TWI364860B - Touch panel, method for making the same, and displaying device adopting the same - Google Patents

Touch panel, method for making the same, and displaying device adopting the same Download PDF

Info

Publication number
TWI364860B
TWI364860B TW96149383A TW96149383A TWI364860B TW I364860 B TWI364860 B TW I364860B TW 96149383 A TW96149383 A TW 96149383A TW 96149383 A TW96149383 A TW 96149383A TW I364860 B TWI364860 B TW I364860B
Authority
TW
Taiwan
Prior art keywords
touch panel
carbon nanotube
layer
display device
substrate
Prior art date
Application number
TW96149383A
Other languages
Chinese (zh)
Other versions
TW200929638A (en
Inventor
Chang-Hong Liu
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96149383A priority Critical patent/TWI364860B/en
Publication of TW200929638A publication Critical patent/TW200929638A/en
Application granted granted Critical
Publication of TWI364860B publication Critical patent/TWI364860B/en

Links

Description

1364860 101年.02月29日修正替換頁 、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種觸控面板、觸控面板的製備方法及使用 該觸控面板的顯示裝置,尤其涉及一種基於奈米碳管的 觸控面板、該觸控面板的製備方法及使用該觸控面板的 顯示裝置。 【先前技術】 [0002] 近年來,伴隨著移動電話與觸摸導航系統等各種電子設 備的高性能化和多樣化的發展,在液晶等顯示設備的前 面安裝透光性的觸控面板的電子設備逐步增加。這樣的 電子設備的利用者通過觸控面板,一邊對位於觸控面板 背面的顯示設備的顯示内容進行視覺確認,一邊利用手 指或筆等方式按壓觸控面板來進行操作。由此,可以操 作電子設備的各種功能。 [0003] 按照觸控面板的工作原理和傳輸介質的不同,先前技術 中的觸控面板分爲四種類型,分別爲電阻式、電容式、 紅外線式以及表面聲波式。其中電容式觸控面板因準確 度較高、抗干擾能力強應用較爲廣泛。 [0004] 先前技術中的電容型觸控面板(請參見“連續薄膜電容式 觸控面板的研究”,李樹本等,光電子技術,vol 15, p62( 1995))包括一玻璃基板,一透明導電層,以及複數 金屬電極。在該電容型觸控面板中,玻璃基板的材料爲 納鈣玻璃。透明導電層爲例如銦錫氧化物(IT0)或銻錫 氧化物(ΑΤΟ)等透明材料。電極爲通過印製具有低電阻 的導電金屬(例如銀)形成。電極間隔設置在透明導電 0961493#單職 Α0101 第3頁/共30頁 1013075511-0 1364860 101年02月29日修正替換頁 層的各個角處。此外,透明導電層上塗覆有鈍化層。該 鈍化層由液體玻璃材料通過硬化或緻密化工藝,並進行 熱處理後,硬化形成。 [0005] 當手指等觸摸物觸摸在觸控面板表面上時,由於人體電 場,手指等觸摸物和觸控面板中的透明導電層之間形成 一個耦合電容。對於高頻電流來說,電容為直接導體, 手指等觸摸物的觸摸將從接觸點吸走一個很小的電流。 這個電流分別從觸控面板上的電極中流出,並且流經這 四個電極的電流與手指到四角的距離成正比,觸控面板 控制器通過對這四個電流比例的精確計算,得出觸摸點 的位置。 [0006] 因此,透明導電層對於觸控面板為一必需的部件,先前 技術中透明導電層通常採用ITO層,然,ITO層目前主要 採用濺射或蒸鍍等方法製備,在製備的過程,需要較高 的真空環境及加熱到200〜300°C,因此,使得ITO層的製 備成本較高。此外,ΙΤ0層作爲透明導電層具有機械和化 學耐用性不够好等缺點。進一步地,採用ITO層作透明導 電層存在電阻阻值分布不均勻的現象,導致先前技術中 的電容式觸控面板存在觸控面板的分辨率低、精確度不 高等問題》 【發明内容】 [0007] 有鑒於此,確有必要提供一種分辨率高、精確度高及耐 用的觸控面板,以及一種方法簡單、成本低的觸控面板 的製備方法及使用該觸控面板的顯示裝置。 [0008] 一種觸控面板,該觸控面板包括一基體;一透明導電層 1013075511-0 _49380織 A()1Q1 ^ 4 1 ^ 30 1 1,364860 1〇1年〇2月29曰核正替換頁 ,該透明導電層設置於上述基體的一表面;以及至少兩 個電極*該至少兩個電極間隔設置並與該透明導電層電 連接"其中,上述透明導電層包括一奈米碳管層,該奈 米碳管層包括各向同性或沿一固定方向取向或不同方向 取向排列的複數奈米碳管。 • [0009] 一種觸控面板的製備方法,包括以下步驟:提供一奈米 碳管陣列及一基體,該奈来碳管陣列形成於一基底;擠 壓上述奈米碳管陣列獲得一奈米碳管層形成在基體的一 個表面;以及提供至少兩個電極,並將至少兩個電極間 隔設置並與上述奈米碳管層形成電連接,從而形成所述 的觸控面板。 [0010] 一種顯示裝置,其包括一觸控面板,該觸控面板包括一 基體,一透明導電層,該透明導電層設置於上述基體的 一表面,以及至少兩個電極,該至少兩個電極間隔設置 並與該透明導電層電連接;一顯示設備,該顯示設備正 對且靠近觸控面板的基體設置。其中,上述透明導電層 包括一奈米碳管層,該奈米碳管層包括各向同性或沿一 固定方向取向或不同方向取向排列的複數奈米碳管。 [0011] 與先前技術相比較,本技術方案提供的觸控面板、觸控 面板的製備方法及顯示裝置具有以下優點:其一,由於 奈米碳管在所述的奈米碳管層中通過凡德瓦爾力相互吸 引,緊密結合,形成由複數奈米碳管組成的自支撑結構 ,從而使得上述的奈米碳管層具有較好的機械強度和韌 性,故,採用上述的奈米碳管層作透明導電層,可以相 應的提高觸控面板的耐用性,進而提高了使用該觸控面 1013075511-0 09614938#單編號A〇101 第5頁/共30頁 1364860 101年02月29日梭正替換k 板的顯示裝置的耐用性。其二,所述奈米碳管層包括各 向同性或沿一固定方向取向或不同方向取向排列的複數 奈来碳管。故,採用上述的奈米碳管層作透明導電層, 可使得透明導電層具有均勻的阻值分布和較好的透光特 性’從而提高觸控面板及使用該觸控面板的顯示裝置的 分辨率和精確度。其三,由於奈米碳管層為通過一施壓 裝置擠壓奈米碳管陣列獲得,製備方法簡單,且該方法 無需真空環境和加熱過程,故採用上述方法製備的奈米 碳官層作透明導電層,有利於降低觸控面板及使用該觸 控面板的顯示裝置的成本。 【實施方式】 乂下將結合附圖對本技術方案作進一步的詳細說明。 [0013] 明參閱圖1和圖2 ,觸控面板20包括一基體22、一透明導 電層24、一防護層26及至少兩個電極28。基體22具有一 第—表面221以及與第一表面221相對的第二表面222。 透明導電層24設置在基體22的第一表面221上;上述至少 兩個電極28分別設置在透明導電層24的每個角處或邊上 ,且與透明導電層24形成電連接,用以在透明導電層24 上形成等電位面。防護層26可直接設置在透明導電層24 以及電極28上。 [0014] 所述基體22爲一曲面型或平面型的結構。該基體22由玻 璃、石英、金剛石或塑料等硬性材料或柔性材料形成。 所述基體22主要起支撑的作用。 [0015]所述透明導電層24包括-個奈米碳管層。該奈米礙管層 包括各向同性或沿一固定方向取向或不同方向取向排列 09614938#單編號A〇l〇l 第6頁/共30頁 1013075511-0 1364860 101年02月29日修正替換頁 的複數奈米碳管。進一步地,該奈米碳管層中的奈米碳 管與奈米碳管層的表面成一夾度α,其中,α大於等於 零度且小於等於15度。優選地,所述奈米碳管層中的奈 米碳管平行於奈米碳管層的表面。所述奈米碳管層中的 奈米碳管通過凡德瓦爾力相互吸引,緊密結合,形成一 自支撑結構,使得該奈米碳管薄膜具有很好的韌性,可 以彎折,故本技術方案實施例中的基體可爲柔性基體。 [0016] 由於所述奈米碳管層包括各向同性或沿一固定方向取向 或不同方向取向排列的複數奈米碳管。因此所述奈米碳 管薄膜具有很好的透光特性和阻值分布,故採用上述的 奈米碳管層作透明導電層可以提高觸控面板的分辨率和 精確度。 [0017] 本技術方案實施例中獲得的奈米碳管層的厚度爲0. 5奈米 〜100微米,奈米碳管層的長度及寬度不限。該奈米碳管 層包括各向同性或沿一固定方向取向或不同方向取向排 列的複數奈米碳管。上述複數奈米碳管包括單壁奈米碳 管、雙壁奈米破_管及多壁奈米碳管中的一種或幾種。該 單壁奈米碳管的直徑爲0. 5奈米〜50奈米;該雙壁奈米碳 管的直徑爲1. 0奈米〜50奈米;該多壁奈米碳管的直徑爲 1.5奈米〜50奈米。 [0018] 可以理解,所述透明導電層24和基體22的形狀可以根據 觸控面板20的觸摸區域的形狀進行選擇。例如觸控面板 20的觸摸區域可爲具有一長度的長線形觸摸區域、三角 形觸摸區域及矩形觸摸區域等。本實施例中,觸控面板 20的觸摸區域爲矩形觸摸區域。 1013075511-0 單編號Α〇101 第7頁/共30頁 1364860 101年02月29日修正替換k [0019] 對於矩形觸摸區域,透明導電層24和基體22的形狀也可 爲矩形β爲了在上述的透明導電層24上形成均勻的電阻 網絡,需在該透明導電層24的四個角處或四邊上分別形 成四個電極。上述的四個電極可由金屬材料形成。具體 地,在本實施例中,基體22爲玻璃基板,至少兩個電極 28爲四個電極,該四個電極爲由銀或銅等低電阻的導電 金屬鑛層或者金屬箔片組成的條狀電極28。上述電極28 間隔設置在上述的透明導電層24同一表面的四個邊上。 可以理解,上述的電極28也可以設置在透明導電層24的 不同表面上’其關鍵在於上述電極28的設置能使得在透 明導電層24上形成等電位面即可。本實施例中’所述電 極28設置在透明導電層24的遠離基體的一個表面上。 [0020] 進一步地’爲了延長透明導電層24的使用壽命和限制耦 合在接觸點與透明導電層24之間的電容,玎以在透明導 電層24和電極之上設置一透明的防護層26,防護層26可 由氮化矽、氡化矽、苯並環丁烯(BCB)、聚酯膜或丙烯酸 樹脂等形成。所述防護層26直接設置在電極28和透明導 電層24上,該防鹱層26具有一定的硬度,對透明導電層 24起保護作用《可以理解,還可通過特殊的工藝處理, 從而使得防護層26具有以下功能,例如減小炫光、降低 反射等。 [0021] 在本實施例中,在形成有電極28的透明導電層24上設置 一二氧化矽層用作防護層26,該防護層26的硬度達到7Η (Η爲洛氏硬度試驗中,卸除主試驗力後,在初試驗力下 壓痕殘留的深度)。可以理解,防護層26的硬度和厚度 09614938#單编號 Α0101 第8頁/共30頁 1013075511-0 1364860 [0022] [0023] 101年.02月29日修正替換頁 可以根據需要進行選擇。所述防護層2 6可以通過粘結劑 直接粘結在透明導電層2 4上。 此外’爲了减小由顯示設備産生的電磁干擾,避免從觸 控面板20發出的信號産生錯誤,還可在基體22的第二表 面222上設置一屏蔽層25。該屏蔽層25可由銦錫氧化物( I TO)薄膜、銻錫氧化物(ΑΤΟ)薄膜或奈米碳管層等透 明導電材料形成。本實施例中,該奈米碳管層包括各向 同性或沿一固定方向取向或不同方向取向排列的複數奈 米碳管’其具體結構可與透明導電層24相同。該奈米碳 管層作爲電接地點’起到屏蔽的作用,從而使得觸控面 板20能在無干擾的環境中工作。可以理解,所述奈来碳 管層還可以為其它結構的奈米碳管層。 請參閱圖3 ’本技術方案實施例觸控面板2〇的製備方法主 要包括以下步驟: [0024] 步驟一:提供一奈米碳管陣列形成於一基底,優選地 該陣列爲超順排奈米碳管陣列;及提供一基體22。 [0025] 本技術方案實施例提供的奈米碳管陣列爲單壁奈来碳管 陣列、雙壁奈米碳管陣列或多壁奈米碳管陣列。本實施 例中,超順排奈米碳管陣列的製備方法採用化學氣相沈 積法’其具體步驟包括:(a)提供一平整基底,該基底 可選用P型或N型矽基底,或選用形成有氧化層的砂基底 ,本實施例優選爲採用4英寸的矽基底;(b)在基底表 面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe )、鈾(Co)、鎳(Ni)或其任意組合的合金之 1 C c _御卢單編號A0101 第9頁/共30頁 1〇13〇75511〜〇 1364860 __ 101年02月29日核正替換頁 )將上述形成有催化劑層的基底在700〜900°C的空氧中退 火約30分鐘〜90分鐘;(d)將處理過的基底置於反應爐 中,在保護氣體環境下加熱到500〜740°C,然後通入碳源 氣體反應約5〜30分鐘,生長得到超順排奈米碳管陣列, 其高度爲200-400微米。該超順排奈米碳管陣列爲複數彼 此平行且垂直於基底生長的奈米碳管形成的純奈米碳管 陣列。通過上述控制生長條件,該超順排奈米碳管陣列 中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆 粒等。該奈米碳管陣列中的奈米碳管彼!通過凡德瓦爾 力緊密接觸形成陣列。該奈米碳管陣列與上述基底面積 基本相同。 [0026] 本實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質 較活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔; 保護氣體爲氮氣或惰性氣體,本實施例優選的保護氣體 爲氬氣。 [0027] 可以理解,本實施例提供的奈米碳管陣列不限於上述製 備方法。也可爲石墨電極恒流電弧放電沈積法、鐳射蒸 發沈積法等。 [0028] 進一步地,在本實施例中,基體22爲一矩形玻璃基板, 該基體22與奈米碳管陣列面積基本相同;其中,基體22 具有一第一表面221以及與第一表面221相對的第二表面 222 ° [0029] 步驟二:擠壓上述奈米碳管陣列從而獲得一奈米碳管層 形成在基體22的表面。 〇96_夢單编號A0101 第10頁/共30頁 1013075511-0 1364860 101年.02月29日修正替換百 [0030] 具體地,所述的奈米碳管層包括一奈米碳管薄膜。其中 ,由於本技術方案提供的奈米碳管具有很好的粘性,所 以上述基體22可以比較牢固地粘附在奈米碳管陣列上。 故,擠壓上述奈米碳管陣列從而獲得一奈米碳管層形成 在基體22的一個表面,包括以下兩種方式。其一,提供 一施加裝置施加一定的壓力於上述奈米碳管陣列上;在 壓力的作用下奈米碳管陣列與生長的基底分離,從而形 成由複數奈米碳管組成的具有自支撑結構的奈米碳管薄 膜;之後,將上述奈米碳管薄膜通過導電粘結劑如導電 銀膠等粘結在基體22的第一表面221。其二,將上述基體 22的第一表面221直接覆蓋在上述奈米碳管陣列上;提供 一施加裝置施加一定的壓力於基體第二表面222上;在壓 力的作用下奈米碳管陣列與生長的基底分離,從而形成 由複數奈米碳管組成的具有自支撑結構的奈米碳管薄膜 粘附在基體22的第一表面221。 [0031] 另外,在施壓的過程中,奈米碳管陣列在壓力的作用下 會與生長的基底分離,從而形成由複數奈米碳管組成的 具有自支撑結構的奈米碳管薄膜,且所述的複數奈米碳 管基本上與奈米碳管薄膜的表面平行。本技術方案實施 例中,施壓裝置爲一壓頭,壓頭表面光滑,壓頭的形狀 及擠壓方向决定製備的奈米碳管薄膜中奈米碳管的排列 、 方式。具體地,當採用平面壓頭沿垂直於上述奈米碳管 陣列生長的基底的方向擠壓時,可獲得奈米碳管爲各向 同性排列的奈米碳管薄膜(請參閱圖4);當採用滾軸狀 壓頭沿某一固定方向碾壓時,可獲得奈米碳管沿該固定 09614938#單编號 A〇101 第11頁/共30頁 1013075511-0 1364860 [ιοί年02月29日修正替^ 方向取向排列的奈米碳管薄膜(請參閱圖5);當採用滾 轴狀壓頭沿不同方向礙壓時,可獲得奈米碳管沿不同方 向取向排列的奈米碳管薄膜。 [0032]可以理解,當採用上述不同方式擠壓上述的奈米碳管陣 列時,奈米碳管會在壓力的作用下傾倒,並與相鄰的奈 米碳管通過凡德瓦爾力相互吸引、連接形成由複數奈米 碳官組成的具有自支撑結構的奈米碳管薄膜。所述的複 數奈米碳管與該奈米碳管薄膜的表面基本平行並爲各向 同性或沿一固定方向取向或不同方向取向排列。另外, 在廢力的作用下,奈米碳管陣列會與生長的基底分離, 從而使得該奈米碳管薄膜容易與基底脫離。 闺本技術領域技術人貞應明白,上述奈米碳#陣列的傾倒 程度(傾角)與壓力的大小有關,壓力越大,傾角越大 。製備的奈米碳管薄膜的厚度取决於奈米碳管陣列的高 度以及壓力大小。奈米碳管陣列的高度越大而施加的壓 力越小,則製備的奈米碳管薄膜的厚度越大;反之,奈 米碳管陣列的高度越小而施加的壓力越大,則製備的奈 米碳官薄臈的厚度越小β本實施例中的奈米碳管薄膜中 的奈米碳管與奈米碳管薄膜的表面成一夾角α,其中, α大於等於零度且小於等於15度。可以理解所述奈米 碳管薄膜的導電性能與上述的失角有關。具體地所述 夹角越小,則製備的奈米碳管薄膜的導電性能越好。反 之,所述夹角越大,則製備的奈米碳管薄膜的導電性能 逐漸降低。 [〇〇34]進一步地,上述的奈米碳管層可以為本實施例步驟二中 09614938#單编號Α〇101 第12頁/共30頁 1013075511-0 1.364860 101年02月29日核正番換百 製備的一個奈米碳管薄膜或至少兩個重叠設置的奈米碳 管薄膜。具體地,上述奈米碳管薄膜進一步可以覆蓋在 另一奈米碳管陣列上,通過本技術方案實施例步驟二提 供的施壓裝置擠壓上述覆蓋有奈米碳管薄膜的奈米碳管 陣列形成一雙層奈米碳管薄膜,該雙層奈米碳管薄膜中 的奈米碳管薄膜之間通過凡德瓦爾力緊密結合。重複上 述步驟,即可得到一個、含有多層奈米碳管薄膜的奈米 碳管層。 [0035] 本實施例中,上述的奈米碳管薄膜的寬度和長度與奈米 碳管陣列所生長的基底的尺寸有關,該奈米碳管薄膜的 寬度和長度不限,可根據實際需求制得。本技術方案實 施例中採用4英寸的基底生長超順排奈米碳管陣列。該奈 米碳管層的厚度爲0. 5奈米〜100微米。當該奈米碳管層中 的奈米碳管爲單壁奈米碳管時,該單壁奈米碳管的直徑 爲0.5奈米〜50奈米。當該奈米碳管層中的奈米碳管爲雙 壁奈米碳管時,該雙壁奈米碳管的直徑爲1. G奈米~50奈 米。當該奈米碳管層中的奈米碳管爲多壁奈米碳管時, 該多壁奈米碳管的直徑爲1.5奈米〜50奈米。 [0036] 步驟三:提供至少兩個電極28,將上述至少兩個電極28 間隔設置並與奈米碳管層形成電連接,從而形成觸控面 板20。 [0037] 其中,所述奈米碳管層用作透明導電層24,所述電極28 可以採用濺射、電鍍、化學鍍等沈積方法直接形成在透 明導電層24上。另外,也可用銀膠等導電粘結劑將上述 的電極28粘結在透明導電層24上。本實施例中,上述至 1013075511-0 單編號A〇101 第13頁/共30頁 [0038][Technical Field] The present invention relates to a touch panel, a method of manufacturing the touch panel, and a display device using the touch panel, in particular The invention relates to a carbon nanotube-based touch panel, a method of manufacturing the touch panel, and a display device using the touch panel. [Prior Art] [0002] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which light-transmitting touch panels are mounted in front of display devices such as liquid crystals Gradually increase. The user of such an electronic device visually confirms the display content of the display device located on the back surface of the touch panel through the touch panel, and presses the touch panel to operate by means of a finger or a pen. Thereby, various functions of the electronic device can be operated. [0003] According to the working principle of the touch panel and the transmission medium, the touch panel of the prior art is divided into four types, namely, a resistive type, a capacitive type, an infrared type, and a surface acoustic wave type. Capacitive touch panels are widely used due to their high accuracy and strong anti-interference ability. [0004] Prior art capacitive touch panels (see "Research on Continuous Thin Film Capacitive Touch Panels", Li Shuben et al., Optoelectronics Technology, vol 15, p62 (1995)) include a glass substrate, a transparent conductive layer , and a plurality of metal electrodes. In the capacitive touch panel, the material of the glass substrate is nano-calcium glass. The transparent conductive layer is a transparent material such as indium tin oxide (IT0) or antimony tin oxide (ITO). The electrode is formed by printing a conductive metal (e.g., silver) having a low electrical resistance. The electrode spacing is set in transparent conductive 0961493#sole Α0101 Page 3 of 30 1013075511-0 1364860 Modified on February 29, 2011 Correction page corners of each layer. Further, the transparent conductive layer is coated with a passivation layer. The passivation layer is formed by a hardening or densification process of a liquid glass material, followed by heat treatment to form a passivation layer. [0005] When a touch object such as a finger touches the surface of the touch panel, a coupling capacitance is formed between the touch object such as a human body and a transparent conductive layer in the touch panel. For high-frequency currents, the capacitor is a direct conductor, and the touch of a finger or the like will draw a small current from the contact point. The current flows out from the electrodes on the touch panel, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The touch panel controller obtains a touch by accurately calculating the ratio of the four currents. The location of the point. [0006] Therefore, the transparent conductive layer is an essential component for the touch panel. In the prior art, the transparent conductive layer usually adopts an ITO layer. However, the ITO layer is currently mainly prepared by sputtering or evaporation, in the process of preparation, A higher vacuum environment and heating to 200 to 300 ° C are required, thus making the preparation of the ITO layer costly. In addition, the ΙΤ0 layer as a transparent conductive layer has disadvantages such as insufficient mechanical and chemical durability. Further, the use of the ITO layer as the transparent conductive layer has a non-uniform distribution of the resistance value, which results in the problem that the capacitive touch panel of the prior art has low resolution and low precision of the touch panel. 0007] In view of the above, it is indeed necessary to provide a touch panel with high resolution, high precision and durability, and a method for preparing a touch panel with simple method and low cost, and a display device using the same. [0008] A touch panel comprising a substrate; a transparent conductive layer 1013075511-0 _49380 woven A () 1Q1 ^ 4 1 ^ 30 1 1, 364860 1 〇 1 year 〇 February 29 曰 nuclear replacement a transparent conductive layer disposed on a surface of the substrate; and at least two electrodes * the at least two electrodes are spaced apart and electrically connected to the transparent conductive layer, wherein the transparent conductive layer comprises a carbon nanotube layer The carbon nanotube layer comprises a plurality of carbon nanotubes that are isotropic or oriented in a fixed orientation or oriented in different directions. [0009] A method for preparing a touch panel, comprising the steps of: providing a carbon nanotube array and a substrate, wherein the carbon nanotube array is formed on a substrate; and extruding the carbon nanotube array to obtain a nanometer A carbon tube layer is formed on one surface of the substrate; and at least two electrodes are provided, and at least two electrodes are spaced apart and electrically connected to the carbon nanotube layer to form the touch panel. [0010] A display device includes a touch panel, the touch panel includes a substrate, a transparent conductive layer, the transparent conductive layer is disposed on a surface of the substrate, and at least two electrodes, the at least two electrodes Intersected and electrically connected to the transparent conductive layer; a display device that is disposed opposite to and adjacent to the base of the touch panel. Wherein, the transparent conductive layer comprises a carbon nanotube layer comprising a plurality of carbon nanotubes which are isotropic or oriented in a fixed direction or in different directions. [0011] Compared with the prior art, the touch panel, the touch panel manufacturing method and the display device provided by the technical solution have the following advantages: First, since the carbon nanotube passes through the carbon nanotube layer Van der Waals forces are attracted to each other and closely combine to form a self-supporting structure composed of a plurality of carbon nanotubes, so that the above-mentioned carbon nanotube layer has good mechanical strength and toughness, so the above-mentioned carbon nanotubes are used. The layer is made of a transparent conductive layer, which can improve the durability of the touch panel, thereby improving the use of the touch surface 1013075511-0 09614938#单号A〇101 Page 5 of 30 pages 1364860 February 29, 2011 The durability of the display device that is replacing the k-board. Second, the carbon nanotube layer comprises a plurality of carbon nanotubes that are isotropic or oriented in a fixed orientation or oriented in different directions. Therefore, using the above-mentioned carbon nanotube layer as a transparent conductive layer can make the transparent conductive layer have a uniform resistance distribution and good light transmission characteristics, thereby improving the resolution of the touch panel and the display device using the touch panel. Rate and accuracy. Thirdly, since the carbon nanotube layer is obtained by extruding a carbon nanotube array through a pressure applying device, the preparation method is simple, and the method does not require a vacuum environment and a heating process, so the nano carbon layer prepared by the above method is used. The transparent conductive layer is advantageous for reducing the cost of the touch panel and the display device using the touch panel. [Embodiment] The present technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIGS. 1 and 2, the touch panel 20 includes a substrate 22, a transparent conductive layer 24, a protective layer 26, and at least two electrodes 28. The base 22 has a first surface 221 and a second surface 222 opposite the first surface 221. The transparent conductive layer 24 is disposed on the first surface 221 of the substrate 22; the at least two electrodes 28 are respectively disposed at or at each corner of the transparent conductive layer 24, and are electrically connected with the transparent conductive layer 24 for An equipotential surface is formed on the transparent conductive layer 24. The protective layer 26 can be disposed directly on the transparent conductive layer 24 and the electrode 28. [0014] The base 22 is a curved or planar structure. The base 22 is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. The base 22 serves primarily as a support. [0015] The transparent conductive layer 24 includes a carbon nanotube layer. The nano-invasive layer includes isotropic or oriented in a fixed direction or in different directions. 