的寬度為2G厘*,厚度為〇5 奈米〜100微米。 · 二)採用雷射處理上述奈米碳管薄膜。 由於奈米碳管薄膜中的奈米碳管本身之間存在凡梓瓦 爾例’奈米碳管薄膜t的某些奈米碳管容易聚集形齡米 碳管束’該奈米碳管束直徑較大,影響了奈米碳管薄膜的 導電性4。為提高奈米碳管薄膜的透光性,以功率密度大於 o.ixio4瓦特/平方米的雷射照射該奈米碳管薄膜,除去奈 2管薄膜中透光性較差奈米碳管束。採用雷射處理奈米 碳官薄膜的步驟可在含氧環境中進行,優選地,在空氣環 境進行。 採用雷射處理上述奈米碳管薄膜可通固定奈米碳管薄 膜,然後移動雷射裝置照射該奈米碳管薄膜的方法實現或 通過固疋雷射裝置,移動奈米碳管薄膜使雷射照射該奈米 碳管薄膜的方法實現。 上述雷射照射奈米碳管薄膜的過程中,由於奈米碳管 對雷射具有良好的吸收特性,而雷射為一具有較高能量的 18 201003488 ^被奈米碳管薄膜吸收後會產生的熱量,使奈米碳 ::膜中的奈米碳管升溫。奈米碳管薄膜中,奈米碳管薄 ^山三直控較大的奈米碳管束吸收的熱量較多,故,在奈 米碳管束中的奈米碳管的溫度較高’當奈米碳管的溫度: =夠南時(一般大於_。〇,奈米碳管束被雷射燒掉。 心見圖7及圖8’相對於雷射處理前的奈米碳管薄膜。 雷射處理後的奈米碳管薄膜的透光性有顯著的提高,其透 光率大於70%。 可以理解,採用雷射處理奈米碳管拉膜結構的目的為 進一步提高奈米碳管拉膜結構的透明度,故本步驟為一可 選擇的步驟。 、 (四) 將上述至少—奈米碳#薄膜鋪 體上的高分子材料溶液的表面,形成一奈米碳管生基 至少—層奈米竣管薄膜可直接鋪設在高分子材料層 絲面,複數個奈米碳㈣膜可平行無間隙 二鋪:。當奈米碳管薄膜為一奈来碳管拉膜結構時或奈 =石反官層包括至少兩層奈米碳管拉膜結構時,誃太 管層中相鄰的奈米碳管拉膜結構中 =不” 夾角α,其中,9〇。。本實施例中,所述 不米奴官層包括一層奈米碳管拉膜結構。 奈米碳管層形成於高分子材料層上之後 依次包括第一基體、高分子材料層夺 治結構。 為官層的三明 (五) 使高分子材料溶液滲入於奈米碳管層中,使 19 201003488 •高分子材料與奈米碳管層固 料層。 i '丁、未碳管複合材 • »With a degree of "" preferably, a polymer material; I 15 201003488: the dryness of the liquid is greater than 1 Pa s. The polymer material is solid at room temperature and has transparency. The organic solvent includes ethanol, methanol, acetone-gas-fired or chloroform, and the like. The polymer material includes polystyrene, polyethylene, polycarbonate, polymethyl methacrylate (PMMA), polycarbonate (PC), ethylene terephthalate (pET), and phenylcyclopropene ring. Ding women (bcb), poly-shelf hydrocarbons, etc. In this embodiment, the polymer material is pMMA, and the solution of the south molecular material is a solution in which PMMA is dissolved in ethanol. (1) Preparing a carbon nanotube film. - the carbon nanotube film is an ordered carbon nanotube film or a disordered carbon nanotube thin film, which can be obtained by a rolling method, a flocculation method, or directly from a carbon nanotube array Pull to get. Preferably, in the present embodiment, the carbon nanotube film is obtained by directly pulling the obtained carbon nanotube film structure from the carbon nanotube array. The method for fabricating the nanocarbon f-film structure specifically includes the following steps: First, an array of carbon nanotubes is provided. Preferably, the array is a super-sequential carbon nanotube array. The carbon nanotube array provided by the embodiment of the present technical solution is one or more of a single-walled nano-small reverse array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. The embodiment of the present invention, the method for preparing the super-sequential carbon nanotube array, the chemical vapor deposition method for the eucalyptus, the specific steps comprising: (&) providing a flat substrate, the substrate can be selected from p-type or N-type 矽The substrate, or the germanium substrate formed with the oxide layer, is preferably a 4-inch germanium substrate; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe) or cobalt (c). 〇), nickel (Ni) or any of the alloys of the combination thereof; (c) annealing the substrate on which the catalyst layer is formed in air of 7CKTC to 900aC for about 30 minutes to 9 minutes; (d) • The treated substrate is placed in a reaction furnace, heated to 500 ° C to 740 ° C in a protective gas atmosphere, and then passed through a carbon source gas for about 5 to 3 minutes to grow to obtain a super-sequential carbon nanotube array. Its height is 5 〇 microns ~ 5 mm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and perpendicular to the substrate. Through the above control and growth conditions, the super-sequential carbon nanotube array contains substantially no impurities such as amorphous carbon or residual catalyst metal particles. The carbon nanotubes in the array of carbon nanotubes form an array by close contact with each other by van der Waals force. The carbon nanotube array is substantially the same area as the above substrate. In this embodiment, the carbon source gas may be a chemically active hydrogen absorbing compound such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene, and the argon gas is nitrogen or an inert gas, which is preferred in this embodiment. The gas is argon. It is understood that the carbon nanotube array provided in the present embodiment is not limited to the above production method. It can also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like. Too, and secondly, a draw tool was used to pull a nanotube film structure from the carbon nanotube array. Specifically, the method comprises the following steps: (a) selecting a portion of the carbon nanotubes from the neva 2 anti-s array, and in this embodiment, preferably: using a tape of a predetermined width to contact the array of carbon nanotubes to select a portion of the nano-gauge, (b) stretching the portion of the nanocarbon at a rate substantially perpendicular to the growth direction of the carbon nanotube array; and elevating a continuous carbon nanotube to pull the 201003488 membrane structure. During the above stretching process, the part of the carbon nanotubes under the tensile force: the stretching direction is gradually separated from the substrate, due to the van der Waals:: other in the tube array; the carbon nanotubes of the f and the nanometer respectively The carbon-free stone is continuously pulled out in the opposite direction of the ear, and forms a nano carbon camp; ^^ * pull film... structure. The width of the carbon nanotube film structure and the width and height of the carbon nanotube array are related to each other. The width of the nano carbon film structure is 2 G PCT*, and the thickness is 〇5 nm to 100 μm. . · b) The above-mentioned carbon nanotube film is treated by laser. Because of the existence of the vanadium in the carbon nanotube film itself, some of the carbon nanotubes of the nanotube film t are easy to aggregate, and the carbon nanotube bundle is larger. , affecting the conductivity of the carbon nanotube film 4 . In order to improve the light transmittance of the carbon nanotube film, the carbon nanotube film is irradiated with a laser having a power density of more than o.ixio 4 watt/m 2 to remove the poorly transmissive carbon nanotube bundle in the naphthalene film. The step of treating the nano carbon official film by laser can be carried out in an oxygen-containing environment, preferably in an air atmosphere. The above-mentioned carbon nanotube film can be fixed by laser treatment, and then the carbon nanotube film is fixed by moving the laser device, or the carbon nanotube film is moved by a solid-state laser device to make the mine The method of irradiating the carbon nanotube film is achieved. In the above process of laser irradiation of the carbon nanotube film, since the carbon nanotube has good absorption characteristics for the laser, the laser is a higher energy 18 201003488 ^ which is absorbed by the carbon nanotube film. The heat that causes the carbon nanotubes in the nanocarbon:: membrane to heat up. In the carbon nanotube film, the carbon nanotubes of the small carbon nanotubes are directly absorbed by the large carbon nanotube bundles, so the temperature of the carbon nanotubes in the carbon nanotube bundle is higher. The temperature of the carbon tube: = enough south (generally greater than _. 〇, the carbon nanotube bundle is burned by the laser. The heart is shown in Figure 7 and Figure 8 relative to the carbon nanotube film before the laser treatment. Laser The light transmittance of the treated carbon nanotube film is remarkably improved, and the light transmittance thereof is more than 70%. It is understood that the purpose of using the laser treatment of the carbon nanotube film structure is to further improve the carbon nanotube film. The transparency of the structure, so this step is an optional step. (4) The surface of the polymer material solution on the at least the nano-carbon film is formed into a carbon nanotube base. The rice bran film can be directly laid on the surface of the polymer material layer, and the plurality of nano carbon (four) films can be paralleled without gaps: when the carbon nanotube film is a carbon nanotube film structure or nai = stone When the reaction layer includes at least two layers of carbon nanotube film structure, the adjacent carbon nanotubes in the 誃太管层In the structure, the angle is α, wherein, 9〇. In this embodiment, the non-nano layer includes a layer of carbon nanotube film structure. The carbon nanotube layer is formed on the polymer material layer in turn. Including the first matrix, the polymer material layer to overcome the structure. For the official layer of Sanming (5) the polymer material solution is infiltrated into the carbon nanotube layer, so that 19 201003488 • polymer material and carbon nanotube layer solid material Layer. i 'Ding, not carbon tube composites• »

