TW200924268A - Membrane electrode assembly of fuel cell and method of making the same - Google Patents

Membrane electrode assembly of fuel cell and method of making the same Download PDF

Info

Publication number
TW200924268A
TW200924268A TW096143494A TW96143494A TW200924268A TW 200924268 A TW200924268 A TW 200924268A TW 096143494 A TW096143494 A TW 096143494A TW 96143494 A TW96143494 A TW 96143494A TW 200924268 A TW200924268 A TW 200924268A
Authority
TW
Taiwan
Prior art keywords
fuel cell
carbon nanotube
carbon
membrane electrode
cell membrane
Prior art date
Application number
TW096143494A
Other languages
Chinese (zh)
Other versions
TWI455398B (en
Inventor
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW096143494A priority Critical patent/TWI455398B/en
Publication of TW200924268A publication Critical patent/TW200924268A/en
Application granted granted Critical
Publication of TWI455398B publication Critical patent/TWI455398B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

The present invention relates to a membrane electrode assembly of fuel cell. The membrane electrode assembly includes a proton exchange membrane having two surfaces and two electrodes disposed on the two surfaces respectively. The electrode includes a catalyst layer and a gas diffusion layer. The catalyst layer is disposed adjacent to the proton exchange membrane and the gas diffusion layer includes a carbon nanotube film. The present invention also relates to a method for making the above-described membrane electrode assembly of fuel cell. The method includes the steps of: making a carbon nanotube film as gas diffusion layer; forming a catalyst layer on the gas diffusion layer to obtain an electrode; and providing a proton exchange membrane having two surfaces and disposing two electrodes on the two surfaces respectively to obtain a membrane electrode assembly of fuel cell.

