TW200928913A - Touch panel and displaying device using the same - Google Patents

Touch panel and displaying device using the same Download PDF

Info

Publication number
TW200928913A
TW200928913A TW96151277A TW96151277A TW200928913A TW 200928913 A TW200928913 A TW 200928913A TW 96151277 A TW96151277 A TW 96151277A TW 96151277 A TW96151277 A TW 96151277A TW 200928913 A TW200928913 A TW 200928913A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
touch screen
conductive layer
transparent conductive
film
Prior art date
Application number
TW96151277A
Other languages
Chinese (zh)
Other versions
TWI408575B (en
Inventor
Kai-Li Jiang
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96151277A priority Critical patent/TWI408575B/en
Publication of TW200928913A publication Critical patent/TW200928913A/en
Application granted granted Critical
Publication of TWI408575B publication Critical patent/TWI408575B/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present invention relates to a touch panel. The touch panel includes a base, and a plurality of electrodes. The transparent conductive layer is disposed on a surface of the base. The electrodes are separately disposed and electrically connected to the transparent conductive layer. The transparent conductive layer includes a carbon nanotube layer. The carbon nanotube layer includes a plurality of carbon nanotube ribbon film structures parallel arranged and separately disposed. Two opposite ends of each carbon nanotube ribbon film structure are respectively connected with two opposite electrodes, and each electrode is electrically connected with one end of at least one carbon nanotube ribbon film structure. Further, the present invention also relates to a displaying device. The displaying device includes a displaying unit and a touch panel.

Description

200928913 九、發明說明: • 【發明所屬之技術領域】 . 本發明涉及一種觸摸屏及顯示裝置,尤其涉及一種採用奈 米碳管作透明導電層的觸摸屏及使用該觸摸屏的顯示裝置。 【先前技術】 近年來’伴隨著移動電話與觸摸導航系統等各種電子設備 的高性能化和多樣化的發展,在液晶等顯示設備的前面安裝透 光性的觸摸屏的電子設備逐步增加。這樣的電子設備的利用者 °通過觸摸屏,一邊對位於觸摸屏背面的顯示設備的顯示内容進 行視覺確認,一邊利用手指或筆等方式按壓觸摸屏來進行操 作。故’可以操作電子設備的各種功能。 按照觸摸屏的工作原理和傳輸介質的不同,先前技術中的 觸摸屏分爲四種類型,分別爲電阻式、電容式、紅外線式以及 表面聲波式。其中電容式觸摸屏因準確度較高、抗幹擾能力强 應用較爲廣泛。 ◎ 先前技術中的電容式觸摸屏(請參見“連續薄膜電容式觸 摸屏的研究,,,李樹本等,光電子技術,Vol. 15, p62(1995))包括 一玻璃基板,一透明導電層,以及多個金屬電極。在該電容式 觸摸屏中,玻璃基板的材料爲鈉鈣玻璃。透明導電芦致 錫氧化物(IT〇)或録錫氧化物(AT〇)等透明^層== 過印製具有低電阻的導電金屬(例如銀)形成。電極間隔設置 在透明導電層的各個角處。此外,透明導電層上塗覆有防護層。 該防護層由液體玻璃材料通過硬化或緻密化工藝,並進行熱處 理後’硬化形成。 ”' 當手指等觸摸物觸摸在觸摸屏表面上時,由於人體電場, 7 200928913 手指等觸摸物和觸摸屏令的透明導電層之間形成一個耦合電 容。對於高頻電流來說,電容爲直接導體,手指等觸摸物的觸 摸將從接觸點吸走―刪Μ、的電流。這個電流分別從觸摸屏上 的電極中流出,並且流經這四個電極的電流與手指到四角的瓞 離成正比’觸摸屏控製||通過對這四個電流比例的 , 得出觸摸點的位置。 Ο Ο 故,透明導電層對於觸摸屏爲—必 透明導電層通常採用ΙΤΟ層,然 =件,先前技術: 機械和化學耐雜轉好等缝。進_^2爲剌導電層1 明導電層存在電阻阻值分布不均勻步地,用ι™層= 電容式觸摸屏存在觸摸屏的分辨率:現象,導致先前技術中的 有鑒於此’確有必要提供—種人1確度不高等問題。 的觸摸屏,以及使用該觸摸屏的顯精確度高及耐用 【發明内容】200928913 IX. Description of the invention: • Technical field to which the invention pertains. The present invention relates to a touch panel and a display device, and more particularly to a touch panel using a carbon nanotube as a transparent conductive layer and a display device using the same. [Prior Art] In recent years, with the development of high performance and diversification of various electronic devices such as mobile phones and touch navigation systems, electronic devices in which a translucent touch panel is mounted on the front surface of a display device such as a liquid crystal are gradually increasing. The user of such an electronic device visually confirms the display content of the display device located on the back surface of the touch panel by the touch panel, and presses the touch panel to operate by a finger or a pen. Therefore, various functions of the electronic device can be operated. According to the working principle of the touch screen and the transmission medium, the touch screens in the prior art are divided into four types, namely, resistive, capacitive, infrared, and surface acoustic wave. Among them, the capacitive touch screen is widely used due to its high accuracy and strong anti-interference ability. ◎ Capacitive touch screen in the prior art (see "Research on continuous thin film capacitive touch screen, Li Shuben et al., Optoelectronics Technology, Vol. 15, p62 (1995))) including a glass substrate, a transparent conductive layer, and a plurality of Metal electrode. In the capacitive touch screen, the material of the glass substrate is soda lime glass. Transparent conductive layer such as tin oxide (IT〇) or tin oxide (AT〇) == overprinting has low A conductive metal (for example, silver) of a resistor is formed. The electrodes are spaced apart at respective corners of the transparent conductive layer. Further, the transparent conductive layer is coated with a protective layer. The protective layer is subjected to a hardening or densification process by a liquid glass material, and is subjected to heat treatment. After 'hardening is formed.'' When a touch object such as a finger touches the surface of the touch screen, a coupling capacitance is formed between the touch object such as a finger and the transparent conductive layer of the touch screen due to the human body electric field. For high-frequency currents, the capacitor is a direct conductor, and the touch of a finger or the like picks up the current from the contact point. This current flows out of the electrodes on the touch screen, respectively, and the current flowing through the four electrodes is proportional to the finger-to-four-corner ’ touch screen control || by the ratio of the four currents, the position of the touch point is obtained. Ο 故 Therefore, the transparent conductive layer is a transparent conductive layer for the touch screen. The transparent conductive layer usually uses a layer of ruthenium. However, the prior art: mechanical and chemical resistance to good turns and other seams. Into _^2 is 剌 conductive layer 1 The conductive layer has a non-uniform distribution of resistance value, and the resolution of the touch screen exists with ιTM layer = capacitive touch screen: phenomenon, which leads to the fact that it is necessary in the prior art Provide questions such as the fact that the person 1 is not highly qualified. Touch screen, and the use of the touch screen for high precision and durability [Invention]

