TW200927647A - Method for making carbon nanotube composite - Google Patents

Method for making carbon nanotube composite Download PDF

Info

Publication number
TW200927647A
TW200927647A TW96150104A TW96150104A TW200927647A TW 200927647 A TW200927647 A TW 200927647A TW 96150104 A TW96150104 A TW 96150104A TW 96150104 A TW96150104 A TW 96150104A TW 200927647 A TW200927647 A TW 200927647A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
film structure
preparing
polymer material
thermosetting polymer
Prior art date
Application number
TW96150104A
Other languages
Chinese (zh)
Other versions
TWI422524B (en
Inventor
Jia-Ping Wang
Qun-Feng Cheng
Kai-Li Jiang
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96150104A priority Critical patent/TWI422524B/en
Publication of TW200927647A publication Critical patent/TW200927647A/en
Application granted granted Critical
Publication of TWI422524B publication Critical patent/TWI422524B/en

Links

Abstract

The present invention relates to a method for making carbon nanotube composite. The method includes the steps of: making a self-supported carbon nanotube film; providing a liquid thermosetting polymer material; putting the carbon nanotube film to be saturated by the liquid thermosetting polymer material; solidifying the carbon nanotube film saturated by the liquid thermosetting polymer material, thereby obtain the carbon nanotube composite.