09614938#单号A〇l〇l Page 6/Total 30 Page 1013075511-0 1364860 Modified on February 29, 2011 The plural carbon nanotubes. Further, the carbon nanotubes in the carbon nanotube layer are at an angle α to the surface of the carbon nanotube layer, wherein α is greater than or equal to zero degrees and less than or equal to 15 degrees. Preferably, the carbon nanotubes in the carbon nanotube layer are parallel to the surface of the carbon nanotube layer. The carbon nanotubes in the carbon nanotube layer are mutually attracted by the van der Waals force, and are closely combined to form a self-supporting structure, so that the carbon nanotube film has good toughness and can be bent, so the technology The substrate in the embodiment of the embodiment may be a flexible substrate. [0016] Since the carbon nanotube layer comprises a plurality of carbon nanotubes that are isotropic or oriented in a fixed direction or in different directions. Therefore, the carbon nanotube film has good light transmission characteristics and resistance distribution, so the use of the above carbon nanotube layer as a transparent conductive layer can improve the resolution and accuracy of the touch panel. [0017] The thickness of the carbon nanotube layer obtained in the embodiment of the present invention is 0.5 nm to 100 μm, and the length and width of the carbon nanotube layer are not limited. The carbon nanotube layer comprises a plurality of carbon nanotubes that are isotropic or oriented in a fixed orientation or oriented in different directions. The above plurality of carbon nanotubes include one or more of a single-walled carbon nanotube, a double-walled nano-tube and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 0.5 nm to 50 nm; the diameter of the double-walled carbon nanotube is 1.0 nm to 50 nm; the diameter of the multi-walled carbon nanotube is 1.5 nm ~ 50 nm. [0018] It can be understood that the shapes of the transparent conductive layer 24 and the base 22 can be selected according to the shape of the touch area of the touch panel 20. For example, the touch area of the touch panel 20 may be a long line touch area having a length, a triangular touch area, a rectangular touch area, or the like. In this embodiment, the touch area of the touch panel 20 is a rectangular touch area. 1013075511-0 Single Number Α〇101 Page 7/Total 30 Page 1364860 Modified on February 29, 2011 Correction K [0019] For a rectangular touch area, the shape of the transparent conductive layer 24 and the base 22 may also be a rectangle β in order to A uniform resistor network is formed on the transparent conductive layer 24, and four electrodes are respectively formed at four corners or four sides of the transparent conductive layer 24. The above four electrodes may be formed of a metal material. Specifically, in the embodiment, the substrate 22 is a glass substrate, and at least two electrodes 28 are four electrodes, and the four electrodes are strips composed of a low-resistance conductive metal ore layer such as silver or copper or a metal foil. Electrode 28. The electrodes 28 are spaced apart from each other on four sides of the same surface of the transparent conductive layer 24. It will be understood that the electrodes 28 described above may also be disposed on different surfaces of the transparent conductive layer 24. The key point is that the electrodes 28 are disposed such that an equipotential surface is formed on the transparent conductive layer 24. In the present embodiment, the electrode 28 is disposed on a surface of the transparent conductive layer 24 away from the substrate. [0020] Further, in order to extend the service life of the transparent conductive layer 24 and limit the capacitance coupled between the contact point and the transparent conductive layer 24, a transparent protective layer 26 is disposed on the transparent conductive layer 24 and the electrode, The protective layer 26 may be formed of tantalum nitride, bismuth telluride, benzocyclobutene (BCB), a polyester film, an acrylic resin, or the like. The protective layer 26 is directly disposed on the electrode 28 and the transparent conductive layer 24. The anti-corrosion layer 26 has a certain hardness and protects the transparent conductive layer 24. "It can be understood that it can be processed by a special process, thereby making protection. Layer 26 has the following functions, such as reducing glare, reducing reflection, and the like. [0021] In the present embodiment, a ruthenium dioxide layer is disposed on the transparent conductive layer 24 on which the electrode 28 is formed as a protective layer 26, and the hardness of the protective layer 26 is 7 Η (Η is a Rockwell hardness test, unloading The depth of the indentation remaining under the initial test force, except for the main test force). It can be understood that the hardness and thickness of the protective layer 26 09614938# single number Α0101 page 8 / total 30 pages 1013075511-0 1364860 [0023] 101 years. February 29th revised replacement page can be selected as needed. The protective layer 26 may be directly bonded to the transparent conductive layer 24 by an adhesive. Further, in order to reduce electromagnetic interference generated by the display device and to avoid errors in signals emitted from the touch panel 20, a shield layer 25 may be provided on the second surface 222 of the substrate 22. The shield layer 25 may be formed of a transparent conductive material such as an indium tin oxide (ITO) film, a bismuth tin oxide (ITO) film, or a carbon nanotube layer. In this embodiment, the carbon nanotube layer comprises a plurality of carbon nanotubes which are isotropic or oriented in a fixed direction or oriented in different directions, and the specific structure thereof may be the same as that of the transparent conductive layer 24. The carbon nanotube layer serves as a shield for electrical grounding, thereby enabling the touch panel 20 to operate in an interference-free environment. It will be understood that the carbon nanotube layer may also be a carbon nanotube layer of other structure. Please refer to FIG. 3 'The preparation method of the touch panel 2 实施 according to the embodiment of the present invention mainly includes the following steps: [0024] Step 1: providing a carbon nanotube array formed on a substrate, preferably the array is super-shun a carbon nanotube array; and a substrate 22 is provided. [0025] The carbon nanotube array provided by the embodiment of the present technical solution is a single-walled carbon nanotube array, a double-walled carbon nanotube array, or a multi-walled carbon nanotube array. In this embodiment, the method for preparing a super-sequential carbon nanotube array adopts a chemical vapor deposition method. The specific steps include: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or A sand substrate having an oxide layer formed thereon, preferably a 4-inch germanium substrate is used in the embodiment; (b) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be iron (Fe), uranium (Co) or nickel ( Ni) or any combination of alloys 1 C c _ 御卢单号 A0101 Page 9 / Total 30 pages 1〇13〇75511~〇1364860 __ February 29, 2010 Nuclear replacement page) The above formed catalyst The substrate of the layer is annealed in air oxygen at 700 to 900 ° C for about 30 minutes to 90 minutes; (d) the treated substrate is placed in a reaction furnace, heated to 500 to 740 ° C in a protective gas atmosphere, and then passed through The carbon source gas is reacted for about 5 to 30 minutes to grow to obtain a super-sequential carbon nanotube array having a height of 200 to 400 μm. The super-sequential carbon nanotube array is a pure carbon nanotube array formed by a plurality of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. The super-sequential carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles by the above controlled growth conditions. The carbon nanotubes in the array of carbon nanotubes form an array by close contact with van der Waals forces. The carbon nanotube array is substantially the same area as the above substrate. [0026] In this embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in this embodiment is acetylene; the shielding gas is nitrogen or an inert gas, which is preferred in this embodiment. The shielding gas is argon. [0027] It can be understood that the carbon nanotube array provided by the embodiment is not limited to the above preparation method. It can also be a graphite electrode constant current arc discharge deposition method or a laser evaporation deposition method. [0028] Further, in the embodiment, the substrate 22 is a rectangular glass substrate, and the substrate 22 has substantially the same area as the carbon nanotube array; wherein the substrate 22 has a first surface 221 and is opposite to the first surface 221 The second surface 222 ° [0029] Step 2: Extrusion of the above carbon nanotube array to obtain a carbon nanotube layer formed on the surface of the substrate 22. 