一種觸摸屏,匕枯— 該透明導電層設置於上述基體的基體;一透明導電層, 該多個電極分別間隔設置,並斑面,以及多個電極, 其中,所述透明導電層進-步=透明*電層電連接。 米碳管層包括平行且間隔設置=奈米碳管層’該奈 構,所述每個奈米碳管帶狀骐結 奈米碳管帶狀膜結 對的電極電連接,且所述每·的兩端分別與兩個相 帶狀膜結構的-端電連接。 &至少-個奈米破管 一種顯示裝置,其包括一 體;-透明導電層,該透明導雷思屏/該觸摸屏包括一基 面;以及多個電極,該多個電梅叹置於上述基體的表 电極分別間隔設置,並與該 200928913 透明導電層電連接;一顯示設備,該顯示設備正對且靠 • 近觸摸屏的基體遠離透明導電層的一個表面設置。其 . 中,所述透明導電層進一步包括一奈米破管層,該奈米 碳管層包括平行且間隔設置的多個奈米碳管帶狀膜結 構,所述每個奈米碳管帶狀膜結構的兩端分別與兩個相 對的電極電連接,且所述每個電極與至少一個奈米碳管 帶狀膜結構的一端電連接。 與先前技術的觸摸屏及顯示裝置相比較,本技術方案 ❹提供的觸摸屏及顯示裝置具有以下優點:其一,由於透明 導電層中的多個奈米碳管帶狀膜結構平行且間隔設置,因 此,所述透明導電層具有較好的力學性能,從而使得上述 的透明導電層具有較好的機械强度和韌性,故,採用上述 的奈米破管帶狀膜結構作透明導電層,可以相應的提高觸 摸屏的耐用性,進而提高了使用該觸摸屏的顯示裝置的耐 用性;其二,上述透明導電層中的多個奈米碳管帶狀膜結 〇構平行且間隔設置,從而使得透明導電層具有均勻的阻值 分布和透光性,且所述每個電極與其所在透明導電層中的 至少-個奈米破管帶狀膜結構的一端電連接,故可以通過 探測觸摸點處與奈米碳管帶狀膜結構相連接的兩個電極之 間的電流變化來更精確地確定觸摸點的位置,從而有利於 提高觸摸屏及使用該觸摸屏的顯示裝置的分辨率和精確 度。 【實施方式】 以下將結合關對本技術方案作進—步的詳細說明。 9 200928913 .. 能2〇包括一基體22、一透 請參閱圖1、圖2及圖3,觸摸屏 還 .明導電層24、-防護層26及裏少多個電極28基體22具有一 •第一表面221以及與第一表面221相對的第一表面222。透明導 電層24設置在基體22的第〆表面221上’所述多個電極28分 別間隔設置,且與透明導電層24形成電連接,用以在透明導電 層24上形成等電位面。防護層26可直接設置在透明導電層24 以及電極28上。優選地,所述多個電極28間隔設置在所述透 明導電層24相對的兩端。 ® 所述基體22爲一曲面犁或彳面型的結構。該基體22由玻 璃、石英、金剛石或塑料等硬性材料或柔性材料形成。所述基 體22主要起支撑的作用。 所述透明導電層24包括平行且間隔設置的多個奈米碳管帶 狀膜結構240’所述多個電極分別間隔設置在含有多個奈米碳管 帶狀膜結構240的透明導電層24相對的兩端,所述每個奈米碳 管帶狀膜結構240的兩端分別與兩個相對的電極電連接,且所 0 述每個電極與所述透明導電層24中的至少一個奈米碳管帶狀膜 結構240的一端電連接。具體地,所述多個電極28--對應設 置於奈米碳管帶狀膜結構240的兩端。 所述奈米碳管帶狀膜結構240爲一層奈米碳管薄膜,該奈 米碳管薄膜包括多個定向排列的奈米碳管,且該多個奈来破管 沿著奈米碳管帶狀膜結構240的長度方向排列。另外所述奈米 碳管帶狀膜結構240也可爲重豪設置的多層奈米碳管薄膜,每 一奈米碳管薄膜包括多個定向排列的奈米碳管,且相鄰的兩層 奈米碳官薄膜中的奈米碳管沿同一方向排列或沿不同方向排 200928913 列。所述奈米碳管薄膜進一步包括多個首尾相連的奈米碳管束 '片段,每個奈米碳管束片段具有相等的長度且每個奈米碳管束 .片段由多個相互平行的奈米碳管束構成,所述多個奈来碳管束 片段兩端通過凡德瓦爾力相互連接。該相鄰的奈米碳管束之間 通過凡德瓦爾力緊密結合,該奈米碳管束包括多個長度相等且 平行排列的奈米碳管。所述奈米碳管可以爲單壁奈米碳管、雙 壁奈米碳管及多壁奈米碳管中的一種或多種。所述奈米碳管帶 狀膜結構的寬度爲1毫米〜10厘米。所述奈米碳管帶狀膜結構 ® 的厚度爲0.5奈米〜100微米。所述奈米碳管帶狀膜結構之間的 間距爲5奈米〜1毫米。本實施例中,所述透明導電層24包括 多個平行且間隔設置的奈米碳管帶狀膜薄膜結構240。所述每一 奈米碳管帶狀膜結構240爲一層奈米碳管薄膜。優選地,所述 透明導電層24中的多個奈来碳管薄膜平行且等間距設置。 此外,由於所述透明導電層24中的多個奈来碳管帶狀膜平 行且間隔設置。優選地,所述透明導電層24中的奈米碳管帶狀 ❹膜平行且等間距設置’從而使得所述透明導電層24具有均勻的 阻值分布和透光特性,提高了觸摸屏20的分辨率和準確率。 可以理解,爲了使得觸摸屏20具有更加均一的透明度,可 以在所述間隔設置的奈米碳管帶狀膜之間設置有光學補償膜。 本技術方案實施例透明導電層24的製備方法主要包括以下 步驟: 步驟一:提供一奈米碳管陣列形成於一基底,優選地,該 陣列爲超順排奈米碳管陣列。 本技術方案實施例提供的奈米碳管陣列爲單壁奈米碳管陣 11 200928913 列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種。該奈来 碳管陣列的製備方法採用化學氣相沈積法,其具體步驟包括: (a)提供-平整基底,該基底可選用p型或N财基底,或選 用形成有氧化層的石夕基底,本實施例優選爲採用4英寸的砍基 底’(b)在基底表面均勻形成一催化劑層,該催化劑層材料可 選用鐵(Fe)、銘(c。)、鎳(Ni)或其任意組合的合金之—;⑷ 將上述形成有催化劑層的基底在70CTC〜900〇C的空氣中退火約 ❹分鐘〜90分鐘;(d)將處理過的基底置於反應爐中,在保護 體環境下加熱到5(Krc〜·。c,然後通人碳源氣體反應約5 刀鐘〜30分鐘,生長得到奈米碳管陣列,其高度爲微米左 右。該奈米碳管陣列爲多個彼此平行且垂直於基底生長的奈米 石厌管形成的純奈米碳管陣列。該奈米碳管陣列與上述基底面積 基本相同。通過上述控製生長條件,該超順排奈米碳管陣列中 基本不含有雜質’如無定型碳或殘留的催化劑金屬顆粒等。 本實施例中破源氣可選用乙炔、乙烯、曱烷等化學性質較 〇活潑的碳氫化合物,本實施例優選的碳源氣爲乙炔;保護氣體 爲氛氣或惰性氣體,本實施例優選的保護氣體爲氬氣。 可以理解,本技術方案實施例提供的奈米碳管陣列不限於 上述製備方法’也可爲石墨電極恒流電弧放電沈積法、録射蒸 發沈積法等等。 ' 步驟二:採用一拉伸工具從奈米碳管陣列中拉取奈米碳管 獲得一奈米碳管薄膜。 該奈米碳管薄膜的製備具體包括以下步驟:(a)從上述奈 米碳管陣列中選定一定寬度的多個奈米碳管片斷,本實施例優 12 200928913 選爲採用具有一定寬度的膠帶接觸奈米碳管陣列以選定一定寬 •度的多個奈米碳管束,·⑴以-定速度沿基本垂直於奈米碳管 陣列生長方向拉伸多個該奈米碳管束,以形成一連續的奈米碳 管薄膜。 ❹ 在上述拉伸過程中,該多個奈米碳管束在拉力作用下沿拉 伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該選定的 多個奈米碳管束分別與其他奈米碳管束首尾相連地連續地被拉 出,從而形成一奈米碳管薄膜。該奈米碳管薄暝包括多個首尾 相連且定向排列的奈米碳管束。該奈米碳管薄膜中的奈米碳管 的排列方向基本平行於奈米碳管薄膜的拉伸方向。 請參閱圖4’該奈米碳管薄膜爲擇優取向排列的多個奈米碳 管束首尾相連形成的具有一定寬度的奈米後管薄膜。該直接拉 伸獲得的擇優取向的奈来碳管薄膜比無序的奈米碳管薄膜具有 ^好的均勻性,即具有更均㈣厚度以及具有更均勻的導電性 能。同時該直接拉伸獲得车半 〇 進行工業化_。 4碳s⑽的方料早快速’適宜 本實關巾~述奈米碳管薄膜的寬度與奈米碳管陣 生長的基底的尺寸以及選取的夺f碳管片段的寬声右Μ 米碳管薄膜的長度不限,可:二:碳管寬度有關’該奈 薄膜中的太米碳管^ 據實際需求製得。當該奈米碳管 J 、不··壁奈米碳管、雙壁奈米碳管和雙壁夯米 所述單壁奈米碳管_爲°.5奈二 太二"…蛟管的直徑爲1.0奈米〜50奈米。所述多壁 不米碳管的直徑爲1.5奈米〜5〇奈米。 步驟二·製備多個上述奈米碳管薄膜,形成一奈来碳管帶 13 200928913 狀膜結構,將該奈米碳管帶狀膜結構平行且間隔鋪設在所述基 '體22的表面,從而形成所述透明導電層24。 • 所述奈米碳管帶狀膜結構240爲一奈米碳管薄膜或重叠設 置的多個奈米碳管薄膜。所述重叠設置的多個奈米碳管薄膜中 相鄰兩層奈米碳管薄膜中的奈米碳管的排列方式不限,可沿同 一方向排列,也可沿不同方向排列。所述奈米碳管帶狀膜結構 240之間的設置間距爲5奈米〜1毫米,具體可根據觸摸屏20的 透光性進行選擇。 由於本實施例超順排奈米碳管陣列中的奈米破管非常純 淨,且由於奈米碳管本身的比表面積非常大,所以該奈米碳管 薄膜本身具有較强的粘性。因此,由該奈米碳管薄膜組成的奈 米碳官帶狀膜結構作爲透明導電層24可直接枯附在所述基體 22的表面。 另外,可使用有機溶劑處理上述粘附在所述基體22上的奈 米碳管帶狀膜結構240。具體地’可通過試管將有機溶劑滴落在 ❹奈米碳管帶狀膜結構240表面浸潤整個奈米碳管帶狀膜結構 24〇。該有機溶劑爲揮發性有機溶劑,如乙醇、甲醇、丙酮、二 氯乙烷或氣仿,本實施例中採用乙醇。該奈米碳管帶狀膜結構 240經有機溶劑浸潤處理後,在揮發性有機溶劑的表面張力的作 用下,該奈米碳管帶狀膜結構可牢固地貼附在基體表面,且表 面體積比减小,粘性降低,具有良好的機械强度及韌性。 另外,所述多個奈米碳官薄膜也可通過以下步驟製備:採 用一拉伸工具從奈米碳管陣列中拉取奈米碳管獲得一較大尺寸 的奈米碳官薄膜,將該奈米碳管薄膜切割成大小尺寸相等的多 200928913 個奈米碳管薄膜。 • 可以理解,本技術方案實施例提供的所述奈米碳管薄膜的 ' 製備不限於上述製備方法,也可通過碾壓法製備一奈米碳管薄 膜’該奈米碳管薄膜中的多個奈米碳管沿同一方向排列、沿不 同方向排列或各相同性排列。此外,還可採用絮化法製備一奈 米碳管薄膜’該奈米碳管薄膜包括多個相互纏繞的奈米碳管。 另外’所述多個電極分別間隔設置在所述透明導電層24相 ❺對的兩端’所述每個奈米碳管帶狀膜結構的兩端分別與兩個相 對的電極電連接,且所述每個電極與所述透明導電層24中的至 少一個奈米碳管帶狀膜結構的一端電連接。具體地,所述多個 電極28 —一對應設置於奈米碳管帶狀膜結構的兩端。 可以理解,所述透明導電層24和基體22的形狀可以根據 觸摸屏20的觸摸區域的形狀進行選擇。例如觸摸屏2〇的觸摸 區域可爲具有一長度的長線形觸摸區域、三角形觸摸區域及矩 形觸摸區域等。本實關巾,職屏2()賴摸區域爲矩形觸摸 ❹ 區域。 對於矩形觸摸區域,透明導電層24和基體22的形狀也可 爲矩形。爲了在上賴透明導電層24上形成均句的電阻網絡, 需在該透明導電層24的表面分別對稱設置多個電極28。該多個 電極電極28可由金屬材料形成。具體地,在本實施例中,基體 22爲玻璃基板’所❹個電極28爲由銀或轉低電阻的導電金 或者金屬落片組成的紐電極28。所述多個電極烈間隔 2在所述的透明導電層24同—表面的相對的兩個邊上。可以 ’上述的電極28也可以設置在賴導電層24的不同表面 15 200928913 上’其關鍵在於上述電極28的設置能使得在透明導電層24上 形成等電位面即可。本實施例中,所述電極28設置在透明導電 •層24的遠離基體的一個表面上。所述電極28可以採用濺射、 電鍵、化學艘等沈積方法直接形成在透明導電層24上。另外, 也可用銀膠等導電粘結劑將上述的電極28粘結在透明導電層 24的一個表面上。 可以理解,所述電極28亦可設置於透明導電層24與基體 〇 22之間,且與透明導電層24電連接,並不限於上述的設置方式 和粘結方式。只要能使上述的電極28與透明導電層24上之間 形成電連接的方式都應在本發明的保護範圍内。 進一步地,爲了延長透明導電層24的使用壽命和限製耦合 在接觸點與透明導電層24之間的電容,可以在透明導電層24 和電極之上設置一透明的防護層26,防護層26可由氮化矽、氧 化矽、苯并環丁烯(BCB)、聚酯膜或丙烯酸樹脂等形成。該防護 層26具有一定的硬度,對透明導電層24起保護作用。可以理 ❺還可通過特殊的工藝處理,從而使得防護層26具有以下功 能,例如减小炫光、降低反射等。 