Description

200927647 九、發明說明: 【發明所屬之技術領域】 . 本發明涉及一種複合材料的製備方法,尤其涉及一種 奈米碳管複合材料的製備方法。 【先前技術】 自1991年曰本NEC公司的Iijima發現奈米碳管 (Carbon Nanotube, CNT )以來(請參見 Helical microtubules of graphitic carbon, Nature, Sumio Iijima, vol ⑬354, p56(1991;〇,奈米碳管引起了科學界及產業界的極大 重視,係近年來國際科學研究的熱點。奈米碳管具有與金 剛石相同的熱導和獨特的力學性能,如抗張強度達100千 兆帕,模量高達1800千兆帕,且耐強酸、強鹼,600°C以 下基本不氧化等。 由於奈米碳管具有如此優異的性能,利用奈米碳管作 為填充物與其他材料複合已成為奈米碳管應用的一個重要 方向。特別地,奈米碳管與其他材料,如金屬、半導體或 ®者高分子材料等的複合可以實現材料的優勢互補或加強。 奈米碳管具有較大的長徑比和中空的結構,具有優異的力 學性能,可作為一種超級纖維,對複合材料起到增強作用。 此外,奈米碳管具有優異的導熱性能,利用奈米碳管的導 熱性能使該複合材料具有良好的熱傳導性。 先前技術多以粒子填充高分子材料的形式來製備奈米 碳管複合材料,由於奈米碳管容易團聚,需先對奈米碳管 進行表面改性和功能化處理,而後採用溶液或熔融的方法 6 200927647 ,與高分子材料複合。先前技術中一種製備奈米碳管複合材 •料的方法包括以下步驟:(一)將0.3重量份的多壁奈米碳 -管粉末投入到10重量份的濃硝酸中,在l〇〇°c攪拌回流2〇 小時’用蒸餾水洗去酸液,9(TC下真空乾燥10小時;(二) 將上述產物羧酸化奈米碳管加入到1〇重量份草醯氯中,在 90 C下授拌1〇小時’蒸除未反應的草醯氣’從而得到醯氣 化的奈米碳管;(三)將醯氯化的奈米碳管放入冰浴中慢速 攪拌,並滴加1〇重量份的乾燥乙二胺,在1〇〇。〇下抽真空 ❹乾燥10小時;(四)將上述醯胺化奈米碳管加入到20重量 份的乙醇溶劑中,超聲波處理15分鐘,加入2重量份環氧 树月曰尚速擾拌分散20分鐘,蒸除溶劑,加熱至6〇〇c, 按照環氧樹脂的環氧基團與固化劑中胺基氫原子物質的摩 爾比為1. 1的比例加入固化劑苯二胺,使奈来碳管分散均 勻;(五)將複合體系倒入模具中,升溫至8〇。〇後固化2 小時,然後在15(rc下固化2小時,得到奈米碳管/環氧樹 脂複合材料。 上述奈米碳管/環氧樹脂複合材料的製備方法存在以 ,在奈米碳管複合材料的製備過程中,為使 二高分子材料中能夠更好的分散,需將奈米碳管 合並對奈米碳管進行表面修飾,這種 〜:人:重地破壞奈米碳管的結構,從而影響了奈米 過尹由+ 、 ’、—,在製備不米碳管複合材料的 得夺乎π所添加的溶劑很難除去,從而使 仲不木石反官後合材料 寸风刀不純,其二,該方法無法實現奈 200927647 .米碳管在複合材料中的固定取向,使得奈米碳管在複合材 料中不能發揮其轴向性優勢,從而影響了奈米碳管複合材 .料的性能;其四,所述奈米碳管複合材料的製備方法需要 對奈米碳管進行表面修飾,並採用添加溶劑對其進行分 散’工藝複雜且成本較高。 /、 刀 有雲于此,提供—種具有優良特性的奈米碳管複合材 料的製備方法實為必要,且該製備方法簡單、易於實^、 成本低廉。 ❹【發明内容】 -種奈米碳管複合材料的製備方法,其包括以下步 驟:製備-自支揮的奈米碳管薄臈結構;提供一液態熱固 性南分子材料;將所述液態熱固性高分子材料浸潤所述夺 米碳管薄膜結構;固化上述被液態熱固性高分子材料浸潤 的奈米碳管薄膜結構,得到—奈米碳管複合材料。 * —與先前技術相比,本技術方案採用一拉伸工具從奈米 ❹反&陣列中直接拉取獲得一奈米碳管薄膜,該奈米碳管薄 膜中奈米碳管均勻分佈且擇優取向排列。故該奈米碳管複 ^材料的製備方法具有以下優點:其―,採用奈米碳管均 :分佈的^米碳管薄膜與液態熱固性高分子材料複合,無 =^不米碳g進行表面修飾,不會破壞奈米碳管的結構, 巧了所製備的奈求碳管複合材料的性能;其二,奈米碳 ,的I備過程中無需使用添加劑,使得所製備的奈米 =複合材料成分較純、性能良好;其三,採用將液態熱 性南分子材料浸潤所述奈米碳管薄膜結構的方法製備奈 8 200927647 •米碳管複合材料,簡化了· •【實施方式】“了製備過程’降低了主產成本。 .===對本技術方案作進一步的詳細說明。 合材料10的_方^7/=_供—種奈米碳管複 教侑万法其具體包括以下步驟: -.製備一自支撐的奈米碳管薄膜結構12。 括以揮的奈米碳管薄膜結構12的製備方法具體包 0奈米:管?車::奈米碳管陣列’優選地’該陣列為超順排 與/實施例中,超順排奈米碳管陣列的製備方法採用化 目沈積法’其具體步驟包括:⑴提供-平整基底, =:二可選用p型或n型矽基底,或選用形成有氧化層的 石土 & ’本實施例優選為採用4英寸的石夕基底;⑴在基 底表面均勻形成一催化劑層,該催化劑層材料可選用鐵 ❹-)銘(C〇)、錄(Ni)或其任意組合的合金之一;(c) 將上述形成有催化劑層的基底在70(TC〜90(TC的空氣中退 火約3〇分鐘〜90分鐘;(d)將處理過的基底置於反應爐中, 在保濩氣體環境下加熱到50CTC〜74CTC,然後通入碳源氣 體反應約5分鐘〜3〇分鐘,生長得到超順排奈米碳管陣列, 其问度為2〇〇微米〜4〇〇微米。該超順排奈米碳管陣列為多 個彼此平行且垂直於基底生長的奈米碳管形成的純奈米碳 管陣列。通過上述控制生長條件,該超順排奈米碳管陣列 中基本不含有雜質’如無定型碳或殘留的催化劑金屬顆粒 200927647 • f U石反吕陣列中的奈米碳管彼此通過凡德瓦爾力緊 在接觸形成陣列。該奈米碳管陣列面積與上述基底面積基 * 本相同。 本實施例中石炭源氣可選用乙炔、乙婦、甲烧等化學性 質較錄的碳氫化合物,本實施例優選的碳源氣為乙快; 保護氣體為氮氣或惰性氣體,本實施例優選的保護氣體為 氬氣。 ^可、、理解本實知例提供的奈米碳管陣列不限於上述 ❹製備方》A可為石墨電極恒流電弧放電沈積法、鐳射基 發沈積法等。 ^ (2)從上述奈米碳管陣列中拉取獲得一奈米碳管薄 膜。 / 從上述奈米碳管陣列拉取獲得一奈米碳管薄膜的過程 具體包括以下步驟··(a)從上述奈米碳管陣列中選定一定 寬度的多個奈米碳管束片斷,本技術方案實施例優選為採 用具有一定寬度的膠帶接觸奈米碳管陣列以選定一定寬度 的多奈米碳管束片斷;(b )以一定速度沿基本垂直于奈 米碳管陣列生長方向拉伸該多個奈米碳管束片斷,獲得一 連續的奈米碳管薄膜,該奈米碳管薄膜中奈米碳管的排列 方向平行於上述拉伸的方向。 在上述拉伸過程中,該多個奈米碳管束片斷在拉力作 用下沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作 用’該選定的多個奈米碳管束片斷分別與其他奈米碳管片 斷首尾相連地連續地被拉出,從而形成一奈米碳管薄膜。 200927647 本技術方案實施例中,由於採用CVD法在4英寸的 • 基底生長超順排奈米碳管陣列,並進行進一步地處理所得 • 一奈米碳管薄膜,故該奈米碳管薄膜的寬度為〇.〇1厘米 〜10厘米,厚度為10奈米〜100微米。上述奈米碳管薄膜 中的奈米碳管為單壁奈米碳管、雙壁奈米碳管或者多壁奈 米碳管。當奈米碳管薄膜中的奈米碳管為單壁奈米碳管 時,該單壁奈米碳管的直徑為0.5奈米〜50奈米。當奈米 碳管薄膜中的奈米碳管為雙壁奈米碳管時,該雙壁奈米碳 @管的直徑為1.0奈米〜50奈米。當奈米碳管薄膜中的奈米 碳管為多壁奈米碳管時,該多壁奈米碳管的直徑為1.5奈 米〜50奈米。 進一步地,將至少兩個奈米碳管薄膜平行且無間隙鋪 設得到一奈米碳管層,將至少兩個奈米碳管層重疊鋪設得 到一奈米碳管薄膜結構12。可以理解,該奈米碳管薄膜結 構12也可由至少兩個奈米碳管薄膜重疊鋪設得到。 所述奈米碳管薄膜結構12包括一奈米碳管詹或者至 ®少兩個重疊設置的奈米碳管層,相鄰兩個奈米碳管層之間 通過凡德瓦爾力緊密結合。該奈米碳管層包括一奈米碳管 薄膜或者至少兩個平行且無間隙鋪設的奈米碳管薄膜。所 述奈米碳管薄膜包括多個首尾相連且擇優取向排列的奈米 碳管束。所述奈米碳管薄膜中的奈米碳管束的長度基本相 同,奈米碳管束之間通過凡德瓦爾办緊密連接。該奈米碳 管束包括多個長度相等且相互平行排列的奈米碳管,該奈 米碳管之間通過凡德瓦爾力緊密連接。所述至少兩個重疊 11 200927647 •設置的奈米碳管層中奈米碳管沿同—方向擇優取向排列, .相鄰兩個奈米碳管層中的奈米碳管之間具有一交叉角产 .α,0度度,具體可依據實際需求製備。 又 另外,上述奈米碳管薄膜結構12可直接使用,或者也 :使用有機溶劑處理後再使用。使用有機溶劑處理所述奈 米碳管薄膜結構12的過程包括:通過試管將有機溶劑滴落 在奈米碳管薄膜結構12表面浸潤整個奈米碳管薄膜結構 或者將整個奈米碳管薄膜結構12浸入盛有有機溶^丨的 ❹容器中浸潤。該有機溶劑為揮發性有機溶劑,如乙醇、甲 醇、丙酮、二氯乙烷和氯仿中一種或者幾種的混合,本技 術方案實施例中採用乙醇。所述的奈米碳管薄膜結構12 經有機溶劑浸潤處理後,在揮發性有機溶劑的表面張力的 作用下,奈米碳管薄膜中平行的奈米碳管片斷會部分聚集 成奈米碳管束。因此,該奈米碳管薄膜結構12表面體積比 小,無粘性,且具有良好的機械強度及韌性。 請參閱圖2,本技術方案實施例優選的奈米碳管薄膜 結構12包括一第一奈米碳管層121、一第二奈米碳管層 122、一第二奈米碳管層123和一第四奈米碳管層。該 第奈米碳管層121、第二奈米碳管層122、第三奈米碳管 層123和第四奈米碳管層124重疊設置,且每個奈米碳管 層中的奈米碳管沿一固定方向擇優取向排列。相鄰兩個奈 米碳管層中奈米碳管之間的排列方向為9〇度,並形成多個 微孔結構,該微孔的直徑為丄奈米〜〇 5微米。所述奈米碳 官薄膜結構12的製備方法包括:首先,採用步驟一中的方 12 200927647 法製備得到一第一奈米碳管層121、一第二奈米碳管層 * 122、一第三奈米碳管層123和一第四奈米碳管層124 ;其 •次,將該第一奈米碳管層121、第二奈米碳管層122、第三 奈米碳管層123和第四奈米碳管層124重疊設置,使第二 奈米碳管層122中奈米礙管的排列方向與第一奈米破管層 121和第三奈米碳管層123中奈米碳管的排列方向成90 度,第三奈米碳管層123中奈米碳管的排列方向與第二奈 米碳管層122和第四奈米碳管層124中奈米碳管的排列方 0向成90度。 步驟二:提供一液態熱固性高分子材料14。 所述液態熱固性高分子材料14的製備方法包括以下 步驟:首先,將一高分子材料置於一容器中,在不高於 300°C下,加熱該高分子材料,並對該高分子材料進行攪 拌,使所述高分子材料混合均勻,攪拌的時間由所述高分 子材料的種類及質量所決定;其次,將一添加物或者多種 添加物的混合物加入到所述擾拌均勻的高分子材料中進行 ®化學反應;接著,在不高於300°C下,加熱所述混合有添 加物的高分子材料,並對所述混合有添加物的高分子進行 攪拌,使所述高分子材料和添加物混合均勻,攪拌的時間 由所述高分子材料和添加物的種類及質量所決定,從而得 到一液態熱固性高分子材料14。 所述液態熱固性高分子材料14的粘度低於5帕·秒, 並能在室溫下保持該粘度在30分鐘以上。可以理解,若所 述熱固性高分子材料14在室溫下呈固態,則需先對所述熱 13 200927647 固性高分子材料14進行加熱,使其轉變成液態的熱固性高 • 分子材料14。 • 所述熱固性高分子材料14包括高分子材料和固化 劑、改性劑、填料或者稀釋劑等添加物。其中,高分子材 料的含董占所述熱固性高分子材料質量的7〇%〜95%,所述 添加物的含量占所述熱固性高分子材料質量的5%〜3〇%。 所述高分子材料為酚醛樹脂、環氧樹脂、雙馬來醢亞 胺樹脂、聚苯並惡嗪樹脂、氰酸酯樹脂、聚醯亞胺樹脂、 ❹聚氨酯、聚甲基丙烯酸甲酯和不飽和聚醯樹脂等中一種或 者幾種混合。 所述固化劑用於促進所述熱固性高分子材料14的固 化。常用固化劑包括脂肪胺、脂環胺、芳香胺、聚酿胺、 酸肝、樹脂類和叔胺中一種或者幾種混合。所述改性劑用 於改善所述熱S]性高分子材料14的柔性、抗剪、抗彎、抗 ^者提高絶緣性等。常用改性劑包括聚硫橡膠、聚醯胺 ❹樹脂、聚乙烯醇叔丁醛或者丁腈橡膠類中一種或者幾種混 合。所述填料用於改善所述熱固性高分子材料14固化時的 散=條件,用了填料也可以減少所述熱固性高分子材料的 f置’降低成本。常用填料包括石棉纖維、玻璃纖維、石 =粉、聽、氧化铭和謂粉中—種或者幾種混合。所述 ,劑用於降低樹絲度,改錢脂的渗透性。所述稀釋 =括二縮水甘㈣、多縮水甘油鍵、環氧丙烧丁基驗、 ^丙燒本基趟、二環氧丙烧乙基趟、三環氧丙炫丙基_ 和烯丙基苯酚中的一種或者幾種混合。 14 200927647 -纟技術方案實施例優選以環氧樹脂製 •分子材料u,其具體包括以下步驟: ;、固f生同 .-. ^ . f先將縮水甘油醚 型%乳和縮水甘油酯型環氧的混合物置於一容器中 至3(TC〜60。〇,並對容器中所述縮水甘油鍵型環 : 甘油㈣環氧的混合物㈣1G分鐘,直至所述縮水甘油二 型裱虱和縮水甘油醋型環氧的混合物混合均勻為止盆 次,將脂肪胺和二縮水甘㈣加入到所述擾摔均句的縮ς 甘油醚型環氧和縮水甘油酯型環氧的混合物中進行化學反 ©應;最後,將所述縮水甘㈣型環氧和縮水甘油酉旨型 合物加熱至3(rc〜6(rc,從而得到一含環氧樹脂的液 性南分子材料14。所述含環氧樹脂的液態熱固性高 /刀子材料14係-透明淡黃色均勾混合的液體。 止山ί驟二.將所述液態熱固性高分子材料14浸潤所述奈 米碳管薄膜結構12。 、如圖3所示’步驟三可在-成型裝置100中實現。該 成型衷置100包括一原料供給袭i 2〇、一原料輸入裝置 3〇、一模具40和-原料輸出襞置5〇。所述原料供給裝置 20包括一容器2〇1,該容器2〇1用於盛放原料;該容器 一進口 202和一加壓口 2〇3,該進口 2〇2用於將所述 谷器201抽真空,該加壓口 2〇3用於對所述容器中的 原料施加注射壓力。所述原料輪入裝置30包括一閥門 1用於控制原料的流入;一注射口 3〇2,用於將原料注 射進模具4〇中。所述模具4〇具有一上模具術和一下模 /、402所述上模具4〇1和下模具4⑽的表面均勻塗抹一 15 200927647 脫模劑,以便獲得複合材料後可以順利脫模。所述脫模劑 根據熱固性高分子材料類別的不同而不同。所述脫模劑可 •以係高溫脫模劑、有機矽型脫模劑、蠟類脫模劑或者矽氧 烷型脫模劑。所述原料輸出裝置50包括一闊門501,用於 控制原料的流出;一出口 502,用於將原料排出所述成型 裝置100。 本技術方案實施例中將所述液態熱固性高分子材料 14浸潤所述奈米碳管薄膜結構12的方法包括以下步驟: β (1)將一奈米碳管薄膜結構12放置於一模具40中。 在所述模具40中上模具401和下模具402的表面均勻 塗抹一脫模劑,再將所述奈米碳管薄膜結構12放置於所述 模具40的下模具402的模腔中,將所述上模具401輕輕置 於所述下模具402之上。同時,使用密封墊片或者密封劑 將所述模具40密封。 (2)將所述液態熱固性高分子材料14置於一容器201 中,並對該容器201抽真空後對所述液態熱固性高分子材 ®料14施加注射壓力。 將所述原料輸入裝置30中閥門301和所述原料輸出裝 置50中閥門501關閉。將所述熱固性高分子材料14置於 所述原料供給裝置20的容器201中。通過所述原料供給裝 置20的進口 202,對所述容器201進行抽真空,使其真空 度低於-0.09Mpa,並在該真空度下保持至少10分鐘,以充 分排除因攪拌引入到所述熱固性材料14中的空氣。接著, 通過所述原料供給裝置20的加壓口 203,對所述容器201 16 200927647 中的熱固性rfj分子材料14施加注射壓力。所施加的注射麼 力的計量值為0.001Mpa-10Mpa。 ' (3)將所述液態熱固性高分子材料14注射進所述模具 40中,浸潤所述奈米碳管薄膜結構12。 將所述原料輸入裝置30的閥門301和所述原料輪出裝 置50的闊門501打開。所述熱固性高分子材料14在注射 壓力的作用下,從所述容器201通過所述原料輸入裝置3〇 進入到所述模具40中,並浸潤所述奈米碳管薄膜結構12。 〇 所述液態熱固性高分子材料14的粘度很低,奈米碳管 薄膜結構12中奈米碳管擇優取向排列,且相鄰的奈米碳管 之間具有一定的間隙,故所述液態熱固性高分子材料14 能夠很好的浸潤到奈米碳管之間形成的間隙中。因此,所 述的奈米碳管複合材料10具有優異的性能。為了讓液態熱 固性高分子材料14充分浸潤所述奈米碳管薄膜結構12, 浸潤所述奈米碳管薄膜結構12的時間不能少於分鐘。 ❹同時,多餘的液態熱固性高分子材料14通過所述原料輸出 裝置50的出口 502流出。流動的熱固性高分子材料14將 奈米碳管薄獏結構12中奈米碳管之間的間隙内的空氣帶 出,充分排除奈米碳管複合材料10中的空氣,從而不會導 致所述奈米碳管複合材料10存在結構缺陷。 可以理解’將所述液態熱固性高分子材料14浸潤所述 奈米碳管薄膜結構12的方法不限注射的方法,所述液態熱 固性高分子材料14還可以通過毛細作用被吸入到所述奈 米碳管薄膜結構12中,浸潤所述奈米碳管薄膜結構12, 17 200927647 或者將所述奈米碳管薄膜結構12浸泡在所述液態熱固性 '高分子材料14中。 ' 步驟四:固化上述被液態熱固性高分子材料14浸潤 的奈米碳管薄膜結構12,得到一奈米碳管複合材料10。 本技術方案實施例中固化上述被液態熱固性高分子材 料14浸潤的奈米碳管薄膜結構12的方法包括以下步驟: (1) 將被液態熱固性高分子材料14浸潤的奈米碳管薄 膜結構12逐漸升溫。 0 將所述原料輸入裝置30的閥門301和所述原料輸出裝 置50的閥門501關閉。通過一加熱裝置對所述模具40進 行加熱,實現對所述液態熱固性高分子材料14的固化。對 所述模具40進行加熱,需逐步升溫固化所述的熱固性高分 子材料14。