Description

200924268 •九、發明說明: 【發明所屬之技術領域】 * 本發明涉及一種燃料電池膜電極及其製備方法,尤其 -涉及一種基於奈米碳管的燃料電池膜電極及其製備方法。 【先前技術】 燃料電池係一種電化學發電裝置,其將燃料及氧化劑 氣體轉化為電能並產生反應產物。相對於鹼性電池、鋰電 池等其他電池系統,燃料電池具有能量轉換效率高、對環 境污染小、適用範圍廣、無噪音以及可連續工作等優點, 被廣泛應用於軍事國防及民用的電力、汽車、通信等領域。 燃料電池通常可分為驗性燃料電池、固癌氧化物燃料 電池、以及質子交換膜燃料電池等。(請參見,Recent advances in fuel cell technology and its application, Journal of Power Sources,V100, P60-66 ( 2001 ) ) ° 其中,質子交換 膜燃料電池近年來發展迅速,越來越受到重視。通常,一 個燃料電池堆包括多個單獨的燃料電池單元,一個單獨的 燃料電池單元主要包括燃料電池膜電極(Membrane Electrode Assembly,簡稱 MEA ),導流板(Flow Field Plate,簡稱 FFP ),集流板(Current Collector Plate,簡稱 CCP )以及相關的輔助部件,如:鼓風機、閥門、管路等。 燃料電池膜電極(MEA )亦稱燃料電池膜電極組,係 電池單元的核心部件。燃料電池膜電極通常係由一質子交 換膜(Proton Exchange Membrane)和分別設置在質子交 換膜兩表面的電極組成。通常,電極又包括催化層(Catalyst Layer)和氣體擴散層(Gas Diffusion Layer,簡稱 GDL), 7 200924268 且催化層設置在氣體掩丑^ a t α 膜材m八斤 擴層與質子交換膜之間。質子交換 秘艇始Λ 1氣石黃酸、聚笨乙稀石黃酸、聚三氟苯乙烯錯酸、 酚醛樹脂石备酸或石卢,儿人, π八口夂 .般為貴金屬顆粒,::物:催:層广催化劑材料(- 碳顆粒,如:石墨、」里或釘專)及其載體(一般為 声主要由細7¾考厌…、碳纖維或奈米碳管)。氣體擴散 曰要由、,二過處理的碳布或碳紙構成。 通過膜電極的燃料電池工作時,利用其辅助部件 。、机反刀別向膜電極中質子交換膜兩表面的電極 2料氣體(氫氣)及氧化劑氣體(純氧氣或含 氣體的電極為陽極,通入氧化劑氣體的電 =極。:燃t電池—端,氮氣進入陽極後,在催化劑 下個虱为子發生如下反應:H2—2H++2e。反庳生 :的f離子穿過質子交換膜到達陰極。在燃料電池;— U進人陰極’同時’電子則通過外電路 作用下,氛氣與氮離子以及電子發生如下二 “ +2e—札〇。在此電化學反應過程中,電子 2路連接下形成電流’通過適t的連接可以向負載輸 月匕。而反應生成的水則通過氣體擴散層以及導流板排出 购料的選擇和製備方法對質子交換 膜燃科电池性能有著十分重要的影響。一方面, 和氧化劑氣體由氣體擴散層擴散到達催化声 二士十乳肢 ^應所必需的電子和反應生成的電子通過氣 2外 電路連接傳導。 -成層/、外 ^而’目前的燃料電池膜電極中使用的氣體擴散層主 要係妷纖維紙。先前的碳纖維紙由碳纖維、木漿、纖維素 200924268 纖、准等可奴化纖維相混合,製成紙漿,然後製成碳纖維紙。 一方面,先前的碳纖維紙中,碳纖維分佈不均勻,導致碳 -纖維紙中孔隙結構不夠合理,而且比表面積小。該結構缺 .點制約了氣體擴散層均勻擴散反應氣體的功能。另一方 面,先前的碳纖維紙電阻率大,制約了氣體擴散層傳導反 α斤必舄的电子和反應生成的電子的功能。這些缺點直接 如響了燃料電池膜電極的反應活性等電化學性能。而且, 先前的碳纖維紙柔韌性差,不利於加工。 有鑒於此,提供一種具有更好反應活性的,且易於加 工的燃料電池膜電極及其製備方法實為必要。 【發明内容】 一種燃料電池膜電極,其包括:一質子交換膜及分別 口又置在該質子交換膜兩表面的電極,其中,電極由氣體擴 政層和催化層組成,催化層設置與氣體擴散層與質子交換 膜之間,其中,所述的氣體擴散層包括一奈米碳管薄膜。 . 所述的奈米碳管薄膜中包括相互纏繞的奈米碳管。 所述的奈米碳管薄膜中,相互纏繞的奈米碳管長度大 於10微米。 所述的奈米碳管薄膜中,相互纏繞的奈米碳管之間通 過凡德瓦爾力相互吸引、纏繞,形成網絡狀結構。 所述的奈米碳管薄膜中,由於奈米碳管相互纏繞,因 此具有很好的勃性,可以彎曲折疊成任意形狀而不破裂。 所述的奈米碳管薄膜中包括大量的微孔結構,微孔孔 徑小於100微米。 200924268 所述的奈米碳管薄膜厚度為丨微米至2毫米。 取一 7述的貝子父換膜材料為全氟磺酸、聚苯乙烯磺酸、 聚三氟苯乙烯磺酸、酚醛樹脂磺酸或碳氫化合物。 所述的催化層包括貴金屬顆粒和碳顆粒。 所述的貴金屬顆粒為鉑、金或釕。 所述的碳顆粒為石墨、炭黑、碳纖維或奈米碳管。 -種燃料電池膜電極的製備方法,其具體包括以下步 驟.製備-奈求碳管薄膜作為氣體擴散層 散層表面形成-催化層,從而得到一電極;以及提;體, η,將兩個上述電極分別設置在該質子交換膜兩個 表面,從而得到一燃料電池膜電極。 所述的製備奈米碳管薄膜的方法具體包括以下步驟: 提供一奈米碳管及料·脸u *如原枓,將上述奈米碳管原料添加到溶劑中 並進行絮化處理獲得奈米碳管 絮狀結構從溶射分離,,將上述奈米碳管 理形成-奈米碳“:。對該奈米碳管絮狀結構定型處 擾掉所述的絮域理时法包括超聲波分散處理或高強度 所述的溶劑為水或有機溶劑。 所述的分離奈米碳管智办 驟:將上述含有奈来石山2結構的方法具體包括以下步 漏斗巾.靜h/、反s戈狀結構的溶劑倒入放有濾紙的 結構。 、㈢仗而獲得分離的奈米碳管絮狀 所述的定型處理呈辦4 ”體包括以下步驟:將上述奈米碳管 200924268 絮狀結構置於—六a 狀攤開;施加奈米碳管絮狀結構按照預定形 以及,將溶劑扭乾^1於卞攤;1的奈米碳管絮狀結構薄膜; •戶斤述的分離和定型處理具 十反吕屬膜。 孔濾膜及-抽氣、M m 已括以下步驟:提供-微 劑經過微孔遽膜倒入抽氣漏斗中;抽遽=二, 碳管薄膜。 〜1乾各後獲得奈米 所述的燃料電池膜電極的製備方法,進— 該奈米碳管薄臈切割成預定的尺寸和形將 和形狀的燃料電池氣體擴散層。 4預疋尺寸 所述的在上述氣體擴散層表 — 噴射法、浸潰法或絲網㈣法。成耗層的方法為 法。所述的將電極設置在質子交換膜表面的方法為熱壓 于先前技術’所述的燃料電池膜電極中,氣體於 政層包括-奈米碳管薄膜’具有以下優點, 碳管薄膜中,夺米破營久^ π" 心不米 π』、 各向冋性,均勻分佈,無規則挑刻, >成形成大量的均勻分佈的微士、 目士 & L 口稱且該奈米碳管薄膜 表面積。這種結構可以有效且均勻的擴㈣ 丄=::劑氣體。第二,由於奈米碳管本身的電阻率 可電阻率,故’該奈来碳管薄膜電阻率低’ 的傳導反應所必需的電子和反應生成。 燃:電池氣體擴散層’可改善燃料電池膜電極的反 該奈未石反官薄膜中’由於奈米碳管之間通 200924268 過凡德瓦爾力相互吸引、纏繞,形成網絡狀結構,使得該 奈米碳管薄膜具有报好的韌性,易於加工,可以用來:μ -各種形狀的燃料電池膜電極。 &作 *【實施方式】 以下將結合附圖對本技術方案作進—步的詳、纟…、 明。 、,、田况 請參閱圖1,本技術方案實施例提供一種燃料電 電極10 ’其包括·-質子交換膜12和兩個電極H其 中電極14由氣體擴散層16和催化層18紕成。兩個電極 14分別設置在該質子交換膜12兩表面,且催化層丄^位 於質子交換膜12與氣體擴散層16之間。 、氣體擴散層16包括-奈米碳管薄臈,該奈米石炭管薄 膜為由多個奈米碳管組成的自支撐結構,且多個奈米碳 官之間相互纏繞。該奈米碳管薄膜厚度為i微米至2毫 米。該奈米碳管薄膜中,奈米碳管各向同性,均勻分佈= 無規則排列,形成大量的微孔結構,微孔孔徑小於ι〇〇 微米。由於奈米碳管本身的電阻率要低於碳纖維的電阻 率,故,該奈米碳管薄膜電阻率低先前的碳纖維紙。該 奈米碳管薄膜中,奈米碳管之間通過凡德瓦爾力相互吸 引、纏繞,形成網絡狀結構,使得該奈米碳管薄臈具有 报好的韌性。 、、催化層18包括貴金屬顆粒及碳顆粒。貴金屬顆粒材 料為鉑、金、釕等,優選地為鉑。碳顆粒為石墨顆粒、 炭黑顆粒、碳纖維或奈米碳管等,優選為奈米碳管。貴 12 200924268 金屬顆粒分散於碳顆粒中’形成催化層18。作為催化材 料的貴金屬顆粒擔載量低於0.5mg/cm2。質子交換膜I: 材料為全氟磺酸、聚苯乙烯磺酸、聚三氟笨乙烯磺酸、 酚醛樹脂磺酸或碳氫化合物等。 凊參閱圖2 ’本技術方案實施例還進一步提供燃料電 池膜電極10的製備方法’具體包括以下步驟: 步驟一:製備一奈米碳管薄膜作為氣體擴散層16。 該氣體擴散層16的製備方法具體包括以下步驟: 首先,提供一奈米碳管陣列,採用刀片或其他工具 2上述奈米碳管從基底刮落,獲得奈米碳管原料。其中/、, =碳管-定程度上保持相互纏繞的狀態。所述的奈米 原料I,奈米碳管長度大於1G微米。本實施例提供 、不米石反官陣列為單壁奈求碳管陣雙I奈米碳管陣 歹J及多壁奈米碳管陣列中的一種。 本實施射,奈米碳管陣列的製備方法採用化學氣 目此積法,其具體步驟包括:(a)提供—平整基底,該基 ::選用P型或心矽基底,或選用形成有氧化層的矽 本實施例優選為採用4英寸的石夕基底;⑴在基 ^、面均勻形成—催化劑層,該催化劑層材料可選用鐵 姑(C。)、鎳⑽或其任意組合的合金之-;(C) 火㈣成有催化劑層的基底在彻〜刪。c的空氣中退 中'/ W〜9G分鐘’·(d)將處理過的基底置於反應爐 ^ =護氣體環境下加熱到5〇0〜w;,然後通入碳源 ; ‘"、力5〜3〇分鐘,生長得到奈米碳管陣列,其高度 13 200924268 大於100微米。該奈米碳管陣列為多個彼此平行且垂直 於基底生長的奈米碳管形成的純奈米碳管陣列,由於生 成的奈米碳管長度較長,部分奈米碳管會相互纏繞。通 過上述控制生長條件,該奈米碳管陣列中基本不含有雜 質,如無定型碳或殘留的催化劑金屬顆粒等。本實施例 中碳源氣可選用乙炔等化學性質較活潑的碳氫化合物, 保護氣體可選用氮氣、氨氣或惰性氣體。可以理解,本 實施例提供的奈米碳管陣列不限於上述製備方法,也可 以用電弧放電法或鐳射蒸發法製備的奈米碳管作為 剩 ° ' /、人將上述奈米碳管原料添加到一溶劑中並進行 絮化處理獲得奈米碳管絮狀結構。 本實施例中,溶劑可選用水、易揮發的有機溶劑等。 絮化處理可通過採用㈣波分散處理或高強度攪拌等方 去。優選地,本實施例採用超聲波分散10〜30分鐘。由 於奈米碳管具有極大的比表面積,相互纏繞的奈米碳管 之間具有較大的凡德瓦爾力。上述絮化處理並不合將太 ,管原料中的奈米碳管完全分散在溶劑中,奈米碳; 間通過凡德瓦_力相互吸引、纏繞,形成網絡狀結構。 再次’將上述奈米碳管絮狀結構從溶劑中分離,並 :::米碳管絮狀結構定型處理形成—奈来碳管薄膜, 欠而得得到一氣體擴散層16。 本實施例中’分離奈来碳管絮狀結構的方法具體包 括以下步驟:將上述含有奈米竣管絮狀結構的溶劑倒入 14 200924268 放有遽紙的漏斗中·德罢私 太乎碳管絮二 無一段時間從而獲得分離的 不未石反S I狀結構。請參閱圖3, 管絮狀結構。可以看出,夺^ 、〜、,、氏上的不未石反 絮狀結構。 Μ 相互纏繞成不規則的 本實施例中,定型處 ^ ^ ^ 生地理具脰包括以下步驟:將上述 不未石反&絮狀結構置於一容 按照預定形狀攤開;施加一:::將奈未碳管絮狀結構 ^ ^ Μ · ri ^ 疋壓力於攤開的奈米碳管絮 t:二Γ將奈米碳管絮狀結構中殘留的溶劑烘乾 或谷Μ自然揮發後獲得奈米碳管薄膜。可以理解,本 過控制奈米碳管絮狀結構攤片的面積來控制 奈未,管薄膜的厚度和面密度。攤片的面積越大,則奈 米碳官薄膜14的厚度和面密度就越小。該奈米碳管薄膜 厚度為1微米〜2毫米,寬度!厘米~1〇厘米。請參閱圖扣 為本實施例中獲得的奈米碳管薄膜。 另外,上述分離與定型處理步驟也可直接通過抽濾 的方式獲得奈米碳管薄膜,具體包括以下步驟:提供― 微孔濾膜及一抽氣漏斗;將上述含有奈米碳管絮狀結構 =溶劑經過微孔濾膜倒入抽氣漏斗中;抽濾並乾燥&獲 得奈米碳管薄膜。該微孔濾膜為一表面光滑、孔徑為〇.22 微米的濾膜。由於抽濾方式本身將提供一較大的氣壓作 用于奈米碳管絮狀結構,該奈米碳管絮狀結構經過抽濾 會直接形成一均勻的奈米碳管薄膜。且,由於微孔濾膜 表面光滑’該奈米碳管薄膜容易剝離。 本實施例製備的奈米碳管薄膜中,相互纏繞的奈米 15 200924268 碳管之間通過凡德瓦爾力相互吸引、纏繞,形成網絡狀 結構’使得該奈米碳管薄膜具有很好的韌性。可以折最 •成不同形狀,易於加工。請參見圖5,為本技術方案實施 •例‘備的奈来碳管薄膜折疊後的照片。 、 本技術領域技術人員應明白,本實施例中,該奈米 石反官薄膜還可根據實際需要,切割成任意形狀或尺寸γ 可應用於微型燃料電池中的氣體擴散層16,有利於 其應用範圍。 步驟二:在上述氣體擴散層16 一表面形成—催化層 18,從而得到一電極14。 其中,形成催化層18的方法具體包括以下步驟: 首先,提供一貴金屬顆粒與碳顆粒的混合物,並將 其投入到一分散液中,再加入水和表面活性 徭 形成一催化劑漿料。 刀月欠後 '作為催化劑材料的貴金屬顆粒選自鉑、金、釕等, :為炭顆粒選自石墨、炭黑、碳纖維或奈米碳管 專1金屬顆粒擔載於碳顆粒載體表面,形成分散的顆 ^ ^貝金屬顆粒擔載量低於G.5mg/em2。碳顆粒具有高導 樹r 面積’耐腐飯性。所述的分散液為將CHF1_ :基乙酿胺中得到的,其中,分散液中樹 碳顆粒的凝聚。進二表面:=為異丙醇等’可以抑制 磨機對破顆粒進行長8;間::催: = ,用球 彳"提高破顆粒在催化= 16 200924268 過採用超聲波分散處理或高強度授拌等方法實現。 將上述催化劑浆料涂覆在氣體擴 面,並乾燥形成一催化層18。 表 涂覆催化料可㈣㈣射法、 刷法等。涂覆催化劑喂料I全π At 次4網印 緻密,均勾。乾能使涂覆的催化劑漿料 …J 通過烘乾或燒結的方法,盡可- 在低溫條件下進杆,α麻.士 , J月匕 產生。心了以便減少催化層裂紋和空隙的 步驟三:提供-質子交換膜12,將兩個上述雷 分別設置在該質子交換膜 义電極14 電池膜電極i。:兩個表面,從而得到-燃料 12的HI塵的方法,將兩個電極U分別與質子交換膜 12的兩個表面結合,且 、 換膜12的表面,置於氣 、化層18緊貼質子交 門。併工__ 置於礼體擴散層Μ與質子交換膜12之 :^又、膜12材料為全氟石黃酸、聚苯乙稀石黃酸、聚 二鼠本乙烯磺酸、酚醛樹脂磺酸、碳氫化合物等。 :實施例令氣體擴散層16的製備方法具有以下優 過將奈米碳管原料進行絮化處理後使奈来 神.甘_ 備的奈米碳管薄膜具有很好的韌 = 冑’備方法可在製備過程中對奈米碳管薄膜 的厂予=面密度進行控制,工序簡單,易於實際應用。 ❼閱圖6,本技術方案實施例還進一步提供一燃料 個I : €包括一膜電極618 ’兩個導流板610,兩 集&板612以及相關的輔助部件614。其中,膜電極 200924268 618包括一質子交換膜602和兩個電極604,而電極604 又包括一氣體擴散層606和一催化層608。兩個電極604 '分別設置在質子交換膜602兩表面,且催化層608位於 .質子交換膜602與氣體擴散層606之間。導流板610設 置在電極604遠離質子交換膜602的表面,用於傳導燃 料氣體、氧化劑氣體以及反應產物水。導流板610採用 金屬或導電碳材料製作,在導流板610的一表面具有一 條或多條導流槽616。該導流槽616與氣體擴散層606接 觸,用於導引燃料氣體、氧化劑氣體和反應產物水。集 流板612採用導電材料製作,設置於導流板610的遠離 質子交換膜602的表面,用於收集和傳導反應產生的電 子。氣體擴散層606為本技術方案實施例製備的奈米碳 管薄膜。催化層608包括貴金屬顆粒及碳顆粒。貴金屬 顆粒為翻、金、舒等,優選地為銘。碳顆粒為石墨、炭 黑、碳纖維或奈米碳管等,優選地為奈米碳管。質子交 換膜602材料為全氟磺酸、聚苯乙烯磺酸、聚三氟苯乙 烯磺酸、酚醛樹脂磺酸或碳氫化合物。質子交換膜602 用來傳導質子,分割燃料氣體和氧化劑氣體。輔助部件 614包括鼓風機、管路、閥門等(圖中未顯示)。鼓風機通 過管路與導流板610相連,用來向燃料電池600提供燃 料氣體和氧化劑氣體。 上述燃料電池600工作時,利用其輔助部件614通 過導流板610分別向膜電極618中質子交換膜602兩表 面的電極604通入一燃料氣體(氫氣)及氧化劑氣體(純 18 200924268 乳乱或含氧的空氣)。其中’氫氣通過導流槽6i6到達陽 j :減通過導流槽616到達陰極。在燃料電池_的 -端’虱氣進入陽極後’通過氣體擴散層6〇6與催化層 608接觸。由於本技術方案實施例中採用奈米碳管薄膜作 為氣體擴散層606,奈米碳管薄膜中的奈米碳管奈米碳管 各向同性,均勻分佈,無規則排列,使得奈米碳管薄膜 中形成大量的均勾分佈的微孔結構,且該奈米碳管薄膜 ,,極大的比表面積。這種結構可以有效且均勻的擴散 虱氣’使氫氣與催化層6〇8中的貴金屬顆粒均句接觸, 可以有效的利用催化層_中的貴金屬顆粒對氫氣進行 催化反應。在催化劑材料作用下,一個氫分子發生如下 反應.H2—2H+ + 2e。反應生成的氫離子穿過質子交換膜 602到達陰極。反應生成的電子則進入外電路。 在燃料電池600另一端,氧氣進入陰極,同時,電 子則通過外電路到達陰極。在催化劑作用下,氧氣與氫 離子以及電子發生如下反應:l/2〇2 + 2H+ + 2e—H20。由於 本技術方案實施例中採用的奈米碳管薄膜中含有大量的 均勻分佈的微孔結構,且該奈米碳管薄膜具有極大的比 表面積,因此使得氧氣均勻擴散,在催化 離^及電子反應,提高了反應活性。另一方面= 碳管薄膜優良的導電性使得反應所必需的電子和反應生 成的電子通過氣體擴散層6〇6迅速傳導。而反應生成的 水則通過氣體擴散層606以及導流板610排出。在此電 化學反應過程中,電子在外電路連接下形成電流,通過 19 200924268 適當$連接可以向負載輸出電能。 