' 採用外力對奈米碳管層施加-定的壓力L =米-20米/秒的風力吹奈米碳管而= :=:2:材:高分子材料層渗入於奈= 僅限於上述採用風吹的方法二;㊁:!層/的方法不 滲入奈米碳管層中即可。…分子材料溶液 後,將上述姓構加埶5 —田问刀材枓滲入奈米碳管層 的溶劑揮笋、八;定溫度,使高分子材料溶液中 而在;=體=材料與奈米碳管層複合並固化,從 對高分子ί料、^2成1米碳管複合材料層。所述 結構直接放置於爐中加埶至 ^ ^為將上述 夺米此置的紫外光加熱高分子材料溶液和 層t成的複合結構,使其達到-定溫度。所述 的揮二刀才料溶液中的溶劑有關,溫度高於溶劑 η,實施例中,溫度為赋。 Μ盘:H:官钹合材料層中的高分子材料可使奈米碳管 層與柔性基體έ 士八生^ + 反吕 米蝴:二:於高分子材料渗入奈 更不未奴吕層中的奈米碳管之間的短路現 ’:不米碳管層的電阻呈較好的線性關係。 可以理解’所述第—電機板 ,管複合材料層後,進—步包括_間隔地形成兩 電極於上述奈米碳管複合材料層的表面或柔性基體的兩端 20 201003488 _ 的步驟。 .· #將:::個電極的材料為金屬、奈米碳管薄膜、導電的 水p八他導電材料。本技術方案而 個電極為導電的銀聚層。所述兩個電極二= 括.:糸網:刷、移印或噴塗等方式。本實施例中,八= 覆:上述奈米碳管複合材料層的表面或第:義 化,烘烤溫度為相中洪烤1〇·分鐘使銀浆固 上述製備方法需確7; c’即可得到所述兩個電極。 連接。 _保所述兩個電極與所述奈米碳管層電 ί =:重複上述步驟,製備第二電極板。 所述第一電極板包括一二 … 及兩個第二電極。 土 _,一弟二不米碳管層 摸屏^ #弟—電極板與第二電極板封裝,形成一觸 驟/斤述封裳第一電極板與第二電極板的方法包括以下步 (一)形成一絕緣層於所_ 管複合材料層的一側的週邊。弟-電極板形成有奈米碳 所述絕緣層的形成步驟备 電極板形成奈米碳管複合材料層二:於:述第二 層的材=括透明樹脂或其他絕緣透:邊。所述絕緣 製成。 、月枒脂或其他絕緣透明材料 21 201003488 ϋ覆蓋第—電極板於所述絕緣層上,且使辦一 •,太:° &的奈米碳管複合材料層和所述第…述第 -不米碳管複合材料層相對嗖置第一、弟―琶極板中的 電極與第二電極板上的:電極板上的兩個第- (三)將第-電極板、c設置。 用密封膠進行密封,形成—觸摸=二%緣層的周邊採 封膠為706Β型號炉化# # 、开。本貧施例,所述之密 極板、帛+ 夕橡膠。將該密封膠塗敷於第+ 板第二電極板和絕緣層的邊緣,放置一夭f於弟一電 進-步地,需使所述第 P可嘁固。 第二導電層令的兩個電極交又層中的兩個電極和所述 狀隔=於步包括形成複數個透明點 透明點狀隔離物二。該 隔離物的襞料塗敷在第 t3 5亥後數個透明點狀 外的區域’烘乾後即形成::電=上絕緣層之 層與所述透明點狀隔離物均可採用 ,。設置絕緣層與點狀隔離物可他:, 隔離物為可選擇的=當觸摸屏尺寸較小時,點狀 板電絕緣即^ 4,只需確保第-電極板與第二電極 本貫施例中,所述之奥j播 連”業裝置實現電極屏的方法中可通過- 括一第#参=9,本實施例中所述之連續作業裝置包 弟—轉轴加、第二轉輛204、一第三轉軸206,— 22 201003488 廣口容器208、一載物台210、一管式爐212、一牽引裝 置214、一吹風裝置216、一刮擦裝置230、一雷射器234 及一電源(圖未示)。所述第一轉軸202、第二轉軸204 和一第三轉軸206間隔設置,其軸向位於同一方向。第 三轉軸206與牽引裝置214設置於管式爐軸向的兩端。 吹風裝置216設置與第三轉軸206與管式爐212之間。 所述廣口容器208設置於第二轉軸204的下方,第二轉 轴204部分位於廣口容器208中。所述刮擦裝置230靠 近第二轉轴204設置,刮擦裝置230的一端與第二轉軸 204保持一固定距離。第一轉軸202上纏繞由一柔性基體 218,廣口容器208中盛有高分子材料溶液220。 所述採用上述連續作業裝置製備第一電極板或第二 電極板的方法具體包括以下步驟: (一) 將柔性基體218依次通過第二轉軸204、第三 轉軸206並穿過管式爐與牽引裝置214相連連接,使柔 性基體218的表面形成一層高分子材料層226。 在此過程中,由於第二轉軸204部分位於廣口容器 208中,廣口容器208中的高分子材料溶液220粘附於柔 性基體218的表面,形成一層高分子材料層226。刮擦裝 置230與第二轉軸204之間保持一定的距離,當高分子 材料層226的厚度超過此距離時,被刮擦裝置230刮下, 故,刮擦裝置230可使高分子溶液的厚度一定並保持均 勻性。 (二) 固定一超順排奈米碳管陣列222於載物台210 23 201003488 • 士二從該超順排奈米碳管陣列222中拉出一連續的奈米 …反吕拉膜名。構224,將奈米石炭管拉膜結構224的一端枯附 .於柔性基體218表面上的高分子材料層226上。在夺来 碳管薄膜224從奈米碳管陣列222中拉出之後,未與高 分子材料層226接觸時,可採用雷射器2別發出的雷射 照射該奈米碳管薄膜224,提高奈米碳管薄膜以的透明 度。其照射方式和具體參數如前文所述。 (三) 打開電源,使牽引裴置214以一定的速度沿 平行於管式爐212轴向的方向牽引柔性基體218、高分子 材料層226和奈米碳管薄膜224,當奈米碳管薄膜224到 達:欠風裝置216下部時,吹風裝置216吹出的風對奈米 碳管薄膜224施加一定的壓力,使奈米石炭管薄膜224陷 入局分子材料層226,即高分子材料滲入到碳納奈米管薄 膜224中,然後經過管式爐212,管式爐212内部的高溫 使渗入至奈米碳管薄膜224的高分子材料固化,在柔性 、基體218的表面形成奈米碳管複合材料層228。 (四) 將形成有奈米碳管複合材料層228的柔性基 體218切割,形成電極板。 進步地,在奈米碳管複合材料層228❾表面間隔 設置兩個電極’即可形成複數個第一電極板或第二電極 板。 採用上❹財基體上塗敷高分子材料溶液,從而 在基體的表㈣成奈米複管複合材料層’可實現連續化 的生產’提高生產效率,節約操作時間,進一步節約成 24 201003488 . 本。 本發明確已符合發明專利之要'Using an external force to apply a constant pressure to the carbon nanotube layer L = -20 m / s of wind blowing the carbon nanotubes and = :=: 2: material: polymer material layer infiltrated into the nai = only for the above use Wind blowing method two; two:! The layer/method does not penetrate into the carbon nanotube layer. After the molecular material solution, the above-mentioned surname structure is added to the above-mentioned surname 埶5-Tianwen knives, and the solvent is poured into the carbon nanotube layer, and the temperature is set to make the polymer material solution in the middle; The carbon nanotube layer is composited and solidified, from a polymer material to a 2 m carbon nanotube composite layer. The structure is directly placed in a furnace and twisted to a composite structure in which the ultraviolet light of the above-mentioned rice is heated to heat the polymer material solution and the layer t to reach a constant temperature. The knives are related to the solvent in the solution, and the temperature is higher than the solvent η. In the embodiment, the temperature is the assignment. Μ盘:H: The polymer material in the layer of the official composite material can make the carbon nanotube layer and the flexible matrix έ士八生^ + anti-Lumi butterfly: two: infiltrated into the polymer material, it is not the slave layer The short circuit between the carbon nanotubes in the present is: 'The resistance of the carbon nanotube layer is in a good linear relationship. It can be understood that after the first motor plate and the tube composite layer, the step further comprises the step of forming two electrodes on the surface of the carbon nanotube composite layer or the two ends of the flexible substrate 20 201003488 _. .