一在本實施例中,在形成有電極28的透明導電層24上設置A transparent touch layer is disposed on a base of the base body; a transparent conductive layer, the plurality of electrodes are respectively spaced apart, and a plurality of electrodes are arranged, wherein the transparent conductive layer is stepped= Transparent* electrical layer electrical connection. The carbon nanotube layer comprises parallel and spaced arrangement=nanocarbon tube layer 'the structure, the electrode of each of the carbon nanotube strip-shaped tantalum carbon nanotube strip film junctions is electrically connected, and each of the Both ends are electrically connected to the ends of the two phase strip film structures, respectively. & at least one nano tube, a display device comprising: an integrated; a transparent conductive layer, the transparent guide screen/the touch screen comprising a base surface; and a plurality of electrodes, the plurality of electric sighs being placed above The surface electrodes of the substrate are respectively spaced apart and electrically connected to the 200928913 transparent conductive layer; a display device that faces the substrate and is disposed away from a surface of the transparent conductive layer. Wherein, the transparent conductive layer further comprises a nano tube layer comprising a plurality of carbon nanotube strip film structures arranged in parallel and spaced apart, each of the carbon nanotube bands Both ends of the film structure are electrically connected to two opposite electrodes, respectively, and each of the electrodes is electrically connected to one end of at least one of the carbon nanotube film structures. Compared with the touch screen and the display device of the prior art, the touch screen and the display device provided by the present technical solution have the following advantages: First, since the plurality of carbon nanotube film films in the transparent conductive layer are parallel and spaced apart, The transparent conductive layer has good mechanical properties, so that the transparent conductive layer has good mechanical strength and toughness. Therefore, the above-mentioned nano tube-shaped film structure can be used as a transparent conductive layer, which can be correspondingly Improving the durability of the touch screen, thereby improving the durability of the display device using the touch screen; second, the plurality of carbon nanotube film-like film structures in the transparent conductive layer are parallel and spaced apart, thereby making the transparent conductive layer Having a uniform resistance distribution and light transmissivity, and each of the electrodes is electrically connected to one end of at least one of the transparent tube-shaped membrane structures in the transparent conductive layer, so that the touch point can be detected with the nanometer The current change between the two electrodes connected by the carbon tube strip film structure to more accurately determine the position of the touch point, thereby facilitating the improvement of the touch Resolution and accuracy of the display device and the use of the touch screen. [Embodiment] The following is a detailed description of the steps of the present technical solution. 9 200928913 .. can include a substrate 22, please refer to FIG. 1, FIG. 2 and FIG. 3, and the touch screen also has a conductive layer 24, a protective layer 26 and a plurality of electrodes 28 and a substrate 22 having a first A surface 221 and a first surface 222 opposite the first surface 221 . The transparent conductive layer 24 is disposed on the second surface 221 of the substrate 22. The plurality of electrodes 28 are spaced apart from each other and electrically connected to the transparent conductive layer 24 for forming an equipotential surface on the transparent conductive layer 24. The protective layer 26 can be disposed directly on the transparent conductive layer 24 and the electrode 28. Preferably, the plurality of electrodes 28 are spaced apart from opposite ends of the transparent conductive layer 24. The base 22 is a curved plough or a faceted structure. The base 22 is formed of a hard material such as glass, quartz, diamond or plastic or a flexible material. The substrate 22 serves primarily as a support. The transparent conductive layer 24 includes a plurality of carbon nanotube strip film structures 240 ′ disposed in parallel and spaced apart. The plurality of electrodes are respectively disposed at a transparent conductive layer 24 including a plurality of carbon nanotube strip film structures 240 . The opposite ends of the carbon nanotube film structure 240 are electrically connected to two opposite electrodes, respectively, and at least one of each of the electrodes and the transparent conductive layer 24 One end of the carbon nanotube film-like film structure 240 is electrically connected. Specifically, the plurality of electrodes 28 - correspondingly disposed at both ends of the carbon nanotube film structure 240. The carbon nanotube film structure 240 is a layer of carbon nanotube film, the carbon nanotube film comprises a plurality of aligned carbon nanotubes, and the plurality of nylon tubes are disposed along the carbon nanotubes The strip film structures 240 are arranged in the longitudinal direction. In addition, the carbon nanotube strip film structure 240 may also be a multi-layered carbon nanotube film provided by the heavy-duty, each carbon nanotube film includes a plurality of aligned carbon nanotubes, and adjacent two layers of carbon nanotubes The carbon nanotubes in the carbon carbon film are arranged in the same direction or in the different directions in the 200928913 column. The carbon nanotube film further comprises a plurality of end-to-end carbon nanotube bundle segments, each of the carbon nanotube bundle segments having equal lengths and each carbon nanotube bundle. the segments are composed of a plurality of mutually parallel nanocarbons The tube bundle is constructed, and the two ends of the plurality of carbon nanotube bundle segments are connected to each other by a van der Waals force. The adjacent carbon nanotube bundles are tightly coupled by a van der Waals force, and the bundle of carbon nanotubes includes a plurality of carbon nanotubes of equal length and arranged in parallel. The carbon nanotubes may be one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The carbon nanotube film structure has a width of 1 mm to 10 cm. The carbon nanotube ribbon film structure ® has a thickness of 0.5 nm to 100 μm. The spacing between the carbon nanotube film structures is 5 nm to 1 mm. In this embodiment, the transparent conductive layer 24 includes a plurality of parallel and spaced carbon nanotube film film structures 240. Each of the carbon nanotube ribbon film structures 240 is a layer of carbon nanotube film. Preferably, the plurality of carbon nanotube films in the transparent conductive layer 24 are disposed in parallel and at equal