坦ψ 述,本發明確已符合發明專利之要件,遂依法200924268 • Nine, invention description: [Technical field of invention] The present invention relates to a fuel cell membrane electrode and a preparation method thereof, and particularly to a carbon nanotube membrane-based fuel cell membrane electrode and a preparation method thereof. [Prior Art] A fuel cell is an electrochemical power generating device that converts fuel and oxidant gas into electric energy and generates a reaction product. Compared with other battery systems such as alkaline batteries and lithium batteries, fuel cells have the advantages of high energy conversion efficiency, low environmental pollution, wide application range, no noise, and continuous operation. They are widely used in military defense and civil power. Automotive, communications and other fields. Fuel cells are generally classified into an inductive fuel cell, a solid cancer oxide fuel cell, and a proton exchange membrane fuel cell. (See, Recent advances in fuel cell technology and its application, Journal of Power Sources, V100, P60-66 (2001)) ° Among them, proton exchange membrane fuel cells have developed rapidly in recent years and are receiving more and more attention. Generally, a fuel cell stack includes a plurality of individual fuel cell units, and a single fuel cell unit mainly includes a fuel cell membrane electrode (MEA), a flow field plate (FFP), and a current collection. Current Collector Plate (CCP) and related auxiliary components such as blowers, valves, piping, etc. The fuel cell membrane electrode (MEA), also known as the fuel cell membrane electrode assembly, is the core component of the battery unit. The fuel cell membrane electrode is usually composed of a proton exchange membrane (Proton Exchange Membrane) and electrodes respectively disposed on both surfaces of the proton exchange membrane. Generally, the electrode further includes a Catalyst Layer and a Gas Diffusion Layer (GDL), 7 200924268 and the catalytic layer is disposed between the gas mask and the proton exchange membrane. . The first proton exchange boat is 1 gas lime acid, polystyrene stone, polytrifluorostyrene acid, phenolic resin stone or sulphur, children, π 八 夂. As precious metal particles, ::Material: Reminder: a wide range of catalyst materials (- carbon particles, such as: graphite, "in or nail" and its carrier (generally the sound is mainly from fine 73⁄4 test ..., carbon fiber or carbon nanotubes). The gas diffusion consists of a carbon cloth or carbon paper that has been treated twice. When the fuel cell is operated through the membrane electrode, its auxiliary components are utilized. The machine counter-knife is directed to the electrode 2 of the proton exchange membrane in the membrane electrode 2 gas (hydrogen) and oxidant gas (pure oxygen or gas-containing electrode is the anode, the oxidant gas is passed into the electrode =: burning t battery - At the end, after the nitrogen enters the anode, the next reaction occurs in the next reaction of the catalyst: H2—2H++2e. The anti-twist: the f ion passes through the proton exchange membrane to reach the cathode. In the fuel cell; At the same time, 'electronics through the external circuit, the atmosphere and nitrogen ions and electrons occur as follows 2 + 2e - Sapporo. In this electrochemical reaction process, the electrons form a current under the 2-way connection' through the appropriate t connection The load is transported into the moon, and the water generated by the reaction passes through the gas diffusion layer and the choice of the baffle discharge and the preparation method has a very important influence on the performance of the proton exchange membrane fuel cell. On the one hand, the oxidant gas is diffused by the gas. The layer diffusion reaches the catalytic sound of the two-six breasts. The electrons necessary for the reaction and the electrons generated by the reaction are transmitted through the external circuit of the gas 2. - Layering /, external ^ and 'the current fuel cell membrane electricity The gas diffusion layer used in the main part is 妷 fiber paper. The previous carbon fiber paper is made of carbon fiber, wood pulp, cellulose 200924268 fiber, quasi-synchronized fiber, made into pulp, and then made into carbon fiber paper. In carbon fiber paper, the carbon fiber is unevenly distributed, resulting in unreasonable pore structure in carbon-fiber paper and small specific surface area. The lack of structure restricts the function of gas diffusion layer to uniformly diffuse reaction gas. On the other hand, the previous carbon fiber paper The large resistivity restricts the function of the gas diffusion layer to conduct electrons and electrons generated by the reaction. These disadvantages directly affect the electrochemical properties such as the reactivity of the fuel cell membrane electrode. Moreover, the previous carbon fiber paper is flexible. In view of the above, it is necessary to provide a fuel cell membrane electrode with better reactivity and easy processing, and a preparation method thereof. [A SUMMARY] A fuel cell membrane electrode includes: a proton An exchange membrane and an electrode respectively disposed on both surfaces of the proton exchange membrane, wherein the electrode is The body expansion layer and the catalytic layer are composed of a catalytic layer disposed between the gas diffusion layer and the proton exchange membrane, wherein the gas diffusion layer comprises a carbon nanotube film. The carbon nanotube film comprises Intertwined carbon nanotubes. In the carbon nanotube film, the intertwined carbon nanotubes are longer than 10 microns. In the carbon nanotube film, the intertwined carbon nanotubes pass between each other. The van der Waals force attracts and entangles each other to form a network structure. In the carbon nanotube film, since the carbon nanotubes are entangled with each other, they have a good bouncing property and can be bent and folded into an arbitrary shape without being broken. The carbon nanotube film comprises a plurality of microporous structures having a pore diameter of less than 100 μm. The thickness of the carbon nanotube film described in 200924268 is from 丨 micrometer to 2 mm. It is perfluorosulfonic acid, polystyrenesulfonic acid, polytrifluorostyrenesulfonic acid, phenolic resinsulfonic acid or hydrocarbon. The catalytic layer includes precious metal particles and carbon particles. The noble metal particles are platinum, gold or rhodium. The carbon particles are graphite, carbon black, carbon fiber or carbon nanotubes. a method for preparing a fuel cell membrane electrode, which comprises the following steps: preparing a carbon nanotube film as a gas diffusion layer to form a catalytic layer on the surface of the diffusion layer, thereby obtaining an electrode; and extracting the body, η, and two The above electrodes are respectively disposed on both surfaces of the proton exchange membrane, thereby obtaining a fuel cell membrane electrode. The method for preparing a carbon nanotube film specifically includes the following steps: providing a carbon nanotube and a material, a face, and a surface, such as a raw material, adding the above-mentioned carbon nanotube raw material to a solvent and performing a flocculation treatment to obtain a naphthalene The carbon nanotube floc structure is separated from the spray, and the above-mentioned nanocarbon is managed to form a nanocarbon ":. The flocculation method for the nanocarbon tube floc structure is disturbed, including ultrasonic dispersion treatment. Or the high-strength solvent is water or an organic solvent. The method for separating the carbon nanotubes is as follows: the method for containing the structure of the nereite 2 is specifically included in the following step funnel towel. Static h/, anti-sig The structure of the solvent is poured into the structure of the filter paper. (3) The obtained carbon nanotubes are obtained by the flocculating process. The shaping process is as follows: the following steps are carried out: placing the above-mentioned carbon nanotubes 200924268 floc structure - six a-shaped spread; application of carbon nanotube floc structure according to a predetermined shape and, the solvent is twisted and dried; 1 nano carbon tube floc structure film; • household separation and shaping treatment With ten anti-Lü is a film. The pore filter membrane and the pumping gas, M m have been included in the following steps: the microparticle is supplied through the microporous membrane and poured into the suction funnel; the enthalpy = two, the carbon nanotube membrane. After the drying of the fuel cell membrane electrode is carried out, the carbon nanotube membrane is cut into a fuel cell gas diffusion layer of a predetermined size and shape. 