· #::: The material of the electrode is metal, carbon nanotube film, conductive water p eight conductive material. In the technical solution, the electrodes are electrically conductive silver polylayers. The two electrodes are two: include: 糸 net: brush, pad printing or spraying. In this embodiment, eight = cover: the surface or the first surface of the above-mentioned carbon nanotube composite material layer, the baking temperature is 1 〇·min in the phase, and the silver paste is solidified. The above preparation method needs to be confirmed 7; c' The two electrodes are obtained. connection. The two electrodes and the carbon nanotube layer are electrically charged:: The above steps are repeated to prepare a second electrode plate. The first electrode plate includes two ... and two second electrodes. Soil_, one brother and two meters of carbon nanotube layer touch screen ^ #弟-electrode plate and the second electrode plate package, forming a touch / jin said the first electrode plate and the second electrode plate method includes the following steps ( a) forming an insulating layer on the periphery of one side of the composite layer of the tube. The electrode plate is formed with nano carbon. The step of forming the insulating layer is performed. The electrode plate forms a carbon nanotube composite layer 2. The material of the second layer is a transparent resin or other insulating layer. The insulation is made. , moon blush or other insulating transparent material 21 201003488 ϋ covering the first electrode plate on the insulating layer, and making a •, too: ° & carbon nanotube composite layer and the said ... - The carbon nanotube composite layer is disposed opposite to the first electrode, the electrode in the dipole plate, and the second electrode plate on the second electrode plate: the first electrode plate, c is disposed. Sealed with a sealant to form - touch = 2% edge layer of the surrounding sealant is 706 Β model furnace # #, open. This lean embodiment, the dense plate, 帛+ 夕 rubber. Applying the sealant to the edge of the second electrode plate of the +th plate and the insulating layer, and placing a 夭f to the second step, the P may be tamped. The two electrodes of the second conductive layer and the two electrodes in the layer further comprise a plurality of transparent dots and transparent dot spacers. The coating of the spacer is applied to a plurality of transparent dot-shaped regions after the t3 5th ing, and is formed after drying: the layer of the electric=upper insulating layer and the transparent dot-like spacer can be used. Set the insulation layer and the point spacers. The spacers are optional. = When the size of the touch screen is small, the point plate is electrically insulated, ie, only the first electrode and the second electrode are required. In the method for realizing the electrode screen of the device, the method of implementing the electrode screen can be passed through - including the first parameter = 9, the continuous operation device described in the embodiment is a package, the shaft is added, and the second is rotated. 