因為在液態熱固性高分子材料14的固化過程 中,升溫過快會導致熱固性高分子材料14爆聚,從而影響 材料性能,故,液態熱固性高分子材料14的固化需要逐步 升溫。所述液態熱固性高分子材料14的固化溫度和固化時 ®間由所述高分子材料和添加物的種類及質量所決定。所述 液態熱固性高分子材料14的固化溫度低於400°C,固化時 間少於100小時。所述加熱裝置可以係加熱板、熱壓機、 平板硫化機、熱壓罐或者烘箱中等加熱裝置中的一種。 (2) 將逐漸升溫後的奈米碳管薄膜結構12降溫至室 溫,得到奈米碳_管複合材料10。 待所述熱固性高分子材料14固化成型後,將所述模具 40降溫至室溫,脫模可得奈米碳管複合材料10。 18 200927647 -本技術方案實施例含環氧樹脂的熱固性高分子材料 ^ 14的固化方法具體包括以下步驟:首先,將一加熱裝置升 *溫至50X:〜70〇C,在該溫度下含環氧樹脂的熱固性高分子 材料14為液態,維持該溫度i小時〜3小時,使得該熱固 性高分子材料14繼續吸熱以增加其固化度;其次,繼續升 溫該加熱裝置至贼〜贼’在該溫度下維持i小時〜3 小時,使得所述熱固性高分子材料14繼續吸熱以增加其固 化度;再次,繼續升溫該加熱裝置至n〇t:〜i5(rc,在該 ©溫度下維持2小時〜20小時,使得所述熱固性高分子材二 1—4繼續吸熱以增加其固化度;最後,待該加熱裝置降溫至 室溫後,將模具40從加熱裝置中取出,脫模可得一奈米 管複合材料10。 凊參考圖4,本技術方案實施例提供的奈米碳管複合 材料10,包括熱固性高分子材料14與奈米碳管,該夺: 碳管以奈米碳管薄膜結構12的形式均勻 _性高分子材料14中。 綜上所述,本發明確已符合發明專利之要件,遂依法 ,出專射請。惟,以上所述者僅為本發明之較佳實施例, 不月匕以此限制本案之申請專利範圍。舉凡熟悉本案技藝 ^人士援依本發明之精神所作之等效修飾錢化,皆應涵 盖於以下申請專利範圍内。 19 200927647 .【圖式簡單說明】 • 圖1為本技術方案實 * 方法的流程圖。 圖2為本技術方案實 示意圖。 圖3為本技術方案實 置的結構示意圖。 圖4為本技術方案實 ❹示意圖。 【主要元件符號說明】 奈米碳管複合材料 奈米碳管薄膜結構 液態熱固性高分子材料 原料供給裝置 原料輸入裝置 模具 ®原料輸出裝置 成型裝置 第一奈米礙管層 第二奈米碳管層 第三奈米碳管層 第四奈米碳管層 容器 進口 的奈米碳管複合材料的製備 的奈米碳管薄膜結構的結構 的奈米碳管複合材料成型裝 的奈米碳管複合材料的結構 200927647 . 加壓口 203 閥門 301, 501 注射口 302 上模具 401 下模具 402 出cr 502 ❹ ❹ 21200927647 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for preparing a composite material, and more particularly to a method for preparing a carbon nanotube composite material. [Prior Art] Since the discovery of Carbon Nanotube (CNT) by Iijima of NEC Corporation in 1991 (see Helical microtubules of graphitic carbon, Nature, Sumio Iijima, vol 13354, p56 (1991; 〇, nm) Carbon tubes have attracted great attention from the scientific community and the industry. They are the hotspots of international scientific research in recent years. The carbon nanotubes have the same thermal conductivity and unique mechanical properties as diamonds, such as tensile strength up to 100 gigapascals. The amount is up to 1800 gigapascals, and it is resistant to strong acid and alkali, and it is basically non-oxidized below 600 ° C. Because of the excellent performance of the carbon nanotubes, the use of carbon nanotubes as a filler and other materials has become a nano-composite. An important direction for the application of carbon tubes. In particular, the combination of carbon nanotubes with other materials, such as metals, semiconductors or polymer materials, can complement or enhance the advantages of the materials. The carbon nanotubes have a large length. The aspect ratio and hollow structure have excellent mechanical properties and can be used as a super fiber to enhance the composite material. In addition, the carbon nanotube has excellent conductivity. Performance, the thermal conductivity of the carbon nanotubes makes the composite have good thermal conductivity. Previously, the carbon nanotube composites were prepared in the form of particle-filled polymer materials. Since the carbon nanotubes are easily agglomerated, it is necessary to first The surface modification and functionalization treatment of the carbon nanotubes is then combined with the polymer material by a solution or melting method 6 200927647. A method for preparing a carbon nanotube composite material in the prior art includes the following steps: a) 0.3 parts by weight of the multi-walled nano carbon tube powder is put into 10 parts by weight of concentrated nitric acid, and stirred at 1 ° C for 2 hours. The acid is washed with distilled water and dried under vacuum at 9 (TC). 10 hours; (2) Adding the above-mentioned product carboxylated carbon nanotubes to 1 part by weight of grass sputum chloride, and mixing at 90 C for 1 hour to 'steam unreacted grass 醯 gas' to obtain hydrazine gasification (n) The chlorinated carbon nanotubes are placed in an ice bath and stirred slowly, and 1 part by weight of dry ethylenediamine is added dropwise at 1 Torr. Drying for 10 hours; (4) aminating the above The carbon nanotubes were added to 20 parts by weight of ethanol solvent, sonicated for 15 minutes, 2 parts by weight of epoxy tree was added and dispersed for 20 minutes, the solvent was distilled off, and heated to 6 〇〇c, according to epoxy resin. The ratio of the molar ratio of the epoxy group to the amine-based hydrogen atom in the curing agent is 1.1. The ratio of the curing agent phenylenediamine is added to uniformly disperse the carbon nanotubes; (5) the composite system is poured into the mold, and the temperature is raised. To 8 〇. After curing for 2 hours, and then curing at 15 (rc for 2 hours, to obtain a carbon nanotube / epoxy resin composite. The above preparation method of the carbon nanotube / epoxy resin composite exists, in In the preparation process of the carbon nanotube composite material, in order to better disperse the two polymer materials, it is necessary to combine the carbon nanotubes with the surface modification of the carbon nanotubes, such as: human: heavy damage to the nanometer The structure of the carbon tube, which affects the nano-Yin Yin +, ', -, in the preparation of the non-carbon tube composite material, the solvent added by π is difficult to remove, so that the non-wood stone anti-official composite material Inch wind knife is not pure, second, the method can not be achieved 200927647 . The fixed orientation of the carbon tube in the composite material makes the carbon nanotubes unable to exert its axial advantage in the composite material, thus affecting the performance of the carbon nanotube composite material. The preparation method of the carbon nanotube composite material requires surface modification of the carbon nanotubes and dispersion by using a solvent. The process is complicated and the cost is high. /, Knife There is a cloud here, it is necessary to provide a method for preparing a carbon nanotube composite material with excellent characteristics, and the preparation method is simple, easy to implement, and low in cost.发明 [Summary] A method for preparing a carbon nanotube composite material, comprising the steps of: preparing a self-supporting carbon nanotube thin crucible structure; providing a liquid thermosetting southern molecular material; and having the liquid thermosetting high The molecular material infiltrates the film structure of the carbon nanotube film; and solidifies the carbon nanotube film structure infiltrated by the liquid thermosetting polymer material to obtain a carbon nanotube composite material. * - Compared with the prior art, the technical solution adopts a stretching tool to directly extract a carbon nanotube film from the nano ❹ reverse & array, wherein the carbon nanotube film is uniformly distributed in the carbon nanotube film and Preferred orientation. Therefore, the preparation method of the nano carbon tube composite material has the following advantages: the use of the carbon nanotubes: the distribution of the ^ m carbon tube film and the liquid thermosetting polymer material, no = ^ not m carbon g surface Modification, does not destroy the structure of the carbon nanotubes, and the properties of the prepared carbon nanotube composites; second, nano carbon, no preparation of additives in the preparation process, so that the prepared nano = composite The material composition is relatively pure and the performance is good; thirdly, the liquid thermal south molecular material is used to infiltrate the carbon nanotube film structure to prepare the Nai 8 200927647 • carbon carbon tube composite material, which simplifies · • [Embodiment] The preparation process 'reduces the main production cost. .