〇96_梦单号A0101 Page 10/Total 30 Page 1013075511-0 1364860 101. February 29th Revision Replacement [0030] Specifically, the carbon nanotube layer comprises a carbon nanotube film . Wherein, since the carbon nanotube provided by the technical solution has good viscosity, the above-mentioned substrate 22 can be relatively firmly adhered to the carbon nanotube array. Therefore, the above-described carbon nanotube array is extruded to obtain a carbon nanotube layer formed on one surface of the substrate 22, which includes the following two methods. Firstly, an application device is provided to apply a certain pressure to the carbon nanotube array; under the action of pressure, the carbon nanotube array is separated from the grown substrate to form a self-supporting structure composed of a plurality of carbon nanotubes. The carbon nanotube film is thereafter bonded to the first surface 221 of the substrate 22 by a conductive adhesive such as a conductive silver paste or the like. Secondly, the first surface 221 of the substrate 22 is directly covered on the carbon nanotube array; an application device is applied to apply a certain pressure to the second surface 222 of the substrate; and the carbon nanotube array is under pressure The grown substrate is separated to form a carbon nanotube film having a self-supporting structure composed of a plurality of carbon nanotubes adhered to the first surface 221 of the substrate 22. [0031] In addition, during the pressing process, the carbon nanotube array is separated from the grown substrate by pressure, thereby forming a carbon nanotube film having a self-supporting structure composed of a plurality of carbon nanotubes. And the plurality of carbon nanotubes are substantially parallel to the surface of the carbon nanotube film. In the embodiment of the technical solution, the pressing device is an indenter, the surface of the indenter is smooth, and the shape and extrusion direction of the indenter determine the arrangement and manner of the carbon nanotubes in the prepared carbon nanotube film. Specifically, when the planar indenter is pressed in a direction perpendicular to the substrate grown by the carbon nanotube array, the carbon nanotube film is isotropically aligned (see FIG. 4); When the roller-shaped indenter is pressed in a certain fixed direction, the carbon nanotube can be obtained along the fixed 09614938# single number A〇101 page 11/total 30 page 1013075511-0 1364860 [ιοί年02月29 The modified carbon nanotube film arranged in the direction of the direction of the ^ (see Figure 5); when the roller-shaped indenter is pressed in different directions, the carbon nanotubes aligned in different directions can be obtained. film. [0032] It can be understood that when the above-mentioned carbon nanotube array is extruded in the above different manner, the carbon nanotubes are poured under the action of pressure and are attracted to each other by adjacent vanadium tubes through the van der Waals force. And connecting to form a carbon nanotube film having a self-supporting structure composed of a plurality of nano carbon members. The plurality of carbon nanotubes are substantially parallel to the surface of the carbon nanotube film and are oriented isotropic or oriented in a fixed direction or in different directions. In addition, under the action of waste force, the carbon nanotube array is separated from the grown substrate, so that the carbon nanotube film is easily detached from the substrate. It should be understood by those skilled in the art that the degree of tilting (inclination) of the above-mentioned nanocarbon # array is related to the magnitude of the pressure, and the greater the pressure, the larger the inclination angle. The thickness of the prepared carbon nanotube film depends on the height of the carbon nanotube array and the pressure. The higher the height of the carbon nanotube array and the lower the applied pressure, the greater the thickness of the prepared carbon nanotube film; conversely, the smaller the height of the carbon nanotube array and the higher the applied pressure, the prepared The smaller the thickness of the nano-carbon thinner, the smaller the diameter of the carbon nanotubes in the carbon nanotube film of the present embodiment is at an angle α with the surface of the carbon nanotube film, wherein α is greater than or equal to zero degrees and less than or equal to 15 degrees. . It is understood that the conductivity of the carbon nanotube film is related to the above-mentioned loss angle. Specifically, the smaller the angle, the better the electrical conductivity of the prepared carbon nanotube film. Conversely, the larger the angle, the lower the conductivity of the prepared carbon nanotube film. [〇〇34] Further, the above-mentioned carbon nanotube layer can be verified in the second step of the present embodiment, 09614938#单号Α〇101, page 12/total 30 page 1013075511-0 1.364860, February 29, 101 A carbon nanotube film prepared by a hundred or a plurality of carbon nanotube films arranged in an overlapping manner. Specifically, the carbon nanotube film may be further coated on another carbon nanotube array, and the carbon nanotube covered with the carbon nanotube film is extruded by the pressing device provided in step 2 of the embodiment of the present technical solution. The array forms a double-layered carbon nanotube film, and the carbon nanotube films in the double-layered carbon nanotube film are tightly bonded by van der Waals force. By repeating the above steps, a carbon nanotube layer containing a multilayered carbon nanotube film can be obtained. [0035] In this embodiment, the width and length of the carbon nanotube film are related to the size of the substrate on which the carbon nanotube array is grown, and the width and length of the carbon nanotube film are not limited, and may be according to actual needs. be made of. In the embodiment of the technical solution, a 4-inch substrate growth super-sequential carbon nanotube array is used. The thickness of the carbon nanotube layer is from 0.5 nm to 100 μm. When the carbon nanotubes in the carbon nanotube layer are single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm. When the carbon nanotubes in the carbon nanotube layer are double-walled carbon nanotubes, the double-walled carbon nanotubes have a diameter of 1. G nanometers to 50 nanometers. When the carbon nanotubes in the carbon nanotube layer are multi-walled carbon nanotubes, the multi-walled carbon nanotubes have a diameter of 1.5 nm to 50 nm. [0036] Step 3: providing at least two electrodes 28, the at least two electrodes 28 are spaced apart and electrically connected to the carbon nanotube layer to form the touch panel 20. [0037] wherein the carbon nanotube layer is used as the transparent conductive layer 24, and the electrode 28 may be directly formed on the transparent conductive layer 24 by a deposition method such as sputtering, electroplating, or electroless plating. Alternatively, the above electrode 28 may be bonded to the transparent conductive layer 24 by a conductive adhesive such as silver paste. In the present embodiment, the above to 1013075511-0 single number A 〇 101 page 13 / total 30 pages [0038]

