TW200929637A - Touch panel and displaying device using the same - Google Patents

Touch panel and displaying device using the same Download PDF

Info

Publication number
TW200929637A
TW200929637A TW96149382A TW96149382A TW200929637A TW 200929637 A TW200929637 A TW 200929637A TW 96149382 A TW96149382 A TW 96149382A TW 96149382 A TW96149382 A TW 96149382A TW 200929637 A TW200929637 A TW 200929637A
Authority
TW
Taiwan
Prior art keywords
touch screen
carbon nanotube
display device
conductive layer
layer
Prior art date
Application number
TW96149382A
Other languages
Chinese (zh)
Other versions
TWI362776B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96149382A priority Critical patent/TWI362776B/en
Publication of TW200929637A publication Critical patent/TW200929637A/en
Application granted granted Critical
Publication of TWI362776B publication Critical patent/TWI362776B/en

Links

Abstract

The present invention relates to a touch panel and a display device adopting the touch panel. The touch panel includes a first electrode plate, and a second electrode plate separated from the first electrode plate. The first electrode plate includes a first substrate and a first conductive layer disposed on a lower surface of the first substrate. The second electrode plate includes a second substrate and a second conductive layer disposed on an upper surface of the second substrate. At least one of the first conductive layer and the second conductive layer includes at least two overlapped carbon nanotube layers. The carbon nanotubes in the adjacent two carbon nanotube layers are arranged along same direction.

Description

200929637 九、發明說明: 【發明所屬之技術領域】 • 本發明涉及一種觸摸屏及使用該觸摸屏的顯示裝置, 尤其涉及一種基于奈米碳管的觸摸屏及使用該觸摸屏的顯 示裝置。 【先前技術】 近年來,伴隨著移動電話與觸摸導航系統等各種電子 設備的高性能化和多樣化的發展,在液晶等顯示元件的前 ©面安裝透光性的觸摸屏的電子設備逐步增加。這樣的電子 設備的利用者通過觸摸屏,一邊對位于觸摸屏背面的顯示 元件的顯示内容進行視覺確認,一邊利用手指或筆等方式 按壓觸摸屏來進行操作。由此,可以操作電子設備的各種 功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前的觸 摸屏通常分爲四種類型,分別爲電阻式、電容感應式、紅 0外線式以及表面聲波式。其中電阻式觸摸屏的應用最爲廣 泛,請參見文獻 “Production of Transparent Conductive Films with Inserted Si〇2 Anchor Layer,and Application to a Resistive Touch Panel” Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol.84, P39-45(2001) ° 先前的電阻式觸摸屏一般包括一上基板,該上基板的 下表面形成有一上透明導電層;一下基板’該下基板的上 表面形成有一下透明導電層;以及多個點狀隔離物(Dot 200929637BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a touch panel and a display device using the same, and more particularly to a carbon nanotube-based touch panel and a display device using the same. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display element such as a liquid crystal are gradually increasing. The user of such an electronic device operates by pressing the touch panel by a finger, a pen, or the like while visually checking the display content of the display element located on the back surface of the touch panel through the touch panel. Thereby, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the previous touch screens are generally divided into four types, namely resistive, capacitive sensing, red 0 outer line and surface acoustic wave. Among them, the resistive touch screen is the most widely used, please refer to the document "Production of Transparent Conductive Films with Inserted Si〇2 Anchor Layer, and Application to a Resistive Touch Panel" Kazuhiro Noda, Kohtaro Tanimura. Electronics and Communications in Japan, Part 2, Vol.84, P39-45(2001) ° The prior resistive touch screen generally comprises an upper substrate, the upper surface of which is formed with an upper transparent conductive layer; the lower substrate 'the upper surface of the lower substrate is formed with a transparent conductive layer ; and a number of point spacers (Dot 200929637