204, a third rotating shaft 206, - 22 201003488 wide mouth container 208, a stage 210, a tube furnace 212, a traction device 214, a blowing device 216, a wiping device 230, a laser 234 and a power source (not shown). The first rotating shaft 202, the second rotating shaft 204 and a third rotating shaft 206 are spaced apart from each other in the same direction. The third rotating shaft 206 and the pulling device 214 are disposed in the axial direction of the tubular furnace. The blowing device 216 is disposed between the third rotating shaft 206 and the tube furnace 212. The wide mouth container 208 is disposed below the second rotating shaft 204, and the second rotating shaft 204 is partially located in the wide mouth container 208. The scraping device 230 is disposed adjacent to the second rotating shaft 204, and one end of the scraping device 230 and the second rotating shaft 204 are protected. The first rotating shaft 202 is wound with a flexible substrate 218, and the wide-mouth container 208 is filled with the polymer material solution 220. The method for preparing the first electrode plate or the second electrode plate by using the above continuous working device specifically includes The following steps are performed: (1) The flexible substrate 218 is sequentially connected to the third rotating shaft 204 and the third rotating shaft 206 and connected to the pulling device 214 through the tubular furnace to form a layer of polymer material 226 on the surface of the flexible substrate 218. During the process, since the second rotating shaft 204 is partially located in the wide-mouth container 208, the polymer material solution 220 in the wide-mouth container 208 is adhered to the surface of the flexible substrate 218 to form a layer of polymer material 226. The scraping device 230 and the first The distance between the two rotating shafts 204 is maintained. When the thickness of the polymer material layer 226 exceeds the distance, the scraping device 230 scrapes off. Therefore, the scraping device 230 can make the thickness of the polymer solution constant and maintain uniformity. (2) Fixing a super-sequential carbon nanotube array 222 on the stage 210 23 201003488 • Shi Er pulls a continuous nanometer from the super-shunned carbon nanotube array 222... The membrane name is 224, and one end of the nano-carboniferous tubular structure 224 is adhered to the polymer material layer 226 on the surface of the flexible substrate 218. The carbon nanotube film 224 is pulled from the carbon nanotube array 222. After the exit, when not in contact with the polymer material layer 226, the carbon nanotube film 224 may be irradiated with a laser emitted from the laser 2 to improve the transparency of the carbon nanotube film. The irradiation mode and specific parameters are as follows. As described above, (3) turning on the power supply, so that the traction device 214 pulls the flexible substrate 218, the polymer material layer 226 and the carbon nanotube film 224 in a direction parallel to the axial direction of the tube furnace 212 at a certain speed. When the carbon nanotube film 224 reaches the lower portion of the underwind device 216, the wind blown by the blowing device 216 applies a certain pressure to the carbon nanotube film 224, so that the nano-carboniferous film 224 is immersed in the layer 226 of the molecular material, that is, the polymer material. The carbon nanotube film 224 is infiltrated and then passed through the tube furnace 212. The high temperature inside the tube furnace 212 solidifies the polymer material infiltrated into the carbon nanotube film 224, forming a nanometer on the surface of the flexible substrate 218. Carbon tube composite layer 228. (iv) The flexible substrate 218 on which the carbon nanotube composite material layer 228 is formed is cut to form an electrode plate. Progressively, a plurality of first electrodes or second electrode plates can be formed by arranging two electrodes at the surface of the carbon nanotube composite layer 228. The polymer material solution is coated on the upper substrate, so that the substrate can be continuously produced in the surface of the substrate (4) to improve the production efficiency, save operating time, and further save 24 201003488. The invention has indeed met the requirements of the invention patent