=== This technical solution is further described in detail. The _ square ^7/=_ supply-type carbon nanotubes re-education method of the composite material 10 specifically includes the following steps Preparing a self-supporting carbon nanotube film structure 12. The preparation method of the carbon nanotube film structure 12 is specifically packaged: 0 nm: tube car:: carbon nanotube array 'preferred' The array is super-aligned and/or in the embodiment, super smooth The preparation method of the carbon nanotube array adopts the chemical deposition method, and the specific steps thereof include: (1) providing a flat substrate, =: selecting a p-type or n-type germanium substrate, or selecting a stone soil formed with an oxide layer & In this embodiment, a 4-inch stone substrate is preferably used; (1) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be selected from an alloy of iron ❹-) (C〇), recorded (Ni) or any combination thereof. (c) The substrate on which the catalyst layer is formed is annealed in 70 (TC~90 (TC air for about 3 minutes to 90 minutes; (d) the treated substrate is placed in a reaction furnace, The gas is heated to 50CTC~74CTC, and then reacted with a carbon source gas for about 5 minutes to 3 minutes, and the super-sequential carbon nanotube array is grown to have a degree of 2 〇〇 micrometers to 4 〇〇 micrometers. The super-sequential carbon nanotube array is a plurality of pure carbon nanotube arrays formed by a plurality of carbon nanotubes that are parallel to each other and perpendicular to the substrate. The above-mentioned controlled growth conditions are substantially not in the super-sequential carbon nanotube array. Contains impurities such as amorphous carbon or residual catalyst metal Particles 200927647 • The carbon nanotubes in the f-stone anti-rule array are in contact with each other by van der Waals force to form an array. The area of the carbon nanotube array is the same as the above-mentioned base area base. In this embodiment, the carbonaceous source gas The chemically-recorded hydrocarbons such as acetylene, acetylene, and methane can be used. The preferred carbon source gas in this embodiment is B; the shielding gas is nitrogen or an inert gas, and the preferred shielding gas in this embodiment is argon. ^ It is understood that the carbon nanotube array provided by the present embodiment is not limited to the above-mentioned preparation of the crucible. A can be a graphite electrode constant current arc discharge deposition method, a laser-based deposition method, etc. ^ (2) From the above nanometer A carbon nanotube film is drawn in the carbon tube array. / The process of obtaining a carbon nanotube film from the above carbon nanotube array comprises the following steps: (a) from the above carbon nanotube array Selecting a plurality of carbon nanotube bundle segments of a certain width, the embodiment of the technical solution preferably adopts a tape having a certain width to contact the carbon nanotube array to select a certain width of the carbon nanotube bundle segment; (b) along a certain speed Extending the plurality of carbon nanotube bundle segments substantially perpendicular to the growth direction of the carbon nanotube array to obtain a continuous carbon nanotube film, wherein the arrangement of the carbon nanotubes in the carbon nanotube film is parallel to the stretching The direction. During the above stretching process, the plurality of carbon nanotube bundle segments are gradually separated from the substrate in the stretching direction under the action of the tensile force, and the selected plurality of carbon nanotube bundle segments are respectively associated with the other naphthalenes due to the van der Waals force The carbon nanotube segments are continuously pulled out end to end to form a carbon nanotube film. 200927647 In the embodiment of the technical solution, the carbon nanotube film is grown by using a CVD method to grow a super-sequential carbon nanotube array on a 4 inch substrate, and further processing the obtained carbon nanotube film. The width is 〇.〇1 cm~10 cm, and the thickness is 10 nm~100 μm. The carbon nanotubes in the above carbon nanotube film are single-walled carbon nanotubes, double-walled carbon nanotubes or multi-walled carbon nanotubes. When the carbon nanotubes in the carbon nanotube film are single-walled carbon nanotubes, the diameter of the single-walled carbon nanotubes is from 0.5 nm to 50 nm. When the carbon nanotube in the carbon nanotube film is a double-walled carbon nanotube, the diameter of the double-walled nanocarbon tube is 1.0 nm to 50 nm. When the carbon nanotube in the carbon nanotube film is a multi-walled carbon nanotube, the diameter of the multi-walled carbon nanotube is from 1.5 nm to 50 nm. Further, at least two carbon nanotube films are laid in parallel and without gaps to obtain a carbon nanotube layer, and at least two carbon nanotube layers are overlapped to form a carbon nanotube film structure 12. It will be appreciated that the carbon nanotube film structure 12 can also be obtained by overlapping at least two carbon nanotube films. The carbon nanotube film structure 12 comprises a carbon nanotube layer of two carbon nanotubes or a plurality of overlapping carbon nanotube layers, and the adjacent two carbon nanotube layers are tightly bonded by van der Waals force. The carbon nanotube layer comprises a carbon nanotube film or at least two carbon nanotube films laid in parallel and without gaps. The carbon nanotube film comprises a plurality of carbon nanotube bundles arranged end to end and arranged in a preferred orientation. The lengths of the carbon nanotube bundles in the carbon nanotube film are substantially the same, and the nanotube bundles are closely connected by Van der Waals. The carbon nanotube bundle includes a plurality of carbon nanotubes of equal length and arranged in parallel with each other, and the carbon nanotubes are closely connected by a van der Waals force. The at least two overlaps 11 200927647 • The carbon nanotubes in the disposed carbon nanotube layer are arranged along the same direction, and there is a cross between the carbon nanotubes in the adjacent two carbon nanotube layers Angle production. α, 0 degrees, can be prepared according to actual needs. Further, the above-mentioned carbon nanotube film structure 12 may be used as it is, or may be used after being treated with an organic solvent. The process of treating the carbon nanotube film structure 12 with an organic solvent comprises: dropping an organic solvent on a surface of the carbon nanotube film structure 12 by a test tube to infiltrate the entire carbon nanotube film structure or constructing the entire carbon nanotube film structure. 