Spacer)設置在上透明導電層與下透明導電層之間。其中, 該上透明導電層與該下透明導電層通常采用具有導電特 性的銦錫氧化物(indium Tin 0xide,IT〇)層(下稱汀〇層)。 當使用手指或筆按壓上基板時,上基板發生扭曲,使得按 壓處的上透明導電層與下透明導電層彼此接觸。通過外接 的電子電路分別向上透明導電層與下透明導電層依次施 加電壓,觸摸屏控制器通過分別測量第一導電層上的電壓 變化與第二導電層上的電壓變化,並進行精確計算,將它 轉換成觸點坐標。觸摸屏控制器將數字化的觸點坐標傳遞 給中央處理器。中央處理器根據觸點坐標發出相應指令, 啓動電子設備的各種功能切換,並通過顯示器控制器控制 顯示元件顯示。 然而,ΙΤΟ層作爲透明導電層通常釆用離子束濺射或 蒸鍍等工藝製傷,在製備的過程,需要較高的真空環境及 需要加熱到200〜300°C ’因此’使得ΙΤ〇層的製備成本較 ❹高。此外,ΙΤΟ層作爲透明導電層具有機械性能不够好、 難以彎曲及阻值分布不均勻等缺點。另外,ιτ〇在潮渴的 空氣中透明度會逐漸下降。從而導致先前的電阻式觸摸屏 及顯示裝置存在耐用性不够好,靈敏度低、線性及準確性 較差等缺點。 有#于此’確有必要提供一種耐用性好,且靈敏度高、 線性及準確性强的觸摸屏及顯示裝置。 【發明内容】 -種觸摸屏,包括:一第一電極板,該第一電極板包 7 200929637 括一第一基體及一第一導電層設置在該第一基體的下表 面;以及一第二電極板,該第二電極板與第一電極板間隔 設置’該第二電極板包括一第二基體及一第二導電層設置 在該第二基體的上表面;其中,上述第一導電層和第二導 電層:的至少-個導電層包括至少兩個重叠的奈米碳管 層’每一奈米碳管層包括多個定向排列的冑米碳管,且相 鄰的兩個奈米碳管層中的奈米碳管沿同一方向排列。 -㈣不裝置’包括:—觸摸屏’該觸摸屏包括一第 -電極板及-第二電極板,該第__電極板包括—第一基體 及第¥電層&置在該第一基體的下表自,該第二電極 板與第-電極板間隔設置,且包括一第二基體及一第二導 電層設置在該第二基體的上表面;及-顯示設備,該顯示 設備正對且靠近上述觸摸屏的第二電極板設置;其中,上 述第導電層和第二導電層中的至少—個導電層包括至少 兩個重叠的奈米碳管層,每一奈米碳管層包括多個定向排 ❹列的奈米碳管’且相鄰的兩個奈求碳管層中的奈米碳管沿 同一方向排列。 本技術方案實施例提供的釆用至少兩個重叠設置的奈 米碳管層作爲透明導電層的觸摸屏及顯示裝置具有以下優 點八,由于奈米碳管具有優異的力學性能,則由定向 排歹J的不米碳s組成的單個奈米碳管層具有較好的勃性及 機械强度’故采用該至少兩個奈米碳管層作透明導電層, 可以相應的提高觸摸屏的耐驗,進而提高使用該觸摸屏 的顯不裝置的耐用性;其二,由于奈米碳管具有優異的導 8 200929637 電性能’則由定向排列的奈米碳管組成的奈米碳管層具有 均勻的阻值分布,因而,采用上述至少兩層奈米碳管層作 透明導電層,可以相應的提高觸摸屏及顯示裝置的分辨率 和精確度。 【實施方式】 以下將結合附圖詳細說明本技術方案提供的觸摸屏及 顯示裝置。' 请參閱圖1及圖2,本技術方案實施例提供一種觸摸 屏1〇’該觸摸屏10包括一第一電極板12,一第二電極板 14以及叹置在第一電極板12與第二電極板14之間的多個 透明點狀隔離物16。 該第一電極板12包括一第一基體12〇Spacer) is disposed between the upper transparent conductive layer and the lower transparent conductive layer. The upper transparent conductive layer and the lower transparent conductive layer are usually made of an indium tin oxide (IT) layer (hereinafter referred to as a tantalum layer) having a conductive property. When the upper substrate is pressed with a finger or a pen, the upper substrate is twisted so that the upper transparent conductive layer and the lower transparent conductive layer at the pressing contact each other. The voltage is sequentially applied to the upper transparent conductive layer and the lower transparent conductive layer through the external electronic circuit, and the touch screen controller measures the voltage change on the first conductive layer and the voltage change on the second conductive layer, respectively, and performs accurate calculation. Convert to contact coordinates. The touch screen controller passes the digitized contact coordinates to the central processor. The central processor issues a corresponding command according to the contact coordinates, activates various function switching of the electronic device, and controls the display of the display component through the display controller. However, the ruthenium layer is usually used as a transparent conductive layer by ion beam sputtering or vapor deposition. In the process of preparation, a high vacuum environment is required and heating to 200 to 300 ° C is required. The preparation cost is relatively high. In addition, the ruthenium layer as a transparent conductive layer has disadvantages such as insufficient mechanical properties, difficulty in bending, and uneven distribution of resistance. In addition, the transparency of ιτ〇 will gradually decrease in the thirsty air. As a result, previous resistive touch screens and display devices have disadvantages such as insufficient durability, low sensitivity, linearity, and poor accuracy. It is indeed necessary to provide a touch screen and display device with high durability, high sensitivity, linearity and accuracy. A touch screen includes: a first electrode plate, the first electrode plate package 7 200929637 includes a first substrate and a first conductive layer disposed on a lower surface of the first substrate; and a second electrode a second electrode plate is spaced apart from the first electrode plate. The second electrode plate includes a second substrate and a second conductive layer disposed on an upper surface of the second substrate; wherein the first conductive layer and the first conductive layer Two conductive layers: at least one conductive layer includes at least two overlapping carbon nanotube layers 'each carbon nanotube layer includes a plurality of aligned carbon nanotubes, and two adjacent carbon nanotubes The carbon nanotubes in the layer are aligned in the same direction. - (d) not comprising 'including: - touch screen' The touch screen comprises a first electrode plate and a second electrode plate, the first __ electrode plate comprising - a first substrate and a first electrical layer & The second electrode plate is spaced apart from the first electrode plate, and includes a second substrate and a second conductive layer disposed on the upper surface of the second substrate; and a display device, the display device is directly opposite a second electrode plate disposed adjacent to the touch screen; wherein at least one of the first conductive layer and the second conductive layer comprises at least two overlapping carbon nanotube layers, each of the carbon nanotube layers comprises a plurality of The carbon nanotubes in the aligned rows and columns and the carbon nanotubes in the adjacent two carbon nanotube layers are arranged in the same direction. The touch screen and the display device using the at least two overlapping carbon nanotube layers as the transparent conductive layer provided by the embodiments of the present technical solution have the following advantages. 8. Since the carbon nanotubes have excellent mechanical properties, the directional drainage is performed. The single carbon nanotube layer composed of J carbon-free s has good boobility and mechanical strength. Therefore, the at least two carbon nanotube layers are used as the transparent conductive layer, which can improve the durability of the touch screen. Improve the durability of the display device using the touch screen; secondly, because the carbon nanotube has excellent conductivity 8 200929637 'the electrical performance', the carbon nanotube layer composed of the aligned carbon nanotubes has a uniform resistance. The distribution, therefore, using the at least two layers of carbon nanotubes as the transparent conductive layer can correspondingly improve the resolution and accuracy of the touch screen and the display device. [Embodiment] Hereinafter, a touch panel and a display device provided by the present technical solution will be described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2 , the embodiment of the present invention provides a touch screen 1 ′′. The touch screen 10 includes a first electrode plate 12 , a second electrode plate 14 , and a first electrode plate 12 and a second electrode . A plurality of transparent dot spacers 16 between the plates 14. The first electrode plate 12 includes a first substrate 12〇