intervals. Further, since the plurality of carbon nanotube film films in the transparent conductive layer 24 are arranged in parallel and at intervals. Preferably, the carbon nanotube strip-shaped ruthenium film in the transparent conductive layer 24 is disposed in parallel and equidistantly disposed such that the transparent conductive layer 24 has a uniform resistance distribution and light transmission characteristics, and the resolution of the touch screen 20 is improved. Rate and accuracy. It can be understood that in order to make the touch screen 20 have a more uniform transparency, an optical compensation film may be disposed between the spaced carbon nanotube film films. The preparation method of the transparent conductive layer 24 of the embodiment of the technical solution mainly comprises the following steps: Step 1: providing a carbon nanotube array formed on a substrate, preferably, the array is a super-sequential carbon nanotube array. The carbon nanotube array provided by the embodiment of the present technical solution is one of a single-walled carbon nanotube array 11 200928913 column, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. The preparation method of the carbon nanotube array adopts a chemical vapor deposition method, and the specific steps thereof include: (a) providing a flat substrate, the substrate may be selected from a p-type or N-rich substrate, or a stone-like substrate formed with an oxide layer may be selected. This embodiment preferably uses a 4 inch chopped substrate 'b) to uniformly form a catalyst layer on the surface of the substrate, and the catalyst layer material may be selected from iron (Fe), indium (c.), nickel (Ni) or any combination thereof. (4) The substrate on which the catalyst layer is formed is annealed in air at 70 CTC to 900 〇C for about ❹ minute to 90 minutes; (d) the treated substrate is placed in a reaction furnace in a protective environment. Heat to 5 (Krc~·.c, then pass the carbon source gas reaction for about 5 knives to 30 minutes, grow to obtain a carbon nanotube array, the height is about micron. The carbon nanotube array is parallel to each other And an array of pure carbon nanotubes formed by a nanotube anatomical tube grown perpendicular to the substrate. The carbon nanotube array has substantially the same area as the above substrate. The above-mentioned controlled growth conditions are basic in the super-sequential carbon nanotube array. Contains no impurities' Carbon or residual catalyst metal particles, etc. In this embodiment, the source gas may be selected from acetylene, ethylene, decane and other chemically active hydrocarbons. The preferred carbon source gas in this embodiment is acetylene; The gas or inert gas, the preferred shielding gas of the present embodiment is argon. It can be understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method', and may be a graphite electrode constant current arc discharge deposition method. Evaporation deposition method, etc. 'Step 2: Using a stretching tool to pull a carbon nanotube from the carbon nanotube array to obtain a carbon nanotube film. The preparation of the carbon nanotube film specifically includes the following steps: (a) selecting a plurality of carbon nanotube segments of a certain width from the array of carbon nanotubes described above, and in this embodiment, the superior 12 200928913 is selected to contact the carbon nanotube array with a tape having a certain width to select a certain width and degree. A plurality of carbon nanotube bundles, (1) stretching a plurality of the carbon nanotube bundles at a constant speed in a direction substantially perpendicular to the growth direction of the carbon nanotube array to form a continuous carbon nanotube film. In the above stretching process, the plurality of carbon nanotube bundles are gradually separated from the substrate in the stretching direction under the tensile force, and the selected plurality of carbon nanotube bundles are respectively combined with other nanocarbons due to the van der Waals force. The tube bundle is continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube thin layer comprises a plurality of end-to-end aligned carbon nanotube bundles. The nanotube in the carbon nanotube film The arrangement direction of the carbon tubes is substantially parallel to the stretching direction of the carbon nanotube film. Referring to FIG. 4', the carbon nanotube film is a plurality of carbon nanotube bundles arranged in a preferred orientation, and a certain width of the nanometer tube is formed. The back tube film. The preferred orientation of the carbon nanotube film obtained by direct stretching has better uniformity than the disordered carbon nanotube film, that is, has a more uniform thickness and a more uniform conductivity. Direct stretching to obtain a semi-finished car for industrialization. 4 carbon s (10) of the material is early and fast 'suitable for the actual closure towel ~ the width of the carbon nanotube film and the size of the substrate for the growth of the carbon nanotube array and the wide-width right-hand carbon nanotube of the selected carbon tube segment The length of the film is not limited, can be: 2: the width of the carbon tube is related to the 'small carbon tube in the film. When the carbon nanotube J, the non-wall nanocarbon tube, the double-walled carbon nanotube, and the double-walled glutinous rice, the single-walled carbon nanotube is _°.5奈二太二" The diameter is 1.0 nm ~ 50 nm. The multi-walled carbon nanotubes have a diameter of from 1.5 nanometers to 5 nanometers. Step 2: preparing a plurality of the above-mentioned carbon nanotube films to form a carbon nanotube strip 13 200928913 film structure, the carbon nanotube strip film structure is laid in parallel and spaced on the surface of the base body 22, Thereby, the transparent conductive layer 24 is formed. • The carbon nanotube ribbon film structure 240 is a carbon nanotube film or a plurality of stacked carbon nanotube films. The arrangement of the carbon nanotubes in the adjacent two layers of the