12 Infiltrated into a crucible container containing organic solvent. The organic solvent is a volatile organic solvent such as a mixture of one or more of ethanol, methanol, acetone, dichloroethane and chloroform, and ethanol is used in the embodiment of the present invention. After the carbon nanotube film structure 12 is infiltrated by an organic solvent, the parallel carbon nanotube segments in the carbon nanotube film partially aggregate into the carbon nanotube bundle under the surface tension of the volatile organic solvent. . Therefore, the carbon nanotube film structure 12 has a small surface volume ratio, is non-tacky, and has good mechanical strength and toughness. Referring to FIG. 2, a preferred carbon nanotube film structure 12 of the embodiment of the present invention includes a first carbon nanotube layer 121, a second carbon nanotube layer 122, a second carbon nanotube layer 123, and A fourth carbon nanotube layer. The first carbon nanotube layer 121, the second carbon nanotube layer 122, the third carbon nanotube layer 123 and the fourth carbon nanotube layer 124 are overlapped, and the nanometer in each carbon nanotube layer The carbon tubes are arranged in a preferred orientation along a fixed direction. The arrangement of the carbon nanotubes in the adjacent two carbon nanotube layers is 9 degrees, and a plurality of microporous structures are formed, the diameter of which is from nanometer to 〇 5 micrometers. The preparation method of the nano carbon official film structure 12 comprises: firstly, preparing a first carbon nanotube layer 121, a second carbon nanotube layer * 122, a first method by using the method 12 200927647 in the first step. a third carbon nanotube layer 123 and a fourth carbon nanotube layer 124; secondly, the first carbon nanotube layer 121, the second carbon nanotube layer 122, and the third carbon nanotube layer 123 And overlapping with the fourth carbon nanotube layer 124, so that the alignment direction of the nano tube in the second carbon nanotube layer 122 is different from that in the first nano tube layer 121 and the third carbon tube layer 123 The arrangement direction of the carbon tubes is 90 degrees, the arrangement direction of the carbon nanotubes in the third carbon nanotube layer 123 and the arrangement of the carbon nanotubes in the second carbon nanotube layer 122 and the fourth carbon nanotube layer 124 The square 0 is 90 degrees. Step 2: providing a liquid thermosetting polymer material 14. The method for preparing the liquid thermosetting polymer material 14 comprises the following steps: first, placing a polymer material in a container, heating the polymer material at not higher than 300 ° C, and performing the polymer material Stirring, mixing the polymer material uniformly, and the stirring time is determined by the type and quality of the polymer material; secondly, adding an additive or a mixture of a plurality of additives to the spoiler uniform polymer material Conducting a chemical reaction; then, heating the polymer material mixed with the additive at not higher than 300 ° C, and stirring the polymer mixed with the additive to make the polymer material and The additive is uniformly mixed, and the stirring time is determined by the type and quality of the polymer material and the additive, thereby obtaining a liquid thermosetting polymer material 14. The liquid thermosetting polymer material 14 has a viscosity of less than 5 Pa·s and can maintain the viscosity at room temperature for 30 minutes or more. It can be understood that if the thermosetting polymer material 14 is solid at room temperature, the heat polymer material 14 is first heated to be converted into a liquid thermosetting high molecular material 14. • The thermosetting polymer material 14 includes an additive such as a polymer material and a curing agent, a modifier, a filler, or a diluent. Wherein, the content of the polymer material accounts for 7〇% to 95% of the mass of the thermosetting polymer material, and the content of the additive accounts for 5% to 3% by mass of the mass of the thermosetting polymer material. The polymer material is phenolic resin, epoxy resin, bismaleimide resin, polybenzoxazine resin, cyanate resin, polyimide resin, hydrazine polyurethane, polymethyl methacrylate and no One or a mixture of saturated polyfluorene resins and the like. The curing agent is used to promote the curing of the thermosetting polymer material 14. Commonly used curing agents include one or a mixture of a fatty amine, an alicyclic amine, an aromatic amine, a polyamine, a sour liver, a resin, and a tertiary amine. The modifier is used to improve the flexibility, shear resistance, bending resistance, and insulation resistance of the thermal S] polymer material 14. Commonly used modifiers include one or a mixture of polysulfide rubber, polyamidoxime resin, polyvinyl alcohol tert-butylaldehyde or nitrile rubber. The filler is used to improve the dispersion of the thermosetting polymer material 14 when it is cured, and the filler can also reduce the cost of the thermosetting polymer material. Commonly used fillers include asbestos fiber, glass fiber, stone = powder, hearing, oxidation, and powder. The agent is used for reducing the degree of dendriticity and changing the permeability of the fat. The dilution = dicamba (4), polyglycidyl linkage, propylene propylene butyl, propyl propyl sulfonium, propylene dioxime acetonide, triepoxypropyl propyl propyl and allylic One or several of the phenols are mixed. 14 200927647 - The technical solution embodiment is preferably made of epoxy resin and molecular material u, which specifically comprises the following steps:;, solid f-same as -. ^. f first glycidyl ether type % milk and glycidyl ester type The epoxy mixture is placed in a container to 3 (TC~60. 〇, and the glycidyl bond type ring in the container: glycerol (tetra) epoxy mixture (iv) 1 G minutes until the glycidyl diformate and shrinkage The mixture of glycerin and vinegar type epoxy is mixed evenly, and the fatty amine and diglycolic acid (IV) are added to the mixture of the condensed glycerol ether type epoxy and the glycidyl ester type epoxy which are chemically reversed. Finally, the glycidyl (tetra) epoxy and glycidyl hydrazine profile is heated to 3 (rc~6 (rc) to obtain an epoxy resin-containing liquid south molecular material 14. The liquid thermosetting property of the epoxy resin is high and the knife material 14 is a transparent yellowish mixed liquid. The liquid thermosetting polymer material 14 is infiltrated into the carbon nanotube film structure 12 . The 'Step 3' shown in FIG. 3 can be implemented in the molding apparatus 100 The molding device 100 includes a raw material supply device, a raw material input device 3, a mold 40, and a raw material output device 5. The raw material supply device 20 includes a container 2〇1, the container 2 The crucible 1 is for holding the raw material; the container is an inlet 202 and a pressurizing port 2〇3 for vacuuming the trough 201, and the pressurizing port 2〇3 is used for The raw material in the container applies an injection pressure. The raw material in-wheeling device 30 includes a valve 1 for controlling the inflow of the raw material, and an injection port 3〇2 for injecting the raw material into the mold 4. The mold has An upper mold and the lower mold 4, the surface of the upper mold 4〇1 and the lower mold 4 (10) are uniformly coated with a 15 200927647 release agent, so that the composite material can be smoothly released after being obtained. The mold release agent is highly thermosetting. The release material may be a high temperature release agent, an organic oxime release agent, a wax release agent or a siloxane type release agent. The raw material output device 50 includes a wide door 501 for controlling the outflow of the raw material; an outlet 502 for The material is discharged from the molding apparatus 100. The method of infiltrating the liquid thermosetting polymer material 14 into the carbon nanotube film structure 12 in the embodiment of the technical solution comprises the following steps: β (1) a carbon nanotube film The structure 12 is placed in a mold 40. A mold release agent is uniformly applied to the surface of the upper mold 401 and the lower mold 402 in the mold 40, and the carbon nanotube film structure 12 is placed under the mold 40. In the cavity of the mold 402, the upper mold 401 is gently placed on the lower mold 402. At the same time, the mold 40 is sealed using a gasket or a sealant. (2) The liquid is highly thermosetting. The molecular material 14 is placed in a container 201, and the liquid pressure is applied to the liquid thermosetting polymer material 14 after the container 