综上所述,本 長:出專利申請。惟, ^ r I V-i 曰"公 盖於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例提供的觸摸屏的立體結構示 意圖。 圖2係本技術方案實施例提供的觸摸屏的側視結構示 圖。 圖3係本技術方案實施例提供的奈米碳管複合材料層 的掃描電鏡照片。 曰 圖4係本技術方案實施例提供的奈米碳管複合材料層 的電阻線性圖。 曰 圖5係本技術方案實施例提供的奈米碳管薄膜的掃描 電鏡照片。 圖6係本技術方案實施例提供的觸摸屏的製備方法的 流程圖。 圖7係本技術方案實施例所提供的雷射處理前的奈米 ^會薄膜的掃描電鏡照片。 圖8係本技術方案實施例所提供的雷射處理後的奈米 <皆薄膜的掃描電鏡照片。 圖9係本技術方案實施例提供的連續製備第一電極板 25 201003488 或第二電極板的流程 示意圖。 【主要元件符號說明 ] 觸摸屏 10 第一電極板 12 第二電極板 14 點狀隔離物 16 絕緣層 18 第一基體 120 第一導電層 122 第一電極 124 第二基體 140 第二導電層 142 第二電極 144 連續作業裝置 200 第一轉轴 202 第二轉軸 204 第三轉車由 206 廣口容為' 208 載物台 210 管式爐 212 牽引裝置 214 吹風裝置 216 柔性基体 218 26 201003488 南分子材料溶液 220 奈米碳管陣列 222 奈米碳管薄膜 224 高分子材料層 226 奈米碳管複合材料層 228 刮擦裝置 230 雷射器 232 27In summary, the chief: a patent application. However, ^ r I V-i 曰" is covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view of a touch screen provided by an embodiment of the present technical solution. FIG. 2 is a side view showing the structure of a touch screen provided by an embodiment of the present technical solution. Figure 3 is a scanning electron micrograph of a carbon nanotube composite layer provided by an embodiment of the present technical solution. 4 is a resistance linear diagram of a carbon nanotube composite layer provided by an embodiment of the present technical solution.曰 Figure 5 is a scanning electron micrograph of a carbon nanotube film provided by an embodiment of the present technical solution. FIG. 6 is a flow chart of a method for preparing a touch screen provided by an embodiment of the present technical solution. Fig. 7 is a scanning electron micrograph of a nanocrystalline film before laser treatment provided by an embodiment of the present technical solution. FIG. 8 is a scanning electron micrograph of a nano-film after laser treatment provided by an embodiment of the present technical solution. FIG. 9 is a schematic flow chart of continuously preparing a first electrode plate 25 201003488 or a second electrode plate according to an embodiment of the present technical solution. [Main component symbol description] touch screen 10 first electrode plate 12 second electrode plate 14 dot spacer 16 insulating layer 18 first substrate 120 first conductive layer 122 first electrode 124 second substrate 140 second conductive layer 142 second Electrode 144 Continuous working device 200 First rotating shaft 202 Second rotating shaft 204 The third rotating car is 206 Wide mouth capacity is '208 Carrier stage 210 Tube furnace 212 Traction device 214 Air blowing device 216 Flexible substrate 218 26 201003488 South molecular material solution 220 Carbon nanotube array 222 carbon nanotube film 224 polymer material layer 226 carbon nanotube composite layer 228 scratching device 230 laser 232 27