carbon nanotube film in the plurality of stacked carbon nanotube films is not limited, and may be arranged in the same direction or in different directions. The arrangement distance between the carbon nanotube film-like film structures 240 is 5 nm to 1 mm, which can be selected according to the light transmittance of the touch screen 20. Since the nanotube in the super-sequential carbon nanotube array of this embodiment is very pure, and since the specific surface area of the carbon nanotube itself is very large, the carbon nanotube film itself has strong viscosity. Therefore, the carbon nanotube film structure composed of the carbon nanotube film can be directly adhered to the surface of the substrate 22 as the transparent conductive layer 24. Alternatively, the carbon nanotube film structure 240 adhered to the substrate 22 described above may be treated with an organic solvent. Specifically, the organic solvent may be dropped on the surface of the nanotube-shaped film structure 240 by a test tube to infiltrate the entire carbon nanotube film structure 24〇. The organic solvent is a volatile organic solvent such as ethanol, methanol, acetone, dichloroethane or gas, and ethanol is used in this embodiment. After the carbon nanotube ribbon film structure 240 is infiltrated by an organic solvent, the carbon nanotube film structure can be firmly attached to the surface of the substrate under the action of the surface tension of the volatile organic solvent, and the surface volume is The ratio is reduced, the viscosity is lowered, and the mechanical strength and toughness are good. In addition, the plurality of nano carbon official films can also be prepared by using a stretching tool to pull a carbon nanotube from the carbon nanotube array to obtain a larger size nano carbon official film. The carbon nanotube film is cut into a number of 200928913 carbon nanotube films of equal size and size. It can be understood that the preparation of the carbon nanotube film provided by the embodiments of the present technical solution is not limited to the above preparation method, and a carbon nanotube film can also be prepared by a rolling method. The carbon nanotubes are arranged in the same direction, arranged in different directions or arranged in the same order. Further, a carbon nanotube film can be prepared by a flocculation method. The carbon nanotube film comprises a plurality of intertwined carbon nanotubes. In addition, the plurality of electrodes are respectively disposed at two ends of the opposite ends of the transparent conductive layer 24. The two ends of each of the carbon nanotube strip-shaped film structures are electrically connected to two opposite electrodes, respectively, and Each of the electrodes is electrically connected to one end of at least one of the transparent conductive layers 24 of at least one of the carbon nanotube film structures. Specifically, the plurality of electrodes 28 are disposed correspondingly at both ends of the carbon nanotube film structure. It can be understood that the shapes of the transparent conductive layer 24 and the base 22 can be selected according to the shape of the touch area of the touch screen 20. For example, the touch area of the touch screen 2A may be a long line touch area having a length, a triangular touch area, a rectangular touch area, or the like. The actual touch towel, the job screen 2 () touch area is a rectangular touch ❹ area. For the rectangular touch area, the shape of the transparent conductive layer 24 and the base 22 may also be rectangular. In order to form a uniform resistance network on the transparent conductive layer 24, a plurality of electrodes 28 are symmetrically disposed on the surface of the transparent conductive layer 24, respectively. The plurality of electrode electrodes 28 may be formed of a metal material. Specifically, in the present embodiment, the substrate 22 is a glass substrate, and the electrode 28 is a button electrode 28 composed of silver or a low-resistance conductive gold or a metal drop. The plurality of electrodes are spaced apart from each other on opposite sides of the same surface of the transparent conductive layer 24. The electrodes 28 described above may also be disposed on different surfaces 15 of the conductive layer 24 2009 200913. The key point is that the electrodes 28 are disposed such that an equipotential surface is formed on the transparent conductive layer 24. In this embodiment, the electrode 28 is disposed on a surface of the transparent conductive layer 24 away from the substrate. The electrode 28 may be directly formed on the transparent conductive layer 24 by a deposition method such as sputtering, electric bonding, or chemical boat. Alternatively, the above electrode 28 may be bonded to one surface of the transparent conductive layer 24 by a conductive adhesive such as silver paste. It can be understood that the electrode 28 can also be disposed between the transparent conductive layer 24 and the substrate 22 and electrically connected to the transparent conductive layer 24, and is not limited to the above arrangement and bonding manner. Any manner in which the above-described electrode 28 and the transparent conductive layer 24 can be electrically connected is within the scope of the present invention. Further, in order to extend the service life of the transparent conductive layer 24 and limit the capacitance coupled between the contact point and the transparent conductive layer 24, a transparent protective layer 26 may be disposed on the transparent conductive layer 24 and the electrode, and the protective layer 26 may be It is formed of tantalum nitride, cerium oxide, benzocyclobutene (BCB), a polyester film or an acrylic resin. The protective layer 26 has a certain hardness and protects the transparent conductive layer 24. It can be understood that the protective layer 26 can be processed by a special process such as reducing glare, reducing reflection, and the like. In the present embodiment, the transparent conductive layer 24 on which the electrode 28 is formed is disposed.