201 is evacuated. The valve 301 in the raw material input device 30 and the valve 501 in the raw material output device 50 are closed. The thermosetting polymer material 14 is placed in the container 201 of the material supply device 20. The container 201 is evacuated through the inlet 202 of the raw material supply device 20 to a vacuum of less than -0.09 MPa, and maintained at the vacuum for at least 10 minutes to sufficiently eliminate the introduction into the The air in the thermoset material 14. Next, an injection pressure is applied to the thermosetting rfj molecular material 14 in the container 201 16 200927647 through the pressurizing port 203 of the material supply device 20. The applied injection force is measured in the range of 0.001 MPa to 10 MPa. (3) The liquid thermosetting polymer material 14 is injected into the mold 40 to infiltrate the carbon nanotube film structure 12. The valve 301 of the material input device 30 and the wide door 501 of the material take-up device 50 are opened. The thermosetting polymer material 14 enters the mold 40 from the container 201 through the raw material input device 3 under the action of injection pressure, and infiltrates the carbon nanotube film structure 12. The viscosity of the liquid thermosetting polymer material 14 is very low, and the carbon nanotube film structure 12 has a preferred orientation of the carbon nanotubes, and the adjacent carbon nanotubes have a certain gap therebetween, so the liquid thermosetting property The polymer material 14 is well infiltrated into the gap formed between the carbon nanotubes. Therefore, the carbon nanotube composite material 10 has excellent properties. In order for the liquid thermosetting polymer material 14 to sufficiently wet the carbon nanotube film structure 12, the time for infiltrating the carbon nanotube film structure 12 should not be less than a minute. At the same time, the excess liquid thermosetting polymer material 14 flows out through the outlet 502 of the material output device 50. The flowing thermosetting polymer material 14 carries out the air in the gap between the carbon nanotubes in the carbon nanotube thin crucible structure 12, and completely excludes the air in the carbon nanotube composite material 10, thereby not causing the The carbon nanotube composite material 10 has structural defects. It can be understood that the method of infiltrating the liquid thermosetting polymer material 14 into the carbon nanotube film structure 12 is not limited to an injection method, and the liquid thermosetting polymer material 14 can also be sucked into the nano by capillary action. In the carbon tube film structure 12, the carbon nanotube film structure 12, 17 200927647 is impregnated or the carbon nanotube film structure 12 is immersed in the liquid thermosetting 'polymer material 14. Step 4: Curing the carbon nanotube film structure 12 infiltrated by the liquid thermosetting polymer material 14 to obtain a carbon nanotube composite material 10. The method for curing the above-described carbon nanotube film structure 12 impregnated with the liquid thermosetting polymer material 14 in the embodiment of the present invention comprises the following steps: (1) a carbon nanotube film structure 12 infiltrated by the liquid thermosetting polymer material 14 Gradually warming up. The valve 301 of the material input device 30 and the valve 501 of the material output device 50 are closed. The mold 40 is heated by a heating device to effect solidification of the liquid thermosetting polymer material 14. Heating the mold 40 requires stepwise heating to cure the thermosetting polymer material 14. Since the temperature rise too fast during the solidification of the liquid thermosetting polymer material 14 causes the thermosetting polymer material 14 to blast and affect the material properties, the solidification of the liquid thermosetting polymer material 14 needs to be gradually increased. The curing temperature and curing time of the liquid thermosetting polymer material 14 are determined by the type and quality of the polymer material and the additive. The liquid thermosetting polymer material 14 has a curing temperature of less than 400 ° C and a curing time of less than 100 hours. The heating device may be one of a heating plate, a hot press, a flat vulcanizer, an autoclave or an oven. (2) The carbon nanotube film structure 12 gradually warmed down to room temperature to obtain a nanocarbon_tube composite material 10. After the thermosetting polymer material 14 is solidified and molded, the mold 40 is cooled to room temperature, and the carbon nanotube composite material 10 is obtained by demolding. 18 200927647 - Embodiment of the present invention The curing method of the epoxy resin-containing thermosetting polymer material 14 specifically includes the following steps: First, a heating device is raised to a temperature of 50X: 〜70 〇C, and the ring is contained at the temperature. The thermosetting polymer material 14 of the oxygen resin is in a liquid state, and the temperature is maintained for 1 hour to 3 hours, so that the thermosetting polymer material 14 continues to absorb heat to increase its degree of solidification; secondly, the heating device is continuously heated to the thief-thief' at the temperature. The temperature is maintained for 1 hour to 3 hours, so that the thermosetting polymer material 14 continues to absorb heat to increase the degree of solidification; again, the heating device is further heated to n〇t:~i5 (rc, maintained at the temperature of 2 hours. 20 hours, the thermosetting polymer material 1-4 continues to absorb heat to increase its degree of solidification; finally, after the heating device is cooled to room temperature, the mold 40 is taken out from the heating device, and the mold is released to obtain one nanometer. Tube composite material 10. Referring to FIG. 4, the carbon nanotube composite material 10 provided by the embodiment of the present technical solution includes a thermosetting polymer material 14 and a carbon nanotube, and the carbon tube is thinner with a carbon nanotube tube. The structure of the structure 12 is uniform in the polymer material 14. In summary, the present invention has indeed met the requirements of the invention patent, and has been specifically directed to the law. However, the above is only a preferred embodiment of the present invention. For example, it is not limited to the scope of the patent application in this case. All the equivalent modifications made by the person skilled in the art to the spirit of the present invention should be covered by the following patents. 19 200927647 . BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic diagram of a real method of the present technical solution. Fig. 2 is a schematic diagram of a real implementation of the technical scheme of the present invention. Fig. 3 is a schematic diagram of the actual implementation of the technical scheme. Component symbol description] Carbon nanotube composite material Carbon nanotube film structure Liquid thermosetting polymer material Raw material supply device Raw material input device Mold® Material output device Molding device First nano tube layer Second carbon tube layer third Nano carbon nanotube layer fourth carbon nanotube layer container imported nano carbon tube composite material prepared by carbon nanotube film structure structure of carbon nanotube composite material Structure of carbon nanotube composite material for forming material 200927647 . Pressure port 203 Valve 301, 501 Injection port 302 Upper mold 401 Lower mold 402 Output cr 502 ❹ ❹ 21