十 ^ ^ 丄厶U , 一 ^ ^ JS 個第—電極Μ該第一基體m爲平面結構, 二的下表f 122與兩個第一電極124均設置在第-基體 n =兩個第一電極124分別設置在第一導電層 的兩端並與第—導電層122電連接。該第 一电極板14包括一筮-计 第一基體140,一第二導電層142 兩個第二電極144。該— 一 導電層⑷與兩個第:雷;140爲平面結構,該第二 卜矣而 第—電極144均設置在第二基體140的 上表面。兩個第二電極144 第二方向的兩端並盘第1::又置在第-¥電層142沿 垂直于該 :、第-導電層M2電連接。該第一方向 144正交,置二即兩個第-電極124與兩個第二電極 定季敕产。 該第—基體12〇爲透明的且且有一 軟度的相或薄板,該第二基想⑽爲透明基板該 9 200929637 •第二基體140的材料可選擇爲玻璃、石英、金剛石 等硬性材料或柔性材料。所述第二基體⑽主要起支撑的 :用^第一電極124與該第二電極144的材料爲金屬、 τ米故官薄膜或其他導電材料’只要_保導電性即可 實施例巾,該第-基體12〇材料爲聚醋膜,該第二基體 ^璃基板,該第-電極124與第二電極144爲導電 漿層。 〇展/ —步地’該第二電極板14上表面外圍設置有一絕緣 層18。上述的第一電極板12設置在該絕緣層18上,且該 ^電極板U的第—導電層122正對第二電極板“的第 ;:電層142言史置。上述多個透明點狀隔離物16設置在第 =極板14的第二導電層142上’且該多個透明點狀隔離 ^彼此㈣設置。第-電極板12與第二電極板14之間 =離…0微米。該絕緣層18與透明點狀隔離物μ =可米用絕緣透明樹脂或其他絕緣透明材料製成。設置絕 〇 與點狀隱物16可使得第—電極板14與第二電極 板12電絕緣。可以理解,當觸摸屏1()尺寸較 隔^ 16爲可選擇的結構’只需確保第-電極板14 •與第 —電極板12電絕緣即可。 另外,該第一電極板12上表面可進— ,U6,該透明保護膜126可由氮切、:化:、= =稀(則)、《以及丙烯酸樹脂等材料形成。該透明 ^蔓膜126也可采用一層表面硬化處理、光滑防刮的塑料 ’如聚對苯二甲酸乙二醇醋(PET)膜,用于保護第一 200929637 .電極板12,提高耐用性。該透明保護膜126還可用于提供 一些其它的附加功能,如可以减少眩光或降低反射。 該第一導電層122與第二導電層142中的至少一個導 電層包括至少兩個重叠的奈米碳管層,每一奈米碳管層包 括多個定向排列的奈米碳管,且相鄰的兩個奈米碳管層中 的奈米碳管沿同一方向排列。該奈米碳管層爲一奈米碳管 薄膜或平行且無間隙鋪設的多個奈米碳管薄膜,相鄰的奈 米碳管層之間通過凡德瓦爾力緊密結合。該奈米碳管薄膜 進一步包括多個奈米碳管束片段,每個奈米碳管束片段具 有大致相等的長度且每個奈米碳管束片段由多個相互平行 的奈米碳管束構成,所述多個奈米碳管束片段兩端通過凡 德瓦爾力相互連接。由于奈米碳管層可由多個奈米碳管薄 膜平行且無間隙的鋪設,故該奈来碳管層的長度及寬度不 限,可根據實際需求製備。上述第一導電層122盥第二導 電層中的奈米碳管層的層數不限。該奈米破管薄膜的厚度 ❾爲0.5納米〜100微米。本技術方案實施例中,該第一導電 層122與第二導電層142均爲奈米碳管層。該奈米碳管層 置的2層奈米破管薄膜。該奈米碳管層的長度 二=該奈米碳管層的寬度爲3〇厘米,該奈米碳管 微米。優選地,第一導電層122中的奈米碳 —方向定向排列,第二導電層“2中的奈米碳 g /〇上迹第—方向定向排列。 米碳備電層— 11 200929637 .步驟—:提供—奈米碳管陣列’優選地,該陣列爲超 順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳 管阵列、雙壁奈米碳管陣列或多壁奈米碳管陣列。本實施 例中’超順排奈米碳管陣列的製備方法采用化學氣相沈積 法’其具體步轉包括:(a)提供一平整基底,該基底可選 用P型或N型石夕基底,或選用形成有氧化層的石夕基底,本 實施例優選爲釆用4英寸的石夕基底;(b)在基底表面均勾 形成一催化劑層,該催化劑層材料可選用鐵(以)、鈷 (Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述 形成有催化劑層的基底在7〇〇〜9〇〇它的空氣中退火約如分 鐘〜90分鐘;(d)將處理過的基底置于反應爐中,在保護 氣體環境下加熱到500〜74(rc,然後通入碳源氣體反應約 5〜30分鐘,生長得到超順排奈米碳管陣列,其高度爲 200〜400微米。該超順排奈米碳管陣列爲多個彼此平行且 ❹垂直于基底生長的奈米碳管形成的純奈米碳管陣列。通過 上述控制生長條件,該超順排奈米碳管陣列中基本不含有 雜貝,如無定型碳或殘留的催化劑金屬顆粒等。該奈米碳 B陣列中的奈米碳管彼此通過凡德瓦爾力緊密接觸 列。該奈米碳管陣列與上述基底面積基本相同。 本實施例中碳源氣可選用乙炔、乙烯、曱烷等化學性 質較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保濩氣體爲氮氣或惰性氣體,本實施例優選的保護氣體爲 12 200929637 •.可以理解,本實施例提供的奈米碳管陣列不限于上述 製備方法。也可爲石墨電極恒流電弧放電沈積法、雷射蒸 發沈積法等。 步驟一.采用一拉伸工具從奈米碳管陣列中拉取獲得 一奈米碳管薄膜。其具體包括以下步驟:(a)從上述奈米 碳管陣列中選定-定寬度的多個奈米碳管片斷,本實施例 優選爲米用具有一定寬度的膠帶接觸奈米碳管陣列以選定 ❽-定寬度的多個奈米碳管片斷;⑴以―料度沿基本垂 直于奈米碳管陣列生長方向拉伸該多個奈米碳管片斷,以 形成一連續的奈米碳管薄膜。 在上述拉伸過程中,該多個奈求碳管片段在拉力作用 下沿拉伸方向逐漸脫離基底的同時,由于凡德瓦爾力作 用,該選定的多個奈米碳管片斷分別與其它奈米碳管片斷 百尾相連地連續地被拉出,從而形成一奈米碳管薄膜。該 奈米碳管薄膜包括多個首尾相連且定向排列的奈米碳管 ❹束。該奈米碳管薄膜中奈米碳管的排列方向基本平 米碳管薄膜的拉伸方向。 」匕參閱圖3’該奈米碳管薄膜爲擇優取向排列的多個奈 米碳管束首尾相連形成的具有—定寬度的奈米碳管薄膜。 該奈米碳管薄財奈米碳管的排列方向基本平太^ =膜的拉伸方向。該直接拉伸獲得的擇優取向的=碳 官薄膜比無序奈米碳管薄膜具有更好的均勻性,即具有更 厚度以及具有更均㈣導電性能。同時該直接拉伸 獲仔不米碳管薄膜的方法簡單快速’適宜進行工業化應用。 13 200929637 所’該奈米碳管薄膜的寬度與奈米碳管陣列 ^ 的尺寸有關,該奈米碳管薄膜的長度不限, 可根據實際需求製得。該夺乎#& 个丨r 于这不+石反官薄膜的厚度爲〇·5奈米 〜微胃該奈米碳f薄財的奈米 管時,該單壁夺半磁與沾古斤λ ^ ^ ^ ^ 丁卞厌官的直杈爲〇.5 .奈米〜5〇奈米。冬今 奈米碳管薄膜中的夺乎碏其a 田〇x 幻不木碳s爲雙壁奈米碳管時,該雙 米碳管的直徑爲1〇太乎Μ太上丄 飞又土不 ^ .不未〜5〇奈未。當該奈米碳管薄膜中 〇 Γ/太奈米碳管時,該多壁奈米碳管的直徑爲 1.5奈未〜50奈米。 可以理解’由于本實施例超順排奈米碳管陣列中的夺 t碳管非常純淨,且由于奈米碳管本身的比表面積非常 ’故该奈米碳管薄膜本身具有㈣㈣性。因此,該太 =碳管薄膜作爲第-導電層122與第二導電層142時可: 接粘附在第一基體120或第二基體14〇上。 另—外’彳使用有機溶劑處理上述點附在第一基體⑽ $ -基體14G上的奈米碳管薄膜。具體地,可通過試管 將有機溶劑滴落在奈米碳管薄膜表面浸潤整個奈米碳管薄 膜:該有機溶劑爲揮發性有機溶劑,如乙醇、甲醇、丙綱、 =氣乙烷或氣仿’本實施例中釆用乙醇。該奈米碳管薄膜 乂有機办劑浸潤處理後,在揮發性有機溶劑的表面張力的 作用下,該奈米碳管薄膜可牢固地貼附在基體表面,且表 面體積比减小’枯性降低,具有良好的機械强度及物性。 此外’可選擇地,冑了减小由顯示設備産生的電磁干 避免從觸摸屏10發出的信號産生錯誤,還可在第二基 14 200929637 體"的下表面上s又置一屏蔽層(圖未示)。該屏蔽層可由 •銦錫氧化物(ITO)薄膜、銻錫氧化物(ΑΤ〇)肖鎳金薄 膜、銀薄膜膜或奈米碳管薄膜等導電材料形成。本實施例 中所述的屏蔽層包含—奈米碳管薄膜,該奈米碳管薄膜 中的奈米碳管的排列方式不限,可爲定向排列也可爲其它 的排列方式。本實施例中,該屏蔽層中的奈米石炭管定向排 列。該奈米碳管薄膜作爲電接地點,起到屏蔽的作用,從 ,而使,觸摸屏10能在無干擾的環境中工作。 月參閲圖4’本技術方案實施例還提供一使用上述觸摸 屏10的顯示裝置100,其包括上述觸摸屏10及一顯示設 備20°該顯示設備2G正對且靠近上述觸摸屏1()的第二電 極板14 S置。該觸摸屏1〇可以與該顯示設備如間隔一預 定距離設置,也可集成在_示設備2G i。當該觸撰屏 =與該顯示設備20集成設置時,可通過枯結劑將該觸摸 屏10附著到該顯示設備20上。 ❹本技術方案顯示設備20可以爲液晶顯示器、場發射領 =器、電漿顯示器、電致發光顯示器、真空螢光顯示器及 陰極射線管等顯示設備。 進一步地,當在該觸摸屏ΐθ第二基體14〇的下表面上 設置-屏蔽層22時,可在該屏蔽層22遠離第二基體14〇 的表面上設置-純化層24,該純化層24可由氮化石夕、氧 切等材料形成。減化層24與顯示設備2Q的正面間隔 一間隙26設置。祕化層24作爲介電層使用,且保護該 ,.肩不設備20不致于由于外力過大而損壞。 15 200929637 .另外,該顯不裝置100進一步包括一觸摸屏控制器3〇、 ,一中央處理器40及一顯示設備控制器5〇。其中,該觸摸 屏控制器30、該中央處理器4〇及該顯示設備控制器5〇三 者通過電路相互連接,該觸摸屏控制器3〇與該觸摸屏2〇 電連接,該顯示設備控制$ 5〇與該顯示設備2〇電連接。 ,觸摸屏控制器3G通過手指等觸摸物⑼觸摸的圖標或菜 j位置來定位選擇信息輸人,並將該信息傳遞給中央處理 益40。該中央處理器4〇通過該顯示器控制器%控制該顯 似示元件20顯示。 ^ 龟極板12之間與第 使用時 .,、^ ^ ^ -L Τ ·<^ Γθΐ 別施加5V電壓。使用者—邊視覺確認在觸摸屏1Q下面設 置的顯示元件20的顯示,一邊通過觸摸物 屏Π)第一電極板12進行操作。第一電極:= 土體12G發生彎曲’使得按壓處7Q的第—導電層 第一電極板14的第二導電層142接觸形成導通。觸 通,測量第一導電層 行精確V 2電層142第二方向上的電壓變化’並進 字^的觸^ :它轉換成觸點坐標。觸摸屏控制器30將數 子化的觸點坐標傳遞給令央處理器4〇。 據觸點坐標發出相應指 、:器40根 、j過顯不讀制器50控制顯示元件2〇顯示。 乎二=案實施例提供的釆用至少兩個重叠設置的夺 ==透明導電層的觸摸屏及顯示裝置具有以下: 于奈h官具有優異的力學性能’則由定向 16 200929637 排列的奈米碳管組成的單個奈米碳管層具有較好的韌性及 機械强度,故釆用該至少兩個奈米碳管層作透明導電層, 可以相應的提高觸摸屏的耐用性,進而提高使用該觸摸屏 的顯,裝置的耐用性;其二,由于奈米碳管具有優異的導 電性能’則由^向排列的奈米碳管組成的奈米碳管層呈有 均勻的阻值分布,因而,采用上述至少兩層奈米碳管層作 〇 透明導電層’可以相應的提高觸摸屏及顯示裝置的分辨率 和精確度。 ’示上所述,本發明確已符合發明專利之要件,遂依法 ,出專射請。惟,以上料者縣本㈣之較佳實施例, 不月b以此限制本案之申請專利範圍。舉凡熟悉本案技藝 甚=士援依本發明之精神所作之等效修飾或變化,皆應涵 盍於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例觸摸屏的立體結構示意圖。 圖2係本技術方案實施例觸摸屏的侧視結構示意圖。 =3係本技術方案實施例觸摸屏中奈米石炭管薄膜的掃 田电鏡照片。 圖。