一二氧化㈣用作防護層26,該防護層26的硬度達到7H(H 爲洛氏硬度試驗中,卸除主試驗力後在初試驗力下壓痕殘留 =深度)。可以理解’防護層26的硬度和厚度可以根據需要進 仃選擇。所述防護層26可以通過钻結劑直接姑結在透明導電層 24上〇 此外’爲了减小由顯示設備産生的電磁干擾,避免從觸摸 16 200928913 屏20發出的信號產生錯誤,還可在基體22的第二表面222上 ’ 設置一屏蔽層25。該屏蔽層25可由銦錫氧化物(ITO)薄膜、 • 銻錫氧化物(ΑΤΟ)薄膜或奈米碳管薄膜等透明導電材料形成》 該奈米碳管薄膜可以為定向排列的或其它結構的奈米碳管薄 膜。本實施例中’該奈米碳管薄膜包括多個奈米碳管,所述多 個奈米碳管在上述的奈米碳管薄膜中定向排列,其具體結構可 與透明導電層24相同。該奈米碳管薄膜作爲電接地點,起到屏 ❹蔽的作用,從而使得觸摸屏20能在無干擾的環境中工作。 請參閱圖5’並結合圖2,本技術方案實施例提供一顯示裝 置1〇〇,該顯示裝置1〇〇包括一觸摸屏2〇,一顯示設備3〇。該 顯示設備30正對且靠近觸摸屏2〇設置。進一步地,上述的顯 不設備30正對且靠近觸摸屏2〇的基體22第二表面222設置。 上述的顯示設備30與觸摸屏20可間隔一預定距離設置或集成 設置。 顯示設備30可以爲液晶顯示器、場發射顯示器、電漿顯示 ❹器、電致發光顯示器、真空螢光顯示器及陰極射線管等顯示設 備中的一種。 清參閱圖2及圖6,進一步地,當顯示設備30與觸摸屏2〇 間隔一定距離設置時,可在觸摸屏2〇的屏蔽層25遠離基體22 的一個表面上設置一鈍化層1〇4,該鈍化層1〇4可由氮化矽、氧 化矽、苯并環丁烯、聚酯膜、丙烯酸樹脂等材料形成。該鈍化 層104與顯示設備30的正面間隔一間隙1〇6設置。具體地,在 上述的鈍化層104與顯示設備3〇之間設置兩個支撐體1〇8。該 鈍化層104作爲介電層使用,所述鈍化層1〇4與間隙1〇6可保 17 200928913 護顯示設備30不致於由於外力過大而損壞。 . 當顯示設備30與觸摸屏20集成設置時,觸摸屏2〇和顯示 - 設備30之間接觸設置。即將支撑體1〇8除去後,上述鈍化層ι〇4 無間隙地設置在顯示設備30的正面。 另外’上述的顯示裝置1〇〇進一步包括一觸摸屏控製器 40、一顯示設備控製器60及一中央處理器50。其中,觸摸屏控 製器40、中央處理器50及顯示設備控製器60三者通過電路相 互連接’觸摸屏控製器40連接觸摸屏20的電極28 ,顯示設備 ® 控製器60連接顯示設備30。 本實施例觸摸屏20及顯示裝置1〇〇在應用時的原理如下: 觸摸屏20在應用時可直接設置在顯示設備3〇的顯示面上。觸 摸屏控製器40根據手指等觸摸物7〇觸摸的圖標或菜單位置來 定位選擇信息輸入,並將該信息傳遞給中央處理器5〇。中央處 理器50通過顯示器控製器60控製顯示設備3〇顯示。 具體地’在使用時,透明導電層24上施加一預定電壓。電 ❹壓通過電極28施加到透明導電層24上,從而在該透明導電層 24上形成等電位面。使用者一邊視覺確認在觸摸屏2〇後面設置 的顯示設備30的顯示,一邊通過手指或筆等觸摸物70按壓或 接近觸摸屏20的防護層26進行操作時,觸摸物70與透明導電 層24之間形成一耦合電容。對於高頻電流來說,電容為直接導 體’於為手指從接觸點吸走了一部分電流。這個電流分別從觸 摸屏20被觸摸的奈米碳管帶狀膜結構相連接的兩個電極中流 出’並且流經這兩個電極的電流與手指到兩個電極的距離成正 比’觸摸屏控製器40通過對這兩個電流比例的精確計算,得出 18 200928913 觸摸點在被觸摸的奈米碳管帶狀膜結構上的位置,並和每個奈 ' 米碳管帶狀膜結構設置在觸摸屏20上的位置數據結合,從而得 出觸摸點在觸摸屏20上的觸摸位置。之後,觸摸屏控製器40 將數字化的觸摸位置數據傳送給中央處理器50。然後,中央處 理器50接受上述的觸摸位置數據並執行。最後,中央處理器5〇 將該觸摸位置數據傳輪給顯示器控製器6〇,從而在顯示設備30 上顯示接觸物70發出的觸摸信息。 ❹ 本技術方案實施例提供的顯示裝置100具有以下優點:其 一’由於透明導電層中的多個奈米碳管帶狀膜結構平行且間隔 設置’因此’所述透明導電層具有較好的力學性能,從而使得 上述的透明導電層具有較好的機械强度和韌性,故,採用上述 的奈米碳管帶狀膜結構作透明導電層,可以相應的提高觸摸屏 的耐用性’進而提高了使用該觸摸屏的顯示裝置的耐用性;其 一’上述透明導電層中的多個奈米碳管帶狀膜結構平行且間隔 設置’從而使得透明導電層具有均勻的阻值分布和透光性,且 ❹所述每個電極與其所在透明導電層中的至少一個奈米碳管帶狀 膜結構的一端電連接,故可以通過探測觸摸點處電極之間的電 變化來更精確地確定觸摸點的位置,從而有利於提高觸摸屏 及使用該觸摸屏的顯示裝置的分辨率和精確度。 綜上所述,本發明確已符合發明專利之要件,遂依法提出 專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能 、此限製本案之巾請專利範圍。舉凡熟悉本案技藝之人士援依 本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專 利範圍内。 19 200928913 【圖式簡單說明】 圖1為本技術方案實施例的觸摸屏的結構示意圖。 圖2為沿圖1所示的線II-II的剖視圖。 圖3為本技術方案實施例的透明導電層的結構示意圖。 圖4為本技術方案實施例的透明導電層的奈米碳管薄膜的 掃描電鏡圖。 圖5為本技術方案實施例的顯示裝置的結構示意圖。 圖6為本技術方案實施例的顯示裝置的工作原理示意圖。A di-oxidation (4) is used as the protective layer 26, and the hardness of the protective layer 26 is 7H (H is the Rockwell hardness test, and the indentation residual = depth under the initial test force after the main test force is removed). It will be appreciated that the hardness and thickness of the protective layer 26 can be selected as desired. The protective layer 26 can be directly occluded on the transparent conductive layer 24 by a binder. In addition, in order to reduce the electromagnetic interference generated by the display device, the signal generated from the screen 16 of the touch screen 2009200913 is prevented from being generated, and the substrate can also be A shielding layer 25 is disposed on the second surface 222 of 22. The shielding layer 25 may be formed of a transparent conductive material such as an indium tin oxide (ITO) film, a bismuth tin oxide film or a carbon nanotube film. The carbon nanotube film may be oriented or other structures. Nano carbon tube film. In the present embodiment, the carbon nanotube film comprises a plurality of carbon nanotubes, and the plurality of carbon nanotubes are aligned in the above-mentioned carbon nanotube film, and the specific structure thereof can be the same as that of the transparent conductive layer 24. The carbon nanotube film acts as an electrical grounding point and acts as a screen shield, thereby enabling the touch screen 20 to operate in an interference-free environment. Referring to FIG. 5' and in conjunction with FIG. 2, the embodiment of the present invention provides a display device 1A including a touch screen 2A and a display device 3A. The display device 30 is positioned directly adjacent to the touch screen 2A. Further, the above-described display device 30 is disposed adjacent to and adjacent to the second surface 222 of the base 22 of the touch screen 2A. The display device 30 described above and the touch screen 20 may be spaced apart by a predetermined distance or integrated. The display device 30 may be one of a display device such as a liquid crystal display, a field emission display, a plasma display device, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. Referring to FIG. 2 and FIG. 6 , further, when the display device 30 is disposed at a distance from the touch screen 2 , a passivation layer 1 〇 4 may be disposed on a surface of the shielding layer 25 of the touch screen 2 away from the substrate 22 . The passivation layer 1〇4 may be formed of a material such as tantalum nitride, hafnium oxide, benzocyclobutene, a polyester film, or an acrylic resin. The passivation layer 104 is spaced apart from the front side of the display device 30 by a gap 1〇6. Specifically, two support bodies 1 〇 8 are provided between the above-described passivation layer 104 and the display device 3A. The passivation layer 104 is used as a dielectric layer, and the passivation layer 1〇4 and the gap 1〇6 can protect the display device 30 from being damaged due to excessive external force. When the display device 30 is integrated with the touch screen 20, the touch screen 2A and the display device 30 are in contact with each other. Immediately after the support 1 8 is removed, the passivation layer ι 4 is disposed on the front surface of the display device 30 without a gap. Further, the above display device 1 further includes a touch screen controller 40, a display device controller 60, and a central processing unit 50. The touch screen controller 40, the central processing unit 50 and the display device controller 60 are connected to each other via a circuit. The touch screen controller 40 is connected to the electrode 28 of the touch screen 20, and the display device ® controller 60 is connected to the display device 30. The principle of the touch screen 20 and the display device 1 in this embodiment is as follows: The touch screen 20 can be directly disposed on the display surface of the display device 3 when applied. The touch panel controller 40 locates the selection information input based on the icon or menu position touched by the touch object 7 手指 or the like, and transmits the information to the central processing unit 5〇. The central processor 50 controls the display device 3 to display through the display controller 60. Specifically, a predetermined voltage is applied to the transparent conductive layer 24 when in use. The electric pressing is applied to the transparent conductive layer 24 through the electrode 28, thereby forming an equipotential surface on the transparent conductive layer 24. The user visually confirms the display of the display device 30 disposed behind the touch screen 2A, and when the user touches or approaches the protective layer 26 of the touch screen 20 by a touch object 70 such as a finger or a pen, the touch object 70 and the transparent conductive layer 24 are operated. A coupling capacitor is formed. For high frequency currents, the capacitor is a direct conductor' to draw a portion of the current from the contact point for the finger. This current flows out from the two electrodes connected to the touched carbon nanotube ribbon film structure of the touch screen 20 respectively and the current flowing through the two electrodes is proportional to the distance of the finger to the two electrodes' touch screen controller 40 By accurately calculating the ratio of the two currents, the position of the touch point on the touched carbon nanotube film structure of 18 200928913 is obtained, and the nano-carbon tube strip film structure is disposed on the touch screen 20 The position data on the combination is combined to derive the touch position of the touch point on the touch screen 20. Thereafter, the touch screen controller 40 transmits the digitized touch location data to the central processor 50. Then, the central processor 50 accepts the above-described touch position data and executes it. Finally, the central processing unit 5 传 transmits the touch position data to the display controller 6 〇 to display the touch information emitted by the contact 70 on the display device 30. The display device 100 provided by the embodiment of the present technical solution has the following advantages: one is because the plurality of carbon nanotube film-like film structures in the transparent conductive layer are parallel and spaced apart, so the transparent conductive layer has better The mechanical properties, so that the above transparent conductive layer has good mechanical strength and toughness, therefore, the use of the above-mentioned carbon nanotube strip film structure as a transparent conductive layer can correspondingly improve the durability of the touch screen', thereby improving the use Durability of the display device of the touch screen; a plurality of carbon nanotube film-like film structures in the transparent conductive layer are parallel and spaced apart such that the transparent conductive layer has a uniform resistance distribution and light transmittance, and ❹ each of the electrodes is electrically connected to one end of at least one of the carbon nanotube strip film structures in the transparent conductive layer, so that the position of the touched point can be more accurately determined by detecting electrical changes between the electrodes at the touched point. Thereby, it is advantageous to improve the resolution and accuracy of the touch screen and the display device using the touch screen. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application. Equivalent modifications or variations made by those skilled in the art to the spirit of the present invention are intended to be included in the following claims. 19 200928913 [Simplified Schematic Description] FIG. 1 is a schematic structural diagram of a touch screen according to an embodiment of the present technical solution. Fig. 2 is a cross-sectional view taken along line II-II shown in Fig. 1. FIG. 3 is a schematic structural diagram of a transparent conductive layer according to an embodiment of the present technical solution. 4 is a scanning electron micrograph of a carbon nanotube film of a transparent conductive layer according to an embodiment of the present technology. FIG. 5 is a schematic structural diagram of a display device according to an embodiment of the present technical solution. FIG. 6 is a schematic diagram of the working principle of the display device according to the embodiment of the present technical solution.