, 101 年 02月 29 E 少兩個電極28爲由銀或鋼等低電阻的導電金^ΙΪ 金屬U組成的條狀電I該條狀電極透過崎方法直 接間隔地沈積在奈米碳管層的四個邊上。 可以理解’所述的金屬電極28亦可設置於透明導電層24 與基體22H與透明導電層24電連接,並不限於上 述的設置方式㈣結方式。只要能使上述的電謂與透 明導電層24上之間形成電連接的方式都應在本發明的保 護範圍内。 [0039], February 29, 2011 E Two electrodes 28 are strip-shaped electrodes composed of low-resistance conductive gold such as silver or steel. The strip electrodes are deposited directly on the carbon nanotube layer by the Samarium method. On the four sides. It can be understood that the metal electrode 28 can also be disposed on the transparent conductive layer 24 and the base 22H and the transparent conductive layer 24, and is not limited to the above-mentioned arrangement mode. Any manner in which the electrical connection between the above-described electro-presence and the transparent conductive layer 24 can be made is within the protection scope of the present invention. [0039]

進一步地,可以在透明導電層24和電極之上設置-透明 的防護層26,防護層26可由氮切、氧切、笨並環丁 稀(BCB)、聚S旨膜或丙烯酸樹脂等形成。該防護㈣具有 —定的硬度,對透明導電層24起保護作用。 SFurther, a transparent protective layer 26 may be disposed over the transparent conductive layer 24 and the electrode, and the protective layer 26 may be formed of a nitrogen cut, an oxygen cut, a stupid and a butyl bromide (BCB), a poly S film, or an acrylic resin. The shield (4) has a constant hardness and protects the transparent conductive layer 24. S