圖4係本技術方案實施例顯示裝置的側視結構示意 【主要元件符號說明】 觸模屏 m 10 弟電極板 17 第二電極板 14 17 200929637 點狀隔離物 16 絕緣層 18 •第一基體 120 第一導電層 122 第一電極 124 第二基體 140 第二導電層 142 第二電極 144 ®透明保護膜 126 顯示裝置 100 顯示設備 20 觸摸屏控制器 30 中央處理器 40 顯示設備控制器 50 觸摸物 60 ❿按壓處 70 屏蔽層 22 鈍化層 24 間隙 26 1810 ^ ^ 丄厶 U , a ^ ^ JS first electrode Μ the first substrate m is a planar structure, the second table f 122 of the second and the two first electrodes 124 are both disposed at the first substrate n = two first The electrodes 124 are respectively disposed at both ends of the first conductive layer and electrically connected to the first conductive layer 122. The first electrode plate 14 includes a first substrate 140, a second conductive layer 142, and two second electrodes 144. The conductive layer (4) and the two first: thunder; 140 are planar structures, and the second electrode and the first electrode 144 are disposed on the upper surface of the second substrate 140. Both ends of the second electrode 144 in the second direction are electrically connected to the first conductive layer M2 along the first and second electrical layers 142. The first direction 144 is orthogonal, and two, that is, two first-electrodes 124 and two second electrodes are produced. The first substrate 12 is transparent and has a soft phase or a thin plate. The second substrate (10) is a transparent substrate. The substrate of the second substrate 140 may be selected from a hard material such as glass, quartz or diamond. Flexible material. The second substrate (10) is mainly supported: the material of the first electrode 124 and the second electrode 144 is metal, a τ meter film or other conductive material. The first substrate 12 is made of a polyester film, and the second substrate and the second electrode 144 are conductive paste layers. The insulating layer 18 is disposed on the periphery of the upper surface of the second electrode plate 14. The first electrode plate 12 is disposed on the insulating layer 18, and the first conductive layer 122 of the electrode plate U is opposite to the second electrode plate. The spacers 16 are disposed on the second conductive layer 142 of the fourth plate 14 and the plurality of transparent dot spacers are disposed at each other (four). Between the first electrode plate 12 and the second electrode plate 14 = 0 micrometers The insulating layer 18 and the transparent dot spacer μ = can be made of an insulating transparent resin or other insulating transparent material. The insulating and dot-like recess 16 can be provided to make the first electrode plate 14 and the second electrode plate 12 electrically Insulation. It can be understood that when the size of the touch screen 1 () is an alternative structure, it is only necessary to ensure that the first electrode plate 14 is electrically insulated from the first electrode plate 12. In addition, the first electrode plate 12 is The surface may be--, U6, the transparent protective film 126 may be formed by a material such as a nitrogen cut, a: = = thin (then), "and an acrylic resin. The transparent film 126 may also be surface hardened and smoothed. Scratch-resistant plastics such as polyethylene terephthalate (PET) film, used to protect the first 2009296 37. The electrode plate 12 improves durability. The transparent protective film 126 can also be used to provide some other additional functions such as reducing glare or reducing reflection. The first conductive layer 122 and at least one of the second conductive layers 142 are electrically conductive. The layer comprises at least two overlapping carbon nanotube layers, each carbon nanotube layer comprising a plurality of aligned carbon nanotubes, and the carbon nanotubes in the adjacent two carbon nanotube layers are the same Arranged in a direction. The carbon nanotube layer is a carbon nanotube film or a plurality of carbon nanotube films laid in parallel and without gaps, and the adjacent carbon nanotube layers are tightly bonded by van der Waals force. The carbon nanotube film further comprises a plurality of carbon nanotube bundle segments, each of the carbon nanotube bundle segments having substantially equal lengths and each of the carbon nanotube bundle segments being composed of a plurality of mutually parallel carbon nanotube bundles, said plurality The ends of the carbon nanotube bundles are connected to each other by van der Waals force. Since the carbon nanotube layer can be laid in parallel and without gaps, the length and width of the carbon nanotube layer are not limited. Can be made according to actual needs The number of layers of the carbon nanotube layer in the first conductive layer 122 and the second conductive layer is not limited. The thickness of the nano tube is 0.5 0.5 nm to 100 μm. In the embodiment of the present invention, The first conductive layer 122 and the second conductive layer 142 are both carbon nanotube layers. The carbon nanotube layer is provided with a two-layer nano tube film. The length of the carbon nanotube layer is two = the carbon nanotube The width of the layer is 3 cm, and the carbon nanotubes are micrometers. Preferably, the nanocarbon-direction in the first conductive layer 122 is oriented, and the nano-carbon g/〇 in the second conductive layer "2" - Directional alignment. Meter Carbon Backup Layer - 11 200929637 . Step -: Providing - Nano Carbon Tube Array ' Preferably, the array is a super-sequential carbon nanotube array. The carbon nanotube array provided by the embodiment of the present technical solution is a single-walled carbon nanotube array, a double-walled carbon nanotube array or a multi-walled carbon nanotube array. In the present embodiment, the method for preparing a super-sequential carbon nanotube array adopts a chemical vapor deposition method, and the specific steps include: (a) providing a flat substrate, and the substrate may be a P-type or N-type stone substrate. Or, the stone-like substrate formed with the oxide layer is selected. In this embodiment, a 4-inch stone substrate is preferably used; (b) a catalyst layer is formed on the surface of the substrate, and the catalyst layer material may be iron or cobalt. (C) one of the alloys of (Co), nickel (Ni) or any combination thereof; (c) annealing the substrate on which the catalyst layer is formed in the air of 7 Torr to 9 Torr, for about minutes to 90 minutes; The treated substrate is placed in a reaction furnace, heated to 500 to 74 (rc in a protective gas atmosphere, and then reacted with a carbon source gas for about 5 to 30 minutes to grow to obtain a super-aligned carbon nanotube array. The height is 200 to 400 μm. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed by carbon nanotubes which are parallel to each other and grow perpendicular to the substrate. The super-shun is controlled by the above-mentioned growth conditions. The array of carbon nanotubes basically contains no miscellaneous shells, such as Carbon or residual catalyst metal particles, etc. The carbon nanotubes in the nanocarbon B array are in close contact with each other by van der Waals force. The carbon nanotube array is substantially the same area as the above substrate. The gas may be selected from chemically active hydrocarbons such as acetylene, ethylene and decane. The preferred carbon source gas in this embodiment is acetylene; the noble gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is 12 200929637 • It can be understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method, and may also be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, etc. Step 1. Using a stretching tool from the nanometer The carbon nanotube array is drawn to obtain a carbon nanotube film, which specifically comprises the following steps: (a) selecting a plurality of carbon nanotube segments of a predetermined width from the carbon nanotube array, the embodiment is preferably rice. Contacting the carbon nanotube array with a tape having a certain width to select a plurality of carbon nanotube segments of a ❽-width; (1) stretching the growth direction substantially perpendicular to the growth direction of the carbon nanotube array a carbon nanotube segment to form a continuous carbon nanotube film. During the above stretching process, the plurality of carbon nanotube segments are gradually separated from the substrate in the stretching direction under the action of tension, due to Vander By the effect of Valli, the selected plurality of carbon nanotube segments are continuously pulled out in series with the other carbon nanotube segments, thereby forming a carbon nanotube film. The carbon nanotube film comprises a plurality of The end-to-end and aligned carbon nanotube bundles. The arrangement of the carbon nanotubes in the carbon nanotube film is substantially the direction of stretching of the carbon nanotube film. 匕 Refer to Figure 3 for the carbon nanotube film. A plurality of carbon nanotube bundles arranged in a preferred orientation are connected end to end to form a film having a constant width of carbon nanotubes. The arrangement direction of the carbon nanotubes of the carbon nanotubes is substantially flat too = the stretching direction of the film. The preferentially oriented = carbon-based film obtained by direct stretching has better uniformity than the disordered carbon nanotube film, that is, has a greater thickness and has more uniform (four) conductivity. At the same time, the direct stretching method for obtaining the carbon nanotube film is simple and rapid, and is suitable for industrial application. 13 200929637 The width of the carbon nanotube film is related to the size of the carbon nanotube array ^. The length of the carbon nanotube film is not limited and can be obtained according to actual needs. The occupant of the & 5 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 于 5斤λ ^ ^ ^ ^ Ding 卞 卞 官 官 官 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5. In the winter and the present carbon nanotube film, when the 〇 碏 a 〇 〇 幻 幻 幻 幻 幻 为 为 为 为 为 为 为 为 为 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双 双No ^. Not yet ~ 5 〇 Nai. When the carbon nanotube film is a ruthenium/Tanna carbon nanotube, the diameter of the multi-walled carbon nanotube is 1.5 nm to 50 nm. It can be understood that the carbon nanotube film in the super-sequential carbon nanotube array of the present embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has (four) (four) properties. Therefore, when the carbon nanotube film is used as the first conductive layer 122 and the second conductive layer 142, it may be adhered to the first substrate 120 or the second substrate 14A. Further, the outer carbon layer is treated with an organic solvent to coat the carbon nanotube film attached to the first substrate (10) $ - substrate 14G. Specifically, the organic solvent may be dropped on the surface of the carbon nanotube film by a test tube to infiltrate the entire carbon nanotube film: the organic solvent is a volatile organic solvent such as ethanol, methanol, propyl, ethane or gas 'In this example, ethanol was used. After the carbon nanotube film is immersed in an organic treatment agent, the surface of the carbon nanotube film can be firmly attached to the surface of the substrate under the action of the surface tension of the volatile organic solvent, and the surface volume ratio is reduced. Reduced, with good mechanical strength and physical properties. In addition, 'optionally, in order to reduce the electromagnetic dry generated by the display device to avoid the signal generated from the touch screen 10, an error may be generated, and a shielding layer may be further disposed on the lower surface of the second base 14 200929637" Not shown). The shielding layer may be formed of a conductive material such as an indium tin oxide (ITO) film, a bismuth tin oxide (ITO) thin nickel gold film, a silver film film, or a carbon nanotube film. The shielding layer described in this embodiment comprises a carbon nanotube film, and the arrangement of the carbon nanotubes in the carbon nanotube film is not limited, and may be oriented or