Claims (1)

201003488 十、申請專利範圍 觸:屏的製備方法,其包括以下步驟: 七么、一第一基體; 形:-奈米碳管複合材料層於第一 一電極板; 』衣w 刺诗弟 重複上述步驟,製備第二電極板; 封:第-電極板與第二電極板,形成—觸摸屏。 范圍第1項所述之觸摸屏的製備方法,发 面的方法包括以下步驟: 、第基體的表 f第-基體的表面塗覆一層高分子材料溶液; ‘備一奈米碳管薄膜; =射處理上述奈米碳管薄膜’提高奈米破管薄膜的 ;返至^不米奴官薄膜鋪設在所述第一基體上的言 分子材料溶液的表面,形成一奈米碳管層; 问 使高分子材料溶液渗入奈米碳管層中,θ固化高分子材 料’开> 成一奈米碳管複合材料層。 3. 如專利t請范圍第2項所述之觸摸屏的製備方法,其 中,所述雷射的功率密度大於O.lxio4瓦特/平方米。 4. 如專利申請范圍帛2項所述之觸摸屏的製備方法,其 2,所述之將至少一層奈米碳管薄膜鋪設在所述第一基 體上的南分子材料溶液的表面的步驟為:將一層奈米碳 官薄膜直接鋪設於高分子材料溶液的表面或將複數個奈 28 201003488 米碳管薄膜平行無間隙或重疊鋪設於高分子材料溶液的 表面。 5.如專利申凊范圍第2項所述之觸摸屏的製備方法,其 中,所述之奈米碳管薄膜包括一奈米碳管拉膜結構,該 奈米碳管拉膜結構中的奈米碳管沿同一方向擇優取向排 歹丨J ° 6.如專利申請范圍第5項所述之觸摸屏的製備方法,其 中,所述之製備一奈米碳管拉膜結構的方法包括以下步 驟:提供一奈米碳管陣列;從上述奈米碳管陣列中選定 部分奈米碳管;以一定速度沿基本垂直于奈米碳管陣列 生長方向拉伸該部分奈米碳管,以形成-連續的奈米碳 管拉膜結構。 7.如專利_請范圍第2項所述之觸摸屏的製備方法,其 中’所述使高分子材料滲人奈米碳管層中的方法為採用 風刀以10-20米/秒的風力吹奈米m㈣ 管層壓高分子材料層’使高分子材料層滲人奈米碳管: =專利中請范圍第2項所述之觸摸屏的製備方法,並 述之固化高分子材料的方法包括將高分子材料溶 液加熱至一定溫度。 9=專利中請范圍第2項所述之觸摸屏的製備方法,直 :,所述之固化高分子材料溶液的方法為將高分子溶^ :置於爐中加熱或採用一定能量的紫外 料溶液。 J刀卞材 29 201003488 1〇:專利申請范圍第1項所述之觸摸㈣製備方法,1 ,所述之製備電極板的方法可採用— : 續完成。 、邛莱叙置連 11. 如專利申請范圍第1〇項所述之觸摸屏的製 中,所述之連續作業裝置包括一第一轉軸、—裳,^ 轴、-第三轉軸,一廣口容器、一載物台、—管工:轉 一牽引裝置、一吹風裝置、一刮擦裝置、—= 電源。 由射态及一 12. 如專利申請范圍第n項所述之觸摸屏的製備方法,其 :,所述之第-轉軸、第二轉軸和第三轉轴間隔設置了 其軸向位於同一方向。 13. 如專利申請范圍第11項所述之觸摸屏的製備方法,其 :’所述之第三轉軸與牽引裝置設置于管式爐軸向的兩 立而0 14. 如專利申請范圍第n項所述之觸摸屏的製備方法,其 中所述之吹風裝置設置於第三轉軸與管式爐之間。 15. 如專利申請范圍第u項所述之觸摸屏的製備方法,其 中,所述之廣口容器設置於第二轉軸的下 鉍 部分位於廣口容器中。 弟-轉軸 16. 如專利申請范圍第n項所述之觸摸屏的製備方法,其 中所述之刮擦裝置靠近第二轉轴設置,刮擦裝置的一 端與第二轉軸保持一固定距離。 17. 如專利申請范圍第u項所述之觸摸屏的製備方法,其 中,所述之第一轉軸上纏繞一柔性基體,廣口容器中盛 30 201003488 • 有高分子材料溶液。 …18·如專利申請范圍第17項所述之觸摸屏的製備方法,其 • =述之㈣連續作業裝置f備電極板的方法包 下步驟: = 生基體依次通過第二轉軸、第三轉軸並穿過管式 ::牽引裝置相連接,使柔性基體的表面形成一 子材層; I::超順排奈米碳管陣列於載物臺上,從該超順排 二tr車列中拉出—連續的奈米碳管拉膜結構,將 =¼官拉膜結構的—端㈣於柔性基體表面上的高 分子材料層上; 2電源’使牽引裝置沿平行于管式爐轴向的方向牽 :性基體、高分子材料層和奈米碳管薄膜,風刀使 ::子材料滲入到奈米碳管薄膜中,經管式爐固化高 :材料,在柔性基體的表面形成奈米碳管複合材料 滑 , 的柔性基體切割後即得到電極 將形成有複合材料層 板。 31201003488 X. Patent application range: The preparation method of the screen includes the following steps: seven, a first substrate; shape: - a carbon nanotube composite layer on the first electrode plate; In the above steps, the second electrode plate is prepared; the sealing: the first electrode plate and the second electrode plate form a touch screen. The method for preparing a touch panel according to the first aspect, wherein the method for preparing the surface comprises the following steps:: coating a surface of the base of the substrate with a polymer material solution; 'preparing a carbon nanotube film; Processing the above-mentioned carbon nanotube film to improve the nano tube film; returning to the surface of the molecular material solution on the first substrate to form a carbon nanotube layer; The polymer material solution is infiltrated into the carbon nanotube layer, and the θ-cure polymer material is 'opened> into a nano carbon tube composite material layer. 3. The method of preparing a touch panel according to the invention of claim 2, wherein the power density of the laser is greater than O.lxio 4 watts/square meter. 4. The method for preparing a touch panel according to claim 2, wherein the step of laying at least one layer of the carbon nanotube film on the surface of the solution of the southern molecular material on the first substrate is: A layer of nano carbon official film is directly laid on the surface of the polymer material solution or a plurality of naphthalene 28 201003488 m. carbon tube films are laid on the surface of the polymer material solution without gaps or overlapping. 5. The method for preparing a touch panel according to claim 2, wherein the carbon nanotube film comprises a carbon nanotube film structure, and the nano tube in the carbon nanotube film structure The method for preparing a touch screen according to the fifth aspect of the invention, wherein the method for preparing a carbon nanotube film structure comprises the following steps: providing a carbon nanotube array; selecting a portion of the carbon nanotubes from the array of carbon nanotubes; stretching the portion of the carbon nanotubes at a rate substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous Nano carbon tube film structure. 