4 Pre-size The above-mentioned gas diffusion layer table - spray method, dipping method or screen (four) method. The method of forming a layer is a method. The method of disposing the electrode on the surface of the proton exchange membrane is hot pressing in the fuel cell membrane electrode described in the prior art, and the gas in the political layer including the carbon nanotube membrane has the following advantages, in the carbon nanotube film, Capture the rice and break the camp for a long time ^ π " heart is not π 』, all directions, evenly distributed, irregularly picked, > into a large number of evenly distributed wisdom, Mesh & L mouth and the nano carbon Tube film surface area. This structure can effectively and uniformly expand (4) 丄 =:: agent gas. Second, since the resistivity of the carbon nanotube itself is resistivity, electrons and reactions necessary for the conduction reaction of the low carbon nanotube film resistivity are generated. Combustion: the battery gas diffusion layer' can improve the fuel cell membrane electrode in the anti-Neiwu stone anti-official film 'Because the carbon nanotubes pass through the 200924268, the Van der Waals force attracts and entangles each other to form a network-like structure, making the nai The carbon nanotube film has good toughness and is easy to process, and can be used for: μ - various shapes of fuel cell membrane electrodes. & * * Embodiments The following is a detailed description of the technical solutions in accordance with the accompanying drawings. Referring to Fig. 1, an embodiment of the present technical solution provides a fuel electrode 10' which includes a proton exchange membrane 12 and two electrodes H, wherein the electrode 14 is formed by a gas diffusion layer 16 and a catalytic layer 18. Two electrodes 14 are respectively disposed on both surfaces of the proton exchange membrane 12, and the catalytic layer is disposed between the proton exchange membrane 12 and the gas diffusion layer 16. The gas diffusion layer 16 includes a carbon nanotube thin film which is a self-supporting structure composed of a plurality of carbon nanotubes, and a plurality of nano carbon members are intertwined with each other. The carbon nanotube film has a thickness of from i micrometer to 2 millimeters. In the carbon nanotube film, the carbon nanotubes are isotropic, evenly distributed = irregularly arranged, forming a large number of microporous structures, and the pore diameter is smaller than ι 微米 micrometer. Since the resistivity of the carbon nanotube itself is lower than that of the carbon fiber, the carbon nanotube film has a lower electrical resistivity than the previous carbon fiber paper. In the carbon nanotube film, the carbon nanotubes are mutually attracted and entangled by van der Waals force to form a network structure, so that the carbon nanotube thin crucible has a good toughness. The catalytic layer 18 includes precious metal particles and carbon particles. The noble metal particulate material is platinum, gold, rhodium, etc., preferably platinum. The carbon particles are graphite particles, carbon black particles, carbon fibers or carbon nanotubes, and the like, and are preferably carbon nanotubes. Expensive 12 200924268 Metal particles are dispersed in carbon particles' to form catalytic layer 18. The precious metal particles supported as the catalytic material are less than 0.5 mg/cm2. Proton exchange membrane I: The material is perfluorosulfonic acid, polystyrenesulfonic acid, polytrifluoroethanesulfonic acid, phenolic resinsulfonic acid or hydrocarbon. Referring to FIG. 2, the method for preparing the fuel cell membrane electrode 10 further includes the following steps: Step 1: Preparing a carbon nanotube film as the gas diffusion layer 16. The preparation method of the gas diffusion layer 16 specifically includes the following steps: First, an array of carbon nanotubes is provided, using a blade or other tool 2 The above-mentioned carbon nanotubes are scraped off from the substrate to obtain a carbon nanotube raw material. Where /,, = carbon tube - to a certain extent maintain a state of intertwined. The nano raw material I has a carbon nanotube length of more than 1 Gm. In this embodiment, the non-meterite anti-official array is one of a single-walled carbon tube array double-I nano carbon tube array 歹J and a multi-walled carbon nanotube array. In the present embodiment, the preparation method of the carbon nanotube array adopts the chemical gasification method, and the specific steps thereof include: (a) providing a flat substrate, the base: selecting a P-type or a palpitary substrate, or selecting to form an oxidation. The embodiment of the layer is preferably a 4-inch stone substrate; (1) a catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be selected from an alloy of iron (C.), nickel (10) or any combination thereof. -; (C) Fire (four) into the base of the catalyst layer in the ~ ~ delete. c in the air retreat '/ W ~ 9G minutes' (d) the treated substrate is placed in the reactor ^ = gas atmosphere to heat 5 〇 0 ~ w;, then into the carbon source; '", The force is 5 to 3 minutes and grows to obtain a carbon nanotube array with a height of 13 200924268 greater than 100 microns. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed by a plurality of carbon nanotubes which are parallel to each other and grow perpendicular to the substrate. Due to the long length of the produced carbon nanotubes, some of the carbon nanotubes are entangled with each other. By controlling the growth conditions as described above, the carbon nanotube array is substantially free of impurities such as amorphous carbon or residual catalyst metal particles. In the present embodiment, the carbon source gas may be a chemically active hydrocarbon such as acetylene, and the shielding gas may be nitrogen, ammonia or an inert gas. It can be understood that the carbon nanotube array provided in this embodiment is not limited to the above preparation method, and the carbon nanotube prepared by the arc discharge method or the laser evaporation method may be used as the remaining ° ' /, and the above-mentioned carbon nanotube raw material is added by a person. The carbon nanotube floc structure was obtained by a flocculation treatment in a solvent. In this embodiment, the solvent may be water, a volatile organic solvent or the like. The flocculation treatment can be carried out by using (four) wave dispersion treatment or high-intensity stirring. Preferably, this embodiment uses ultrasonic dispersion for 10 to 30 minutes. Since the carbon nanotubes have a very large specific surface area, there is a large van der Waals force between the intertwined carbon nanotubes. The above flocculation treatment does not integrate the carbon nanotubes in the tube raw material completely in the solvent, and the nanocarbons are mutually attracted and entangled by van der Waals to form a network structure. Again, the above-mentioned carbon nanotube floc structure is separated from the solvent, and the ::: carbon tube floc structure is shaped to form a carbon nanotube film, and a gas diffusion layer 16 is obtained. In the present embodiment, the method for separating the Nylon carbon tube floc structure specifically comprises the steps of: pouring the above solvent containing the nano tube flocculation structure into the funnel of the paper containing the paper in 2009200926. Tube 2 has no time to obtain a separated unanti-SI anti-SI structure. Please refer to Figure 3, the tube floc structure. It can be seen that there is no stone anti-floc structure on ^, ~, and .本 In the embodiment in which the two are intertwined into irregularities, the shaping method includes the following steps: placing the above-mentioned non-stone anti-floating structure in a predetermined shape; applying one:: : The Neflon carbon tube floc structure ^ ^ Μ · ri ^ 疋 pressure on the spread of the carbon nanotubes t: the second solvent is dried in the solvent of the nano carbon tube floc structure or the natural evaporation of the gluten Nano carbon tube film. It can be understood that the area of the nanotube structure of the carbon nanotubes is controlled to control the thickness and the areal density of the film. The larger the area of the tile, the smaller the thickness and areal density of the nano-carbon film 14. The carbon nanotube film has a thickness of 1 micron to 2 mm and a width! Cm ~ 1 cm. Please refer to the buckle for the carbon nanotube film obtained in this example. In addition, the separation and shaping treatment step can also directly obtain the carbon nanotube film by suction filtration, and specifically includes the following steps: providing a “microporous membrane and an extraction funnel; and the above-mentioned carbon nanotube-containing floc structure = Solvent was poured into a suction funnel through a microporous filter; suction filtered and dried & obtained a carbon nanotube film. The microporous membrane is a filter membrane having a smooth surface and a pore size of 〇.22 μm. Since the suction filtration method itself provides a large gas pressure for the carbon nanotube floc structure, the carbon nanotube floc structure directly forms a uniform carbon nanotube film by suction filtration. Moreover, since the surface