arranged. In this embodiment, the carbon nanotube tubes in the shielding layer are aligned. The carbon nanotube film acts as an electrical grounding point to shield, so that the touch screen 10 can work in an interference-free environment. Referring to FIG. 4', the embodiment of the present invention further provides a display device 100 using the touch screen 10, which includes the touch screen 10 and a display device 20, and the display device 2G faces the second of the touch screen 1 The electrode plate 14 S is placed. The touch screen 1 can be set at a predetermined distance from the display device, or can be integrated in the display device 2G i. When the touch screen = integrated with the display device 20, the touch screen 10 can be attached to the display device 20 by a dead agent. The display device 20 of the present invention may be a display device such as a liquid crystal display, a field emission transmitter, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. Further, when the shielding layer 22 is disposed on the lower surface of the touch screen ΐθ second substrate 14〇, a purification layer 24 may be disposed on the surface of the shielding layer 22 away from the second substrate 14〇, and the purification layer 24 may be Nitride, oxygen cutting and other materials are formed. The subtraction layer 24 is spaced apart from the front surface of the display device 2Q by a gap 26. The secret layer 24 is used as a dielectric layer and is protected. The shoulder device 20 is not damaged by excessive external force. 15 200929637. In addition, the display device 100 further includes a touch screen controller 3A, a central processing unit 40, and a display device controller 5A. The touch screen controller 30, the central processing unit 4, and the display device controller 5 are connected to each other through a circuit, and the touch screen controller 3 is electrically connected to the touch screen 2, and the display device controls $5〇. It is electrically connected to the display device 2〇. The touch screen controller 3G locates the selection information input by the icon or the dish position touched by the touch object (9) such as a finger, and transmits the information to the central processing benefit 40. The central processing unit 4 controls the display of the display unit 20 by the display controller %. ^ When the turtle plate 12 is used and the first time is used, , , ^ ^ ^ -L Τ · <^ Γθΐ Do not apply 5V voltage. The user visually confirms the display of the display element 20 disposed under the touch panel 1Q while operating through the touch panel 第一) the first electrode plate 12. The first electrode: = the soil 12G is bent so that the first conductive layer 142 of the first conductive plate 14 of the first conductive plate 14 of the pressing portion 7Q is brought into conduction. By tapping, the first conductive layer is measured to accurately change the voltage in the second direction of the V 2 electrical layer 142 and enter the touch of the ^: it is converted into contact coordinates. The touch screen controller 30 passes the digitized contact coordinates to the command processor 4A. According to the coordinates of the contact, the corresponding finger, the device 40, and the j-over-reader 50 control the display component 2〇 display. The touch screen and the display device provided by the embodiment of the present invention having at least two overlapped and disposed transparent conductive layers have the following: The nano-carbons arranged by the orientation 16 200929637 The single carbon nanotube layer composed of the tube has good toughness and mechanical strength, so the use of the at least two carbon nanotube layers as the transparent conductive layer can correspondingly improve the durability of the touch screen, thereby improving the use of the touch screen. The durability of the device; secondly, because of the excellent electrical conductivity of the carbon nanotubes, the carbon nanotube layer composed of the aligned carbon nanotubes has a uniform resistance distribution, and thus, At least two layers of carbon nanotubes as a transparent conductive layer can correspondingly improve the resolution and accuracy of the touch screen and the display device. As stated above, the present invention has indeed met the requirements of the invention patent, and the law has been specially issued. However, the preferred embodiment of the above-mentioned county (4) does not limit the scope of patent application in this case. Equivalent modifications or variations made by the Society in accordance with the spirit of the present invention are intended to be within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic perspective view of a touch screen of an embodiment of the present technical solution. FIG. 2 is a schematic side view showing the structure of a touch screen according to an embodiment of the present technical solution. = 3 is a scanning electron microscope photograph of a nano-carboniferous film in a touch screen of the embodiment of the present technical solution. Figure. 4 is a side view of the display device of the embodiment of the present invention. [Main component symbol description] Touch screen m 10 electrode plate 17 Second electrode plate 14 17 200929637 Dot spacer 16 Insulation layer 18 • First substrate 120 First conductive layer 122 first electrode 124 second substrate 140 second conductive layer 142 second electrode 144 ® transparent protective film 126 display device 100 display device 20 touch screen controller 30 central processing unit 40 display device controller 50 touch object 60 ❿ Pressing point 70 shielding layer 22 passivation layer 24 gap 26 18