[0040] 在本實施例中,在形成有電極28的透明導電層24上設置 一二氧化石夕層用作防護層26,該防護層26的二度達;^7η (Η爲洛氏硬度試驗中]ρ除主試驗力後,在初試驗力下 壓痕殘留的深度)。可以理解’防護層26的硬度和厚度 可以根據需要進行選擇。所述防護層26可以通過帖^ 直接粘結在透明導電層24上。 [0041] ;年02月29日 此外’爲了减小由顯示設備産生的電礤干擾,避免從觸 控面板20發出的信號產生錯誤’還可在基體22的第二表 面222上設置-屏蔽層25。該减層25可由銦錫氧化物( ΙΤΟ)薄膜、録錫氡化物(ΑΤΟ)薄棋、鎳金薄膜、銀薄 膜或奈米碳管層等透明導電材料形成。本實施例中,該 奈米碳管層包括複數奈米碳管平行於奈米碳管層表面, 〇96_产單編號删1 第14頁/共30頁 1013075511-0 1364860 101年.02月29日修正替换頁 其具體结構可與透明導電層24相同。該奈米碳管層作爲 電接地點,起到屏蔽的作用,從而使得觸控面板20能在 無干擾的環境中工作。可以理解,所述奈米碳管層還可 以為其它結構的奈米碳管層。 [0042] 請參閱圖6,本技術方案實施例提供一顯示裝置100,該 顯示裝置100包括一觸控面板20,一顯示設備30。該顯示 設備30正對且靠近觸控面板20設置。進一步地,上述的 顯示設備30與觸控面板20正對且靠近觸控面板20的基體 22的第二表面222設置。上述的顯示設備30與觸控面板 20可間隔一預定距離設置或集成設置。 [0043] 顯示設備30可以爲液晶顯示器、場發射顯示器、電漿顯 示器、電致發光顯示器、真空螢光顯示器及陰極射線管 等顯示設備中的一種。 [0044] 請參閱圖7,進一步地,當顯示設備30與觸控面板20間隔 一定距離設置時,可在觸控面板20的屏蔽層25遠離基體 22的一個表面上設置一鈍化層104,該鈍化層104可由氮 化矽、氧化矽、笨並環丁烯(BCB)、聚酯膜或丙烯酸樹脂 等形成。該鈍化層104與顯示設備30的正面間隔一間隙 106設置。具體地,在上述的鈍化層104與顯示設備30之 間設置兩個支撑體108。該鈍化層104作爲介電層使用, 所述鈍化層104與間隙106可保護顯示設備30不致於由於 外力過大而損壞。 [0045] 當顯示設備30與觸控面板20集成設置時,可將上述的支 撑體108直接除去,而將鈍化層104直接設置在顯示設備 09614938^^^^ A〇101 第15頁/共30頁 1013075511-0 1364860 101年02月29日核正替换頁 30上。即,上述的鈍化層104與顯示設備30之間無間隙地 接觸設置。 [0046] 另外,上述的顯示裝置100進一步包括一觸控面板控制器 40、一顯示設備控制器60及一中央處理器50。其中,觸 控面板控制器40、中央處理器50及顯示設備控制器60三 者用電路相亙連接,觸控面板控制器40連接觸控面板20 的電極28,顯示設備控制器60連接顯示設備30。 [0047] 本實施例觸控面板20及顯示裝置100在應用時的原理如下 :觸控面板20在應用時可直接設置在顯示設備30的顯示 面上。觸控面板控制器40根據手指等觸摸物70觸摸的圖 標或菜單位置來定位選擇信息輸入,並將該信息傳遞給 中央處理器50。中央處理器50通過顯示器控制器60控制 顯示設備30顯示。 [0048] 具體地,在使用時,透明導電層24上施加一預定電壓。 電壓通過電極28施加到透明導電層24上,從而在該透明 導電層24上形成等電位面。使用者一邊視覺確認在觸控 面板20後面設置的顯示設備30的顯示,一邊通過手指或 筆等觸摸物70按壓或接近觸控面板20的防護層26進行操 作時,觸摸物70與透明導電層24之間形成一耦合電容。 對於高頻電流來說,電容為直接導體,於是手指從接觸 點吸走一値部分的電流。這個電流分別從觸控面板20上 的電極中流出,並且流經這四個電極的電流與手指到四 角的距離成正比,觸控面板控制器40通過對這四個電流 比例的精確計算,得出觸摸點的位置。之後,觸控面板 控制器40將數字化的觸摸位置數據傳送給中央處理器50 493#單编號 A〇101 第16頁/共30頁 1013075511-0 1364860 [ιοί年.〇2月後正替換i 。然後’中央處理器50接受上述的觸模位置數據並執行 。最後,中央處理器50將該觸摸位置數據傳輸給顯示器 控制器6〇,從而在顯示設備30上顯示觸摸物7〇發出的觸 摸信息。 [〇〇49] 本技術方案實施例提供的顯示裝置100具有以下優點:其 一,由於奈米碳管在所述的奈米碳管層中通過凡德瓦爾 力相互吸弓丨,緊密結合’形成由複數奈米碳管組成的自 支撑結構’從而使得上述的奈米碳管層異有較好的機械 強度和韌性’故,採用上述的奈米碳管詹作透明導電層 24,可以相應的提高觸控面板20的耐用性’進而提高了 使用該觸控面板20的顯示裝置100的耐用性。其二’上述 該奈米破管層包括各向同性或沿—固定方向取向或不同 方向取甸排列的複數奈米碳管。故,採用上述的奈米碳 管層作透明導電層24,可使得透明導電層24具有均勻的 阻值分难和較好的透光特性,從而提高觸控面板20及使 用該觸控面板的顯示裝置100的分辨率和精確度。其三, 由於奈米碳管層為通過一施壓裝置擠壓奈米碳管陣列獲 得,製備方法簡單,且該方法無需真空環境和加熱過程 ’故採用上述方法製備的奈米碳管層作透明導電層24, 有利於降低觸控面板20及使用該觸控面板的顯示裝置100 的成本。 [〇〇5〇] 综上所述’本發明確已符合發明專利之要件,遂依法提 出專利申請。惟,以上所述者僅為本發明之較佳實施例 ,自不能以此限製本案之申請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化, 09614938卢單編號 A0101 第17頁/共30頁 1013075511-0 1364860 _^ 101年.02月29日核正替换i 皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 [0051] 圖1為本技術方案實施例的觸控面板的結構示意圖。 [0052] 圖2為沿圖1所示的線ΙΙ-ΙΓ的剖視圖。 [0053] 圖3為本技術方案實施例觸控面板的製備方法的流程示意 圖。 [0054] 圖4為本技術方案實施例獲得的各向同性的奈米碳管薄膜 的知描電鏡照片。 [0055] 圖5為本技術方案實施例獲得的擇優取向的奈米碳管薄膜 的掃描電鏡照片。 [0056] 圖6為本技術方案實施例的顯示裝置的結構示意圖。 [0057] 圖7為本技術方案實施例的顯示裝置的工作原理示意圖。 【主要元件符號說明】 [0058] 顯示裝置:100 [0059] 鈍化層:104 [0060] 間隙:106 [0061] 支撑體:108 [0062] 觸控面板:20 [0063] 基體:22 [0064] 第一表面:221 [0065] 第二表面:222 09614938#單编號 A〇101 第18頁/共30頁 1013075511-0 1.364860 I 101年.02月29日修正替换f [0066] 透明導電層:24 [0067] 屏蔽層:25 [0068] 防護層:26 [0069] 電極:28 [0070] 顯示設備:30 [0071] 觸控面板控制器:40 [0072] 中央處理器:50 [0073] 顯示設備控制器:60 [0074] 觸摸物:70 _49^單職 A0101 第19頁/共30頁 1013075511-0[0040] In the present embodiment, a dioxide layer is disposed on the transparent conductive layer 24 on which the electrode 28 is formed as a protective layer 26, and the protective layer 26 is twice; ^7η (Η is Rockwell hardness) In the test, ρ, after the main test force, the depth of the indentation remaining under the initial test force). It will be understood that the hardness and thickness of the protective layer 26 can be selected as desired. The protective layer 26 can be directly bonded to the transparent conductive layer 24 by means of a bond. [0041] On February 29th, in addition, 'in order to reduce the electrical interference generated by the display device, to avoid generating errors from the signal emitted from the touch panel 20' may also be provided on the second surface 222 of the substrate 22 - a shielding layer 25. The subtractive layer 25 may be formed of a transparent conductive material such as an indium tin oxide (ITO) film, a tin-tellurized germanium thin film, a nickel gold thin film, a silver thin film or a carbon nanotube layer. In this embodiment, the carbon nanotube layer includes a plurality of carbon nanotubes parallel to the surface of the carbon nanotube layer, 〇96_production number number 1 page 14/total 30 pages 1013075511-0 1364860 101 years. The specific replacement structure of the 29th modified replacement page can be the same as the transparent conductive layer 24. The carbon nanotube layer acts as an electrical grounding point and acts as a shield, thereby enabling the touch panel 20 to operate in an interference-free environment. It will be understood that the carbon nanotube layer may also be a carbon nanotube layer of other structures. Referring to FIG. 6, the embodiment of the present invention provides a display device 100. The display device 100 includes a touch panel 20 and a display device 30. The display device 30 is disposed directly adjacent to the touch panel 20. Further, the display device 30 is disposed opposite to the touch panel 20 and adjacent to the second surface 222 of the base 22 of the touch panel 20. The display device 30 and the touch panel 20 described above may be disposed at a predetermined distance or integrated. [0043] The display device 30 may be one of display devices such as a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. [0044] Please refer to FIG. 7 . Further, when the display device 30 is disposed at a distance from the touch panel 20 , a passivation layer 104 may be disposed on a surface of the shielding layer 25 of the touch panel 20 away from the substrate 22 . The passivation layer 104 may be formed of tantalum nitride, hafnium oxide, stupid cyclobutene (BCB), a polyester film, an acrylic resin, or the like. The passivation layer 104 is spaced from the front side of the display device 30 by a gap 106. Specifically, two support bodies 108 are disposed between the passivation layer 104 and the display device 30 described above. The passivation layer 104 is used as a dielectric layer that protects the display device 30 from damage due to excessive external forces. [0045] When the display device 30 is integrated with the touch panel 20, the above-mentioned support body 108 can be directly removed, and the passivation layer 104 can be directly disposed on the display device 09614938^^^^^ A 101. Page 1013075511-0 1364860 On February 29, 101, the nuclear replacement page 30 was replaced. That is, the passivation layer 104 described above is placed in contact with the display device 30 without a gap. [0046] In addition, the display device 100 further includes a touch panel controller 40, a display device controller 60, and a central processing unit 50. The touch panel controller 40, the central processing unit 50, and the display device controller 60 are connected by a circuit, the touch panel controller 40 is connected to the electrode 28 of the touch panel 20, and the display device controller 60 is connected to the display device. 30. [0047] The principle of the touch panel 20 and the display device 100 in this embodiment is as follows: The touch panel 20 can be directly disposed on the display surface of the display device 30 when applied. The touch panel controller 40 positions the selection information input based on an icon or menu position touched by the touch object 70 such as a finger, and transmits the information to the central processing unit 50. The central processing unit 50 controls the display of the display device 30 via the display controller 60. [0048] Specifically, a predetermined voltage is applied to the transparent conductive layer 24 when in use. A voltage is applied to the transparent conductive layer 24 through the electrode 28 to form an equipotential surface on the transparent conductive layer 24. The user visually confirms the display of the display device 30 disposed behind the touch panel 20, and when the user touches or approaches the protective layer 26 of the touch panel 20 by a touch object 70 such as a finger or a pen, the touch object 70 and the transparent conductive layer are operated. A coupling capacitor is formed between 24. For high frequency currents, the capacitor is a direct conductor, so the finger draws a portion of the current from the contact point. The current flows from the electrodes on the touch panel 20, respectively, and the current flowing through the four electrodes is proportional to the distance from the finger to the four corners. The touch panel controller 40 obtains an accurate calculation of the ratio of the four currents. The location of the touch point. After that, the touch panel controller 40 transmits the digitized touch position data to the central processing unit 50 493# single number A 〇 101 page 16 / total 30 pages 1013075511-0 1364860 [ιοί年. 〇 2 months after the replacement i . Then, the central processing unit 50 accepts the above-described touch position data and executes it. Finally, the central processing unit 50 transmits the touch position data to the display controller 6A, thereby displaying the touch information issued by the touch object 7 on the display device 30. The display device 100 provided by the embodiment of the present technical solution has the following advantages: First, since the carbon nanotubes are mutually sucked by the van der Waals force in the carbon nanotube layer, tightly combined Forming a self-supporting structure composed of a plurality of carbon nanotubes, so that the above-mentioned carbon nanotube layer has better mechanical strength and toughness. Therefore, the above-mentioned carbon nanotubes can be used as the transparent conductive layer 24, which can be correspondingly Improving the durability of the touch panel 20 further improves the durability of the display device 100 using the touch panel 20. The above-mentioned nano-tube breaking layer comprises a plurality of carbon nanotubes which are isotropic or oriented in a fixed direction or in different directions. Therefore, the use of the above-mentioned carbon nanotube layer as the transparent conductive layer 24 can make the transparent conductive layer 24 have a uniform resistance value and good light transmission characteristics, thereby improving the touch panel 20 and using the touch panel. The resolution and accuracy of the display device 100. Third, since the carbon nanotube layer is obtained by extruding a carbon nanotube array through a pressure applying device, the preparation method is simple, and the method does not require a vacuum environment and a heating process, so the carbon nanotube layer prepared by the above method is used. The transparent conductive layer 24 is advantageous for reducing the cost of the touch panel 20 and the display device 100 using the touch panel. [〇〇5〇] In summary, the invention has indeed met the requirements of the invention patent and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Anyone who is familiar with the skill of the present invention will be equivalent to the equivalent modification or change in accordance with the spirit of the present invention. 09614938, Lu single number A0101, page 17 / total 30 pages 1013075511-0 1364860 _^ 101 years. February 29th, nuclear replacement i It should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0051] FIG. 1 is a schematic structural diagram of a touch panel according to an embodiment of the present technology. 2 is a cross-sectional view taken along line ΙΙ-ΙΓ of FIG. 1. 3 is a schematic flow chart of a method for preparing a touch panel according to an embodiment of the present disclosure. 4 is a schematic electron micrograph of an isotropic carbon nanotube film obtained in an embodiment of the present invention. [0055] FIG. 5 is a scanning electron micrograph of a preferred orientation of a carbon nanotube film obtained in an embodiment of the present technology. 6 is a schematic structural diagram of a display device according to an embodiment of the present disclosure. 7 is a schematic diagram showing the working principle of a display device according to an embodiment of the present disclosure. [Main component symbol description] [0058] Display device: 100 [0059] Passivation layer: 104 [0060] Gap: 106 [0061] Support: 108 [0062] Touch panel: 20 [0063] Base: 22 [0064] First surface: 221 [0065] Second surface: 222 09614938#Single number A〇101 Page 18/Total 30 page 1013075511-0 1.364860 I 101 years. February 29th correction replacement f [0066] Transparent conductive layer: Shielding layer: 25 [0068] Shielding layer: 26 [0069] Electrode: 28 [0070] Display device: 30 [0071] Touch panel controller: 40 [0072] Central processing unit: 50 [0073] Display Device Controller: 60 [0074] Touch: 70 _49^ Single Occupation A0101 Page 19 / Total 30 Page 1013075511-0