7. The method for preparing a touch panel according to the invention of claim 2, wherein the method for infiltrating the polymer material into the carbon nanotube layer is to blow with a wind knife at a wind speed of 10-20 m/sec. Nano m (four) tube laminated polymer material layer 'to make polymer material layer infiltrated with human carbon nanotubes: = Patent preparation method according to the second aspect of the touch screen, and the method for curing the polymer material includes The polymer material solution is heated to a certain temperature. 9= The method for preparing the touch screen according to the second item of the patent, the straight method: the method for curing the polymer material solution is to dissolve the polymer in a furnace or to use a certain energy of the ultraviolet material solution. . J knife coffin 29 201003488 1〇: The touch (four) preparation method described in the first application of the patent application scope, 1, the method for preparing the electrode plate can be: - continued. 11. The system of the touch screen according to the first aspect of the patent application, wherein the continuous operation device comprises a first rotating shaft, a skirt, a shaft, a third shaft, and a wide mouth. Container, a stage, - a plumber: a traction device, a blowing device, a wiping device, -= power. The method of manufacturing the touch panel according to the item [n], wherein the first-rotating shaft, the second rotating shaft and the third rotating shaft are spaced apart from each other in the same direction. 13. The method for preparing a touch screen according to claim 11, wherein: the third rotating shaft and the traction device are disposed in the axial direction of the tubular furnace and are 0. 14. The method for preparing a touch screen, wherein the blowing device is disposed between a third rotating shaft and a tubular furnace. 15. The method according to claim 5, wherein the wide-mouth container is disposed in the lower portion of the second rotating shaft in the wide-mouth container. A method of manufacturing a touch panel according to the invention of claim n, wherein the wiping device is disposed adjacent to the second rotating shaft, and one end of the wiping device is maintained at a fixed distance from the second rotating shaft. 17. The method according to claim 5, wherein the first rotating shaft is wound with a flexible substrate, and the wide-mouth container is filled with 30 201003488 • a polymer material solution. ...18. The method for preparing a touch panel according to claim 17 of the patent application, wherein: (4) the method of preparing the electrode plate for the continuous operation device f includes the following steps: = the raw substrate passes through the second rotating shaft and the third rotating shaft in turn. Through the tubular:: traction device is connected to form a sub-layer of the surface of the flexible substrate; I:: super-sequential carbon nanotube array is on the stage, and is pulled from the super-aligned two-tr The continuous carbon nanotube film structure will be the end of the polymer film structure on the surface of the polymer material on the surface of the flexible substrate; 2 the power supply will make the traction device parallel to the axial direction of the tube furnace. Orientation: the base matrix, the polymer material layer and the carbon nanotube film, the air knife enables:: the sub-material penetrates into the carbon nanotube film, and is cured by the tube furnace: material, forming nano carbon on the surface of the flexible substrate After the tube composite is slippery, the flexible substrate is cut to obtain that the electrode will be formed with a composite laminate. 31
TW97126325A 2008-07-11 2008-07-11 Method for making touch panel TWI403928B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97126325A TWI403928B (en) 2008-07-11 2008-07-11 Method for making touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97126325A TWI403928B (en) 2008-07-11 2008-07-11 Method for making touch panel