of the microporous membrane is smooth, the carbon nanotube film is easily peeled off. In the carbon nanotube film prepared in this embodiment, the intertwined nano 15 200924268 carbon tube is attracted and entangled by van der Waals force to form a network structure, which makes the carbon nanotube film have good toughness. . It can be folded into the most different shapes and is easy to process. Please refer to FIG. 5 , which is a photograph of the technical solution of the present invention. It should be understood by those skilled in the art that in the embodiment, the nano stone sinusoidal film can be cut into any shape or size according to actual needs, and can be applied to the gas diffusion layer 16 in the micro fuel cell, which is beneficial to the same. Application range. Step 2: forming a catalytic layer 18 on a surface of the gas diffusion layer 16 to obtain an electrode 14. Among them, the method of forming the catalytic layer 18 specifically includes the following steps: First, a mixture of noble metal particles and carbon particles is supplied and introduced into a dispersion, and water and surface active hydrazine are added to form a catalyst slurry. After the knife is owed, the precious metal particles as the catalyst material are selected from platinum, gold, rhodium, etc., and the carbon particles are selected from graphite, carbon black, carbon fiber or carbon nanotubes. The metal particles are supported on the surface of the carbon particle carrier to form The amount of dispersed metal particles is lower than G.5 mg/em2. The carbon particles have a high conductivity tree area 'resistance to rice. The dispersion is obtained by subjecting CHF1_:ylamine to agglomeration of the carbon particles in the dispersion. Into the second surface: = isopropyl alcohol, etc. 'can inhibit the mill to lengthen the broken particles 8; between:: reminder: =, use the ball 彳 " improve the broken particles in the catalysis = 16 200924268 through the use of ultrasonic dispersion treatment or high strength The method of mixing and other methods is realized. The above catalyst slurry is coated on a gas diffusion and dried to form a catalytic layer 18. The coated catalytic material can be (4) (4) shot method, brush method, and the like. Coated catalyst feed I full π At times 4 screen printing dense, even hook. The dry can be coated with the catalyst slurry ... J by drying or sintering, as far as possible - at low temperatures, rods, alpha hemp, J. The third step is to reduce the cracks and voids of the catalytic layer. The proton exchange membrane 12 is provided, and two of the above-mentioned spurs are respectively disposed on the membrane electrode i of the proton exchange membrane electrode 14. : two surfaces, thereby obtaining a HI dust of the fuel 12, combining the two electrodes U with the two surfaces of the proton exchange membrane 12, and the surface of the membrane 12 is placed on the gas and chemical layer 18 Protons are delivered. And __ placed in the ritual diffusion layer 质 and proton exchange membrane 12: ^, film 12 material is perfluorolithic acid, polystyrene, acid, polystyrene, vinyl sulfonate, phenolic resin Acids, hydrocarbons, etc. The method for preparing the gas diffusion layer 16 has the following advantages: the nano carbon tube film has a good toughness and 胄' preparation method after the nano carbon tube raw material is subjected to flocculation treatment. The factory can control the surface density of the carbon nanotube film in the preparation process, the process is simple, and it is easy to be practically applied. Referring to Figure 6, the embodiment of the present solution further provides a fuel I: a diaphragm 610' including two membrane electrodes 618', two sets & plates 612 and associated auxiliary components 614. The membrane electrode 200924268 618 includes a proton exchange membrane 602 and two electrodes 604, and the electrode 604 further includes a gas diffusion layer 606 and a catalytic layer 608. Two electrodes 604' are disposed on both surfaces of the proton exchange membrane 602, and a catalytic layer 608 is located between the proton exchange membrane 602 and the gas diffusion layer 606. The baffle 610 is disposed on the surface of the electrode 604 remote from the proton exchange membrane 602 for conducting fuel gas, oxidant gas, and reaction product water. The deflector 610 is made of a metal or conductive carbon material, and has one or more flow guiding grooves 616 on one surface of the deflector 610. The flow guiding groove 616 is in contact with the gas diffusion layer 606 for guiding the fuel gas, the oxidant gas, and the reaction product water. The current collecting plate 612 is made of a conductive material and is disposed on the surface of the deflector 610 remote from the proton exchange membrane 602 for collecting and conducting electrons generated by the reaction. The gas diffusion layer 606 is a carbon nanotube film prepared in the embodiment of the present technology. Catalytic layer 608 includes precious metal particles and carbon particles. The precious metal particles are tumbling, gold, shu, etc., preferably in Ming. The carbon particles are graphite, carbon black, carbon fiber or carbon nanotubes, etc., preferably a carbon nanotube. The material of the proton exchange membrane 602 is perfluorosulfonic acid, polystyrenesulfonic acid, polytrifluorobenzenesulfonic acid, phenolic resinsulfonic acid or hydrocarbon. The proton exchange membrane 602 is used to conduct protons and separate the fuel gas and the oxidant gas. Auxiliary component 614 includes a blower, tubing, valves, etc. (not shown). The blower is connected to the baffle 610 through a conduit for supplying fuel gas and oxidant gas to the fuel cell 600. When the fuel cell 600 is in operation, the auxiliary member 614 passes through the deflector 610 to respectively introduce a fuel gas (hydrogen gas) and an oxidant gas into the electrode 604 on both surfaces of the proton exchange membrane 602 in the membrane electrode 618 (pure 18 200924268 Oxygenated air). Wherein 'hydrogen reaches the anode j through the flow guiding groove 6i6: minus passing through the guiding groove 616 to the cathode. After the helium gas of the fuel cell enters the anode, it is contacted with the catalytic layer 608 through the gas diffusion layer 6〇6. Since the carbon nanotube film is used as the gas diffusion layer 606 in the embodiment of the technical solution, the carbon nanotube carbon nanotubes in the carbon nanotube film are isotropic, evenly distributed, and randomly arranged, so that the carbon nanotubes are arranged. A large number of uniformly distributed microporous structures are formed in the film, and the carbon nanotube film has a large specific surface area. This structure can effectively and uniformly diffuse the helium gas to make the hydrogen gas in contact with the noble metal particles in the catalytic layer 6〇8, and can effectively utilize the noble metal particles in the catalytic layer to catalyze the hydrogen gas. Under the action of the catalyst material, a hydrogen molecule undergoes the following reaction: H2-2H+ + 2e. The hydrogen ions generated by the reaction pass through the proton exchange membrane 602 to reach the cathode. The electrons generated by the reaction enter the external circuit. At the other end of the fuel cell 600, oxygen enters the cathode while electrons pass through the external circuit to the cathode. Under the action of the catalyst, oxygen reacts with hydrogen ions and electrons as follows: l/2〇2 + 2H+ + 2e-H20. Since the carbon nanotube film used in the embodiment of the technical solution contains a large number of uniformly distributed microporous structures, and the carbon nanotube film has a large specific surface area, the oxygen is uniformly diffused, and the catalyst is separated from the electrons. The reaction increases the reactivity. On the other hand, the excellent electrical conductivity of the carbon nanotube film allows the electrons necessary for the reaction and the electrons generated by the reaction to be rapidly conducted through the gas diffusion layer 6〇6. The water generated by the reaction is discharged through the gas diffusion layer 606 and the deflector 610. During this electrochemical reaction, electrons form a current under the connection of the external circuit, and the power can be output to the load through the appropriate connection of 19 200924268. It is frankly stated that the present invention has indeed met the requirements of the invention patent,