【主要元件符號說明】 顯示裝置 100 純化層 104 間隙 106 支撑體 108 觸摸屏 20 基體 22 第一表面 221 第二表面 222 透明導電層 24 奈米碳管長線 240 屏蔽層 25 防護層 26 電極 28 顯示設備 30 觸摸屏控製器 40 50 200928913 中央處理器 顯示設備控製器 觸摸物 60 70[Main component symbol description] Display device 100 Purification layer 104 Gap 106 Support 108 Touch screen 20 Substrate 22 First surface 221 Second surface 222 Transparent conductive layer 24 Carbon nanotube long line 240 Shield layer 25 Protective layer 26 Electrode 28 Display device 30 Touch screen controller 40 50 200928913 central processing unit display device controller touch object 60 70

21twenty one

Claims (1)

200928913 十、申請專利範圍 1. 一種觸摸屏,其包括: 一基體’一透明導電層’該透明導電層設置於上述基 體的表面;以及多個電極,該多個電極分別間隔設 置,並與該透明導電層電連接,其改良在於,所述透 明導電層進一步包括一奈米;6炭管層,該奈米碳管層包 括平行且間隔設置的多個奈米碳管帶狀膜結構,所述 & 每個奈米碳管帶狀膜結構的兩端分別與兩個相對的 電極電連接,且所述每個電極與至少一個奈米碳管帶 狀膜結構的一端電連接。 2. 如申請專利範圍第1項所述的觸摸屏,其中,所述多 個電極一一對應設置於多個奈米碳管帶狀膜結構的兩 端。 3·如申請專利範圍第1項所述的觸摸屏,其中,所述奈 米碳管帶狀膜結構爲一層奈米碳管薄膜,該奈米碳管 膜包括多個定向排列的奈米碳管,且所述多個奈米 碳管沿著奈米碳管帶狀膜結構的長度方向排列。 4. 如申請專利範圍第工項所述的觸摸屏,其中,所述夺 $碳管帶狀膜結構爲重叠設置的多層奈米碳管薄膜, 每層奈米碳管薄膜包括多個定向排列的奈米碳管, 且相鄰的兩層奈来碳管薄膜中的奈米碳管沿同一方向 排列或沿不同方向排列。 5. 如申請專利範圍第3或4項所述的觸摸屏,其中,所 述奈米唆管薄膜進一步包括多個首尾相連的奈米碳管 22 200928913 束片段’每個奈米碳管束片段具有相等的長度且每個 奈米碳管束片段由多個相互平行的奈米碳管束構成, 所述多個奈米碳管束片段兩端通過凡德瓦爾力相互連 接。 6·如申請專利範圍第5項所述的觸摸屏,其中,所述相 鄰的奈米碳管束之間通過凡德瓦爾力緊密結合,每一 奈米碳管束包括多個長度相等且平行排列的奈米碳 管。 7·如申請專利範圍第6項所述的觸摸屏,其中,所述奈 米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米 碳管中的-種或多種’所述單壁奈米碳管的直徑爲〇5 納米〜50納米,所述雙壁奈米碳管的直徑爲1〇納米 50納米’所述多壁奈米碳管的直徑冑納米,納 8. ❹ 9. 10. 11. --二 礼固禾丄項所述的觸摸屏中,所述车 帶狀膜結構。 ’、 =申請專利範圍第1項所述的觸摸屏,其中,所述夺 未碳管帶狀膜結構的厚度爲〇·5納米〜1〇〇微求。、 :::專利範圍第1項所述的觸摸屏,其中,所述多 :奈米碳管帶狀膜結構之間的間隔距離爲5納米〜4 ::請專利範圍第1項所述的觸摸屏,其中,所述多 如申請專利範圍第電層相對的兩端。 喝所述的觸摸屏,其中,所述 23 12. 200928913 多個電極通過導電銀膠設 體的一個表面上。 置在在透明導電層的遠離基 13·如申請專利範圍第u 多個電極爲金屬錢層或觸摸屏’其中’所述 14_ ::請專=圍第1項所迷的觸摸屏,其中,進-步 包括一防濩層,該防罐思^^ 體的-個表面上。*置在透明導電層的遠離基 Ο200928913 X. Patent application scope 1. A touch screen comprising: a substrate 'a transparent conductive layer' disposed on a surface of the base body; and a plurality of electrodes respectively spaced apart and transparent Electrically connecting the conductive layer, the improvement is that the transparent conductive layer further comprises a nano tube; 6 carbon tube layer, the carbon nanotube layer comprises a plurality of carbon nanotube strip film structures arranged in parallel and spaced apart, & Both ends of each of the carbon nanotube film-like film structures are electrically connected to two opposite electrodes, respectively, and each of the electrodes is electrically connected to one end of at least one of the carbon nanotube film-like film structures. 2. The touch panel of claim 1, wherein the plurality of electrodes are disposed one by one corresponding to both ends of the plurality of carbon nanotube film structures. 3. The touch screen of claim 1, wherein the carbon nanotube film structure is a layer of carbon nanotube film comprising a plurality of aligned carbon nanotubes And the plurality of carbon nanotubes are arranged along a length direction of the carbon nanotube film structure. 4. The touch screen of claim 2, wherein the carbon nanotube film structure is an overlapping multi-layered carbon nanotube film, and each layer of carbon nanotube film comprises a plurality of aligned cells. The carbon nanotubes, and the carbon nanotubes in the adjacent two layers of carbon nanotube film are arranged in the same direction or arranged in different directions. 5. The touch screen of claim 3, wherein the nanotube film further comprises a plurality of end-to-end carbon nanotubes 22 200928913 bundle segment 'each nano carbon tube bundle segment is equal The length and each of the carbon nanotube bundle segments are composed of a plurality of mutually parallel carbon nanotube bundles, and the ends of the plurality of carbon nanotube bundle segments are connected to each other by a van der Waals force. 6. The touch screen of claim 5, wherein the adjacent carbon nanotube bundles are closely coupled by a van der Waals force, and each of the carbon nanotube bundles comprises a plurality of equal lengths and parallel arrays. Carbon nanotubes. The touch screen of claim 6, wherein the carbon nanotubes comprise one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. The diameter of the single-walled carbon nanotube is 〇5 nm to 50 nm, and the diameter of the double-walled carbon nanotube is 1 〇 nanometer 50 nm. The diameter of the multi-walled carbon nanotube is 胄 nanometer, nano 8 ❹ 9. 10. 11. In the touch screen described in the second item, the car-shaped film structure. The touch panel of claim 1, wherein the thickness of the ribbon-free film structure is 〇·5 nm to 1 〇〇. The touch panel of the first aspect of the invention, wherein the plurality of carbon nanotube strip film structures are separated by a distance of 5 nm to 4: :: the touch screen described in the first item of the patent scope Wherein, the said is more than the opposite ends of the electrical layer of the patent application. Drinking the touch screen, wherein the 23 12.200928913 plurality of electrodes pass through a surface of the conductive silver paste set. Placed in the transparent conductive layer away from the base 13 · as claimed in the scope of the u-th electrode for the metal money layer or the touch screen 'where' the 14_ :: please special = the first item of the touch screen, which, into - The step includes a tamper-proof layer, which is on the surface of the body. * placed away from the base of the transparent conductive layer 如申請專利範圍第u 項所述的觸摸屏,其中,所述 防護層爲氮化矽、氧化紡货从 夕、苯並環丁婦、聚醋膜或丙 烯酸樹脂。 如申請專利範圍第1 項所述的觸摸屏,其中,所述觸 、屏為平面觸摸屏或者曲面觸摸屏。 17·如申請專利範圍第1項所述的觸摸屏,其中,所述觸 摸屏進步包括-光學補償膜,該光學補償膜設置於 所述奈米碳管帶狀膜結構之間。 18* —種顯示裝置,包括: 、觸摸屏’該觸摸屏包括一基體;一透明導電層,該 透明導電層設置於上述基體的表面;以及多個電極, 該多個電極分別間隔設置,並與該透明導電層電連 接; 一顯示設備’該顯示設備正對且靠近觸摸屏基體遠離 透明導電層的一個表面設置; 其改良在於,所述透明導電層進一步包括一奈米碳管 層,該奈米碳管層包括平行且間隔設置的多個奈米碳 24 200928913 . 管帶狀膜結構,所述每個奈米碳管帶狀膜結構 的兩端 分別與兩個相對的電極電連接,且所述每個電極與至 夕一個奈米碳管帶狀膜結構的一端電連接。 19·如申請專利範圍第18項所述的顯示裝置,其中,所 述顯示設備爲液晶顯示器、場發射顯示器、電聚顯示 器、電致發光顯示器、真空螢光顯示器及陰極射線管 中的一種。 ❹20·如申請專利範圍第18項所述的顯示裝置,其中,所 述顯示設備與觸摸屏間隔設置或集成設置。 21 ·如申請專利範圍第18項所述的顯示裝置,其中,所 述顯示裝置進一步包括一鈍化層’該鈍化層設置於觸 摸屏和顯示設備之間,與觸摸屏相接觸設置,與顯示 設備間隔一定距離設置。 22.如申請專利範圍第 21項所述的顯示裝置,其中,所 述鈍化層爲氮切、氧切、苯並環丁烯、聚醋膜或 〇 丙烯酸樹脂。 23.如申請專利範圍第22項 22項所述的顯示裝置,其中,所The touch panel of claim 5, wherein the protective layer is tantalum nitride, oxidized spun, benzocyclobutene, polyester film or acrylic resin. The touch screen of claim 1, wherein the touch screen is a flat touch screen or a curved touch screen. The touch screen of claim 1, wherein the touch screen advance comprises an optical compensation film disposed between the carbon nanotube film structures. The display device comprises: a touch screen comprising: a substrate; a transparent conductive layer disposed on a surface of the substrate; and a plurality of electrodes, the plurality of electrodes being spaced apart from each other The transparent conductive layer is electrically connected; a display device is disposed adjacent to and close to a surface of the touch screen substrate away from the transparent conductive layer; and the improvement is that the transparent conductive layer further comprises a carbon nanotube layer, the nano carbon The tube layer comprises a plurality of nanocarbons 24 and 2930 in parallel and spaced apart. The tube-like membrane structure, the two ends of each of the carbon nanotube strip-shaped membrane structures are electrically connected to two opposite electrodes, respectively, and Each electrode is electrically connected to one end of a carbon nanotube ribbon film structure. The display device according to claim 18, wherein the display device is one of a liquid crystal display, a field emission display, an electro-polymer display, an electroluminescence display, a vacuum fluorescent display, and a cathode ray tube. The display device of claim 18, wherein the display device is spaced apart from or integrated with the touch screen. The display device of claim 18, wherein the display device further comprises a passivation layer disposed between the touch screen and the display device, disposed in contact with the touch screen, and spaced apart from the display device Distance setting. The display device according to claim 21, wherein the passivation layer is a nitrogen cut, an oxygen cut, a benzocyclobutene, a polyester film or a ruthenium acrylic resin. 23. The display device of claim 22, wherein 顯不設備。No device.
TW96151277A 2007-12-31 2007-12-31 Touch panel and displaying device using the same TWI408575B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96151277A TWI408575B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96151277A TWI408575B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Publications (2)