Claims (1)

200927647 .十、申請專利範圍 * 1. 一種奈米碳管複合材料的製備方法,包括以下步驟: ^ 製備一自支撐的奈米碳管薄膜結構; 提供一液態熱固性高分子材料; 將所述液態熱固性高分子材料浸_所述奈米碳管薄膜 結構;及 固化上述被液態熱固性高分子材料浸潤的奈米碳管薄 膜結構,得到一奈米碳管複合材料。 ❹2.如申請專利範圍第1項所述的奈米碳管複合材料的製 備方法,其中,所述奈米碳管薄膜結構的製備方法包 括以下步驟: 提供一奈米碳管陣列; 從上述奈米碳管陣列中選定一定寬度的多個奈米碳管 片斷;及 以一定速度沿垂直于奈米碳管陣列生長方向拉伸該多 ❾ 個奈米碳管片斷獲得一連續的奈米碳管薄膜,該奈米 碳管薄膜中奈米碳管的排列方向平行於上述拉伸的方 向0 3.如申請專利範圍第2項所述的奈米碳管複合材料的製 備方法,其中,所述奈米碳管薄膜結構的製備方法進 —步包括以下步驟: 將至少兩個奈米碳管薄膜平行且無間隙鋪設得到一奈 米碳管層;及 將至少兩個奈米碳管層重疊鋪設得到一奈米碳管薄膜 22 * I 200927647 . 結構。 4. 如申請專利範圍第 備方法,其中=所述的奈米碳管複合材料的製 一步包括將$ +述不米碳管薄膜結構的製備方法進 ’ 夕兩個奈米碳管薄膜重A 米碳管薄膜結構的步驟。件到一奈 5. Γ方圍第2項所述的奈米碳管複合材料的製 一牛包括心 ^奈米碳f薄龍構的製備方法進 〇200927647. X. Patent Application Range* 1. A method for preparing a carbon nanotube composite material, comprising the steps of: ^ preparing a self-supporting carbon nanotube film structure; providing a liquid thermosetting polymer material; The thermosetting polymer material is immersed in the carbon nanotube film structure; and the carbon nanotube film structure infiltrated by the liquid thermosetting polymer material is cured to obtain a carbon nanotube composite material. The method for preparing a carbon nanotube composite material according to claim 1, wherein the method for preparing the carbon nanotube film structure comprises the steps of: providing a carbon nanotube array; Selecting a plurality of carbon nanotube segments of a certain width in the carbon nanotube array; and stretching the plurality of carbon nanotube segments perpendicular to the growth direction of the carbon nanotube array at a certain speed to obtain a continuous carbon nanotube a film in which the arrangement direction of the carbon nanotubes in the carbon nanotube film is parallel to the direction of the stretching. The method for preparing the carbon nanotube composite according to claim 2, wherein The method for preparing a carbon nanotube film structure further comprises the steps of: laying at least two carbon nanotube films in parallel and without gaps to obtain a carbon nanotube layer; and laying at least two carbon nanotube layers on top of each other Obtain a carbon nanotube film 22 * I 200927647 . Structure. 4. The method for preparing the patent scope, wherein the step of preparing the carbon nanotube composite material comprises the method of preparing the structure of the $+ carbon nanotube film into two solar nanotube films The steps of the carbon nanotube film structure. 5. The preparation of the carbon nanotube composite material described in item 2 of the Γ方围, including the preparation method of the heart, nano carbon f thin dragon structure 得至^ = 個奈米碳管薄膜平行且無間隙鋪設 仲到一奈米碳管薄膜結構的步驟。 6. :申請專利範圍第丄項所述的奈米碳管複合材料的製 二=驟步包括使用有機溶劑處理該奈米 7. 如申請專利範圍第6項所述的奈米碳管複合材料的製 備方法,其中,該有機溶劑為乙醇、甲醇、丙網、二 氯乙烧和氣仿中的一種或者幾種的混合。 8. 如申請專利範圍第6項所述的奈米碳管複合材料的製 備方法,其中,上述使用有機溶劑處理奈米碳管薄臈 結構的步驟為通過試管將有機溶劑滴落在奈米碳管薄 膜結構表面浸潤整個奈米碳管薄膜結構。 9. 如申請專利範圍第6項所述的奈米碳管複合材料的製 備方法’其中,上述使用有機溶劑處理奈米碳管薄膜 結構的步驟為將整個奈米碳管薄膜結構浸到盛有有機 溶劑的容器中浸潤。 如申請專利範圍第1項所述的奈米碳管複合材料的製 23 200927647 備方法,其中,所述液態熱固性高分子#料在室溫下 具有低於5帕.秒的粘度。 11. 如申請專利範圍第1項所述的奈米碳管複合材料的製 備方法,其中’所述的熱固性高分子材料為酚醛樹脂、 環氧樹脂、雙馬來醯亞胺樹脂、聚苯並惡嗪樹脂、氣 酸酯樹脂、聚醯亞胺樹脂、聚氨酯、聚曱基丙烯酸曱 酯和不飽和聚醯樹脂中的一種或者幾種的混合。 12. 如申請專利範圍第i項所述的奈米碳管複合材料的製 〇 備方法,其中,所述將液態熱固性高分子材料浸潤所 述奈米碳管薄膜結構的方法包括注射浸潤或者直接浸 泡的步驟。 13. 如申請專利範圍第12項所述的奈米碳管複合材料的製 備方法’其中,所述將液態熱固性高分子材料注射浸 潤所述奈米碳管薄膜結構的方法具體包括以下步驟· 將一奈米碳管薄膜結構放置於一模具中; 將一液態熱固性高分子材料置於一容器中,並對該容 ^ 器抽真空直至該容器的真空度低於-0.09Mpa後,對所 述液態熱固性高分子材料施加計量值’為 O.OOIMpa-lOMpa的注射壓力;及 將所述液態熱固性高分子材料注射進所述模具中,、$ 潤所述奈米碳管薄膜結構。 14. 如申請專利範圍第1項所述的奈米碳管複合材料的製 備方法,其中,所述液態熱固性高分子材料浸潤奈米 碳管薄膜結構的時間大於等於10分鐘。 24 200927647 .15·如申請專利範圍第1項所述的奈米碳管凌合材料的製 備方法’其中,所述的固化上述被液態熱固性高分子 、 材料浸潤的奈米碳管薄膜結構,得到一奈米碳管複合 材料的方法具體包括以下步驟: 將被液態熱固性高分子材料浸潤的奈米碳管薄膜結構 在少於100小時的時間内逐漸升溫至低於4〇〇它;及 將逐漸升溫後的奈米碳管薄膜結構降溫至室溫,得到 奈米碳管複合材料。 的奈来碳管薄膜結構逐漸升溫的過程係通過 〇 1如巾請專利範圍第15項所述的奈米碳管複合材料的製 備方法〇< Ϊ中,所述將被液態熱固性高分子材料浸潤 置實現。 17., 一* 一一-The step of laying a secondary carbon nanotube film structure in parallel with no gaps is obtained. 6. The invention of claim 2, wherein the step of preparing the nano carbon tube composite material comprises: treating the nanometer with an organic solvent. 7. The carbon nanotube composite material according to claim 6 The preparation method, wherein the organic solvent is one or a mixture of ethanol, methanol, propylene mesh, dichloroethane and gas. 8. The method for preparing a carbon nanotube composite material according to claim 6, wherein the step of treating the carbon nanotube thin crucible structure using the organic solvent comprises dropping an organic solvent into the nanocarbon through a test tube. The surface of the tube film structure infiltrates the entire carbon nanotube film structure. 9. The method for preparing a carbon nanotube composite material according to claim 6, wherein the step of treating the carbon nanotube film structure with an organic solvent is to immerse the entire carbon nanotube film structure The organic solvent is infiltrated in a container. The method of preparing a carbon nanotube composite material according to the first aspect of the invention, wherein the liquid thermosetting polymer material has a viscosity of less than 5 Pa.s at room temperature. 11. The method for preparing a carbon nanotube composite material according to claim 1, wherein the thermosetting polymer material is a phenol resin, an epoxy resin, a bismaleimide resin, a polybenzoic acid A mixture of one or more of an oxazine resin, a gas ester resin, a polyimide resin, a polyurethane, a polydecyl acrylate, and an unsaturated polyfluorene resin. 12. The method for preparing a carbon nanotube composite material according to claim i, wherein the method of infiltrating the carbon nanotube film structure with the liquid thermosetting polymer material comprises injection infiltration or direct The step of soaking. 13. The method for preparing a carbon nanotube composite material according to claim 12, wherein the method for injecting the liquid thermosetting polymer material into the carbon nanotube film structure comprises the following steps: a carbon nanotube film structure is placed in a mold; a liquid thermosetting polymer material is placed in a container, and the container is evacuated until the vacuum degree of the container is lower than -0.09 MPa, The liquid thermosetting polymer material is applied with a measurement value of 'O.OOIMpa-lOMpa injection pressure; and the liquid thermosetting polymer material is injected into the mold to moisturize the carbon nanotube film structure. 14. The method for producing a carbon nanotube composite according to claim 1, wherein the liquid thermosetting polymer material infiltrates the carbon nanotube film structure for 10 minutes or longer. The method for preparing a carbon nanotube conjugated material according to claim 1, wherein the curing of the carbon nanotube film structure infiltrated by the liquid thermosetting polymer or the material is obtained. The method for a carbon nanotube composite material specifically comprises the steps of: gradually heating a carbon nanotube film structure impregnated with a liquid thermosetting polymer material to less than 4 〇〇 in less than 100 hours; and gradually The structure of the carbon nanotube film after heating is cooled to room temperature to obtain a carbon nanotube composite material. The process of gradually increasing the temperature of the carbon nanotube film structure is carried out by the method of preparing the carbon nanotube composite material as described in the fifteenth patent of the patent, 〇, the liquid thermosetting polymer material Infiltration is achieved. 17., one * one by one - 一加熱裳 没口柯料的製 、熱壓機、平A heating shovel, a hot press, a flat
TW96150104A 2007-12-26 2007-12-26 Method for making carbon nanotube composite TWI422524B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96150104A TWI422524B (en) 2007-12-26 2007-12-26 Method for making carbon nanotube composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96150104A TWI422524B (en) 2007-12-26 2007-12-26 Method for making carbon nanotube composite