Publications (2)

Publication Number Publication Date
TW201003488A true TW201003488A (en) 2010-01-16
TWI403928B TWI403928B (en) 2013-08-01

Family

ID=44825588

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97126325A TWI403928B (en) 2008-07-11 2008-07-11 Method for making touch panel

Country Status (1)

Country Link
TW (1) TWI403928B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592788A (en) * 2010-05-31 2014-02-19 北京富纳特创新科技有限公司 Touch liquid crystal display screen
US8962090B2 (en) 2009-12-03 2015-02-24 Beijing Funate Innovation Technology Co., Ltd. Variable-density carbon nanotube film and method for manufacturing the same
US8982059B2 (en) 2009-12-03 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Touch panel incorporating carbon nanotube film
TWI494643B (en) * 2010-01-22 2015-08-01 Beijing Funate Innovation Tech Touch panel
CN103592788B (en) * 2010-05-31 2016-11-30 北京富纳特创新科技有限公司 Touch LCD screen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824220B2 (en) * 2002-04-30 2006-09-20 ホシデン株式会社 Touch panel electrode connection structure
GB0313808D0 (en) * 2003-06-14 2003-07-23 Binstead Ronald P Improvements in touch technology
US7593004B2 (en) * 2005-06-02 2009-09-22 Eastman Kodak Company Touchscreen with conductive layer comprising carbon nanotubes
US7645497B2 (en) * 2005-06-02 2010-01-12 Eastman Kodak Company Multi-layer conductor with carbon nanotubes
US8421755B2 (en) * 2006-01-17 2013-04-16 World Properties, Inc. Capacitive touch sensor with integral EL backlight

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962090B2 (en) 2009-12-03 2015-02-24 Beijing Funate Innovation Technology Co., Ltd. Variable-density carbon nanotube film and method for manufacturing the same
US8982059B2 (en) 2009-12-03 2015-03-17 Beijing Funate Innovation Technology Co., Ltd. Touch panel incorporating carbon nanotube film
TWI494643B (en) * 2010-01-22 2015-08-01 Beijing Funate Innovation Tech Touch panel
CN103592788A (en) * 2010-05-31 2014-02-19 北京富纳特创新科技有限公司 Touch liquid crystal display screen
CN103592788B (en) * 2010-05-31 2016-11-30 北京富纳特创新科技有限公司 Touch LCD screen

Also Published As

Publication number Publication date
TWI403928B (en) 2013-08-01

Similar Documents

Publication Publication Date Title
TWI357167B (en) Touch panel, method for making the same, and displ
CN101458606B (en) Touch screen, method for producing the touch screen, and display device using the touch screen
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
CN101464759B (en) Production method of touch screen
TWI354921B (en) Touch panel and displaying device using the same
KR20090064309A (en) Touch panel and display device using the same
JP4944167B2 (en) Manufacturing method of touch panel
CN102109917A (en) Touch screen and preparation method thereof
TW200921482A (en) Touch panel
JP5680730B2 (en) Touch pen
TW200926471A (en) Touch panel and displaying device using the same
JP5722121B2 (en) Touch pen
TW201003488A (en) Method for making touch panel
JP5437716B2 (en) Touch panel
TWI411944B (en) Method for making touch panel
TW201003499A (en) Method for making liquid crystal display with touch panel
TW201003199A (en) Method for making liquid crystal display with touch panel
TWI360768B (en) Touch panel
TWI356517B (en) Touch panel and displaying device using the same
TW200929647A (en) Touch panel and displaying device using the same
TW200921188A (en) Touch panel
TWI420361B (en) Touch panel and method for making the same
TW200929642A (en) Touch panel, method for making the same, and displaying device adopting the same
TW201108051A (en) Touch panel and display device using the same
TW200929637A (en) Touch panel and displaying device using the same