Claims (1)

136486〇 101年02月29日梭正替換★ 七、申請專利範圍: 1 .—種觸控面板,包括: 基體,一透明導電層,該透明導電層設置於上述基體的 表面,以及至少兩個電極,該至少兩個電極間隔設置並 與該透明導電層電連接,其改良在於,上述透明導電層進 步包括一奈米碳管層,該奈米碳管層包括各向同性或沿 一固定方向取向或不同方向取向排列的複數奈米碳管。 •如申請專利範圍第1項所述的觸控面板,其中,所述奈米 兔官平行於奈米碳管層的表面。 .如申請專利範圍第1項所述的觸控面板,其中,所述奈米 碳管層中的奈米碳管與奈米碳管層的表面成一夾度α,其 中,α大於等於零度且小於等於15度。 .如申請專利範圍第1項所述的觸控面板,其中,所述奈米 碳管層中的奈米碳管通過凡德瓦爾力相互吸引、緊密結合 ,形成由複數奈米碳管組成的自支撑結構。 ’如申請專利範圍第1項所述的觸控面板,其中,所述奈米 碳管層的厚度爲0.5奈米ΜΟΟ微米。 •如申請專利範圍第1項所述的觸控面板,其中,所述奈米 碳管包括單壁奈米竣管、雙壁奈米碳管及多壁奈不管中 的一種或幾種。 如申請專㈣_ 6項所料馳面板,其巾,所述單壁 奈来碳管的直徑爲G.5奈米〜5Q奈米,雙壁奈米碳管的直 經爲1.0奈米~50奈米’多壁奈米碳管的直徑紅5奈米 〜5 0奈米。 所述至少 .如申請專利範圍第1項所述的觸控面板,其中 第20頁/共3〇頁 09614938#單編號 ΑΟίοι 1013075511-0 1.364860 101年.02月29日修正_頁 \ 兩電極爲金屬鍍層或金屬箔片。 9.如申請專利範圍第1項所述的觸控面板,其中,所述至少 兩個電極間隔地設置在透明導電層遠離基體的表面。 10 .如申請專利範圍第9項所述的觸控面板,其中,所述至少 兩個電極通過一導電銀膠設置在透明導電層的表面。 11 .如申請專利範圍第1項所述的觸控面板,其中,所述觸控 面板進一步包括一防護層,該防護層設置在透明導電層遠 離基體的表面。 12. 如申請專利範圍第11項所述的觸控面板,其中,所述防護 層的材料爲氮化矽、氧化矽、苯並環丁烯、聚酯膜或丙烯 酸樹脂。 13. 如申請專利範圍第1項所述的觸控面板,其中,所述觸控 面板進一步包括一屏蔽層,該屏蔽層設置於上述基體遠離 透明導電層的一表面上,該屏蔽層爲銦錫氧化物薄膜、銻 錫氧化物薄膜、錄金薄膜、銀薄膜或奈米碳管層。 14 . 一種觸控面板的製備方法,該方法包括以下步驟: 提供一奈米碳管陣列及一基體,該奈米碳管陣列形成於一 基底; 擠壓上述奈米碳管陣列從而獲得一奈米碳管層形成在基體 的一個表面;以及 提供至少兩個電極,並將至少兩個電極間隔設置並與上述 奈米碳管層形成電連接,從而形成所述的觸控面板。 15.如申請專利範圍第14項所述的觸控面板的製備方法,其中 ,所述獲得奈米碳管層並形成在上述基體的一個表面的過 程,具體包括以下步驟: 提供一施壓裝置,施加壓力於上述奈米碳管陣列,形成由 1013075511-0 單編號A0101 第21頁/共30頁 1101年0Z月29曰修正替換古 複數奈米碳官組成的具有自支撑結構的奈米碳管薄膜;以 及 將上述奈米碳管薄膜粘結於所述基體的一個表面上。 .如申明專利範圍第14項所述的觸控面板的製備方法其中 ,所述獲得奈米衫層形成在基體的—個表面的過程具 體包括以下步驟: 將上述基體的-個表面直接覆蓋在上述奈米碳管陣列上; 以及 提供一施加裝置,施加壓力於基體的另一個表面,形成由 複數奈米碳管組成的具有自支撑結構的奈米碳管薄膜枯結 在基體的一個表面。 17 ·如申請專利範圍第15或16項所述的觸控面板的製備方法 ,其中’所述施壓裝置爲一平面壓頭。 18 .如申請專利範圍第17項所述的觸控面板的製備方法,其中 ’所述擠壓奈米碳管陣列的過程爲採用平面壓頭沿垂直於 上述奈米碳管陣列生長的基底的方向擠壓。 19 .如申請專利範圍第15或16項所述的觸控面板的製備方法 ,其中,所述施壓裝置爲一滾軸狀壓頭。 20 .如申請專利範圍第19項所述的觸控面板的製備方法,其中 ,所述擠壓奈米碳管陣列的過程爲採用滾軸狀壓頭沿某一 固定方向礙壓或沿不同方向礙壓。 21 ·—種顯示裝置,包括: 一觸控面板,該觸控面板包括一基體;一透明導電層,該 透明導電層設置於上述基體的—表面;以及至少兩個電極 〇96丨4938#單編號 ΑΟίοι 邊至少兩個電極間隔設置並與該透明導電層電連接; 顯示設備’該顯示設備正對且靠近觸㈣板的基體遠離 第22頁/共30頁 1013075511-0 1364860 101年02月29日核正替換頁 透明導電層的一個表面設置, 其改良在於,所述透明導電層進一步包括一奈米碳管層, 該奈米碳管層包括各向同性或沿一固定方向取向或不同方 向取向排列的複數奈米碳管。 22.如申請專利範圍第21項所述的顯示裝置,其中,所述的顯 示設備爲液晶顯示器、場發射顯示器、電漿顯示器、電致 發光顯示器、真空螢光顯示器及陰極射線管中的一種。 23 .如申請專利範圍第21項所述的顯示裝置,其中,顯示設備 與觸控面板間隔設置或集成設置。 24 .如申請專利範圍第21項所述的顯示裝置,其中,所述顯示 裝置進一步包括一鈍化層,該鈍化層設置於觸控面板和顯 示設備之間,與觸控面板相接觸設置,與顯示設備間隔一 定距離設置。 25 .如申請專利範圍第24項所述的顯示裝置,其中,所述鈍化 層的材料爲氮化矽、氧化矽 '苯並環丁烯、聚酯膜或丙烯 酸樹脂。 2 6 .如申請專利範圍第2 5項所述的顯示裝置,其中,所述顯示 裝置進一步包括一觸控面板控制器、一顯示設備控制器及 一中央處理器,其中,觸控面板控制器、中央處理器及顯 示設備控制器三者通過電路相互連接,觸控面板控制器連 接觸控面板的電極,顯示設備控制器連接顯示設備。 09614938#單編號 A〇101 第23頁/共30頁 1013075511-0136486〇02年02月02日 Shuttle replacement★ VII. Patent application scope: 1. A touch panel comprising: a substrate, a transparent conductive layer, the transparent conductive layer being disposed on the surface of the substrate, and at least two An electrode, the at least two electrodes are spaced apart and electrically connected to the transparent conductive layer, wherein the transparent conductive layer advancement comprises a carbon nanotube layer comprising isotropic or in a fixed direction A plurality of carbon nanotubes oriented in orientation or oriented in different directions. The touch panel of claim 1, wherein the nano rabbit is parallel to the surface of the carbon nanotube layer. The touch panel of claim 1, wherein the carbon nanotubes in the carbon nanotube layer are at an angle α to the surface of the carbon nanotube layer, wherein α is greater than or equal to zero degrees and Less than or equal to 15 degrees. The touch panel of claim 1, wherein the carbon nanotubes in the carbon nanotube layer are mutually attracted and closely combined by van der Waals force to form a plurality of carbon nanotubes. Self-supporting structure. The touch panel of claim 1, wherein the carbon nanotube layer has a thickness of 0.5 nm. The touch panel of claim 1, wherein the carbon nanotube comprises one or more of a single-walled nanotube, a double-walled carbon nanotube, and a multi-walled nanotube. For example, if the application is for (4) _ 6 items, the diameter of the single-walled carbon nanotubes is G.5 nm~5QN, and the diameter of the double-walled carbon nanotubes is 1.0 nm~50. The diameter of the nano 'multi-walled carbon nanotubes is 5 nm ~ 5 0 nm. The touch panel according to claim 1, wherein the 20th page/total 3 page 09614938# single number ΑΟίοι 1013075511-0 1.364860 101 years. February 29th revision_page\two electrodes are Metal plating or metal foil. 9. The touch panel of claim 1, wherein the at least two electrodes are spaced apart from each other at a surface of the transparent conductive layer away from the substrate. The touch panel of claim 9, wherein the at least two electrodes are disposed on a surface of the transparent conductive layer through a conductive silver paste. The touch panel of claim 1, wherein the touch panel further comprises a protective layer disposed on a surface of the transparent conductive layer away from the substrate. 12. The touch panel of claim 11, wherein the protective layer is made of tantalum nitride, hafnium oxide, benzocyclobutene, a polyester film or an acrylic resin. The touch panel of claim 1, wherein the touch panel further comprises a shielding layer disposed on a surface of the substrate away from the transparent conductive layer, the shielding layer is indium Tin oxide film, antimony tin oxide film, gold film, silver film or carbon nanotube layer. 14. A method of fabricating a touch panel, the method comprising the steps of: providing an array of carbon nanotubes and a substrate, the array of carbon nanotubes being formed on a substrate; extruding the array of carbon nanotubes to obtain a nanocap. The carbon nanotube layer is formed on one surface of the substrate; and at least two electrodes are provided, and at least two electrodes are spaced apart and electrically connected to the carbon nanotube layer to form the touch panel. The method for preparing a touch panel according to claim 14, wherein the step of obtaining a carbon nanotube layer and forming a surface of the substrate comprises the following steps: providing a pressure applying device Applying pressure to the above-mentioned carbon nanotube array to form a self-supporting structure of nanocarbon composed of 1013075511-0 single number A0101 page 21/total 30 pages 1101 0Z month 29曰 replacement a tube film; and bonding the above-described carbon nanotube film to one surface of the substrate. The method for preparing a touch panel according to claim 14, wherein the process of obtaining the nano-shirt layer on the surface of the substrate comprises the following steps: directly covering the surface of the substrate The above carbon nanotube array is provided; and an application device is provided to apply pressure to the other surface of the substrate to form a carbon nanotube film having a self-supporting structure composed of a plurality of carbon nanotubes smeared on one surface of the substrate. The method of manufacturing a touch panel according to claim 15 or claim 16, wherein the pressing device is a planar indenter. The method of manufacturing a touch panel according to claim 17, wherein the process of extruding the carbon nanotube array is performed by using a planar indenter along a substrate perpendicular to the carbon nanotube array. Squeeze in the direction. The method of manufacturing a touch panel according to claim 15 or 16, wherein the pressing device is a roller-shaped indenter. The method for manufacturing a touch panel according to claim 19, wherein the process of extruding the carbon nanotube array is to use a roller-shaped indenter to block in a fixed direction or in different directions. Impede pressure. The display device comprises: a touch panel, the touch panel comprises a substrate; a transparent conductive layer, the transparent conductive layer is disposed on a surface of the substrate; and at least two electrodes 〇96丨4938# No. ΑΟίοι is disposed at least two electrodes spaced apart and electrically connected to the transparent conductive layer; display device 'the display device is facing and close to the base of the touch (four) plate away from page 22 / total 30 pages 1013075511-0 1364860 101 February 29 The solar core replaces a surface of the transparent conductive layer, the improvement is that the transparent conductive layer further comprises a carbon nanotube layer comprising isotropic or oriented in a fixed direction or different directions A plurality of carbon nanotubes arranged in an orientation. The display device according to claim 21, wherein the display device is one of a liquid crystal display, a field emission display, a plasma display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. . The display device of claim 21, wherein the display device is spaced apart from the touch panel or integrated. The display device of claim 21, wherein the display device further comprises a passivation layer disposed between the touch panel and the display device and disposed in contact with the touch panel, The display device is set at a certain distance. The display device according to claim 24, wherein the passivation layer is made of tantalum nitride, yttria-benzocyclobutene, a polyester film or an acrylic resin. The display device of claim 25, wherein the display device further comprises a touch panel controller, a display device controller, and a central processing unit, wherein the touch panel controller The central processing unit and the display device controller are connected to each other through a circuit, the touch panel controller is connected to the electrodes of the touch panel, and the display device controller is connected to the display device. 09614938#单号 A〇101 Page 23 of 30 1013075511-0
TW96149383A 2007-12-21 2007-12-21 Touch panel, method for making the same, and displaying device adopting the same TWI364860B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96149383A TWI364860B (en) 2007-12-21 2007-12-21 Touch panel, method for making the same, and displaying device adopting the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96149383A TWI364860B (en) 2007-12-21 2007-12-21 Touch panel, method for making the same, and displaying device adopting the same