Publication Number Publication Date
TW200928913A true TW200928913A (en) 2009-07-01
TWI408575B TWI408575B (en) 2013-09-11

Family

ID=44864293

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96151277A TWI408575B (en) 2007-12-31 2007-12-31 Touch panel and displaying device using the same

Country Status (1)

Country Link
TW (1) TWI408575B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8899851B2 (en) 2011-01-28 2014-12-02 Tsinghua University Carbon nanotube based keyboard
US8905659B2 (en) 2011-01-28 2014-12-09 Tsinghua University Carbon nanotube based keyboard
TWI496167B (en) * 2009-08-21 2015-08-11 Innolux Corp A conductive plate having a plurity of conductive films

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100796489B1 (en) * 2001-12-28 2008-01-21 엘지.필립스 엘시디 주식회사 Touch Panel Apparatus and Method of Fabricating the same
TWI303239B (en) * 2002-11-05 2008-11-21 Hon Hai Prec Ind Co Ltd A method for making carbon nanotube yarn
EP1892609A4 (en) * 2005-05-26 2013-03-27 Gunze Kk Transparent planar body and transparent touch switch
JP2007018226A (en) * 2005-07-07 2007-01-25 Three M Innovative Properties Co Touch panel sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI496167B (en) * 2009-08-21 2015-08-11 Innolux Corp A conductive plate having a plurity of conductive films
US8899851B2 (en) 2011-01-28 2014-12-02 Tsinghua University Carbon nanotube based keyboard
US8905659B2 (en) 2011-01-28 2014-12-09 Tsinghua University Carbon nanotube based keyboard
TWI505308B (en) * 2011-01-28 2015-10-21 Hon Hai Prec Ind Co Ltd Flexible keyboard

Also Published As

Publication number Publication date
TWI408575B (en) 2013-09-11

Similar Documents

Publication Publication Date Title
TWI364860B (en) Touch panel, method for making the same, and displaying device adopting the same
TWI354921B (en) Touch panel and displaying device using the same
CN101458594B (en) Touch screen and display device
CN101458597B (en) Touch screen, method for producing the touch screen, and display device using the touch screen
CN101470558B (en) Touch screen and display equipment
CN101470559B (en) Touch screen and display equipment
CN101419519B (en) Touch panel
CN101458593B (en) Touch screen and display device
CN101470560B (en) Touch screen and display equipment
CN101470565B (en) Touch screen and display equipment
CN101458603B (en) Touch screen and display device
CN101458596B (en) Touch screen and display device
CN101458598A (en) Touch screen and display device
TW200926471A (en) Touch panel and displaying device using the same
CN101458604B (en) Touch screen and display device
TWI386831B (en) Touch panel and displaying device using the same
CN101464766B (en) Touch screen and display equipment
TWI408575B (en) Touch panel and displaying device using the same
TWI436510B (en) Touch panel and displaying device using the same
TWI423084B (en) Touch panel and displaying device using the same
CN101458605B (en) Touch screen and display device
TWI354920B (en) Touch panel and displaying device using the same
TW200929636A (en) Touch panel and displaying device using the same
TWI362776B (en) Touch panel and displaying device using the same
TWI356516B (en) Touch panel and displaying device using the same