Publications (2)

Publication Number Publication Date
TW200927647A true TW200927647A (en) 2009-07-01
TWI422524B TWI422524B (en) 2014-01-11

Family

ID=44863710

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96150104A TWI422524B (en) 2007-12-26 2007-12-26 Method for making carbon nanotube composite

Country Status (1)

Country Link
TW (1) TWI422524B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457271B (en) * 2011-03-29 2014-10-21 Hon Hai Prec Ind Co Ltd Method for making semiconductor epitaxial structure
TWI484060B (en) * 2012-04-28 2015-05-11 Hon Hai Prec Ind Co Ltd Heating pad
US9219193B2 (en) 2011-01-12 2015-12-22 Tsinghua University Method for making epitaxial structure
CN107057278A (en) * 2016-11-25 2017-08-18 东莞市明骏智能科技有限公司 One step prepares the preparation facilities and preparation method of carbon nano-tube film composite

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309770C (en) * 2004-05-19 2007-04-11 中国航空工业第一集团公司北京航空材料研究院 High volume fraction carbon nanotube array - resin base composite materials and method for preparing same
CN100454526C (en) * 2005-06-30 2009-01-21 鸿富锦精密工业(深圳)有限公司 Thermo-interface material producing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9219193B2 (en) 2011-01-12 2015-12-22 Tsinghua University Method for making epitaxial structure
US9559255B2 (en) 2011-01-12 2017-01-31 Tsinghua University Epitaxial structure
US9905726B2 (en) 2011-01-12 2018-02-27 Tsinghua University Semiconductor epitaxial structure
TWI457271B (en) * 2011-03-29 2014-10-21 Hon Hai Prec Ind Co Ltd Method for making semiconductor epitaxial structure
TWI484060B (en) * 2012-04-28 2015-05-11 Hon Hai Prec Ind Co Ltd Heating pad
CN107057278A (en) * 2016-11-25 2017-08-18 东莞市明骏智能科技有限公司 One step prepares the preparation facilities and preparation method of carbon nano-tube film composite

Also Published As

Publication number Publication date
TWI422524B (en) 2014-01-11

Similar Documents

Publication Publication Date Title
CN101456277B (en) Method for preparing carbon nanotube composite material
Ma et al. Through-plane assembly of carbon fibers into 3D skeleton achieving enhanced thermal conductivity of a thermal interface material
Yao et al. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites
CN101480858A (en) Carbon nano-tube composite material and preparation method thereof
Wang et al. Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching
Guo et al. Improved interfacial properties for largely enhanced thermal conductivity of poly (vinylidene fluoride)-based nanocomposites via functionalized multi-wall carbon nanotubes
US11167991B2 (en) Method for preparing carbon nanotube/polymer composite
CN103073891B (en) Preparation method of high-conductivity flexible conductive composite material
JP5032454B2 (en) Method for producing carbon nanotube composite material
Gauthier et al. Reinforcement effects of vapour grown carbon nanofibres as fillers in rubbery matrices
Hu et al. Ultrastrong and excellent dynamic mechanical properties of carbon nanotube composites
CN104860293B (en) Carbon nanotube three-dimensional network architecture and polymer composite material thereof, and preparation methods thereof
WO2018145372A1 (en) Method for preparing high-performance polymer based conductive composite material using micro-nano precision assembly method within confinement space
Zhang et al. Carbonaceous nanofiber-supported sulfonated poly (ether ether ketone) membranes for fuel cell applications
CN102161814A (en) Preparation method of oriented carbon nano tube/ polymer composite membrane
CN106631079B (en) Carbon nanotube composite material of silicon carbide and preparation method thereof
CN102010218A (en) Preparation method of graphene oxide doped unidirectional C/C composite material
TW200927647A (en) Method for making carbon nanotube composite
Jain et al. Polyacrylonitrile/carbon nanofiber nanocomposite fibers
CN101353785A (en) Preparation of high-density carbon nano-tube array composite material
TWI476147B (en) Carbon nanotube composite and method for making the same
Qu et al. Enhancement of mechanical properties of buckypapers/polyethylene composites by microwave irradiation
CN106905546B (en) Preparation method of high-strength high-conductivity composite fiber reinforced composite material
CN102329431B (en) Preparation method of epoxy resin composite material strengthened by in situ growth of CNT (carbon nano tube) on surface of quartz fibre
Gantayat et al. Design of carbon nanofiber embedded conducting epoxy resin