Claims (1)

200929637 十、申請專利範圍 1. 一種觸摸屏,包括: 第電極板’該第一電極板包括一第一基體及一第 一導電層設置在該第一基體的下表面;以及 :第二電極板,該第二電極板與第—電極板間隔設 ,該第二電極板包括一第二基體及一第二導電層設 置在該第二基體的上表面; Ο 其改良在于:上述第—導電層和第二導電層中的至少一 ,導電層包括至少兩個重叠的奈米碳管層,每一奈米碳 2包括多個定向排列的奈米碳管’且相鄰的兩個奈米 碳管層中的奈米碳管沿同一方向排列。 2·ί申請專利範11第1項所述的觸摸屏,#中,該奈米碳 官層爲一奈米碳管薄膜或平行且無間隙鋪設的多個奈米 碳管薄膜。 3·如申請專利範圍第:項所述的觸摸屏,纟中,該相鄰兩 © 個奈米碳管層之間通過凡德瓦爾力緊密結合。 4.如申明專利範圍第2項所述的觸摸屏,其中,該奈米碳 官薄膜進一步包括多個奈米碳管束片段,每個奈米碳管 束片段具有大致相等的長度且每個奈米碳管束片段由多 個相互平行的奈米碳管束構成,所述多個奈米碳管束片 # 又兩端通過凡德瓦爾力相互連接。 5 ·如申明專利範圍第1項所述的觸摸屏,其中,該奈米碳 管薄膜的厚度爲0.5奈米〜100微米。 6.如申請專利範圍第1項所述的觸摸屏,其中,該奈米碳 19 200929637 . 管層中的奈米碳管爲时 多壁奈米碳管。’、、平壁奈米碳管、雙壁奈米碳管或 7.如申請專利範圍第6 單壁奈米碳管的直彳^ ^的觸摸屏,其特徵在于,該 碳管的直徑爲1〇奈半、、·5奈米〜50奈米,該雙壁奈米 徑爲1.5奈米〜5G^米、’奈米,鮮壁奈米碳管的直 8·如申請專利範圍第i ο 極板進-步包括兩個第二的觸'摸屏,其中’該第-電 導電層的兩端且盥第#沿弟一方向設置在第-中的奈米碳管沿第一方卜電層電連接’該第一導電層 9.如申請專利範圍第;::排列。 極板進一步包括兩個第方、“第一電 導電層的兩端且與第二第-方向設置在第二 中的夺乎碳A電層電連接,該第二導電層 L 第二方向定向排列。 其中,該第 參 7申請專利範圍第9項所述的觸摸屏 方向垂直于第一方向。 11. 如申請專利範圍第i項 屏進一这的觸換屏,其中,該觸摸 圍,节ί \先絕緣層設置在該第二電極板上表面外 圍,該第-電極板設置在該絕緣層上。 12. 如申請專利範圍帛Π項所述的觸 屏逸一牛勹kh 觸摸屏,其中,該觸摸 2步包括多個點狀隔離物設 該第二電極板之間。 乐冤極扳與 13==:範圍第12項所述的觸摸屏,其中,該多個 觀離物設置在上述第—導電層和第二導電層之 20 200929637 .間。 14.如申μ專利範圍第12項所述的觸摸屏,其中 隔離物與該絕緣層材料爲絕緣且透明的樹脂。 Ο 第,述的觸摸屏’其中,該觸摸 ^ ^ 屏蚊層,該屏蔽層設置在該觸摸屏第 二基的下表面,該屏蔽層爲銦錫氧化物薄膜、銻锡 氧化物薄膜、錄金薄膜、銀薄膜或奈米後管薄膜錫 16·如中5t專利範圍第i項所述的觸摸屏,其中,— 基體材料爲聚醋膜,該第二基體材料爲玻璃、石乂英、 金剛石或塑料。 、 範圍第1項所述的觸摸屏,其中,該觸摸 第一雪括一透明保護膜’該透明保護臈設置在該 ,一電極板上表面,該透明保護膜的材料爲氮化石夕、 氧化矽苯丙環丁稀、聚醋、丙稀酸樹脂或聚二 甲酸乙二醇酯。 一 Φ 18.一種顯示裝置,包括: -觸摸屏’該觸摸屏包括一第一電極板及—第二電極 板,該第一電極板包括一第一基體及一第—導電層設 置在該第-基體的下表面,該第二電極板與第一^極 板間隔設置’且包括一第二基體及一第 在該第二基體的上表面;及 導電層°又置 一顯示設備,該顯示設備正對且靠近上述觸摸屏的第 二電極板設置; 其改良在于:上述第一導電層和第二導電層中的至少一 21 200929637 :導電層包括至少兩個重叠的奈米碳管層,每 定向排列的奈米破管,且相鄰的兩= 層中的奈米碳管沿同一方向排列。 19. 如申請專利範圍第18項所述的顯示裝置,立中 顯示裝置進-步包括一觸摸屏控制器、一中央處判 及一顯示設備控制器,其中,該觸摸屏控制器、該^ 央處理器及該顯示設備控制器三者通過電路相互連200929637 X. Patent application scope 1. A touch screen comprising: a first electrode plate comprising a first substrate and a first conductive layer disposed on a lower surface of the first substrate; and: a second electrode plate, The second electrode plate is spaced apart from the first electrode plate, the second electrode plate includes a second substrate and a second conductive layer disposed on the upper surface of the second substrate; Ο the improvement is: the first conductive layer and At least one of the second conductive layers, the conductive layer comprises at least two overlapping carbon nanotube layers, each nanocarbon 2 comprising a plurality of aligned carbon nanotubes 'and two adjacent carbon nanotubes The carbon nanotubes in the layer are aligned in the same direction. In the touch screen described in the first item of Patent No. 11, the nano carbon layer is a carbon nanotube film or a plurality of carbon nanotube films which are laid in parallel and without gaps. 3. As described in the patent application scope: the touch screen, in the middle, the adjacent two layers of carbon nanotubes are closely combined by van der Waals force. 4. The touch screen of claim 2, wherein the nano carbon official film further comprises a plurality of carbon nanotube bundle segments, each of the carbon nanotube bundle segments having substantially equal lengths and each nanocarbon The tube bundle segment is composed of a plurality of mutually parallel carbon nanotube bundles, and the plurality of carbon nanotube bundle sheets # are connected to each other by Van der Waals force. The touch panel of claim 1, wherein the carbon nanotube film has a thickness of from 0.5 nm to 100 μm. 6. The touch screen of claim 1, wherein the nanocarbon 19 200929637. The carbon nanotubes in the tube layer are multi-walled carbon nanotubes. ', a flat-walled carbon nanotube, a double-walled carbon nanotube or a straight touch screen of the sixth single-walled carbon nanotube of the patent application, characterized in that the carbon tube has a diameter of 1 〇奈半, , · 5 nm ~ 50 nm, the double-walled nanometer diameter is 1.5 nm ~ 5G ^ m, 'nano, fresh wall carbon tube straight 8 · as patent application range i ο 极The board advance-step includes two second touch' touch screens, wherein the two ends of the first-electroconductive layer and the first side of the first-side electric tube are disposed along the first side of the carbon nanotube along the first side The layer is electrically connected to the first conductive layer 9. as in the scope of the patent application;:: arrangement. The plate further includes two first sides, "both ends of the first electrically conductive layer and electrically connected to the carbon-electric layer of the second first-direction disposed in the second, the second conductive layer L is oriented in the second direction The direction of the touch screen described in item 9 of the ninth application patent is perpendicular to the first direction. 11. The touch screen of the i-th item of the patent application scope is inserted into the touch screen, wherein the touch circumference, the festival The first insulating layer is disposed on the periphery of the surface of the second electrode plate, and the first electrode plate is disposed on the insulating layer. 12. The touch screen Yiyi 勹 kh touch screen as described in the scope of the patent application, wherein The touch 2 step includes a plurality of dot spacers disposed between the second electrode plates. The touch panel of the 12th aspect of the present invention, wherein the plurality of objects are disposed in the above The conductive layer and the second conductive layer are the same as the touch screen of the invention, wherein the spacer and the insulating layer material are insulating and transparent resin. 'Where the touch ^ ^ screen mosquito layer, the screen The shielding layer is disposed on the lower surface of the second base of the touch screen, and the shielding layer is an indium tin oxide film, a tantalum tin oxide film, a gold film, a silver film or a nano tube film tin. The touch screen of item 1, wherein: the base material is a polyester film, and the second base material is glass, sapphire, diamond or plastic. The touch screen of the first item, wherein the touch first snow includes a transparent protective film 'the transparent protective tape is disposed on the surface of the electrode plate, and the transparent protective film is made of nitride, bismuth oxide, acenaphthyl acetate, acrylic resin or polyethylene terephthalate. An alcohol ester. A Φ 18. A display device comprising: - a touch screen comprising: a first electrode plate and a second electrode plate, the first electrode plate comprising a first substrate and a first conductive layer disposed thereon a lower surface of the first substrate, the second electrode plate is spaced apart from the first electrode plate and includes a second substrate and an upper surface of the second substrate; and the conductive layer is further provided with a display device. Display device And a second electrode plate disposed adjacent to the touch screen; the improvement is: at least one of the first conductive layer and the second conductive layer 21 200929637: the conductive layer comprises at least two overlapping carbon nanotube layers, each aligned The nano tube is broken, and the carbon nanotubes in the adjacent two layers are arranged in the same direction. 19. The display device according to claim 18, wherein the center display device further comprises a touch screen controller a central device and a display device controller, wherein the touch screen controller, the control processor, and the display device controller are connected to each other through a circuit 接,該觸摸屏控制器與該觸摸屏電連接,該顯示設備 控制器與該顯示設備電連接。 20. 如申明專利範圍第18項所述的顯示裝置,其中,所述 顯示設備爲液晶顯示器、場發射顯示器、電漿顯示器、 電致發光顯不器、真空螢光顯示器及陰極射線管顯示 器中的-種。 21. 如申請專利範圍第18項所述的顯示裝置,其中,該觸 摸屏與該顯示設備間隔設置或該觸摸屏集成在該顯示 會 設備上。 22. 如申3青專利範圍第18項所述的顯示裝置,其中,所述 顯不裝置進一步包括一屏蔽層,該屏蔽層設置在該觸 摸屏第二基體的下表面,該屏蔽層爲銦錫氧化物薄 膜、銻錫氧化物薄膜、鎳金薄膜、銀薄膜或奈米碳管薄 膜。 23.如申請專利範圍第22項所述的顯示裝置,其中,所述 顯示跋置進一步包括一鈍化層,該鈍化層設置在該屏 蔽層遠離該觸摸屏第二基底的表面上,該鈍化層的材 22 200929637 料爲氮化矽或氧化矽。The touch screen controller is electrically connected to the touch screen, and the display device controller is electrically connected to the display device. 20. The display device of claim 18, wherein the display device is a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube display. - kind. 21. The display device of claim 18, wherein the touch screen is spaced from the display device or the touch screen is integrated on the display device. The display device of claim 18, wherein the display device further comprises a shielding layer disposed on a lower surface of the second substrate of the touch screen, the shielding layer being indium tin An oxide film, a bismuth tin oxide film, a nickel gold film, a silver film or a carbon nanotube film. The display device of claim 22, wherein the display device further comprises a passivation layer disposed on a surface of the shielding layer away from the second substrate of the touch screen, the passivation layer Material 22 200929637 is expected to be tantalum nitride or tantalum oxide.
TW96149382A 2007-12-21 2007-12-21 Touch panel and displaying device using the same TWI362776B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96149382A TWI362776B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96149382A TWI362776B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Publications (2)