Publications (2)

Publication Number Publication Date
TW200929638A TW200929638A (en) 2009-07-01
TWI364860B true TWI364860B (en) 2012-05-21

Family

ID=44864573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96149383A TWI364860B (en) 2007-12-21 2007-12-21 Touch panel, method for making the same, and displaying device adopting the same

Country Status (1)

Country Link
TW (1) TWI364860B (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656769B (en) 2008-08-22 2012-10-10 清华大学 Mobile telephone
CN101458600B (en) 2007-12-14 2011-11-30 清华大学 Touch screen and display device
CN101458606B (en) 2007-12-12 2012-06-20 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101655720B (en) 2008-08-22 2012-07-18 清华大学 Personal digital assistant
CN101458594B (en) 2007-12-12 2012-07-18 清华大学 Touch screen and display device
CN101458608B (en) 2007-12-14 2011-09-28 清华大学 Touch screen preparation method
CN101458603B (en) 2007-12-12 2011-06-08 北京富纳特创新科技有限公司 Touch screen and display device
CN101458597B (en) 2007-12-14 2011-06-08 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101419519B (en) 2007-10-23 2012-06-20 清华大学 Touch panel
CN101458599B (en) 2007-12-14 2011-06-08 清华大学 Touch screen, method for producing the touch screen, and display device using the touch screen
CN101458593B (en) 2007-12-12 2012-03-14 清华大学 Touch screen and display device
CN101464763B (en) 2007-12-21 2010-09-29 清华大学 Production method of touch screen
CN101458975B (en) 2007-12-12 2012-05-16 清华大学 Electronic element
CN101458607B (en) 2007-12-14 2010-12-29 清华大学 Touch screen and display device
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
CN101464765B (en) 2007-12-21 2011-01-05 鸿富锦精密工业(深圳)有限公司 Touch screen and display equipment
CN101470565B (en) 2007-12-27 2011-08-24 清华大学 Touch screen and display equipment
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
CN101924816B (en) 2009-06-12 2013-03-20 清华大学 Flexible mobile phone
TWI399675B (en) * 2009-08-17 2013-06-21 Hon Hai Prec Ind Co Ltd Touch panel and display device using the same
CN101859216B (en) 2010-06-11 2012-01-25 北京富纳特创新科技有限公司 Touch screen
TWI481923B (en) * 2010-06-24 2015-04-21 Beijing Funate Innovation Tech Liquid crystal display with touch panel
TWI417771B (en) * 2010-06-24 2013-12-01 Beijing Funate Innovation Tech Touch panel
CN204808275U (en) * 2015-06-10 2015-11-25 宸鸿科技(厦门)有限公司 Pressure sensing means

Also Published As

Publication number Publication date
TW200929638A (en) 2009-07-01

Similar Documents

Publication Publication Date Title
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
TWI354921B (en) Touch panel and displaying device using the same
CN101419519B (en) Touch panel
CN101458597B (en) Touch screen, method for producing the touch screen, and display device using the touch screen
CN101470559B (en) Touch screen and display equipment
CN101470558B (en) Touch screen and display equipment
CN101470565B (en) Touch screen and display equipment
CN101458593B (en) Touch screen and display device
CN101458608B (en) Touch screen preparation method
TWI416380B (en) Touch panel
TW200926471A (en) Touch panel and displaying device using the same
TWI386831B (en) Touch panel and displaying device using the same
CN101464766B (en) Touch screen and display equipment
TWI408575B (en) Touch panel and displaying device using the same
TWI436510B (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same
TWI354920B (en) Touch panel and displaying device using the same
TWI362776B (en) Touch panel and displaying device using the same
TWI356516B (en) Touch panel and displaying device using the same
TWI412962B (en) Touch panel and displaying device using the same
TW201108051A (en) Touch panel and display device using the same
TWI482324B (en) Touch panel and displaying device using the same
TW200929636A (en) Touch panel and displaying device using the same
TW200929642A (en) Touch panel, method for making the same, and displaying device adopting the same
TWI500194B (en) Touch panel, method for making the same, and displaying device adopting the same