提出專利申請。惟,以卜%、+'土报$ L 上所述者僅為本發明之較佳實施例, 不能以此限制本案之巾請專利範圍。舉凡熟悉本案技蔽 2士減本發明之精神所作之等效修飾或變化,皆應涵 J^於以下申請專利範圍内。 【圖式簡單說明】 圖1係本技術方案實施例的燃料電池膜電極結構示竟 圖0 圖2係本技術方案實施例 法的流程示意圖。 的燃料電池膜電極的製備方 圖3係本技術方案實施例獲得的奈米碳管絮狀結構的 圖4係本技術方案實施織得的預定形狀的奈米石炭管 溥膜的照片。 圖5係本技術方案實施例製備的奈米碳管薄膜 的照片。 、々宜佤 圖6係本技術方案實施例的燃料電池結構示意圖。 【主要元件符號說明】 燃料電池膜電極 10 質子交換膜 12 電極 14 氣體擴散層 16 催化層 18 20 200924268 燃料電池 600 質子交換膜 602 •電極 604 •氣體擴散層 606 催化層 608 導流板 610 集流板 612 輔助部件 614 導流槽 616 膜電極 618 21File a patent application. However, the above description of the present invention is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Any equivalent modification or change made by the spirit of the invention shall be within the scope of the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing the flow of a fuel cell membrane electrode structure according to an embodiment of the present invention. FIG. FIG. 3 is a photograph of a nano-carbon tube floc structure obtained by an embodiment of the present invention. FIG. 4 is a photograph of a nano-carbon tube ruthenium film of a predetermined shape woven by the present technical solution. Fig. 5 is a photograph of a carbon nanotube film prepared in an embodiment of the present technical solution. Figure 6 is a schematic view showing the structure of a fuel cell according to an embodiment of the present technical solution. [Main component symbol description] Fuel cell membrane electrode 10 Proton exchange membrane 12 Electrode 14 Gas diffusion layer 16 Catalytic layer 18 20 200924268 Fuel cell 600 Proton exchange membrane 602 • Electrode 604 • Gas diffusion layer 606 Catalytic layer 608 Deflection plate 610 Current collection Plate 612 auxiliary component 614 guide groove 616 membrane electrode 618 21