Publication Number Publication Date
TW200929637A true TW200929637A (en) 2009-07-01
TWI362776B TWI362776B (en) 2012-04-21

Family

ID=44864572

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149382A TWI362776B (en) 2007-12-21 2007-12-21 Touch panel and displaying device using the same

Country Status (1)

Country Link
TW (1) TWI362776B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483271B (en) * 2012-05-29 2015-05-01 Shih Hua Technology Ltd Touch panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483271B (en) * 2012-05-29 2015-05-01 Shih Hua Technology Ltd Touch panel

Also Published As

Publication number Publication date
TWI362776B (en) 2012-04-21

Similar Documents

Publication Publication Date Title
TWI354921B (en) Touch panel and displaying device using the same
CN101470565B (en) Touch screen and display equipment
CN101464765B (en) Touch screen and display equipment
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
CN101458603B (en) Touch screen and display device
CN101458607B (en) Touch screen and display device
CN101464764B (en) Touch screen and display equipment
CN101458602B (en) Touch screen and display device
CN101458604B (en) Touch screen and display device
TW200926471A (en) Touch panel and displaying device using the same
CN101464766B (en) Touch screen and display equipment
TWI386831B (en) Touch panel and displaying device using the same
TWI423083B (en) Touch panel and displaying device using the same
TWI408575B (en) Touch panel and displaying device using the same
TW200929637A (en) Touch panel and displaying device using the same
CN101458605B (en) Touch screen and display device
TWI412962B (en) Touch panel and displaying device using the same
TWI354920B (en) Touch panel and displaying device using the same
TWI482324B (en) Touch panel and displaying device using the same
TW200929636A (en) Touch panel and displaying device using the same
TW200929647A (en) Touch panel and displaying device using the same
TWI356517B (en) Touch panel and displaying device using the same
TW200929642A (en) Touch panel, method for making the same, and displaying device adopting the same
TWI355765B (en) Touch panel and displaying device using the same
TWI356516B (en) Touch panel and displaying device using the same