Claims (1)

200924268 十、申請專利範圍 1. 一種燃料電池膜電極,其包括:—晳 执署卢兮所工 > 杜 貝子父換膜及分別 '置在该貝子父換膜兩表面的電極,其中電極由氣體 擴散層和催化層組成,且催化層設w 併 ” ^ ^ ^ a ^ β 置於貝子交換膜與 乱體擴散層之間,其改良在於,所 ^ ^ ^ # ^ ^ ^ ^ 江辻的氣體擴散層包 括奈未奴官溥胰,且該奈米碳管笼胳+二 繞的奈米碳管。 專膜中包括相互纏 2. 如申請專利範圍第i項所述的燃料電池膜電極, 所述的奈米碳管薄膜中,奈米碳管各向同性,均、 佈’無規則排列。 3. 如申請專利範圍第i項所述的燃料電池膜電極,並中, 所述的奈米碳管薄膜中,相互纏繞 ^ 於10微米。 的不未石厌官長度大 4·如申請專利範圍第i項所述的燃料電池臈電極,, 所述的奈米碳管薄膜中,相互纏繞的奈米碳管之、間通 過凡德瓦爾力相互吸引、纏繞,形成網絡狀結構。 5.如申請專利範圍第χ項所述的燃料電池膜電極,其中, 所述的奈米碳管薄膜中包括孔徑小 . 結構。 j於10〇微米的微孔 如申請專利範圍第!項所述的燃料電池膜電極,豆中 所述的氣體擴散層厚度為1微米至2毫米。 八 如申請專利範圍第1項所述的燃料電池膜電極,立中 =述的許交換膜材㈣全㈣酸1笨乙稀續酸 聚二齓本乙烯磺酸、酚醛樹脂磺酸或碳氫化合物。 22 200924268 δ.如申凊專利範圍第1項所述的燃料電池獏電極,其中, 所述的催化層包括貴金屬顆粒和碳顆粒。 9. 如申請專利範圍第8項所述的燃料電池瞑電極 所述的貴金屬顆粒材料為鉑、金或釕。 八 10. 如中請專利範圍第8額述的燃料電池膜電極,其 奈米:ί的碳顆粒為石墨顆粒、炭黑顆粒、碳纖維或 膜電極 電極; 11.種如申請專利範圍帛i項所述的燃200924268 X. Patent application scope 1. A fuel cell membrane electrode, which comprises: - the work of the syllabus Lu Xun > Dubei's father to change the membrane and the electrodes respectively placed on the two surfaces of the shellfish, wherein the electrodes are The gas diffusion layer and the catalytic layer are composed, and the catalytic layer is set to w and " ^ ^ ^ a ^ β is placed between the shell exchange membrane and the disordered diffusion layer, and the improvement is that the gas of the ^ ^ ^ # ^ ^ ^ ^ The diffusion layer comprises a navelous manganese pancreas, and the carbon nanotubes are caged + two wound carbon nanotubes. The membrane comprises intertwined. 2. The fuel cell membrane electrode according to the scope of claim i, In the carbon nanotube film, the carbon nanotube is isotropic, and the cloth is randomly arranged. 3. The fuel cell membrane electrode according to claim i, wherein the nanometer In the carbon tube film, the intertwining is 10 micrometers. The length of the carbon nanotubes is as large as 4. The fuel cell crucible electrode according to the invention of claim i, wherein the carbon nanotube film is intertwined with each other. The carbon nanotubes of each other are sucked by Van der Valli 5. The fuel cell membrane electrode according to the above aspect of the invention, wherein the carbon nanotube membrane comprises a small pore size. The structure is a pore of 10 micrometers. The fuel cell membrane electrode described in the scope of the patent application, wherein the thickness of the gas diffusion layer is from 1 micrometer to 2 millimeters. The fuel cell membrane electrode according to claim 1 of the patent scope, Lizhong = The exchangeable membrane material (4) all (four) acid 1 stupid acid sulphuric acid polydiphenyl sulfonate, phenolic resin sulfonic acid or hydrocarbon. 22 200924268 δ. The fuel cell according to claim 1 of the patent scope The ruthenium electrode, wherein the catalytic layer comprises noble metal particles and carbon particles. 9. The noble metal particulate material of the fuel cell tantalum electrode according to claim 8 is platinum, gold or rhodium. In the fuel cell membrane electrode of the eighth aspect of the patent scope, the carbon particles of the nanometer: ί are graphite particles, carbon black particles, carbon fiber or membrane electrode; 11. The fuel is as described in the patent scope 帛i 的製備方法,其具體包括以下步驟: L 也 製備一奈来碳管薄膜作為氣體擴散層; 在上述氣體擴散層表面形成一催化層,得到一 捉供一貝子交換膜,將兩個上述電極分別f 兩表面’從而得到一燃料電池膜電:。 .如申明專利範圍第u項所述的燃料 備方法,:M:中,制供., 也膜電極的製 以下步驟備—奈米碳管薄膜的方法具體包括 提供一奈米碳管原料; 添::溶劑中並進行絮化處理獲 將上述奈米碳管絮狀結 碳管絮狀結構定型處理 13.如申請專利範圍第I〕 備方法,其中,所述的 構從溶劑t分離,並對該奈米 A成一奈米碳管薄膜。 項所述的燃料電池膜電極的製 ㈣碳管原料為單壁奈米碳管 23 200924268 陣列、雙壁奈米碳管陣列或多壁奈米碳管陣列。 14. 如中凊專利範圍第12項所述的燃料電池膜電極 Si:二所述的絮化處理的方法包括超聲波‘ 散處理或南強度攪拌。 15. 如申請專利範圍第12項所述的燃料電池膜電極的製 備方法,其中,所述的分離奈米碳管絮狀結構的方= =包括以下步驟:將上述含有奈米碳管絮狀結構的 浴別倒入放有濾、紙的漏斗中;靜置乾燥—段時間從而 獲得分離的奈米碳管絮狀結構。 16·如申請專利範圍第12項所述的燃料電池膜電極的製 備方法,其中,所述的定型處理奈米碳管絮狀 方法具體包括以下步驟: 將上述奈米碳管絮狀結構置於一容器中; 將奈米碳管絮狀結構按照預定形狀攤開; 施加一定壓力於攤開的奈米碳管絮狀結構;以及 將奈米碳管絮狀結構中殘留的溶劑供乾或等溶劑自缺 揮發後獲得奈米碳管薄膜。 17.如申請專利範圍第項所述的燃料電池膜電極的紫 備方法,其中,所述的分離和定型處理具體 步驟: 提供一微孔濾膜及一抽氣漏斗; 將上述含有奈米碳管絮狀結構的溶劑經過微孔濾膜倒 入抽氣漏斗中;以及 抽濾並乾燥後獲得奈米碳管薄膜。 24 200924268 申月專利範圍第12項所述的燃料電池膜電極的製 備方:’其中,進一步包括:將該奈米碳管薄膜切割 成預定的尺寸和形狀’形成一預定尺寸和形狀的氣體 - 擴散層。 19. 如申請專利範圍第11項所述的燃料電池膜電極的製 備方法,其中,所述的在氣體擴散層表面形成催化層 的方法包括噴塗法、浸潰法或絲網印刷法。 20. 如申請專利範圍第Π項所述的燃料電池 伏%極的赞 備方法’其中,通過熱壓法將電極設置名哲 ^ < ± t 仕買子交換膜 25The preparation method comprises the following steps: L. preparing a carbon nanotube film as a gas diffusion layer; forming a catalytic layer on the surface of the gas diffusion layer to obtain a shell exchange membrane, and respectively f two surfaces' to get a fuel cell membrane electricity: The method for preparing a fuel according to the scope of claim 5, wherein: M: medium, supply, and membrane electrode preparation, the method of preparing a carbon nanotube film specifically comprises providing a carbon nanotube raw material; Adding: a solvent and performing a flocculation treatment to obtain a floc structure of the above-mentioned nano carbon tube flocculent carbon tube. 13. The method according to claim 1, wherein the structure is separated from the solvent t, And the nano A is formed into a carbon nanotube film. The fuel cell membrane electrode is made of (4) carbon tube material is single-walled carbon nanotube 23 200924268 array, double-walled carbon nanotube array or multi-walled carbon nanotube array. 14. The method of the flocculation treatment of the fuel cell membrane electrode Si as described in claim 12 of the Chinese Patent Publication No. 12, wherein the method of flocculation treatment comprises ultrasonic dispersion treatment or south intensity agitation. 15. The method for preparing a fuel cell membrane electrode according to claim 12, wherein the square of the separated carbon nanotube floc structure comprises: the step of: flocculating the carbon nanotube containing the above The structure of the bath is poured into a funnel that is placed in a filter or paper; it is allowed to stand for a period of time to obtain a separated carbon nanotube floc structure. The method for preparing a fuel cell membrane electrode according to claim 12, wherein the method for shaping the carbon nanotube floc comprises the following steps: placing the above-mentioned carbon nanotube floc structure In a container; spreading the carbon nanotube floc structure according to a predetermined shape; applying a certain pressure to the expanded carbon nanotube floc structure; and supplying the residual solvent in the nano carbon tube floc structure or the like The solvent of the carbon nanotubes is obtained after the solvent is volatilized. 17. The method of preparing a fuel cell membrane electrode according to claim 1, wherein the separating and sizing treatment step comprises: providing a microporous membrane and an extraction funnel; and containing the nanocarbon The solvent of the tube floc structure is poured into the suction funnel through the microporous membrane; and the carbon nanotube membrane is obtained by suction filtration and drying. 24 200924268 The preparation method of the fuel cell membrane electrode according to claim 12, wherein the method further comprises: cutting the carbon nanotube film into a predetermined size and shape to form a gas of a predetermined size and shape - Diffusion layer. 19. The method of producing a fuel cell membrane electrode according to claim 11, wherein the method of forming a catalytic layer on the surface of the gas diffusion layer comprises a spray coating method, a dipping method or a screen printing method. 20. A method of praising a fuel cell volt-moist pole as set forth in the scope of the patent application, wherein the electrode is set by a hot pressing method; < ± t 仕买子交换膜 25
TW096143494A 2007-11-16 2007-11-16 Membrane electrode assembly of fuel cell and method of making the same TWI455398B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW096143494A TWI455398B (en) 2007-11-16 2007-11-16 Membrane electrode assembly of fuel cell and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096143494A TWI455398B (en) 2007-11-16 2007-11-16 Membrane electrode assembly of fuel cell and method of making the same

Publications (2)

Publication Number Publication Date
TW200924268A true TW200924268A (en) 2009-06-01
TWI455398B TWI455398B (en) 2014-10-01

Family

ID=44728942

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096143494A TWI455398B (en) 2007-11-16 2007-11-16 Membrane electrode assembly of fuel cell and method of making the same

Country Status (1)

Country Link
TW (1) TWI455398B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464953B (en) * 2012-07-05 2014-12-11 Hon Hai Prec Ind Co Ltd Membrane electrode and fuel cell using the same
US9669398B2 (en) 2012-07-05 2017-06-06 Tsinghua University Method for making carbon nanotube-metal particle composite
CN107394239A (en) * 2017-07-28 2017-11-24 李兴祥 Fuel cell membrane electrode preparation method and preparation equipment
US10029242B2 (en) 2012-07-05 2018-07-24 Tsinghua University Carbon nanotube-metal particle composite and catalyst comprising the same
CN109752400A (en) * 2018-12-26 2019-05-14 上海神力科技有限公司 A kind of fuel cell membrane electrode interfacial structure characterization sample treatment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3943272B2 (en) * 1999-01-18 2007-07-11 双葉電子工業株式会社 Film forming method of carbon nanotube

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464953B (en) * 2012-07-05 2014-12-11 Hon Hai Prec Ind Co Ltd Membrane electrode and fuel cell using the same
US9669398B2 (en) 2012-07-05 2017-06-06 Tsinghua University Method for making carbon nanotube-metal particle composite
US9786942B2 (en) 2012-07-05 2017-10-10 Tsinghua University Membrane electrode and fuel cell using the same
US10029242B2 (en) 2012-07-05 2018-07-24 Tsinghua University Carbon nanotube-metal particle composite and catalyst comprising the same
CN107394239A (en) * 2017-07-28 2017-11-24 李兴祥 Fuel cell membrane electrode preparation method and preparation equipment
CN107394239B (en) * 2017-07-28 2023-07-07 李兴祥 Fuel cell membrane electrode preparation method and preparation equipment
CN109752400A (en) * 2018-12-26 2019-05-14 上海神力科技有限公司 A kind of fuel cell membrane electrode interfacial structure characterization sample treatment

Also Published As

Publication number Publication date
TWI455398B (en) 2014-10-01

Similar Documents

Publication Publication Date Title
CN101425583B (en) Fuel cell membrane electrode and preparation thereof
CN101425584B (en) Fuel cell membrane electrode and preparation thereof
TW515129B (en) Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device
CN101465434B (en) Fuel battery membrane electrode and preparation method thereof
CN101635362B (en) Membrane electrode and fuel cell adopting same
CN103413947A (en) Fuel cell ordered porous nano-fiber single electrode, membrane electrode and preparation method
CN105261767A (en) Nano carbon-doped porous fiber single electrode, membrane electrode and preparation method
JP4337406B2 (en) Electrode for polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JP5847865B2 (en) Gas diffusion substrate
JP2009117374A (en) Catalyst sheet for fuel cell, electrode for fuel cell, and fuel cell
JP6572416B1 (en) Conductive nanofiber member, fuel cell member, fuel cell, and method of manufacturing conductive nanofiber member
TW200924268A (en) Membrane electrode assembly of fuel cell and method of making the same
JP3826867B2 (en) Catalyst supporting particle for fuel cell and method for producing catalyst electrode for fuel cell
JP4781016B2 (en) Manufacturing method of gas diffusion electrode for fuel cell
TW201008010A (en) Membrane electrode assembly and biofuel cell using the same
TW201029251A (en) Membrane electrode assembly and fuel cell using the same
CN101635361A (en) Membrane electrode and biofuel cell adopting same
JP2009140667A (en) Solid polymer fuel cell, and manufacturing method thereof
CN110600749B (en) Integrated diffusion layer of fuel cell and preparation method and application thereof
JP2008235156A (en) Electrode catalyst layer for fuel cell, and fuel cell using it
JP2005149745A (en) Gas diffusion electrode for fuel cell and its manufacturing method
JP4037814B2 (en) Membrane-electrode assembly for fuel cell and fuel cell
TWI460916B (en) Membrane electrode assembly of fuel cell and method of making the same
TWI382581B (en) Membrane electrode assembly and fuel cell using the same
JP2004119223A (en) Gas diffusion electrode and fuel cell using the same